LinkModules.cpp revision 1a1d485363e82e2d5f2442b2abcc1cc204ca58cf
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Linker.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Instructions.h"
18#include "llvm/Module.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/Support/raw_ostream.h"
21#include "llvm/Support/Path.h"
22#include "llvm/Transforms/Utils/Cloning.h"
23#include "llvm/Transforms/Utils/ValueMapper.h"
24using namespace llvm;
25
26//===----------------------------------------------------------------------===//
27// TypeMap implementation.
28//===----------------------------------------------------------------------===//
29
30namespace {
31class TypeMapTy : public ValueMapTypeRemapper {
32  /// MappedTypes - This is a mapping from a source type to a destination type
33  /// to use.
34  DenseMap<Type*, Type*> MappedTypes;
35
36  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
37  /// we speculatively add types to MappedTypes, but keep track of them here in
38  /// case we need to roll back.
39  SmallVector<Type*, 16> SpeculativeTypes;
40
41  /// DefinitionsToResolve - This is a list of non-opaque structs in the source
42  /// module that are mapped to an opaque struct in the destination module.
43  SmallVector<StructType*, 16> DefinitionsToResolve;
44public:
45
46  /// addTypeMapping - Indicate that the specified type in the destination
47  /// module is conceptually equivalent to the specified type in the source
48  /// module.
49  void addTypeMapping(Type *DstTy, Type *SrcTy);
50
51  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
52  /// module from a type definition in the source module.
53  void linkDefinedTypeBodies();
54
55  /// get - Return the mapped type to use for the specified input type from the
56  /// source module.
57  Type *get(Type *SrcTy);
58
59  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
60
61private:
62  Type *getImpl(Type *T);
63  /// remapType - Implement the ValueMapTypeRemapper interface.
64  Type *remapType(Type *SrcTy) {
65    return get(SrcTy);
66  }
67
68  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
69};
70}
71
72void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
73  Type *&Entry = MappedTypes[SrcTy];
74  if (Entry) return;
75
76  if (DstTy == SrcTy) {
77    Entry = DstTy;
78    return;
79  }
80
81  // Check to see if these types are recursively isomorphic and establish a
82  // mapping between them if so.
83  if (!areTypesIsomorphic(DstTy, SrcTy)) {
84    // Oops, they aren't isomorphic.  Just discard this request by rolling out
85    // any speculative mappings we've established.
86    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
87      MappedTypes.erase(SpeculativeTypes[i]);
88  }
89  SpeculativeTypes.clear();
90}
91
92/// areTypesIsomorphic - Recursively walk this pair of types, returning true
93/// if they are isomorphic, false if they are not.
94bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
95  // Two types with differing kinds are clearly not isomorphic.
96  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
97
98  // If we have an entry in the MappedTypes table, then we have our answer.
99  Type *&Entry = MappedTypes[SrcTy];
100  if (Entry)
101    return Entry == DstTy;
102
103  // Two identical types are clearly isomorphic.  Remember this
104  // non-speculatively.
105  if (DstTy == SrcTy) {
106    Entry = DstTy;
107    return true;
108  }
109
110  // Okay, we have two types with identical kinds that we haven't seen before.
111
112  // If this is an opaque struct type, special case it.
113  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
114    // Mapping an opaque type to any struct, just keep the dest struct.
115    if (SSTy->isOpaque()) {
116      Entry = DstTy;
117      SpeculativeTypes.push_back(SrcTy);
118      return true;
119    }
120
121    // Mapping a non-opaque source type to an opaque dest.  Keep the dest, but
122    // fill it in later.  This doesn't need to be speculative.
123    if (cast<StructType>(DstTy)->isOpaque()) {
124      Entry = DstTy;
125      DefinitionsToResolve.push_back(SSTy);
126      return true;
127    }
128  }
129
130  // If the number of subtypes disagree between the two types, then we fail.
131  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
132    return false;
133
134  // Fail if any of the extra properties (e.g. array size) of the type disagree.
135  if (isa<IntegerType>(DstTy))
136    return false;  // bitwidth disagrees.
137  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
138    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
139      return false;
140  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
141    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
142      return false;
143  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
144    StructType *SSTy = cast<StructType>(SrcTy);
145    if (DSTy->isLiteral() != SSTy->isLiteral() ||
146        DSTy->isPacked() != SSTy->isPacked())
147      return false;
148  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
149    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
150      return false;
151  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
152    if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
153      return false;
154  }
155
156  // Otherwise, we speculate that these two types will line up and recursively
157  // check the subelements.
158  Entry = DstTy;
159  SpeculativeTypes.push_back(SrcTy);
160
161  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
162    if (!areTypesIsomorphic(DstTy->getContainedType(i),
163                            SrcTy->getContainedType(i)))
164      return false;
165
166  // If everything seems to have lined up, then everything is great.
167  return true;
168}
169
170/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
171/// module from a type definition in the source module.
172void TypeMapTy::linkDefinedTypeBodies() {
173  SmallVector<Type*, 16> Elements;
174  SmallString<16> TmpName;
175
176  // Note that processing entries in this loop (calling 'get') can add new
177  // entries to the DefinitionsToResolve vector.
178  while (!DefinitionsToResolve.empty()) {
179    StructType *SrcSTy = DefinitionsToResolve.pop_back_val();
180    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
181
182    // TypeMap is a many-to-one mapping, if there were multiple types that
183    // provide a body for DstSTy then previous iterations of this loop may have
184    // already handled it.  Just ignore this case.
185    if (!DstSTy->isOpaque()) continue;
186    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
187
188    // Map the body of the source type over to a new body for the dest type.
189    Elements.resize(SrcSTy->getNumElements());
190    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
191      Elements[i] = getImpl(SrcSTy->getElementType(i));
192
193    DstSTy->setBody(Elements, SrcSTy->isPacked());
194
195    // If DstSTy has no name or has a longer name than STy, then viciously steal
196    // STy's name.
197    if (!SrcSTy->hasName()) continue;
198    StringRef SrcName = SrcSTy->getName();
199
200    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
201      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
202      SrcSTy->setName("");
203      DstSTy->setName(TmpName.str());
204      TmpName.clear();
205    }
206  }
207}
208
209
210/// get - Return the mapped type to use for the specified input type from the
211/// source module.
212Type *TypeMapTy::get(Type *Ty) {
213  Type *Result = getImpl(Ty);
214
215  // If this caused a reference to any struct type, resolve it before returning.
216  if (!DefinitionsToResolve.empty())
217    linkDefinedTypeBodies();
218  return Result;
219}
220
221/// getImpl - This is the recursive version of get().
222Type *TypeMapTy::getImpl(Type *Ty) {
223  // If we already have an entry for this type, return it.
224  Type **Entry = &MappedTypes[Ty];
225  if (*Entry) return *Entry;
226
227  // If this is not a named struct type, then just map all of the elements and
228  // then rebuild the type from inside out.
229  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
230    // If there are no element types to map, then the type is itself.  This is
231    // true for the anonymous {} struct, things like 'float', integers, etc.
232    if (Ty->getNumContainedTypes() == 0)
233      return *Entry = Ty;
234
235    // Remap all of the elements, keeping track of whether any of them change.
236    bool AnyChange = false;
237    SmallVector<Type*, 4> ElementTypes;
238    ElementTypes.resize(Ty->getNumContainedTypes());
239    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
240      ElementTypes[i] = getImpl(Ty->getContainedType(i));
241      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
242    }
243
244    // If we found our type while recursively processing stuff, just use it.
245    Entry = &MappedTypes[Ty];
246    if (*Entry) return *Entry;
247
248    // If all of the element types mapped directly over, then the type is usable
249    // as-is.
250    if (!AnyChange)
251      return *Entry = Ty;
252
253    // Otherwise, rebuild a modified type.
254    switch (Ty->getTypeID()) {
255    default: assert(0 && "unknown derived type to remap");
256    case Type::ArrayTyID:
257      return *Entry = ArrayType::get(ElementTypes[0],
258                                     cast<ArrayType>(Ty)->getNumElements());
259    case Type::VectorTyID:
260      return *Entry = VectorType::get(ElementTypes[0],
261                                      cast<VectorType>(Ty)->getNumElements());
262    case Type::PointerTyID:
263      return *Entry = PointerType::get(ElementTypes[0],
264                                      cast<PointerType>(Ty)->getAddressSpace());
265    case Type::FunctionTyID:
266      return *Entry = FunctionType::get(ElementTypes[0],
267                                        makeArrayRef(ElementTypes).slice(1),
268                                        cast<FunctionType>(Ty)->isVarArg());
269    case Type::StructTyID:
270      // Note that this is only reached for anonymous structs.
271      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
272                                      cast<StructType>(Ty)->isPacked());
273    }
274  }
275
276  // Otherwise, this is an unmapped named struct.  If the struct can be directly
277  // mapped over, just use it as-is.  This happens in a case when the linked-in
278  // module has something like:
279  //   %T = type {%T*, i32}
280  //   @GV = global %T* null
281  // where T does not exist at all in the destination module.
282  //
283  // The other case we watch for is when the type is not in the destination
284  // module, but that it has to be rebuilt because it refers to something that
285  // is already mapped.  For example, if the destination module has:
286  //  %A = type { i32 }
287  // and the source module has something like
288  //  %A' = type { i32 }
289  //  %B = type { %A'* }
290  //  @GV = global %B* null
291  // then we want to create a new type: "%B = type { %A*}" and have it take the
292  // pristine "%B" name from the source module.
293  //
294  // To determine which case this is, we have to recursively walk the type graph
295  // speculating that we'll be able to reuse it unmodified.  Only if this is
296  // safe would we map the entire thing over.  Because this is an optimization,
297  // and is not required for the prettiness of the linked module, we just skip
298  // it and always rebuild a type here.
299  StructType *STy = cast<StructType>(Ty);
300
301  // If the type is opaque, we can just use it directly.
302  if (STy->isOpaque())
303    return *Entry = STy;
304
305  // Otherwise we create a new type and resolve its body later.  This will be
306  // resolved by the top level of get().
307  DefinitionsToResolve.push_back(STy);
308  return *Entry = StructType::create(STy->getContext());
309}
310
311
312
313//===----------------------------------------------------------------------===//
314// ModuleLinker implementation.
315//===----------------------------------------------------------------------===//
316
317namespace {
318  /// ModuleLinker - This is an implementation class for the LinkModules
319  /// function, which is the entrypoint for this file.
320  class ModuleLinker {
321    Module *DstM, *SrcM;
322
323    TypeMapTy TypeMap;
324
325    /// ValueMap - Mapping of values from what they used to be in Src, to what
326    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
327    /// some overhead due to the use of Value handles which the Linker doesn't
328    /// actually need, but this allows us to reuse the ValueMapper code.
329    ValueToValueMapTy ValueMap;
330
331    struct AppendingVarInfo {
332      GlobalVariable *NewGV;  // New aggregate global in dest module.
333      Constant *DstInit;      // Old initializer from dest module.
334      Constant *SrcInit;      // Old initializer from src module.
335    };
336
337    std::vector<AppendingVarInfo> AppendingVars;
338
339    unsigned Mode; // Mode to treat source module.
340
341    // Set of items not to link in from source.
342    SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
343
344    // Vector of functions to lazily link in.
345    std::vector<Function*> LazilyLinkFunctions;
346
347  public:
348    std::string ErrorMsg;
349
350    ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
351      : DstM(dstM), SrcM(srcM), Mode(mode) { }
352
353    bool run();
354
355  private:
356    /// emitError - Helper method for setting a message and returning an error
357    /// code.
358    bool emitError(const Twine &Message) {
359      ErrorMsg = Message.str();
360      return true;
361    }
362
363    /// getLinkageResult - This analyzes the two global values and determines
364    /// what the result will look like in the destination module.
365    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
366                          GlobalValue::LinkageTypes &LT, bool &LinkFromSrc);
367
368    /// getLinkedToGlobal - Given a global in the source module, return the
369    /// global in the destination module that is being linked to, if any.
370    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
371      // If the source has no name it can't link.  If it has local linkage,
372      // there is no name match-up going on.
373      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
374        return 0;
375
376      // Otherwise see if we have a match in the destination module's symtab.
377      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
378      if (DGV == 0) return 0;
379
380      // If we found a global with the same name in the dest module, but it has
381      // internal linkage, we are really not doing any linkage here.
382      if (DGV->hasLocalLinkage())
383        return 0;
384
385      // Otherwise, we do in fact link to the destination global.
386      return DGV;
387    }
388
389    void computeTypeMapping();
390
391    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
392    bool linkGlobalProto(GlobalVariable *SrcGV);
393    bool linkFunctionProto(Function *SrcF);
394    bool linkAliasProto(GlobalAlias *SrcA);
395
396    void linkAppendingVarInit(const AppendingVarInfo &AVI);
397    void linkGlobalInits();
398    void linkFunctionBody(Function *Dst, Function *Src);
399    void linkAliasBodies();
400    void linkNamedMDNodes();
401  };
402}
403
404
405
406/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
407/// in the symbol table.  This is good for all clients except for us.  Go
408/// through the trouble to force this back.
409static void forceRenaming(GlobalValue *GV, StringRef Name) {
410  // If the global doesn't force its name or if it already has the right name,
411  // there is nothing for us to do.
412  if (GV->hasLocalLinkage() || GV->getName() == Name)
413    return;
414
415  Module *M = GV->getParent();
416
417  // If there is a conflict, rename the conflict.
418  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
419    GV->takeName(ConflictGV);
420    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
421    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
422  } else {
423    GV->setName(Name);              // Force the name back
424  }
425}
426
427/// CopyGVAttributes - copy additional attributes (those not needed to construct
428/// a GlobalValue) from the SrcGV to the DestGV.
429static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
430  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
431  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
432  DestGV->copyAttributesFrom(SrcGV);
433  DestGV->setAlignment(Alignment);
434
435  forceRenaming(DestGV, SrcGV->getName());
436}
437
438/// getLinkageResult - This analyzes the two global values and determines what
439/// the result will look like in the destination module.  In particular, it
440/// computes the resultant linkage type, computes whether the global in the
441/// source should be copied over to the destination (replacing the existing
442/// one), and computes whether this linkage is an error or not. It also performs
443/// visibility checks: we cannot link together two symbols with different
444/// visibilities.
445bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
446                                    GlobalValue::LinkageTypes &LT,
447                                    bool &LinkFromSrc) {
448  assert(Dest && "Must have two globals being queried");
449  assert(!Src->hasLocalLinkage() &&
450         "If Src has internal linkage, Dest shouldn't be set!");
451
452  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
453  bool DestIsDeclaration = Dest->isDeclaration();
454
455  if (SrcIsDeclaration) {
456    // If Src is external or if both Src & Dest are external..  Just link the
457    // external globals, we aren't adding anything.
458    if (Src->hasDLLImportLinkage()) {
459      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
460      if (DestIsDeclaration) {
461        LinkFromSrc = true;
462        LT = Src->getLinkage();
463      }
464    } else if (Dest->hasExternalWeakLinkage()) {
465      // If the Dest is weak, use the source linkage.
466      LinkFromSrc = true;
467      LT = Src->getLinkage();
468    } else {
469      LinkFromSrc = false;
470      LT = Dest->getLinkage();
471    }
472  } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
473    // If Dest is external but Src is not:
474    LinkFromSrc = true;
475    LT = Src->getLinkage();
476  } else if (Src->isWeakForLinker()) {
477    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
478    // or DLL* linkage.
479    if (Dest->hasExternalWeakLinkage() ||
480        Dest->hasAvailableExternallyLinkage() ||
481        (Dest->hasLinkOnceLinkage() &&
482         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
483      LinkFromSrc = true;
484      LT = Src->getLinkage();
485    } else {
486      LinkFromSrc = false;
487      LT = Dest->getLinkage();
488    }
489  } else if (Dest->isWeakForLinker()) {
490    // At this point we know that Src has External* or DLL* linkage.
491    if (Src->hasExternalWeakLinkage()) {
492      LinkFromSrc = false;
493      LT = Dest->getLinkage();
494    } else {
495      LinkFromSrc = true;
496      LT = GlobalValue::ExternalLinkage;
497    }
498  } else {
499    assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
500            Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
501           (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
502            Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
503           "Unexpected linkage type!");
504    return emitError("Linking globals named '" + Src->getName() +
505                 "': symbol multiply defined!");
506  }
507
508  // Check visibility
509  if (Src->getVisibility() != Dest->getVisibility() &&
510      !SrcIsDeclaration && !DestIsDeclaration &&
511      !Src->hasAvailableExternallyLinkage() &&
512      !Dest->hasAvailableExternallyLinkage())
513    return emitError("Linking globals named '" + Src->getName() +
514                   "': symbols have different visibilities!");
515  return false;
516}
517
518/// computeTypeMapping - Loop over all of the linked values to compute type
519/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
520/// we have two struct types 'Foo' but one got renamed when the module was
521/// loaded into the same LLVMContext.
522void ModuleLinker::computeTypeMapping() {
523  // Incorporate globals.
524  for (Module::global_iterator I = SrcM->global_begin(),
525       E = SrcM->global_end(); I != E; ++I) {
526    GlobalValue *DGV = getLinkedToGlobal(I);
527    if (DGV == 0) continue;
528
529    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
530      TypeMap.addTypeMapping(DGV->getType(), I->getType());
531      continue;
532    }
533
534    // Unify the element type of appending arrays.
535    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
536    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
537    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
538  }
539
540  // Incorporate functions.
541  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
542    if (GlobalValue *DGV = getLinkedToGlobal(I))
543      TypeMap.addTypeMapping(DGV->getType(), I->getType());
544  }
545
546  // Don't bother incorporating aliases, they aren't generally typed well.
547
548  // Now that we have discovered all of the type equivalences, get a body for
549  // any 'opaque' types in the dest module that are now resolved.
550  TypeMap.linkDefinedTypeBodies();
551}
552
553/// linkAppendingVarProto - If there were any appending global variables, link
554/// them together now.  Return true on error.
555bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
556                                         GlobalVariable *SrcGV) {
557
558  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
559    return emitError("Linking globals named '" + SrcGV->getName() +
560           "': can only link appending global with another appending global!");
561
562  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
563  ArrayType *SrcTy =
564    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
565  Type *EltTy = DstTy->getElementType();
566
567  // Check to see that they two arrays agree on type.
568  if (EltTy != SrcTy->getElementType())
569    return emitError("Appending variables with different element types!");
570  if (DstGV->isConstant() != SrcGV->isConstant())
571    return emitError("Appending variables linked with different const'ness!");
572
573  if (DstGV->getAlignment() != SrcGV->getAlignment())
574    return emitError(
575             "Appending variables with different alignment need to be linked!");
576
577  if (DstGV->getVisibility() != SrcGV->getVisibility())
578    return emitError(
579            "Appending variables with different visibility need to be linked!");
580
581  if (DstGV->getSection() != SrcGV->getSection())
582    return emitError(
583          "Appending variables with different section name need to be linked!");
584
585  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
586  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
587
588  // Create the new global variable.
589  GlobalVariable *NG =
590    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
591                       DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
592                       DstGV->isThreadLocal(),
593                       DstGV->getType()->getAddressSpace());
594
595  // Propagate alignment, visibility and section info.
596  CopyGVAttributes(NG, DstGV);
597
598  AppendingVarInfo AVI;
599  AVI.NewGV = NG;
600  AVI.DstInit = DstGV->getInitializer();
601  AVI.SrcInit = SrcGV->getInitializer();
602  AppendingVars.push_back(AVI);
603
604  // Replace any uses of the two global variables with uses of the new
605  // global.
606  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
607
608  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
609  DstGV->eraseFromParent();
610
611  // Track the source variable so we don't try to link it.
612  DoNotLinkFromSource.insert(SrcGV);
613
614  return false;
615}
616
617/// linkGlobalProto - Loop through the global variables in the src module and
618/// merge them into the dest module.
619bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
620  GlobalValue *DGV = getLinkedToGlobal(SGV);
621
622  if (DGV) {
623    // Concatenation of appending linkage variables is magic and handled later.
624    if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
625      return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
626
627    // Determine whether linkage of these two globals follows the source
628    // module's definition or the destination module's definition.
629    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
630    bool LinkFromSrc = false;
631    if (getLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc))
632      return true;
633
634    // If we're not linking from the source, then keep the definition that we
635    // have.
636    if (!LinkFromSrc) {
637      // Special case for const propagation.
638      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
639        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
640          DGVar->setConstant(true);
641
642      // Set calculated linkage.
643      DGV->setLinkage(NewLinkage);
644
645      // Make sure to remember this mapping.
646      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
647
648      // Track the source global so that we don't attempt to copy it over when
649      // processing global initializers.
650      DoNotLinkFromSource.insert(SGV);
651
652      return false;
653    }
654  }
655
656  // No linking to be performed or linking from the source: simply create an
657  // identical version of the symbol over in the dest module... the
658  // initializer will be filled in later by LinkGlobalInits.
659  GlobalVariable *NewDGV =
660    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
661                       SGV->isConstant(), SGV->getLinkage(), /*init*/0,
662                       SGV->getName(), /*insertbefore*/0,
663                       SGV->isThreadLocal(),
664                       SGV->getType()->getAddressSpace());
665  // Propagate alignment, visibility and section info.
666  CopyGVAttributes(NewDGV, SGV);
667
668  if (DGV) {
669    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
670    DGV->eraseFromParent();
671  }
672
673  // Make sure to remember this mapping.
674  ValueMap[SGV] = NewDGV;
675  return false;
676}
677
678/// linkFunctionProto - Link the function in the source module into the
679/// destination module if needed, setting up mapping information.
680bool ModuleLinker::linkFunctionProto(Function *SF) {
681  GlobalValue *DGV = getLinkedToGlobal(SF);
682
683  if (DGV) {
684    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
685    bool LinkFromSrc = false;
686    if (getLinkageResult(DGV, SF, NewLinkage, LinkFromSrc))
687      return true;
688
689    if (!LinkFromSrc) {
690      // Set calculated linkage
691      DGV->setLinkage(NewLinkage);
692
693      // Make sure to remember this mapping.
694      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
695
696      // Track the function from the source module so we don't attempt to remap
697      // it.
698      DoNotLinkFromSource.insert(SF);
699
700      return false;
701    }
702  }
703
704  // If there is no linkage to be performed or we are linking from the source,
705  // bring SF over.
706  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
707                                     SF->getLinkage(), SF->getName(), DstM);
708  CopyGVAttributes(NewDF, SF);
709
710  if (DGV) {
711    // Any uses of DF need to change to NewDF, with cast.
712    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
713    DGV->eraseFromParent();
714  } else {
715    // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
716    if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
717        SF->hasAvailableExternallyLinkage()) {
718      DoNotLinkFromSource.insert(SF);
719      LazilyLinkFunctions.push_back(SF);
720    }
721  }
722
723  ValueMap[SF] = NewDF;
724  return false;
725}
726
727/// LinkAliasProto - Set up prototypes for any aliases that come over from the
728/// source module.
729bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
730  GlobalValue *DGV = getLinkedToGlobal(SGA);
731
732  if (DGV) {
733    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
734    bool LinkFromSrc = false;
735    if (getLinkageResult(DGV, SGA, NewLinkage, LinkFromSrc))
736      return true;
737
738    if (!LinkFromSrc) {
739      // Set calculated linkage.
740      DGV->setLinkage(NewLinkage);
741
742      // Make sure to remember this mapping.
743      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
744
745      // Track the alias from the source module so we don't attempt to remap it.
746      DoNotLinkFromSource.insert(SGA);
747
748      return false;
749    }
750  }
751
752  // If there is no linkage to be performed or we're linking from the source,
753  // bring over SGA.
754  GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
755                                       SGA->getLinkage(), SGA->getName(),
756                                       /*aliasee*/0, DstM);
757  CopyGVAttributes(NewDA, SGA);
758
759  if (DGV) {
760    // Any uses of DGV need to change to NewDA, with cast.
761    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
762    DGV->eraseFromParent();
763  }
764
765  ValueMap[SGA] = NewDA;
766  return false;
767}
768
769void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
770  // Merge the initializer.
771  SmallVector<Constant*, 16> Elements;
772  if (ConstantArray *I = dyn_cast<ConstantArray>(AVI.DstInit)) {
773    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
774      Elements.push_back(I->getOperand(i));
775  } else {
776    assert(isa<ConstantAggregateZero>(AVI.DstInit));
777    ArrayType *DstAT = cast<ArrayType>(AVI.DstInit->getType());
778    Type *EltTy = DstAT->getElementType();
779    Elements.append(DstAT->getNumElements(), Constant::getNullValue(EltTy));
780  }
781
782  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
783  if (const ConstantArray *I = dyn_cast<ConstantArray>(SrcInit)) {
784    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
785      Elements.push_back(I->getOperand(i));
786  } else {
787    assert(isa<ConstantAggregateZero>(SrcInit));
788    ArrayType *SrcAT = cast<ArrayType>(SrcInit->getType());
789    Type *EltTy = SrcAT->getElementType();
790    Elements.append(SrcAT->getNumElements(), Constant::getNullValue(EltTy));
791  }
792  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
793  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
794}
795
796
797// linkGlobalInits - Update the initializers in the Dest module now that all
798// globals that may be referenced are in Dest.
799void ModuleLinker::linkGlobalInits() {
800  // Loop over all of the globals in the src module, mapping them over as we go
801  for (Module::const_global_iterator I = SrcM->global_begin(),
802       E = SrcM->global_end(); I != E; ++I) {
803
804    // Only process initialized GV's or ones not already in dest.
805    if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
806
807    // Grab destination global variable.
808    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
809    // Figure out what the initializer looks like in the dest module.
810    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
811                                 RF_None, &TypeMap));
812  }
813}
814
815// linkFunctionBody - Copy the source function over into the dest function and
816// fix up references to values.  At this point we know that Dest is an external
817// function, and that Src is not.
818void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
819  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
820
821  // Go through and convert function arguments over, remembering the mapping.
822  Function::arg_iterator DI = Dst->arg_begin();
823  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
824       I != E; ++I, ++DI) {
825    DI->setName(I->getName());  // Copy the name over.
826
827    // Add a mapping to our mapping.
828    ValueMap[I] = DI;
829  }
830
831  if (Mode == Linker::DestroySource) {
832    // Splice the body of the source function into the dest function.
833    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
834
835    // At this point, all of the instructions and values of the function are now
836    // copied over.  The only problem is that they are still referencing values in
837    // the Source function as operands.  Loop through all of the operands of the
838    // functions and patch them up to point to the local versions.
839    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
840      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
841        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
842
843  } else {
844    // Clone the body of the function into the dest function.
845    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
846    CloneFunctionInto(Dst, Src, ValueMap, false, Returns);
847  }
848
849  // There is no need to map the arguments anymore.
850  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
851       I != E; ++I)
852    ValueMap.erase(I);
853
854}
855
856
857void ModuleLinker::linkAliasBodies() {
858  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
859       I != E; ++I) {
860    if (DoNotLinkFromSource.count(I))
861      continue;
862    if (Constant *Aliasee = I->getAliasee()) {
863      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
864      DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
865    }
866  }
867}
868
869/// linkNamedMDNodes - Insert all of the named mdnodes in Src into the Dest
870/// module.
871void ModuleLinker::linkNamedMDNodes() {
872  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
873       E = SrcM->named_metadata_end(); I != E; ++I) {
874    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
875    // Add Src elements into Dest node.
876    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
877      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
878                                   RF_None, &TypeMap));
879  }
880}
881
882bool ModuleLinker::run() {
883  assert(DstM && "Null Destination module");
884  assert(SrcM && "Null Source Module");
885
886  // Inherit the target data from the source module if the destination module
887  // doesn't have one already.
888  if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
889    DstM->setDataLayout(SrcM->getDataLayout());
890
891  // Copy the target triple from the source to dest if the dest's is empty.
892  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
893    DstM->setTargetTriple(SrcM->getTargetTriple());
894
895  if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
896      SrcM->getDataLayout() != DstM->getDataLayout())
897    errs() << "WARNING: Linking two modules of different data layouts!\n";
898  if (!SrcM->getTargetTriple().empty() &&
899      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
900    errs() << "WARNING: Linking two modules of different target triples: ";
901    if (!SrcM->getModuleIdentifier().empty())
902      errs() << SrcM->getModuleIdentifier() << ": ";
903    errs() << "'" << SrcM->getTargetTriple() << "' and '"
904           << DstM->getTargetTriple() << "'\n";
905  }
906
907  // Append the module inline asm string.
908  if (!SrcM->getModuleInlineAsm().empty()) {
909    if (DstM->getModuleInlineAsm().empty())
910      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
911    else
912      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
913                               SrcM->getModuleInlineAsm());
914  }
915
916  // Update the destination module's dependent libraries list with the libraries
917  // from the source module. There's no opportunity for duplicates here as the
918  // Module ensures that duplicate insertions are discarded.
919  for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
920       SI != SE; ++SI)
921    DstM->addLibrary(*SI);
922
923  // If the source library's module id is in the dependent library list of the
924  // destination library, remove it since that module is now linked in.
925  StringRef ModuleId = SrcM->getModuleIdentifier();
926  if (!ModuleId.empty())
927    DstM->removeLibrary(sys::path::stem(ModuleId));
928
929  // Loop over all of the linked values to compute type mappings.
930  computeTypeMapping();
931
932  // Insert all of the globals in src into the DstM module... without linking
933  // initializers (which could refer to functions not yet mapped over).
934  for (Module::global_iterator I = SrcM->global_begin(),
935       E = SrcM->global_end(); I != E; ++I)
936    if (linkGlobalProto(I))
937      return true;
938
939  // Link the functions together between the two modules, without doing function
940  // bodies... this just adds external function prototypes to the DstM
941  // function...  We do this so that when we begin processing function bodies,
942  // all of the global values that may be referenced are available in our
943  // ValueMap.
944  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
945    if (linkFunctionProto(I))
946      return true;
947
948  // If there were any aliases, link them now.
949  for (Module::alias_iterator I = SrcM->alias_begin(),
950       E = SrcM->alias_end(); I != E; ++I)
951    if (linkAliasProto(I))
952      return true;
953
954  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
955    linkAppendingVarInit(AppendingVars[i]);
956
957  // Update the initializers in the DstM module now that all globals that may
958  // be referenced are in DstM.
959  linkGlobalInits();
960
961  // Link in the function bodies that are defined in the source module into
962  // DstM.
963  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
964
965    // Skip if not linking from source.
966    if (DoNotLinkFromSource.count(SF)) continue;
967
968    // Skip if no body (function is external) or materialize.
969    if (SF->isDeclaration()) {
970      if (!SF->isMaterializable())
971        continue;
972      if (SF->Materialize(&ErrorMsg))
973        return true;
974    }
975
976    linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
977  }
978
979  // Resolve all uses of aliases with aliasees.
980  linkAliasBodies();
981
982  // Remap all of the named mdnoes in Src into the DstM module. We do this
983  // after linking GlobalValues so that MDNodes that reference GlobalValues
984  // are properly remapped.
985  linkNamedMDNodes();
986
987  // Process vector of lazily linked in functions.
988  bool LinkedInAnyFunctions;
989  do {
990    LinkedInAnyFunctions = false;
991
992    for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
993        E = LazilyLinkFunctions.end(); I != E; ++I) {
994      if (!*I)
995        continue;
996
997      Function *SF = *I;
998      Function *DF = cast<Function>(ValueMap[SF]);
999
1000      if (!DF->use_empty()) {
1001
1002        // Materialize if necessary.
1003        if (SF->isDeclaration()) {
1004          if (!SF->isMaterializable())
1005            continue;
1006          if (SF->Materialize(&ErrorMsg))
1007            return true;
1008        }
1009
1010        // Link in function body.
1011        linkFunctionBody(DF, SF);
1012
1013        // "Remove" from vector by setting the element to 0.
1014        *I = 0;
1015
1016        // Set flag to indicate we may have more functions to lazily link in
1017        // since we linked in a function.
1018        LinkedInAnyFunctions = true;
1019      }
1020    }
1021  } while (LinkedInAnyFunctions);
1022
1023  // Remove any prototypes of functions that were not actually linked in.
1024  for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1025      E = LazilyLinkFunctions.end(); I != E; ++I) {
1026    if (!*I)
1027      continue;
1028
1029    Function *SF = *I;
1030    Function *DF = cast<Function>(ValueMap[SF]);
1031    if (DF->use_empty())
1032      DF->eraseFromParent();
1033  }
1034
1035  // Now that all of the types from the source are used, resolve any structs
1036  // copied over to the dest that didn't exist there.
1037  TypeMap.linkDefinedTypeBodies();
1038
1039  return false;
1040}
1041
1042//===----------------------------------------------------------------------===//
1043// LinkModules entrypoint.
1044//===----------------------------------------------------------------------===//
1045
1046// LinkModules - This function links two modules together, with the resulting
1047// left module modified to be the composite of the two input modules.  If an
1048// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1049// the problem.  Upon failure, the Dest module could be in a modified state, and
1050// shouldn't be relied on to be consistent.
1051bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1052                         std::string *ErrorMsg) {
1053  ModuleLinker TheLinker(Dest, Src, Mode);
1054  if (TheLinker.run()) {
1055    if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
1056    return true;
1057  }
1058
1059  return false;
1060}
1061