LinkModules.cpp revision 0b228bf4315ee36f591046c309cb213f7c1197c0
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/Instructions.h"
26#include "llvm/Assembly/Writer.h"
27#include "llvm/Support/Streams.h"
28#include "llvm/System/Path.h"
29#include "llvm/ADT/DenseMap.h"
30#include <sstream>
31using namespace llvm;
32
33// Error - Simple wrapper function to conditionally assign to E and return true.
34// This just makes error return conditions a little bit simpler...
35static inline bool Error(std::string *E, const std::string &Message) {
36  if (E) *E = Message;
37  return true;
38}
39
40// ToStr - Simple wrapper function to convert a type to a string.
41static std::string ToStr(const Type *Ty, const Module *M) {
42  std::ostringstream OS;
43  WriteTypeSymbolic(OS, Ty, M);
44  return OS.str();
45}
46
47//
48// Function: ResolveTypes()
49//
50// Description:
51//  Attempt to link the two specified types together.
52//
53// Inputs:
54//  DestTy - The type to which we wish to resolve.
55//  SrcTy  - The original type which we want to resolve.
56//
57// Outputs:
58//  DestST - The symbol table in which the new type should be placed.
59//
60// Return value:
61//  true  - There is an error and the types cannot yet be linked.
62//  false - No errors.
63//
64static bool ResolveTypes(const Type *DestTy, const Type *SrcTy) {
65  if (DestTy == SrcTy) return false;       // If already equal, noop
66  assert(DestTy && SrcTy && "Can't handle null types");
67
68  if (const OpaqueType *OT = dyn_cast<OpaqueType>(DestTy)) {
69    // Type _is_ in module, just opaque...
70    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(SrcTy);
71  } else if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
72    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
73  } else {
74    return true;  // Cannot link types... not-equal and neither is opaque.
75  }
76  return false;
77}
78
79/// LinkerTypeMap - This implements a map of types that is stable
80/// even if types are resolved/refined to other types.  This is not a general
81/// purpose map, it is specific to the linker's use.
82namespace {
83class LinkerTypeMap : public AbstractTypeUser {
84  typedef DenseMap<const Type*, PATypeHolder> TheMapTy;
85  TheMapTy TheMap;
86public:
87
88  LinkerTypeMap() {
89    for (DenseMap<const Type*, PATypeHolder>::iterator I = TheMap.begin(),
90         E = TheMap.end(); I != E; ++I)
91      I->first->removeAbstractTypeUser(this);
92  }
93
94  /// lookup - Return the value for the specified type or null if it doesn't
95  /// exist.
96  const Type *lookup(const Type *Ty) const {
97    TheMapTy::const_iterator I = TheMap.find(Ty);
98    if (I != TheMap.end()) return I->second;
99    return 0;
100  }
101
102  /// erase - Remove the specified type, returning true if it was in the set.
103  bool erase(const Type *Ty) {
104    if (!TheMap.erase(Ty))
105      return false;
106    if (Ty->isAbstract())
107      Ty->removeAbstractTypeUser(this);
108    return true;
109  }
110
111  /// insert - This returns true if the pointer was new to the set, false if it
112  /// was already in the set.
113  bool insert(const Type *Src, const Type *Dst) {
114    if (!TheMap.insert(std::make_pair(Src, PATypeHolder(Dst))))
115      return false;  // Already in map.
116    if (Src->isAbstract())
117      Src->addAbstractTypeUser(this);
118    return true;
119  }
120
121protected:
122  /// refineAbstractType - The callback method invoked when an abstract type is
123  /// resolved to another type.  An object must override this method to update
124  /// its internal state to reference NewType instead of OldType.
125  ///
126  virtual void refineAbstractType(const DerivedType *OldTy,
127                                  const Type *NewTy) {
128    TheMapTy::iterator I = TheMap.find(OldTy);
129    const Type *DstTy = I->second;
130
131    TheMap.erase(I);
132    if (OldTy->isAbstract())
133      OldTy->removeAbstractTypeUser(this);
134
135    // Don't reinsert into the map if the key is concrete now.
136    if (NewTy->isAbstract())
137      insert(NewTy, DstTy);
138  }
139
140  /// The other case which AbstractTypeUsers must be aware of is when a type
141  /// makes the transition from being abstract (where it has clients on it's
142  /// AbstractTypeUsers list) to concrete (where it does not).  This method
143  /// notifies ATU's when this occurs for a type.
144  virtual void typeBecameConcrete(const DerivedType *AbsTy) {
145    TheMap.erase(AbsTy);
146    AbsTy->removeAbstractTypeUser(this);
147  }
148
149  // for debugging...
150  virtual void dump() const {
151    cerr << "AbstractTypeSet!\n";
152  }
153};
154}
155
156
157// RecursiveResolveTypes - This is just like ResolveTypes, except that it
158// recurses down into derived types, merging the used types if the parent types
159// are compatible.
160static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
161                                   const PATypeHolder &SrcTy,
162                                   LinkerTypeMap &Pointers) {
163  const Type *SrcTyT = SrcTy.get();
164  const Type *DestTyT = DestTy.get();
165  if (DestTyT == SrcTyT) return false;       // If already equal, noop
166
167  // If we found our opaque type, resolve it now!
168  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
169    return ResolveTypes(DestTyT, SrcTyT);
170
171  // Two types cannot be resolved together if they are of different primitive
172  // type.  For example, we cannot resolve an int to a float.
173  if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
174
175  // If neither type is abstract, then they really are just different types.
176  if (!DestTyT->isAbstract() && !SrcTyT->isAbstract())
177    return true;
178
179  // Otherwise, resolve the used type used by this derived type...
180  switch (DestTyT->getTypeID()) {
181  default:
182    return true;
183  case Type::FunctionTyID: {
184    const FunctionType *DstFT = cast<FunctionType>(DestTyT);
185    const FunctionType *SrcFT = cast<FunctionType>(SrcTyT);
186    if (DstFT->isVarArg() != SrcFT->isVarArg() ||
187        DstFT->getNumContainedTypes() != SrcFT->getNumContainedTypes())
188      return true;
189    for (unsigned i = 0, e = DstFT->getNumContainedTypes(); i != e; ++i)
190      if (RecursiveResolveTypesI(DstFT->getContainedType(i),
191                                 SrcFT->getContainedType(i), Pointers))
192        return true;
193    return false;
194  }
195  case Type::StructTyID: {
196    const StructType *DstST = cast<StructType>(DestTyT);
197    const StructType *SrcST = cast<StructType>(SrcTyT);
198    if (DstST->getNumContainedTypes() != SrcST->getNumContainedTypes())
199      return true;
200    for (unsigned i = 0, e = DstST->getNumContainedTypes(); i != e; ++i)
201      if (RecursiveResolveTypesI(DstST->getContainedType(i),
202                                 SrcST->getContainedType(i), Pointers))
203        return true;
204    return false;
205  }
206  case Type::ArrayTyID: {
207    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
208    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
209    if (DAT->getNumElements() != SAT->getNumElements()) return true;
210    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
211                                  Pointers);
212  }
213  case Type::VectorTyID: {
214    const VectorType *DVT = cast<VectorType>(DestTy.get());
215    const VectorType *SVT = cast<VectorType>(SrcTy.get());
216    if (DVT->getNumElements() != SVT->getNumElements()) return true;
217    return RecursiveResolveTypesI(DVT->getElementType(), SVT->getElementType(),
218                                  Pointers);
219  }
220  case Type::PointerTyID: {
221    const PointerType *DstPT = cast<PointerType>(DestTy.get());
222    const PointerType *SrcPT = cast<PointerType>(SrcTy.get());
223
224    if (DstPT->getAddressSpace() != SrcPT->getAddressSpace())
225      return true;
226
227    // If this is a pointer type, check to see if we have already seen it.  If
228    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
229    // an associative container for this search, because the type pointers (keys
230    // in the container) change whenever types get resolved.
231    if (SrcPT->isAbstract())
232      if (const Type *ExistingDestTy = Pointers.lookup(SrcPT))
233        return ExistingDestTy != DstPT;
234
235    if (DstPT->isAbstract())
236      if (const Type *ExistingSrcTy = Pointers.lookup(DstPT))
237        return ExistingSrcTy != SrcPT;
238
239    // Otherwise, add the current pointers to the vector to stop recursion on
240    // this pair.
241    if (DstPT->isAbstract())
242      Pointers.insert(DstPT, SrcPT);
243    if (SrcPT->isAbstract())
244      Pointers.insert(SrcPT, DstPT);
245    return RecursiveResolveTypesI(DstPT->getElementType(),
246                                  SrcPT->getElementType(), Pointers);
247  }
248  }
249}
250
251static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
252                                  const PATypeHolder &SrcTy) {
253  LinkerTypeMap PointerTypes;
254  return RecursiveResolveTypesI(DestTy, SrcTy, PointerTypes);
255}
256
257
258// LinkTypes - Go through the symbol table of the Src module and see if any
259// types are named in the src module that are not named in the Dst module.
260// Make sure there are no type name conflicts.
261static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
262        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
263  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
264
265  // Look for a type plane for Type's...
266  TypeSymbolTable::const_iterator TI = SrcST->begin();
267  TypeSymbolTable::const_iterator TE = SrcST->end();
268  if (TI == TE) return false;  // No named types, do nothing.
269
270  // Some types cannot be resolved immediately because they depend on other
271  // types being resolved to each other first.  This contains a list of types we
272  // are waiting to recheck.
273  std::vector<std::string> DelayedTypesToResolve;
274
275  for ( ; TI != TE; ++TI ) {
276    const std::string &Name = TI->first;
277    const Type *RHS = TI->second;
278
279    // Check to see if this type name is already in the dest module.
280    Type *Entry = DestST->lookup(Name);
281
282    // If the name is just in the source module, bring it over to the dest.
283    if (Entry == 0) {
284      if (!Name.empty())
285        DestST->insert(Name, const_cast<Type*>(RHS));
286    } else if (ResolveTypes(Entry, RHS)) {
287      // They look different, save the types 'till later to resolve.
288      DelayedTypesToResolve.push_back(Name);
289    }
290  }
291
292  // Iteratively resolve types while we can...
293  while (!DelayedTypesToResolve.empty()) {
294    // Loop over all of the types, attempting to resolve them if possible...
295    unsigned OldSize = DelayedTypesToResolve.size();
296
297    // Try direct resolution by name...
298    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
299      const std::string &Name = DelayedTypesToResolve[i];
300      Type *T1 = SrcST->lookup(Name);
301      Type *T2 = DestST->lookup(Name);
302      if (!ResolveTypes(T2, T1)) {
303        // We are making progress!
304        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
305        --i;
306      }
307    }
308
309    // Did we not eliminate any types?
310    if (DelayedTypesToResolve.size() == OldSize) {
311      // Attempt to resolve subelements of types.  This allows us to merge these
312      // two types: { int* } and { opaque* }
313      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
314        const std::string &Name = DelayedTypesToResolve[i];
315        PATypeHolder T1(SrcST->lookup(Name));
316        PATypeHolder T2(DestST->lookup(Name));
317
318        if (!RecursiveResolveTypes(T2, T1)) {
319          // We are making progress!
320          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
321
322          // Go back to the main loop, perhaps we can resolve directly by name
323          // now...
324          break;
325        }
326      }
327
328      // If we STILL cannot resolve the types, then there is something wrong.
329      if (DelayedTypesToResolve.size() == OldSize) {
330        // Remove the symbol name from the destination.
331        DelayedTypesToResolve.pop_back();
332      }
333    }
334  }
335
336
337  return false;
338}
339
340static void PrintMap(const std::map<const Value*, Value*> &M) {
341  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
342       I != E; ++I) {
343    cerr << " Fr: " << (void*)I->first << " ";
344    I->first->dump();
345    cerr << " To: " << (void*)I->second << " ";
346    I->second->dump();
347    cerr << "\n";
348  }
349}
350
351
352// RemapOperand - Use ValueMap to convert constants from one module to another.
353static Value *RemapOperand(const Value *In,
354                           std::map<const Value*, Value*> &ValueMap) {
355  std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
356  if (I != ValueMap.end())
357    return I->second;
358
359  // Check to see if it's a constant that we are interested in transforming.
360  Value *Result = 0;
361  if (const Constant *CPV = dyn_cast<Constant>(In)) {
362    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
363        isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
364      return const_cast<Constant*>(CPV);   // Simple constants stay identical.
365
366    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
367      std::vector<Constant*> Operands(CPA->getNumOperands());
368      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
369        Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
370      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
371    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
372      std::vector<Constant*> Operands(CPS->getNumOperands());
373      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
374        Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
375      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
376    } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
377      Result = const_cast<Constant*>(CPV);
378    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
379      std::vector<Constant*> Operands(CP->getNumOperands());
380      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
381        Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
382      Result = ConstantVector::get(Operands);
383    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
384      std::vector<Constant*> Ops;
385      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
386        Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
387      Result = CE->getWithOperands(Ops);
388    } else if (isa<GlobalValue>(CPV)) {
389      assert(0 && "Unmapped global?");
390    } else {
391      assert(0 && "Unknown type of derived type constant value!");
392    }
393  } else if (isa<InlineAsm>(In)) {
394    Result = const_cast<Value*>(In);
395  }
396
397  // Cache the mapping in our local map structure
398  if (Result) {
399    ValueMap[In] = Result;
400    return Result;
401  }
402
403
404  cerr << "LinkModules ValueMap: \n";
405  PrintMap(ValueMap);
406
407  cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
408  assert(0 && "Couldn't remap value!");
409  return 0;
410}
411
412/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
413/// in the symbol table.  This is good for all clients except for us.  Go
414/// through the trouble to force this back.
415static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
416  assert(GV->getName() != Name && "Can't force rename to self");
417  ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
418
419  // If there is a conflict, rename the conflict.
420  if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
421    assert(ConflictGV->hasInternalLinkage() &&
422           "Not conflicting with a static global, should link instead!");
423    GV->takeName(ConflictGV);
424    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
425    assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
426  } else {
427    GV->setName(Name);              // Force the name back
428  }
429}
430
431/// CopyGVAttributes - copy additional attributes (those not needed to construct
432/// a GlobalValue) from the SrcGV to the DestGV.
433static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
434  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
435  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
436  DestGV->copyAttributesFrom(SrcGV);
437  DestGV->setAlignment(Alignment);
438}
439
440/// GetLinkageResult - This analyzes the two global values and determines what
441/// the result will look like in the destination module.  In particular, it
442/// computes the resultant linkage type, computes whether the global in the
443/// source should be copied over to the destination (replacing the existing
444/// one), and computes whether this linkage is an error or not. It also performs
445/// visibility checks: we cannot link together two symbols with different
446/// visibilities.
447static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
448                             GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
449                             std::string *Err) {
450  assert((!Dest || !Src->hasInternalLinkage()) &&
451         "If Src has internal linkage, Dest shouldn't be set!");
452  if (!Dest) {
453    // Linking something to nothing.
454    LinkFromSrc = true;
455    LT = Src->getLinkage();
456  } else if (Src->isDeclaration()) {
457    // If Src is external or if both Src & Dest are external..  Just link the
458    // external globals, we aren't adding anything.
459    if (Src->hasDLLImportLinkage()) {
460      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
461      if (Dest->isDeclaration()) {
462        LinkFromSrc = true;
463        LT = Src->getLinkage();
464      }
465    } else if (Dest->hasExternalWeakLinkage()) {
466      //If the Dest is weak, use the source linkage
467      LinkFromSrc = true;
468      LT = Src->getLinkage();
469    } else {
470      LinkFromSrc = false;
471      LT = Dest->getLinkage();
472    }
473  } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
474    // If Dest is external but Src is not:
475    LinkFromSrc = true;
476    LT = Src->getLinkage();
477  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
478    if (Src->getLinkage() != Dest->getLinkage())
479      return Error(Err, "Linking globals named '" + Src->getName() +
480            "': can only link appending global with another appending global!");
481    LinkFromSrc = true; // Special cased.
482    LT = Src->getLinkage();
483  } else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage() ||
484             Src->hasCommonLinkage()) {
485    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
486    // or DLL* linkage.
487    if ((Dest->hasLinkOnceLinkage() &&
488          (Src->hasWeakLinkage() || Src->hasCommonLinkage())) ||
489        Dest->hasExternalWeakLinkage()) {
490      LinkFromSrc = true;
491      LT = Src->getLinkage();
492    } else {
493      LinkFromSrc = false;
494      LT = Dest->getLinkage();
495    }
496  } else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage() ||
497             Dest->hasCommonLinkage()) {
498    // At this point we know that Src has External* or DLL* linkage.
499    if (Src->hasExternalWeakLinkage()) {
500      LinkFromSrc = false;
501      LT = Dest->getLinkage();
502    } else {
503      LinkFromSrc = true;
504      LT = GlobalValue::ExternalLinkage;
505    }
506  } else {
507    assert((Dest->hasExternalLinkage() ||
508            Dest->hasDLLImportLinkage() ||
509            Dest->hasDLLExportLinkage() ||
510            Dest->hasExternalWeakLinkage()) &&
511           (Src->hasExternalLinkage() ||
512            Src->hasDLLImportLinkage() ||
513            Src->hasDLLExportLinkage() ||
514            Src->hasExternalWeakLinkage()) &&
515           "Unexpected linkage type!");
516    return Error(Err, "Linking globals named '" + Src->getName() +
517                 "': symbol multiply defined!");
518  }
519
520  // Check visibility
521  if (Dest && Src->getVisibility() != Dest->getVisibility())
522    if (!Src->isDeclaration() && !Dest->isDeclaration())
523      return Error(Err, "Linking globals named '" + Src->getName() +
524                   "': symbols have different visibilities!");
525  return false;
526}
527
528// LinkGlobals - Loop through the global variables in the src module and merge
529// them into the dest module.
530static bool LinkGlobals(Module *Dest, const Module *Src,
531                        std::map<const Value*, Value*> &ValueMap,
532                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
533                        std::string *Err) {
534  // Loop over all of the globals in the src module, mapping them over as we go
535  for (Module::const_global_iterator I = Src->global_begin(), E = Src->global_end();
536       I != E; ++I) {
537    const GlobalVariable *SGV = I;
538    GlobalValue *DGV = 0;
539
540    // Check to see if may have to link the global with the global
541    if (SGV->hasName() && !SGV->hasInternalLinkage()) {
542      DGV = Dest->getGlobalVariable(SGV->getName());
543      if (DGV && DGV->getType() != SGV->getType())
544        // If types don't agree due to opaque types, try to resolve them.
545        RecursiveResolveTypes(SGV->getType(), DGV->getType());
546    }
547
548    // Check to see if may have to link the global with the alias
549    if (!DGV && SGV->hasName() && !SGV->hasInternalLinkage()) {
550      DGV = Dest->getNamedAlias(SGV->getName());
551      if (DGV && DGV->getType() != SGV->getType())
552        // If types don't agree due to opaque types, try to resolve them.
553        RecursiveResolveTypes(SGV->getType(), DGV->getType());
554    }
555
556    if (DGV && DGV->hasInternalLinkage())
557      DGV = 0;
558
559    assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
560            SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
561           "Global must either be external or have an initializer!");
562
563    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
564    bool LinkFromSrc = false;
565    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
566      return true;
567
568    if (!DGV) {
569      // No linking to be performed, simply create an identical version of the
570      // symbol over in the dest module... the initializer will be filled in
571      // later by LinkGlobalInits...
572      GlobalVariable *NewDGV =
573        new GlobalVariable(SGV->getType()->getElementType(),
574                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
575                           SGV->getName(), Dest);
576      // Propagate alignment, visibility and section info.
577      CopyGVAttributes(NewDGV, SGV);
578
579      // If the LLVM runtime renamed the global, but it is an externally visible
580      // symbol, DGV must be an existing global with internal linkage.  Rename
581      // it.
582      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
583        ForceRenaming(NewDGV, SGV->getName());
584
585      // Make sure to remember this mapping...
586      ValueMap[SGV] = NewDGV;
587
588      if (SGV->hasAppendingLinkage())
589        // Keep track that this is an appending variable...
590        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
591    } else if (DGV->hasAppendingLinkage()) {
592      // No linking is performed yet.  Just insert a new copy of the global, and
593      // keep track of the fact that it is an appending variable in the
594      // AppendingVars map.  The name is cleared out so that no linkage is
595      // performed.
596      GlobalVariable *NewDGV =
597        new GlobalVariable(SGV->getType()->getElementType(),
598                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
599                           "", Dest);
600
601      // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
602      NewDGV->setAlignment(DGV->getAlignment());
603      // Propagate alignment, section and visibility info.
604      CopyGVAttributes(NewDGV, SGV);
605
606      // Make sure to remember this mapping...
607      ValueMap[SGV] = NewDGV;
608
609      // Keep track that this is an appending variable...
610      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
611    } else if (GlobalAlias *DGA = dyn_cast<GlobalAlias>(DGV)) {
612      // SGV is global, but DGV is alias. The only valid mapping is when SGV is
613      // external declaration, which is effectively a no-op. Also make sure
614      // linkage calculation was correct.
615      if (SGV->isDeclaration() && !LinkFromSrc) {
616        // Make sure to remember this mapping...
617        ValueMap[SGV] = DGA;
618      } else
619        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
620                     "': symbol multiple defined");
621    } else if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
622      // Otherwise, perform the global-global mapping as instructed by
623      // GetLinkageResult.
624      if (LinkFromSrc) {
625        // Propagate alignment, section, and visibility info.
626        CopyGVAttributes(DGVar, SGV);
627
628        // If the types don't match, and if we are to link from the source, nuke
629        // DGV and create a new one of the appropriate type.
630        if (SGV->getType() != DGVar->getType()) {
631          GlobalVariable *NewDGV =
632            new GlobalVariable(SGV->getType()->getElementType(),
633                               DGVar->isConstant(), DGVar->getLinkage(),
634                               /*init*/0, DGVar->getName(), Dest);
635          CopyGVAttributes(NewDGV, DGVar);
636          DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV,
637                                                           DGVar->getType()));
638          // DGVar will conflict with NewDGV because they both had the same
639          // name. We must erase this now so ForceRenaming doesn't assert
640          // because DGV might not have internal linkage.
641          DGVar->eraseFromParent();
642
643          // If the symbol table renamed the global, but it is an externally
644          // visible symbol, DGV must be an existing global with internal
645          // linkage. Rename it.
646          if (NewDGV->getName() != SGV->getName() &&
647              !NewDGV->hasInternalLinkage())
648            ForceRenaming(NewDGV, SGV->getName());
649
650          DGVar = NewDGV;
651        }
652
653        // Inherit const as appropriate
654        DGVar->setConstant(SGV->isConstant());
655
656        // Set initializer to zero, so we can link the stuff later
657        DGVar->setInitializer(0);
658      } else {
659        // Special case for const propagation
660        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
661          DGVar->setConstant(true);
662      }
663
664      // Set calculated linkage
665      DGVar->setLinkage(NewLinkage);
666
667      // Make sure to remember this mapping...
668      ValueMap[SGV] = ConstantExpr::getBitCast(DGVar, SGV->getType());
669    }
670  }
671  return false;
672}
673
674static GlobalValue::LinkageTypes
675CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
676  if (SGV->hasExternalLinkage() || DGV->hasExternalLinkage())
677    return GlobalValue::ExternalLinkage;
678  else if (SGV->hasWeakLinkage() || DGV->hasWeakLinkage())
679    return GlobalValue::WeakLinkage;
680  else {
681    assert(SGV->hasInternalLinkage() && DGV->hasInternalLinkage() &&
682           "Unexpected linkage type");
683    return GlobalValue::InternalLinkage;
684  }
685}
686
687// LinkAlias - Loop through the alias in the src module and link them into the
688// dest module. We're assuming, that all functions/global variables were already
689// linked in.
690static bool LinkAlias(Module *Dest, const Module *Src,
691                      std::map<const Value*, Value*> &ValueMap,
692                      std::string *Err) {
693  // Loop over all alias in the src module
694  for (Module::const_alias_iterator I = Src->alias_begin(),
695         E = Src->alias_end(); I != E; ++I) {
696    const GlobalAlias *SGA = I;
697    const GlobalValue *SAliasee = SGA->getAliasedGlobal();
698    GlobalAlias *NewGA = NULL;
699
700    // Globals were already linked, thus we can just query ValueMap for variant
701    // of SAliasee in Dest.
702    std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
703    assert(VMI != ValueMap.end() && "Aliasee not linked");
704    GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
705    GlobalValue* DGV = NULL;
706
707    // Try to find something 'similar' to SGA in destination module.
708    if (!DGV && !SGA->hasInternalLinkage()) {
709      DGV = Dest->getNamedAlias(SGA->getName());
710
711      // If types don't agree due to opaque types, try to resolve them.
712      if (DGV && DGV->getType() != SGA->getType())
713        if (RecursiveResolveTypes(SGA->getType(), DGV->getType()))
714          return Error(Err, "Alias Collision on '" + SGA->getName()+
715                       "': aliases have different types");
716    }
717
718    if (!DGV && !SGA->hasInternalLinkage()) {
719      DGV = Dest->getGlobalVariable(SGA->getName());
720
721      // If types don't agree due to opaque types, try to resolve them.
722      if (DGV && DGV->getType() != SGA->getType())
723        if (RecursiveResolveTypes(SGA->getType(), DGV->getType()))
724          return Error(Err, "Alias Collision on '" + SGA->getName()+
725                       "': aliases have different types");
726    }
727
728    if (!DGV && !SGA->hasInternalLinkage()) {
729      DGV = Dest->getFunction(SGA->getName());
730
731      // If types don't agree due to opaque types, try to resolve them.
732      if (DGV && DGV->getType() != SGA->getType())
733        if (RecursiveResolveTypes(SGA->getType(), DGV->getType()))
734          return Error(Err, "Alias Collision on '" + SGA->getName()+
735                       "': aliases have different types");
736    }
737
738    // No linking to be performed on internal stuff.
739    if (DGV && DGV->hasInternalLinkage())
740      DGV = NULL;
741
742    if (GlobalAlias *DGA = dyn_cast_or_null<GlobalAlias>(DGV)) {
743      // Types are known to be the same, check whether aliasees equal. As
744      // globals are already linked we just need query ValueMap to find the
745      // mapping.
746      if (DAliasee == DGA->getAliasedGlobal()) {
747        // This is just two copies of the same alias. Propagate linkage, if
748        // necessary.
749        DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
750
751        NewGA = DGA;
752        // Proceed to 'common' steps
753      } else
754        return Error(Err, "Alias Collision on '"  + SGA->getName()+
755                     "': aliases have different aliasees");
756    } else if (GlobalVariable *DGVar = dyn_cast_or_null<GlobalVariable>(DGV)) {
757      // The only allowed way is to link alias with external declaration.
758      if (DGVar->isDeclaration()) {
759        // But only if aliasee is global too...
760        if (!isa<GlobalVariable>(DAliasee))
761          return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
762                       "': aliasee is not global variable");
763
764        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
765                                SGA->getName(), DAliasee, Dest);
766        CopyGVAttributes(NewGA, SGA);
767
768        // Any uses of DGV need to change to NewGA, with cast, if needed.
769        if (SGA->getType() != DGVar->getType())
770          DGVar->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
771                                                             DGVar->getType()));
772        else
773          DGVar->replaceAllUsesWith(NewGA);
774
775        // DGVar will conflict with NewGA because they both had the same
776        // name. We must erase this now so ForceRenaming doesn't assert
777        // because DGV might not have internal linkage.
778        DGVar->eraseFromParent();
779
780        // Proceed to 'common' steps
781      } else
782        return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
783                     "': symbol multiple defined");
784    } else if (Function *DF = dyn_cast_or_null<Function>(DGV)) {
785      // The only allowed way is to link alias with external declaration.
786      if (DF->isDeclaration()) {
787        // But only if aliasee is function too...
788        if (!isa<Function>(DAliasee))
789          return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
790                       "': aliasee is not function");
791
792        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
793                                SGA->getName(), DAliasee, Dest);
794        CopyGVAttributes(NewGA, SGA);
795
796        // Any uses of DF need to change to NewGA, with cast, if needed.
797        if (SGA->getType() != DF->getType())
798          DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
799                                                          DF->getType()));
800        else
801          DF->replaceAllUsesWith(NewGA);
802
803        // DF will conflict with NewGA because they both had the same
804        // name. We must erase this now so ForceRenaming doesn't assert
805        // because DF might not have internal linkage.
806        DF->eraseFromParent();
807
808        // Proceed to 'common' steps
809      } else
810        return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
811                     "': symbol multiple defined");
812    } else {
813      // No linking to be performed, simply create an identical version of the
814      // alias over in the dest module...
815
816      NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
817                              SGA->getName(), DAliasee, Dest);
818      CopyGVAttributes(NewGA, SGA);
819
820      // Proceed to 'common' steps
821    }
822
823    assert(NewGA && "No alias was created in destination module!");
824
825    // If the symbol table renamed the alias, but it is an externally visible
826    // symbol, DGA must be an global value with internal linkage. Rename it.
827    if (NewGA->getName() != SGA->getName() &&
828        !NewGA->hasInternalLinkage())
829      ForceRenaming(NewGA, SGA->getName());
830
831    // Remember this mapping so uses in the source module get remapped
832    // later by RemapOperand.
833    ValueMap[SGA] = NewGA;
834  }
835
836  return false;
837}
838
839
840// LinkGlobalInits - Update the initializers in the Dest module now that all
841// globals that may be referenced are in Dest.
842static bool LinkGlobalInits(Module *Dest, const Module *Src,
843                            std::map<const Value*, Value*> &ValueMap,
844                            std::string *Err) {
845
846  // Loop over all of the globals in the src module, mapping them over as we go
847  for (Module::const_global_iterator I = Src->global_begin(),
848       E = Src->global_end(); I != E; ++I) {
849    const GlobalVariable *SGV = I;
850
851    if (SGV->hasInitializer()) {      // Only process initialized GV's
852      // Figure out what the initializer looks like in the dest module...
853      Constant *SInit =
854        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
855
856      GlobalVariable *DGV =
857        cast<GlobalVariable>(ValueMap[SGV]->stripPointerCasts());
858      if (DGV->hasInitializer()) {
859        if (SGV->hasExternalLinkage()) {
860          if (DGV->getInitializer() != SInit)
861            return Error(Err, "Global Variable Collision on '" + SGV->getName() +
862                         "': global variables have different initializers");
863        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage() ||
864                   DGV->hasCommonLinkage()) {
865          // Nothing is required, mapped values will take the new global
866          // automatically.
867        } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage() ||
868                   SGV->hasCommonLinkage()) {
869          // Nothing is required, mapped values will take the new global
870          // automatically.
871        } else if (DGV->hasAppendingLinkage()) {
872          assert(0 && "Appending linkage unimplemented!");
873        } else {
874          assert(0 && "Unknown linkage!");
875        }
876      } else {
877        // Copy the initializer over now...
878        DGV->setInitializer(SInit);
879      }
880    }
881  }
882  return false;
883}
884
885// LinkFunctionProtos - Link the functions together between the two modules,
886// without doing function bodies... this just adds external function prototypes
887// to the Dest function...
888//
889static bool LinkFunctionProtos(Module *Dest, const Module *Src,
890                               std::map<const Value*, Value*> &ValueMap,
891                               std::string *Err) {
892  // Loop over all of the functions in the src module, mapping them over
893  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
894    const Function *SF = I;   // SrcFunction
895
896    Function *DF = 0;
897
898    // If this function is internal or has no name, it doesn't participate in
899    // linkage.
900    if (SF->hasName() && !SF->hasInternalLinkage()) {
901      // Check to see if may have to link the function.
902      DF = Dest->getFunction(SF->getName());
903      if (DF && DF->hasInternalLinkage())
904        DF = 0;
905    }
906
907    // If there is no linkage to be performed, just bring over SF without
908    // modifying it.
909    if (DF == 0) {
910      // Function does not already exist, simply insert an function signature
911      // identical to SF into the dest module.
912      Function *NewDF = Function::Create(SF->getFunctionType(),
913                                         SF->getLinkage(),
914                                         SF->getName(), Dest);
915      CopyGVAttributes(NewDF, SF);
916
917      // If the LLVM runtime renamed the function, but it is an externally
918      // visible symbol, DF must be an existing function with internal linkage.
919      // Rename it.
920      if (!NewDF->hasInternalLinkage() && NewDF->getName() != SF->getName())
921        ForceRenaming(NewDF, SF->getName());
922
923      // ... and remember this mapping...
924      ValueMap[SF] = NewDF;
925      continue;
926    }
927
928
929    // If types don't agree because of opaque, try to resolve them.
930    if (SF->getType() != DF->getType())
931      RecursiveResolveTypes(SF->getType(), DF->getType());
932
933    // Check visibility, merging if a definition overrides a prototype.
934    if (SF->getVisibility() != DF->getVisibility()) {
935      // If one is a prototype, ignore its visibility.  Prototypes are always
936      // overridden by the definition.
937      if (!SF->isDeclaration() && !DF->isDeclaration())
938        return Error(Err, "Linking functions named '" + SF->getName() +
939                     "': symbols have different visibilities!");
940
941      // Otherwise, replace the visibility of DF if DF is a prototype.
942      if (DF->isDeclaration())
943        DF->setVisibility(SF->getVisibility());
944    }
945
946    if (DF->getType() != SF->getType()) {
947      if (DF->isDeclaration() && !SF->isDeclaration()) {
948        // We have a definition of the same name but different type in the
949        // source module. Copy the prototype to the destination and replace
950        // uses of the destination's prototype with the new prototype.
951        Function *NewDF = Function::Create(SF->getFunctionType(),
952                                           SF->getLinkage(),
953                                           SF->getName(), Dest);
954        CopyGVAttributes(NewDF, SF);
955
956        // Any uses of DF need to change to NewDF, with cast
957        DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DF->getType()));
958
959        // DF will conflict with NewDF because they both had the same. We must
960        // erase this now so ForceRenaming doesn't assert because DF might
961        // not have internal linkage.
962        DF->eraseFromParent();
963
964        // If the symbol table renamed the function, but it is an externally
965        // visible symbol, DF must be an existing function with internal
966        // linkage.  Rename it.
967        if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
968          ForceRenaming(NewDF, SF->getName());
969
970        // Remember this mapping so uses in the source module get remapped
971        // later by RemapOperand.
972        ValueMap[SF] = NewDF;
973      } else if (SF->isDeclaration()) {
974        // We have two functions of the same name but different type and the
975        // source is a declaration while the destination is not. Any use of
976        // the source must be mapped to the destination, with a cast.
977        ValueMap[SF] = ConstantExpr::getBitCast(DF, SF->getType());
978      } else {
979        // We have two functions of the same name but different types and they
980        // are both definitions. This is an error.
981        return Error(Err, "Function '" + DF->getName() + "' defined as both '" +
982                     ToStr(SF->getFunctionType(), Src) + "' and '" +
983                     ToStr(DF->getFunctionType(), Dest) + "'");
984      }
985      continue;
986    }
987
988    if (SF->isDeclaration()) {
989      // If SF is a declaration or if both SF & DF are declarations, just link
990      // the declarations, we aren't adding anything.
991      if (SF->hasDLLImportLinkage()) {
992        if (DF->isDeclaration()) {
993          ValueMap[SF] = DF;
994          DF->setLinkage(SF->getLinkage());
995        }
996      } else {
997        ValueMap[SF] = DF;
998      }
999      continue;
1000    }
1001
1002    // If DF is external but SF is not, link the external functions, update
1003    // linkage qualifiers.
1004    if (DF->isDeclaration() && !DF->hasDLLImportLinkage()) {
1005      ValueMap.insert(std::make_pair(SF, DF));
1006      DF->setLinkage(SF->getLinkage());
1007      continue;
1008    }
1009
1010    // At this point we know that DF has LinkOnce, Weak, or External* linkage.
1011    if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage() ||
1012        SF->hasCommonLinkage()) {
1013      ValueMap[SF] = DF;
1014
1015      // Linkonce+Weak = Weak
1016      // *+External Weak = *
1017      if ((DF->hasLinkOnceLinkage() &&
1018              (SF->hasWeakLinkage() || SF->hasCommonLinkage())) ||
1019          DF->hasExternalWeakLinkage())
1020        DF->setLinkage(SF->getLinkage());
1021      continue;
1022    }
1023
1024    if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage() ||
1025        DF->hasCommonLinkage()) {
1026      // At this point we know that SF has LinkOnce or External* linkage.
1027      ValueMap[SF] = DF;
1028
1029      // If the source function has stronger linkage than the destination,
1030      // its body and linkage should override ours.
1031      if (!SF->hasLinkOnceLinkage() && !SF->hasExternalWeakLinkage()) {
1032        // Don't inherit linkonce & external weak linkage.
1033        DF->setLinkage(SF->getLinkage());
1034        DF->deleteBody();
1035      }
1036      continue;
1037    }
1038
1039    if (SF->getLinkage() != DF->getLinkage())
1040      return Error(Err, "Functions named '" + SF->getName() +
1041                   "' have different linkage specifiers!");
1042
1043    // The function is defined identically in both modules!
1044    if (SF->hasExternalLinkage())
1045      return Error(Err, "Function '" +
1046                   ToStr(SF->getFunctionType(), Src) + "':\"" +
1047                   SF->getName() + "\" - Function is already defined!");
1048    assert(0 && "Unknown linkage configuration found!");
1049  }
1050  return false;
1051}
1052
1053// LinkFunctionBody - Copy the source function over into the dest function and
1054// fix up references to values.  At this point we know that Dest is an external
1055// function, and that Src is not.
1056static bool LinkFunctionBody(Function *Dest, Function *Src,
1057                             std::map<const Value*, Value*> &ValueMap,
1058                             std::string *Err) {
1059  assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
1060
1061  // Go through and convert function arguments over, remembering the mapping.
1062  Function::arg_iterator DI = Dest->arg_begin();
1063  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1064       I != E; ++I, ++DI) {
1065    DI->setName(I->getName());  // Copy the name information over...
1066
1067    // Add a mapping to our local map
1068    ValueMap[I] = DI;
1069  }
1070
1071  // Splice the body of the source function into the dest function.
1072  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
1073
1074  // At this point, all of the instructions and values of the function are now
1075  // copied over.  The only problem is that they are still referencing values in
1076  // the Source function as operands.  Loop through all of the operands of the
1077  // functions and patch them up to point to the local versions...
1078  //
1079  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
1080    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1081      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1082           OI != OE; ++OI)
1083        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
1084          *OI = RemapOperand(*OI, ValueMap);
1085
1086  // There is no need to map the arguments anymore.
1087  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1088       I != E; ++I)
1089    ValueMap.erase(I);
1090
1091  return false;
1092}
1093
1094
1095// LinkFunctionBodies - Link in the function bodies that are defined in the
1096// source module into the DestModule.  This consists basically of copying the
1097// function over and fixing up references to values.
1098static bool LinkFunctionBodies(Module *Dest, Module *Src,
1099                               std::map<const Value*, Value*> &ValueMap,
1100                               std::string *Err) {
1101
1102  // Loop over all of the functions in the src module, mapping them over as we
1103  // go
1104  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
1105    if (!SF->isDeclaration()) {               // No body if function is external
1106      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
1107
1108      // DF not external SF external?
1109      if (DF->isDeclaration())
1110        // Only provide the function body if there isn't one already.
1111        if (LinkFunctionBody(DF, SF, ValueMap, Err))
1112          return true;
1113    }
1114  }
1115  return false;
1116}
1117
1118// LinkAppendingVars - If there were any appending global variables, link them
1119// together now.  Return true on error.
1120static bool LinkAppendingVars(Module *M,
1121                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
1122                              std::string *ErrorMsg) {
1123  if (AppendingVars.empty()) return false; // Nothing to do.
1124
1125  // Loop over the multimap of appending vars, processing any variables with the
1126  // same name, forming a new appending global variable with both of the
1127  // initializers merged together, then rewrite references to the old variables
1128  // and delete them.
1129  std::vector<Constant*> Inits;
1130  while (AppendingVars.size() > 1) {
1131    // Get the first two elements in the map...
1132    std::multimap<std::string,
1133      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
1134
1135    // If the first two elements are for different names, there is no pair...
1136    // Otherwise there is a pair, so link them together...
1137    if (First->first == Second->first) {
1138      GlobalVariable *G1 = First->second, *G2 = Second->second;
1139      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
1140      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
1141
1142      // Check to see that they two arrays agree on type...
1143      if (T1->getElementType() != T2->getElementType())
1144        return Error(ErrorMsg,
1145         "Appending variables with different element types need to be linked!");
1146      if (G1->isConstant() != G2->isConstant())
1147        return Error(ErrorMsg,
1148                     "Appending variables linked with different const'ness!");
1149
1150      if (G1->getAlignment() != G2->getAlignment())
1151        return Error(ErrorMsg,
1152         "Appending variables with different alignment need to be linked!");
1153
1154      if (G1->getVisibility() != G2->getVisibility())
1155        return Error(ErrorMsg,
1156         "Appending variables with different visibility need to be linked!");
1157
1158      if (G1->getSection() != G2->getSection())
1159        return Error(ErrorMsg,
1160         "Appending variables with different section name need to be linked!");
1161
1162      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
1163      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
1164
1165      G1->setName("");   // Clear G1's name in case of a conflict!
1166
1167      // Create the new global variable...
1168      GlobalVariable *NG =
1169        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
1170                           /*init*/0, First->first, M, G1->isThreadLocal());
1171
1172      // Propagate alignment, visibility and section info.
1173      CopyGVAttributes(NG, G1);
1174
1175      // Merge the initializer...
1176      Inits.reserve(NewSize);
1177      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1178        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1179          Inits.push_back(I->getOperand(i));
1180      } else {
1181        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1182        Constant *CV = Constant::getNullValue(T1->getElementType());
1183        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1184          Inits.push_back(CV);
1185      }
1186      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1187        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1188          Inits.push_back(I->getOperand(i));
1189      } else {
1190        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1191        Constant *CV = Constant::getNullValue(T2->getElementType());
1192        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1193          Inits.push_back(CV);
1194      }
1195      NG->setInitializer(ConstantArray::get(NewType, Inits));
1196      Inits.clear();
1197
1198      // Replace any uses of the two global variables with uses of the new
1199      // global...
1200
1201      // FIXME: This should rewrite simple/straight-forward uses such as
1202      // getelementptr instructions to not use the Cast!
1203      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G1->getType()));
1204      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G2->getType()));
1205
1206      // Remove the two globals from the module now...
1207      M->getGlobalList().erase(G1);
1208      M->getGlobalList().erase(G2);
1209
1210      // Put the new global into the AppendingVars map so that we can handle
1211      // linking of more than two vars...
1212      Second->second = NG;
1213    }
1214    AppendingVars.erase(First);
1215  }
1216
1217  return false;
1218}
1219
1220static bool ResolveAliases(Module *Dest) {
1221  for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1222       I != E; ++I)
1223    if (const GlobalValue *GV = I->resolveAliasedGlobal())
1224      if (!GV->isDeclaration())
1225        I->replaceAllUsesWith(const_cast<GlobalValue*>(GV));
1226
1227  return false;
1228}
1229
1230// LinkModules - This function links two modules together, with the resulting
1231// left module modified to be the composite of the two input modules.  If an
1232// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1233// the problem.  Upon failure, the Dest module could be in a modified state, and
1234// shouldn't be relied on to be consistent.
1235bool
1236Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1237  assert(Dest != 0 && "Invalid Destination module");
1238  assert(Src  != 0 && "Invalid Source Module");
1239
1240  if (Dest->getDataLayout().empty()) {
1241    if (!Src->getDataLayout().empty()) {
1242      Dest->setDataLayout(Src->getDataLayout());
1243    } else {
1244      std::string DataLayout;
1245
1246      if (Dest->getEndianness() == Module::AnyEndianness) {
1247        if (Src->getEndianness() == Module::BigEndian)
1248          DataLayout.append("E");
1249        else if (Src->getEndianness() == Module::LittleEndian)
1250          DataLayout.append("e");
1251      }
1252
1253      if (Dest->getPointerSize() == Module::AnyPointerSize) {
1254        if (Src->getPointerSize() == Module::Pointer64)
1255          DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1256        else if (Src->getPointerSize() == Module::Pointer32)
1257          DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1258      }
1259      Dest->setDataLayout(DataLayout);
1260    }
1261  }
1262
1263  // Copy the target triple from the source to dest if the dest's is empty.
1264  if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1265    Dest->setTargetTriple(Src->getTargetTriple());
1266
1267  if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1268      Src->getDataLayout() != Dest->getDataLayout())
1269    cerr << "WARNING: Linking two modules of different data layouts!\n";
1270  if (!Src->getTargetTriple().empty() &&
1271      Dest->getTargetTriple() != Src->getTargetTriple())
1272    cerr << "WARNING: Linking two modules of different target triples!\n";
1273
1274  // Append the module inline asm string.
1275  if (!Src->getModuleInlineAsm().empty()) {
1276    if (Dest->getModuleInlineAsm().empty())
1277      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1278    else
1279      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1280                               Src->getModuleInlineAsm());
1281  }
1282
1283  // Update the destination module's dependent libraries list with the libraries
1284  // from the source module. There's no opportunity for duplicates here as the
1285  // Module ensures that duplicate insertions are discarded.
1286  for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1287       SI != SE; ++SI)
1288    Dest->addLibrary(*SI);
1289
1290  // LinkTypes - Go through the symbol table of the Src module and see if any
1291  // types are named in the src module that are not named in the Dst module.
1292  // Make sure there are no type name conflicts.
1293  if (LinkTypes(Dest, Src, ErrorMsg))
1294    return true;
1295
1296  // ValueMap - Mapping of values from what they used to be in Src, to what they
1297  // are now in Dest.
1298  std::map<const Value*, Value*> ValueMap;
1299
1300  // AppendingVars - Keep track of global variables in the destination module
1301  // with appending linkage.  After the module is linked together, they are
1302  // appended and the module is rewritten.
1303  std::multimap<std::string, GlobalVariable *> AppendingVars;
1304  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1305       I != E; ++I) {
1306    // Add all of the appending globals already in the Dest module to
1307    // AppendingVars.
1308    if (I->hasAppendingLinkage())
1309      AppendingVars.insert(std::make_pair(I->getName(), I));
1310  }
1311
1312  // Insert all of the globals in src into the Dest module... without linking
1313  // initializers (which could refer to functions not yet mapped over).
1314  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1315    return true;
1316
1317  // Link the functions together between the two modules, without doing function
1318  // bodies... this just adds external function prototypes to the Dest
1319  // function...  We do this so that when we begin processing function bodies,
1320  // all of the global values that may be referenced are available in our
1321  // ValueMap.
1322  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1323    return true;
1324
1325  // If there were any alias, link them now. We really need to do this now,
1326  // because all of the aliases that may be referenced need to be available in
1327  // ValueMap
1328  if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1329
1330  // Update the initializers in the Dest module now that all globals that may
1331  // be referenced are in Dest.
1332  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1333
1334  // Link in the function bodies that are defined in the source module into the
1335  // DestModule.  This consists basically of copying the function over and
1336  // fixing up references to values.
1337  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1338
1339  // If there were any appending global variables, link them together now.
1340  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1341
1342  // Resolve all uses of aliases with aliasees
1343  if (ResolveAliases(Dest)) return true;
1344
1345  // If the source library's module id is in the dependent library list of the
1346  // destination library, remove it since that module is now linked in.
1347  sys::Path modId;
1348  modId.set(Src->getModuleIdentifier());
1349  if (!modId.isEmpty())
1350    Dest->removeLibrary(modId.getBasename());
1351
1352  return false;
1353}
1354
1355// vim: sw=2
1356