LinkModules.cpp revision 12d9a9002f9fba3ea42225b8daf4f9feda52726d
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Linker.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Instructions.h"
18#include "llvm/Module.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/Path.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Transforms/Utils/Cloning.h"
27#include "llvm/Transforms/Utils/ValueMapper.h"
28#include <cctype>
29using namespace llvm;
30
31//===----------------------------------------------------------------------===//
32// TypeMap implementation.
33//===----------------------------------------------------------------------===//
34
35namespace {
36class TypeMapTy : public ValueMapTypeRemapper {
37  /// MappedTypes - This is a mapping from a source type to a destination type
38  /// to use.
39  DenseMap<Type*, Type*> MappedTypes;
40
41  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
42  /// we speculatively add types to MappedTypes, but keep track of them here in
43  /// case we need to roll back.
44  SmallVector<Type*, 16> SpeculativeTypes;
45
46  /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
47  /// source module that are mapped to an opaque struct in the destination
48  /// module.
49  SmallVector<StructType*, 16> SrcDefinitionsToResolve;
50
51  /// DstResolvedOpaqueTypes - This is the set of opaque types in the
52  /// destination modules who are getting a body from the source module.
53  SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
54
55public:
56  /// addTypeMapping - Indicate that the specified type in the destination
57  /// module is conceptually equivalent to the specified type in the source
58  /// module.
59  void addTypeMapping(Type *DstTy, Type *SrcTy);
60
61  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
62  /// module from a type definition in the source module.
63  void linkDefinedTypeBodies();
64
65  /// get - Return the mapped type to use for the specified input type from the
66  /// source module.
67  Type *get(Type *SrcTy);
68
69  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
70
71  /// dump - Dump out the type map for debugging purposes.
72  void dump() const {
73    for (DenseMap<Type*, Type*>::const_iterator
74           I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
75      dbgs() << "TypeMap: ";
76      I->first->dump();
77      dbgs() << " => ";
78      I->second->dump();
79      dbgs() << '\n';
80    }
81  }
82
83private:
84  Type *getImpl(Type *T);
85  /// remapType - Implement the ValueMapTypeRemapper interface.
86  Type *remapType(Type *SrcTy) {
87    return get(SrcTy);
88  }
89
90  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
91};
92}
93
94void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
95  Type *&Entry = MappedTypes[SrcTy];
96  if (Entry) return;
97
98  if (DstTy == SrcTy) {
99    Entry = DstTy;
100    return;
101  }
102
103  // Check to see if these types are recursively isomorphic and establish a
104  // mapping between them if so.
105  if (!areTypesIsomorphic(DstTy, SrcTy)) {
106    // Oops, they aren't isomorphic.  Just discard this request by rolling out
107    // any speculative mappings we've established.
108    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
109      MappedTypes.erase(SpeculativeTypes[i]);
110  }
111  SpeculativeTypes.clear();
112}
113
114/// areTypesIsomorphic - Recursively walk this pair of types, returning true
115/// if they are isomorphic, false if they are not.
116bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
117  // Two types with differing kinds are clearly not isomorphic.
118  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
119
120  // If we have an entry in the MappedTypes table, then we have our answer.
121  Type *&Entry = MappedTypes[SrcTy];
122  if (Entry)
123    return Entry == DstTy;
124
125  // Two identical types are clearly isomorphic.  Remember this
126  // non-speculatively.
127  if (DstTy == SrcTy) {
128    Entry = DstTy;
129    return true;
130  }
131
132  // Okay, we have two types with identical kinds that we haven't seen before.
133
134  // If this is an opaque struct type, special case it.
135  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
136    // Mapping an opaque type to any struct, just keep the dest struct.
137    if (SSTy->isOpaque()) {
138      Entry = DstTy;
139      SpeculativeTypes.push_back(SrcTy);
140      return true;
141    }
142
143    // Mapping a non-opaque source type to an opaque dest.  If this is the first
144    // type that we're mapping onto this destination type then we succeed.  Keep
145    // the dest, but fill it in later.  This doesn't need to be speculative.  If
146    // this is the second (different) type that we're trying to map onto the
147    // same opaque type then we fail.
148    if (cast<StructType>(DstTy)->isOpaque()) {
149      // We can only map one source type onto the opaque destination type.
150      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
151        return false;
152      SrcDefinitionsToResolve.push_back(SSTy);
153      Entry = DstTy;
154      return true;
155    }
156  }
157
158  // If the number of subtypes disagree between the two types, then we fail.
159  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
160    return false;
161
162  // Fail if any of the extra properties (e.g. array size) of the type disagree.
163  if (isa<IntegerType>(DstTy))
164    return false;  // bitwidth disagrees.
165  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
166    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
167      return false;
168
169  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
170    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
171      return false;
172  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
173    StructType *SSTy = cast<StructType>(SrcTy);
174    if (DSTy->isLiteral() != SSTy->isLiteral() ||
175        DSTy->isPacked() != SSTy->isPacked())
176      return false;
177  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
178    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
179      return false;
180  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
181    if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
182      return false;
183  }
184
185  // Otherwise, we speculate that these two types will line up and recursively
186  // check the subelements.
187  Entry = DstTy;
188  SpeculativeTypes.push_back(SrcTy);
189
190  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
191    if (!areTypesIsomorphic(DstTy->getContainedType(i),
192                            SrcTy->getContainedType(i)))
193      return false;
194
195  // If everything seems to have lined up, then everything is great.
196  return true;
197}
198
199/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
200/// module from a type definition in the source module.
201void TypeMapTy::linkDefinedTypeBodies() {
202  SmallVector<Type*, 16> Elements;
203  SmallString<16> TmpName;
204
205  // Note that processing entries in this loop (calling 'get') can add new
206  // entries to the SrcDefinitionsToResolve vector.
207  while (!SrcDefinitionsToResolve.empty()) {
208    StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
209    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
210
211    // TypeMap is a many-to-one mapping, if there were multiple types that
212    // provide a body for DstSTy then previous iterations of this loop may have
213    // already handled it.  Just ignore this case.
214    if (!DstSTy->isOpaque()) continue;
215    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
216
217    // Map the body of the source type over to a new body for the dest type.
218    Elements.resize(SrcSTy->getNumElements());
219    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
220      Elements[i] = getImpl(SrcSTy->getElementType(i));
221
222    DstSTy->setBody(Elements, SrcSTy->isPacked());
223
224    // If DstSTy has no name or has a longer name than STy, then viciously steal
225    // STy's name.
226    if (!SrcSTy->hasName()) continue;
227    StringRef SrcName = SrcSTy->getName();
228
229    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
230      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
231      SrcSTy->setName("");
232      DstSTy->setName(TmpName.str());
233      TmpName.clear();
234    }
235  }
236
237  DstResolvedOpaqueTypes.clear();
238}
239
240/// get - Return the mapped type to use for the specified input type from the
241/// source module.
242Type *TypeMapTy::get(Type *Ty) {
243  Type *Result = getImpl(Ty);
244
245  // If this caused a reference to any struct type, resolve it before returning.
246  if (!SrcDefinitionsToResolve.empty())
247    linkDefinedTypeBodies();
248  return Result;
249}
250
251/// getImpl - This is the recursive version of get().
252Type *TypeMapTy::getImpl(Type *Ty) {
253  // If we already have an entry for this type, return it.
254  Type **Entry = &MappedTypes[Ty];
255  if (*Entry) return *Entry;
256
257  // If this is not a named struct type, then just map all of the elements and
258  // then rebuild the type from inside out.
259  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
260    // If there are no element types to map, then the type is itself.  This is
261    // true for the anonymous {} struct, things like 'float', integers, etc.
262    if (Ty->getNumContainedTypes() == 0)
263      return *Entry = Ty;
264
265    // Remap all of the elements, keeping track of whether any of them change.
266    bool AnyChange = false;
267    SmallVector<Type*, 4> ElementTypes;
268    ElementTypes.resize(Ty->getNumContainedTypes());
269    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
270      ElementTypes[i] = getImpl(Ty->getContainedType(i));
271      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
272    }
273
274    // If we found our type while recursively processing stuff, just use it.
275    Entry = &MappedTypes[Ty];
276    if (*Entry) return *Entry;
277
278    // If all of the element types mapped directly over, then the type is usable
279    // as-is.
280    if (!AnyChange)
281      return *Entry = Ty;
282
283    // Otherwise, rebuild a modified type.
284    switch (Ty->getTypeID()) {
285    default: llvm_unreachable("unknown derived type to remap");
286    case Type::ArrayTyID:
287      return *Entry = ArrayType::get(ElementTypes[0],
288                                     cast<ArrayType>(Ty)->getNumElements());
289    case Type::VectorTyID:
290      return *Entry = VectorType::get(ElementTypes[0],
291                                      cast<VectorType>(Ty)->getNumElements());
292    case Type::PointerTyID:
293      return *Entry = PointerType::get(ElementTypes[0],
294                                      cast<PointerType>(Ty)->getAddressSpace());
295    case Type::FunctionTyID:
296      return *Entry = FunctionType::get(ElementTypes[0],
297                                        makeArrayRef(ElementTypes).slice(1),
298                                        cast<FunctionType>(Ty)->isVarArg());
299    case Type::StructTyID:
300      // Note that this is only reached for anonymous structs.
301      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
302                                      cast<StructType>(Ty)->isPacked());
303    }
304  }
305
306  // Otherwise, this is an unmapped named struct.  If the struct can be directly
307  // mapped over, just use it as-is.  This happens in a case when the linked-in
308  // module has something like:
309  //   %T = type {%T*, i32}
310  //   @GV = global %T* null
311  // where T does not exist at all in the destination module.
312  //
313  // The other case we watch for is when the type is not in the destination
314  // module, but that it has to be rebuilt because it refers to something that
315  // is already mapped.  For example, if the destination module has:
316  //  %A = type { i32 }
317  // and the source module has something like
318  //  %A' = type { i32 }
319  //  %B = type { %A'* }
320  //  @GV = global %B* null
321  // then we want to create a new type: "%B = type { %A*}" and have it take the
322  // pristine "%B" name from the source module.
323  //
324  // To determine which case this is, we have to recursively walk the type graph
325  // speculating that we'll be able to reuse it unmodified.  Only if this is
326  // safe would we map the entire thing over.  Because this is an optimization,
327  // and is not required for the prettiness of the linked module, we just skip
328  // it and always rebuild a type here.
329  StructType *STy = cast<StructType>(Ty);
330
331  // If the type is opaque, we can just use it directly.
332  if (STy->isOpaque())
333    return *Entry = STy;
334
335  // Otherwise we create a new type and resolve its body later.  This will be
336  // resolved by the top level of get().
337  SrcDefinitionsToResolve.push_back(STy);
338  StructType *DTy = StructType::create(STy->getContext());
339  DstResolvedOpaqueTypes.insert(DTy);
340  return *Entry = DTy;
341}
342
343//===----------------------------------------------------------------------===//
344// ModuleLinker implementation.
345//===----------------------------------------------------------------------===//
346
347namespace {
348  /// ModuleLinker - This is an implementation class for the LinkModules
349  /// function, which is the entrypoint for this file.
350  class ModuleLinker {
351    Module *DstM, *SrcM;
352
353    TypeMapTy TypeMap;
354
355    /// ValueMap - Mapping of values from what they used to be in Src, to what
356    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
357    /// some overhead due to the use of Value handles which the Linker doesn't
358    /// actually need, but this allows us to reuse the ValueMapper code.
359    ValueToValueMapTy ValueMap;
360
361    struct AppendingVarInfo {
362      GlobalVariable *NewGV;  // New aggregate global in dest module.
363      Constant *DstInit;      // Old initializer from dest module.
364      Constant *SrcInit;      // Old initializer from src module.
365    };
366
367    std::vector<AppendingVarInfo> AppendingVars;
368
369    unsigned Mode; // Mode to treat source module.
370
371    // Set of items not to link in from source.
372    SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
373
374    // Vector of functions to lazily link in.
375    std::vector<Function*> LazilyLinkFunctions;
376
377  public:
378    std::string ErrorMsg;
379
380    ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
381      : DstM(dstM), SrcM(srcM), Mode(mode) { }
382
383    bool run();
384
385  private:
386    /// emitError - Helper method for setting a message and returning an error
387    /// code.
388    bool emitError(const Twine &Message) {
389      ErrorMsg = Message.str();
390      return true;
391    }
392
393    /// getLinkageResult - This analyzes the two global values and determines
394    /// what the result will look like in the destination module.
395    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
396                          GlobalValue::LinkageTypes &LT,
397                          GlobalValue::VisibilityTypes &Vis,
398                          bool &LinkFromSrc);
399
400    /// getLinkedToGlobal - Given a global in the source module, return the
401    /// global in the destination module that is being linked to, if any.
402    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
403      // If the source has no name it can't link.  If it has local linkage,
404      // there is no name match-up going on.
405      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
406        return 0;
407
408      // Otherwise see if we have a match in the destination module's symtab.
409      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
410      if (DGV == 0) return 0;
411
412      // If we found a global with the same name in the dest module, but it has
413      // internal linkage, we are really not doing any linkage here.
414      if (DGV->hasLocalLinkage())
415        return 0;
416
417      // Otherwise, we do in fact link to the destination global.
418      return DGV;
419    }
420
421    void computeTypeMapping();
422    bool categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
423                                   DenseMap<MDString*, MDNode*> &ErrorNode,
424                                   DenseMap<MDString*, MDNode*> &WarningNode,
425                                   DenseMap<MDString*, MDNode*> &OverrideNode,
426                                   DenseMap<MDString*,
427                                   SmallSetVector<MDNode*, 8> > &RequireNodes,
428                                   SmallSetVector<MDString*, 16> &SeenIDs);
429
430    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
431    bool linkGlobalProto(GlobalVariable *SrcGV);
432    bool linkFunctionProto(Function *SrcF);
433    bool linkAliasProto(GlobalAlias *SrcA);
434    bool linkModuleFlagsMetadata();
435
436    void linkAppendingVarInit(const AppendingVarInfo &AVI);
437    void linkGlobalInits();
438    void linkFunctionBody(Function *Dst, Function *Src);
439    void linkAliasBodies();
440    void linkNamedMDNodes();
441  };
442}
443
444/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
445/// in the symbol table.  This is good for all clients except for us.  Go
446/// through the trouble to force this back.
447static void forceRenaming(GlobalValue *GV, StringRef Name) {
448  // If the global doesn't force its name or if it already has the right name,
449  // there is nothing for us to do.
450  if (GV->hasLocalLinkage() || GV->getName() == Name)
451    return;
452
453  Module *M = GV->getParent();
454
455  // If there is a conflict, rename the conflict.
456  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
457    GV->takeName(ConflictGV);
458    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
459    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
460  } else {
461    GV->setName(Name);              // Force the name back
462  }
463}
464
465/// copyGVAttributes - copy additional attributes (those not needed to construct
466/// a GlobalValue) from the SrcGV to the DestGV.
467static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
468  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
469  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
470  DestGV->copyAttributesFrom(SrcGV);
471  DestGV->setAlignment(Alignment);
472
473  forceRenaming(DestGV, SrcGV->getName());
474}
475
476static bool isLessConstraining(GlobalValue::VisibilityTypes a,
477                               GlobalValue::VisibilityTypes b) {
478  if (a == GlobalValue::HiddenVisibility)
479    return false;
480  if (b == GlobalValue::HiddenVisibility)
481    return true;
482  if (a == GlobalValue::ProtectedVisibility)
483    return false;
484  if (b == GlobalValue::ProtectedVisibility)
485    return true;
486  return false;
487}
488
489/// getLinkageResult - This analyzes the two global values and determines what
490/// the result will look like in the destination module.  In particular, it
491/// computes the resultant linkage type and visibility, computes whether the
492/// global in the source should be copied over to the destination (replacing
493/// the existing one), and computes whether this linkage is an error or not.
494bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
495                                    GlobalValue::LinkageTypes &LT,
496                                    GlobalValue::VisibilityTypes &Vis,
497                                    bool &LinkFromSrc) {
498  assert(Dest && "Must have two globals being queried");
499  assert(!Src->hasLocalLinkage() &&
500         "If Src has internal linkage, Dest shouldn't be set!");
501
502  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
503  bool DestIsDeclaration = Dest->isDeclaration();
504
505  if (SrcIsDeclaration) {
506    // If Src is external or if both Src & Dest are external..  Just link the
507    // external globals, we aren't adding anything.
508    if (Src->hasDLLImportLinkage()) {
509      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
510      if (DestIsDeclaration) {
511        LinkFromSrc = true;
512        LT = Src->getLinkage();
513      }
514    } else if (Dest->hasExternalWeakLinkage()) {
515      // If the Dest is weak, use the source linkage.
516      LinkFromSrc = true;
517      LT = Src->getLinkage();
518    } else {
519      LinkFromSrc = false;
520      LT = Dest->getLinkage();
521    }
522  } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
523    // If Dest is external but Src is not:
524    LinkFromSrc = true;
525    LT = Src->getLinkage();
526  } else if (Src->isWeakForLinker()) {
527    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
528    // or DLL* linkage.
529    if (Dest->hasExternalWeakLinkage() ||
530        Dest->hasAvailableExternallyLinkage() ||
531        (Dest->hasLinkOnceLinkage() &&
532         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
533      LinkFromSrc = true;
534      LT = Src->getLinkage();
535    } else {
536      LinkFromSrc = false;
537      LT = Dest->getLinkage();
538    }
539  } else if (Dest->isWeakForLinker()) {
540    // At this point we know that Src has External* or DLL* linkage.
541    if (Src->hasExternalWeakLinkage()) {
542      LinkFromSrc = false;
543      LT = Dest->getLinkage();
544    } else {
545      LinkFromSrc = true;
546      LT = GlobalValue::ExternalLinkage;
547    }
548  } else {
549    assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
550            Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
551           (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
552            Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
553           "Unexpected linkage type!");
554    return emitError("Linking globals named '" + Src->getName() +
555                 "': symbol multiply defined!");
556  }
557
558  // Compute the visibility. We follow the rules in the System V Application
559  // Binary Interface.
560  Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
561    Dest->getVisibility() : Src->getVisibility();
562  return false;
563}
564
565/// computeTypeMapping - Loop over all of the linked values to compute type
566/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
567/// we have two struct types 'Foo' but one got renamed when the module was
568/// loaded into the same LLVMContext.
569void ModuleLinker::computeTypeMapping() {
570  // Incorporate globals.
571  for (Module::global_iterator I = SrcM->global_begin(),
572       E = SrcM->global_end(); I != E; ++I) {
573    GlobalValue *DGV = getLinkedToGlobal(I);
574    if (DGV == 0) continue;
575
576    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
577      TypeMap.addTypeMapping(DGV->getType(), I->getType());
578      continue;
579    }
580
581    // Unify the element type of appending arrays.
582    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
583    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
584    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
585  }
586
587  // Incorporate functions.
588  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
589    if (GlobalValue *DGV = getLinkedToGlobal(I))
590      TypeMap.addTypeMapping(DGV->getType(), I->getType());
591  }
592
593  // Incorporate types by name, scanning all the types in the source module.
594  // At this point, the destination module may have a type "%foo = { i32 }" for
595  // example.  When the source module got loaded into the same LLVMContext, if
596  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
597  std::vector<StructType*> SrcStructTypes;
598  SrcM->findUsedStructTypes(SrcStructTypes);
599
600  SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
601                                                 SrcStructTypes.end());
602
603  for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
604    StructType *ST = SrcStructTypes[i];
605    if (!ST->hasName()) continue;
606
607    // Check to see if there is a dot in the name followed by a digit.
608    size_t DotPos = ST->getName().rfind('.');
609    if (DotPos == 0 || DotPos == StringRef::npos ||
610        ST->getName().back() == '.' || !isdigit(ST->getName()[DotPos+1]))
611      continue;
612
613    // Check to see if the destination module has a struct with the prefix name.
614    if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
615      // Don't use it if this actually came from the source module.  They're in
616      // the same LLVMContext after all.
617      if (!SrcStructTypesSet.count(DST))
618        TypeMap.addTypeMapping(DST, ST);
619  }
620
621  // Don't bother incorporating aliases, they aren't generally typed well.
622
623  // Now that we have discovered all of the type equivalences, get a body for
624  // any 'opaque' types in the dest module that are now resolved.
625  TypeMap.linkDefinedTypeBodies();
626}
627
628/// linkAppendingVarProto - If there were any appending global variables, link
629/// them together now.  Return true on error.
630bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
631                                         GlobalVariable *SrcGV) {
632
633  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
634    return emitError("Linking globals named '" + SrcGV->getName() +
635           "': can only link appending global with another appending global!");
636
637  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
638  ArrayType *SrcTy =
639    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
640  Type *EltTy = DstTy->getElementType();
641
642  // Check to see that they two arrays agree on type.
643  if (EltTy != SrcTy->getElementType())
644    return emitError("Appending variables with different element types!");
645  if (DstGV->isConstant() != SrcGV->isConstant())
646    return emitError("Appending variables linked with different const'ness!");
647
648  if (DstGV->getAlignment() != SrcGV->getAlignment())
649    return emitError(
650             "Appending variables with different alignment need to be linked!");
651
652  if (DstGV->getVisibility() != SrcGV->getVisibility())
653    return emitError(
654            "Appending variables with different visibility need to be linked!");
655
656  if (DstGV->getSection() != SrcGV->getSection())
657    return emitError(
658          "Appending variables with different section name need to be linked!");
659
660  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
661  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
662
663  // Create the new global variable.
664  GlobalVariable *NG =
665    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
666                       DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
667                       DstGV->isThreadLocal(),
668                       DstGV->getType()->getAddressSpace());
669
670  // Propagate alignment, visibility and section info.
671  copyGVAttributes(NG, DstGV);
672
673  AppendingVarInfo AVI;
674  AVI.NewGV = NG;
675  AVI.DstInit = DstGV->getInitializer();
676  AVI.SrcInit = SrcGV->getInitializer();
677  AppendingVars.push_back(AVI);
678
679  // Replace any uses of the two global variables with uses of the new
680  // global.
681  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
682
683  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
684  DstGV->eraseFromParent();
685
686  // Track the source variable so we don't try to link it.
687  DoNotLinkFromSource.insert(SrcGV);
688
689  return false;
690}
691
692/// linkGlobalProto - Loop through the global variables in the src module and
693/// merge them into the dest module.
694bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
695  GlobalValue *DGV = getLinkedToGlobal(SGV);
696  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
697
698  if (DGV) {
699    // Concatenation of appending linkage variables is magic and handled later.
700    if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
701      return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
702
703    // Determine whether linkage of these two globals follows the source
704    // module's definition or the destination module's definition.
705    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
706    GlobalValue::VisibilityTypes NV;
707    bool LinkFromSrc = false;
708    if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
709      return true;
710    NewVisibility = NV;
711
712    // If we're not linking from the source, then keep the definition that we
713    // have.
714    if (!LinkFromSrc) {
715      // Special case for const propagation.
716      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
717        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
718          DGVar->setConstant(true);
719
720      // Set calculated linkage and visibility.
721      DGV->setLinkage(NewLinkage);
722      DGV->setVisibility(*NewVisibility);
723
724      // Make sure to remember this mapping.
725      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
726
727      // Track the source global so that we don't attempt to copy it over when
728      // processing global initializers.
729      DoNotLinkFromSource.insert(SGV);
730
731      return false;
732    }
733  }
734
735  // No linking to be performed or linking from the source: simply create an
736  // identical version of the symbol over in the dest module... the
737  // initializer will be filled in later by LinkGlobalInits.
738  GlobalVariable *NewDGV =
739    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
740                       SGV->isConstant(), SGV->getLinkage(), /*init*/0,
741                       SGV->getName(), /*insertbefore*/0,
742                       SGV->isThreadLocal(),
743                       SGV->getType()->getAddressSpace());
744  // Propagate alignment, visibility and section info.
745  copyGVAttributes(NewDGV, SGV);
746  if (NewVisibility)
747    NewDGV->setVisibility(*NewVisibility);
748
749  if (DGV) {
750    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
751    DGV->eraseFromParent();
752  }
753
754  // Make sure to remember this mapping.
755  ValueMap[SGV] = NewDGV;
756  return false;
757}
758
759/// linkFunctionProto - Link the function in the source module into the
760/// destination module if needed, setting up mapping information.
761bool ModuleLinker::linkFunctionProto(Function *SF) {
762  GlobalValue *DGV = getLinkedToGlobal(SF);
763  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
764
765  if (DGV) {
766    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
767    bool LinkFromSrc = false;
768    GlobalValue::VisibilityTypes NV;
769    if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
770      return true;
771    NewVisibility = NV;
772
773    if (!LinkFromSrc) {
774      // Set calculated linkage
775      DGV->setLinkage(NewLinkage);
776      DGV->setVisibility(*NewVisibility);
777
778      // Make sure to remember this mapping.
779      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
780
781      // Track the function from the source module so we don't attempt to remap
782      // it.
783      DoNotLinkFromSource.insert(SF);
784
785      return false;
786    }
787  }
788
789  // If there is no linkage to be performed or we are linking from the source,
790  // bring SF over.
791  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
792                                     SF->getLinkage(), SF->getName(), DstM);
793  copyGVAttributes(NewDF, SF);
794  if (NewVisibility)
795    NewDF->setVisibility(*NewVisibility);
796
797  if (DGV) {
798    // Any uses of DF need to change to NewDF, with cast.
799    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
800    DGV->eraseFromParent();
801  } else {
802    // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
803    if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
804        SF->hasAvailableExternallyLinkage()) {
805      DoNotLinkFromSource.insert(SF);
806      LazilyLinkFunctions.push_back(SF);
807    }
808  }
809
810  ValueMap[SF] = NewDF;
811  return false;
812}
813
814/// LinkAliasProto - Set up prototypes for any aliases that come over from the
815/// source module.
816bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
817  GlobalValue *DGV = getLinkedToGlobal(SGA);
818  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
819
820  if (DGV) {
821    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
822    GlobalValue::VisibilityTypes NV;
823    bool LinkFromSrc = false;
824    if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
825      return true;
826    NewVisibility = NV;
827
828    if (!LinkFromSrc) {
829      // Set calculated linkage.
830      DGV->setLinkage(NewLinkage);
831      DGV->setVisibility(*NewVisibility);
832
833      // Make sure to remember this mapping.
834      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
835
836      // Track the alias from the source module so we don't attempt to remap it.
837      DoNotLinkFromSource.insert(SGA);
838
839      return false;
840    }
841  }
842
843  // If there is no linkage to be performed or we're linking from the source,
844  // bring over SGA.
845  GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
846                                       SGA->getLinkage(), SGA->getName(),
847                                       /*aliasee*/0, DstM);
848  copyGVAttributes(NewDA, SGA);
849  if (NewVisibility)
850    NewDA->setVisibility(*NewVisibility);
851
852  if (DGV) {
853    // Any uses of DGV need to change to NewDA, with cast.
854    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
855    DGV->eraseFromParent();
856  }
857
858  ValueMap[SGA] = NewDA;
859  return false;
860}
861
862static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
863  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
864
865  for (unsigned i = 0; i != NumElements; ++i)
866    Dest.push_back(C->getAggregateElement(i));
867}
868
869void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
870  // Merge the initializer.
871  SmallVector<Constant*, 16> Elements;
872  getArrayElements(AVI.DstInit, Elements);
873
874  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
875  getArrayElements(SrcInit, Elements);
876
877  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
878  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
879}
880
881/// linkGlobalInits - Update the initializers in the Dest module now that all
882/// globals that may be referenced are in Dest.
883void ModuleLinker::linkGlobalInits() {
884  // Loop over all of the globals in the src module, mapping them over as we go
885  for (Module::const_global_iterator I = SrcM->global_begin(),
886       E = SrcM->global_end(); I != E; ++I) {
887
888    // Only process initialized GV's or ones not already in dest.
889    if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
890
891    // Grab destination global variable.
892    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
893    // Figure out what the initializer looks like in the dest module.
894    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
895                                 RF_None, &TypeMap));
896  }
897}
898
899/// linkFunctionBody - Copy the source function over into the dest function and
900/// fix up references to values.  At this point we know that Dest is an external
901/// function, and that Src is not.
902void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
903  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
904
905  // Go through and convert function arguments over, remembering the mapping.
906  Function::arg_iterator DI = Dst->arg_begin();
907  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
908       I != E; ++I, ++DI) {
909    DI->setName(I->getName());  // Copy the name over.
910
911    // Add a mapping to our mapping.
912    ValueMap[I] = DI;
913  }
914
915  if (Mode == Linker::DestroySource) {
916    // Splice the body of the source function into the dest function.
917    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
918
919    // At this point, all of the instructions and values of the function are now
920    // copied over.  The only problem is that they are still referencing values in
921    // the Source function as operands.  Loop through all of the operands of the
922    // functions and patch them up to point to the local versions.
923    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
924      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
925        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
926
927  } else {
928    // Clone the body of the function into the dest function.
929    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
930    CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
931  }
932
933  // There is no need to map the arguments anymore.
934  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
935       I != E; ++I)
936    ValueMap.erase(I);
937
938}
939
940/// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
941void ModuleLinker::linkAliasBodies() {
942  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
943       I != E; ++I) {
944    if (DoNotLinkFromSource.count(I))
945      continue;
946    if (Constant *Aliasee = I->getAliasee()) {
947      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
948      DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
949    }
950  }
951}
952
953/// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
954/// module.
955void ModuleLinker::linkNamedMDNodes() {
956  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
957  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
958       E = SrcM->named_metadata_end(); I != E; ++I) {
959    // Don't link module flags here. Do them separately.
960    if (&*I == SrcModFlags) continue;
961    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
962    // Add Src elements into Dest node.
963    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
964      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
965                                   RF_None, &TypeMap));
966  }
967}
968
969/// categorizeModuleFlagNodes - Categorize the module flags according to their
970/// type: Error, Warning, Override, and Require.
971bool ModuleLinker::
972categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
973                          DenseMap<MDString*, MDNode*> &ErrorNode,
974                          DenseMap<MDString*, MDNode*> &WarningNode,
975                          DenseMap<MDString*, MDNode*> &OverrideNode,
976                          DenseMap<MDString*,
977                            SmallSetVector<MDNode*, 8> > &RequireNodes,
978                          SmallSetVector<MDString*, 16> &SeenIDs) {
979  bool HasErr = false;
980
981  for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) {
982    MDNode *Op = ModFlags->getOperand(I);
983    assert(Op->getNumOperands() == 3 && "Invalid module flag metadata!");
984    assert(isa<ConstantInt>(Op->getOperand(0)) &&
985           "Module flag's first operand must be an integer!");
986    assert(isa<MDString>(Op->getOperand(1)) &&
987           "Module flag's second operand must be an MDString!");
988
989    ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
990    MDString *ID = cast<MDString>(Op->getOperand(1));
991    Value *Val = Op->getOperand(2);
992    switch (Behavior->getZExtValue()) {
993    default:
994      assert(false && "Invalid behavior in module flag metadata!");
995      break;
996    case Module::Error: {
997      MDNode *&ErrNode = ErrorNode[ID];
998      if (!ErrNode) ErrNode = Op;
999      if (ErrNode->getOperand(2) != Val)
1000        HasErr = emitError("linking module flags '" + ID->getString() +
1001                           "': IDs have conflicting values");
1002      break;
1003    }
1004    case Module::Warning: {
1005      MDNode *&WarnNode = WarningNode[ID];
1006      if (!WarnNode) WarnNode = Op;
1007      if (WarnNode->getOperand(2) != Val)
1008        errs() << "WARNING: linking module flags '" << ID->getString()
1009               << "': IDs have conflicting values";
1010      break;
1011    }
1012    case Module::Require:  RequireNodes[ID].insert(Op);     break;
1013    case Module::Override: {
1014      MDNode *&OvrNode = OverrideNode[ID];
1015      if (!OvrNode) OvrNode = Op;
1016      if (OvrNode->getOperand(2) != Val)
1017        HasErr = emitError("linking module flags '" + ID->getString() +
1018                           "': IDs have conflicting override values");
1019      break;
1020    }
1021    }
1022
1023    SeenIDs.insert(ID);
1024  }
1025
1026  return HasErr;
1027}
1028
1029/// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
1030/// module.
1031bool ModuleLinker::linkModuleFlagsMetadata() {
1032  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1033  if (!SrcModFlags) return false;
1034
1035  NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1036
1037  // If the destination module doesn't have module flags yet, then just copy
1038  // over the source module's flags.
1039  if (DstModFlags->getNumOperands() == 0) {
1040    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1041      DstModFlags->addOperand(SrcModFlags->getOperand(I));
1042
1043    return false;
1044  }
1045
1046  bool HasErr = false;
1047
1048  // Otherwise, we have to merge them based on their behaviors. First,
1049  // categorize all of the nodes in the modules' module flags. If an error or
1050  // warning occurs, then emit the appropriate message(s).
1051  DenseMap<MDString*, MDNode*> ErrorNode;
1052  DenseMap<MDString*, MDNode*> WarningNode;
1053  DenseMap<MDString*, MDNode*> OverrideNode;
1054  DenseMap<MDString*, SmallSetVector<MDNode*, 8> > RequireNodes;
1055  SmallSetVector<MDString*, 16> SeenIDs;
1056
1057  HasErr |= categorizeModuleFlagNodes(SrcModFlags, ErrorNode, WarningNode,
1058                                      OverrideNode, RequireNodes, SeenIDs);
1059  HasErr |= categorizeModuleFlagNodes(DstModFlags, ErrorNode, WarningNode,
1060                                      OverrideNode, RequireNodes, SeenIDs);
1061
1062  // Check that there isn't both an error and warning node for a flag.
1063  for (SmallSetVector<MDString*, 16>::iterator
1064         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1065    MDString *ID = *I;
1066    if (ErrorNode[ID] && WarningNode[ID])
1067      HasErr = emitError("linking module flags '" + ID->getString() +
1068                         "': IDs have conflicting behaviors");
1069  }
1070
1071  // Early exit if we had an error.
1072  if (HasErr) return true;
1073
1074  // Get the destination's module flags ready for new operands.
1075  DstModFlags->dropAllReferences();
1076
1077  // Add all of the module flags to the destination module.
1078  DenseMap<MDString*, SmallVector<MDNode*, 4> > AddedNodes;
1079  for (SmallSetVector<MDString*, 16>::iterator
1080         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1081    MDString *ID = *I;
1082    if (OverrideNode[ID]) {
1083      DstModFlags->addOperand(OverrideNode[ID]);
1084      AddedNodes[ID].push_back(OverrideNode[ID]);
1085    } else if (ErrorNode[ID]) {
1086      DstModFlags->addOperand(ErrorNode[ID]);
1087      AddedNodes[ID].push_back(ErrorNode[ID]);
1088    } else if (WarningNode[ID]) {
1089      DstModFlags->addOperand(WarningNode[ID]);
1090      AddedNodes[ID].push_back(WarningNode[ID]);
1091    }
1092
1093    for (SmallSetVector<MDNode*, 8>::iterator
1094           II = RequireNodes[ID].begin(), IE = RequireNodes[ID].end();
1095         II != IE; ++II)
1096      DstModFlags->addOperand(*II);
1097  }
1098
1099  // Now check that all of the requirements have been satisfied.
1100  for (SmallSetVector<MDString*, 16>::iterator
1101         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1102    MDString *ID = *I;
1103    SmallSetVector<MDNode*, 8> &Set = RequireNodes[ID];
1104
1105    for (SmallSetVector<MDNode*, 8>::iterator
1106           II = Set.begin(), IE = Set.end(); II != IE; ++II) {
1107      MDNode *Node = *II;
1108      assert(isa<MDNode>(Node->getOperand(2)) &&
1109             "Module flag's third operand must be an MDNode!");
1110      MDNode *Val = cast<MDNode>(Node->getOperand(2));
1111
1112      MDString *ReqID = cast<MDString>(Val->getOperand(0));
1113      Value *ReqVal = Val->getOperand(1);
1114
1115      bool HasValue = false;
1116      for (SmallVectorImpl<MDNode*>::iterator
1117             RI = AddedNodes[ReqID].begin(), RE = AddedNodes[ReqID].end();
1118           RI != RE; ++RI) {
1119        MDNode *ReqNode = *RI;
1120        if (ReqNode->getOperand(2) == ReqVal) {
1121          HasValue = true;
1122          break;
1123        }
1124      }
1125
1126      if (!HasValue)
1127        HasErr = emitError("linking module flags '" + ReqID->getString() +
1128                           "': does not have the required value");
1129    }
1130  }
1131
1132  return HasErr;
1133}
1134
1135bool ModuleLinker::run() {
1136  assert(DstM && "Null destination module");
1137  assert(SrcM && "Null source module");
1138
1139  // Inherit the target data from the source module if the destination module
1140  // doesn't have one already.
1141  if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
1142    DstM->setDataLayout(SrcM->getDataLayout());
1143
1144  // Copy the target triple from the source to dest if the dest's is empty.
1145  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1146    DstM->setTargetTriple(SrcM->getTargetTriple());
1147
1148  if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
1149      SrcM->getDataLayout() != DstM->getDataLayout())
1150    errs() << "WARNING: Linking two modules of different data layouts!\n";
1151  if (!SrcM->getTargetTriple().empty() &&
1152      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1153    errs() << "WARNING: Linking two modules of different target triples: ";
1154    if (!SrcM->getModuleIdentifier().empty())
1155      errs() << SrcM->getModuleIdentifier() << ": ";
1156    errs() << "'" << SrcM->getTargetTriple() << "' and '"
1157           << DstM->getTargetTriple() << "'\n";
1158  }
1159
1160  // Append the module inline asm string.
1161  if (!SrcM->getModuleInlineAsm().empty()) {
1162    if (DstM->getModuleInlineAsm().empty())
1163      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1164    else
1165      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1166                               SrcM->getModuleInlineAsm());
1167  }
1168
1169  // Update the destination module's dependent libraries list with the libraries
1170  // from the source module. There's no opportunity for duplicates here as the
1171  // Module ensures that duplicate insertions are discarded.
1172  for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
1173       SI != SE; ++SI)
1174    DstM->addLibrary(*SI);
1175
1176  // If the source library's module id is in the dependent library list of the
1177  // destination library, remove it since that module is now linked in.
1178  StringRef ModuleId = SrcM->getModuleIdentifier();
1179  if (!ModuleId.empty())
1180    DstM->removeLibrary(sys::path::stem(ModuleId));
1181
1182  // Loop over all of the linked values to compute type mappings.
1183  computeTypeMapping();
1184
1185  // Insert all of the globals in src into the DstM module... without linking
1186  // initializers (which could refer to functions not yet mapped over).
1187  for (Module::global_iterator I = SrcM->global_begin(),
1188       E = SrcM->global_end(); I != E; ++I)
1189    if (linkGlobalProto(I))
1190      return true;
1191
1192  // Link the functions together between the two modules, without doing function
1193  // bodies... this just adds external function prototypes to the DstM
1194  // function...  We do this so that when we begin processing function bodies,
1195  // all of the global values that may be referenced are available in our
1196  // ValueMap.
1197  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1198    if (linkFunctionProto(I))
1199      return true;
1200
1201  // If there were any aliases, link them now.
1202  for (Module::alias_iterator I = SrcM->alias_begin(),
1203       E = SrcM->alias_end(); I != E; ++I)
1204    if (linkAliasProto(I))
1205      return true;
1206
1207  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1208    linkAppendingVarInit(AppendingVars[i]);
1209
1210  // Update the initializers in the DstM module now that all globals that may
1211  // be referenced are in DstM.
1212  linkGlobalInits();
1213
1214  // Link in the function bodies that are defined in the source module into
1215  // DstM.
1216  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1217    // Skip if not linking from source.
1218    if (DoNotLinkFromSource.count(SF)) continue;
1219
1220    // Skip if no body (function is external) or materialize.
1221    if (SF->isDeclaration()) {
1222      if (!SF->isMaterializable())
1223        continue;
1224      if (SF->Materialize(&ErrorMsg))
1225        return true;
1226    }
1227
1228    linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
1229    SF->Dematerialize();
1230  }
1231
1232  // Resolve all uses of aliases with aliasees.
1233  linkAliasBodies();
1234
1235  // Remap all of the named MDNodes in Src into the DstM module. We do this
1236  // after linking GlobalValues so that MDNodes that reference GlobalValues
1237  // are properly remapped.
1238  linkNamedMDNodes();
1239
1240  // Merge the module flags into the DstM module.
1241  if (linkModuleFlagsMetadata())
1242    return true;
1243
1244  // Process vector of lazily linked in functions.
1245  bool LinkedInAnyFunctions;
1246  do {
1247    LinkedInAnyFunctions = false;
1248
1249    for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1250        E = LazilyLinkFunctions.end(); I != E; ++I) {
1251      if (!*I)
1252        continue;
1253
1254      Function *SF = *I;
1255      Function *DF = cast<Function>(ValueMap[SF]);
1256
1257      if (!DF->use_empty()) {
1258
1259        // Materialize if necessary.
1260        if (SF->isDeclaration()) {
1261          if (!SF->isMaterializable())
1262            continue;
1263          if (SF->Materialize(&ErrorMsg))
1264            return true;
1265        }
1266
1267        // Link in function body.
1268        linkFunctionBody(DF, SF);
1269        SF->Dematerialize();
1270
1271        // "Remove" from vector by setting the element to 0.
1272        *I = 0;
1273
1274        // Set flag to indicate we may have more functions to lazily link in
1275        // since we linked in a function.
1276        LinkedInAnyFunctions = true;
1277      }
1278    }
1279  } while (LinkedInAnyFunctions);
1280
1281  // Remove any prototypes of functions that were not actually linked in.
1282  for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1283      E = LazilyLinkFunctions.end(); I != E; ++I) {
1284    if (!*I)
1285      continue;
1286
1287    Function *SF = *I;
1288    Function *DF = cast<Function>(ValueMap[SF]);
1289    if (DF->use_empty())
1290      DF->eraseFromParent();
1291  }
1292
1293  // Now that all of the types from the source are used, resolve any structs
1294  // copied over to the dest that didn't exist there.
1295  TypeMap.linkDefinedTypeBodies();
1296
1297  return false;
1298}
1299
1300//===----------------------------------------------------------------------===//
1301// LinkModules entrypoint.
1302//===----------------------------------------------------------------------===//
1303
1304/// LinkModules - This function links two modules together, with the resulting
1305/// left module modified to be the composite of the two input modules.  If an
1306/// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1307/// the problem.  Upon failure, the Dest module could be in a modified state,
1308/// and shouldn't be relied on to be consistent.
1309bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1310                         std::string *ErrorMsg) {
1311  ModuleLinker TheLinker(Dest, Src, Mode);
1312  if (TheLinker.run()) {
1313    if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
1314    return true;
1315  }
1316
1317  return false;
1318}
1319