LinkModules.cpp revision 1f6efa3996dd1929fbc129203ce5009b620e6969
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Module.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/ValueSymbolTable.h"
26#include "llvm/Instructions.h"
27#include "llvm/Assembly/Writer.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Support/Path.h"
32#include "llvm/Transforms/Utils/ValueMapper.h"
33#include "llvm/ADT/DenseMap.h"
34using namespace llvm;
35
36// Error - Simple wrapper function to conditionally assign to E and return true.
37// This just makes error return conditions a little bit simpler...
38static inline bool Error(std::string *E, const Twine &Message) {
39  if (E) *E = Message.str();
40  return true;
41}
42
43// Function: ResolveTypes()
44//
45// Description:
46//  Attempt to link the two specified types together.
47//
48// Inputs:
49//  DestTy - The type to which we wish to resolve.
50//  SrcTy  - The original type which we want to resolve.
51//
52// Outputs:
53//  DestST - The symbol table in which the new type should be placed.
54//
55// Return value:
56//  true  - There is an error and the types cannot yet be linked.
57//  false - No errors.
58//
59static bool ResolveTypes(const Type *DestTy, const Type *SrcTy) {
60  if (DestTy == SrcTy) return false;       // If already equal, noop
61  assert(DestTy && SrcTy && "Can't handle null types");
62
63  if (const OpaqueType *OT = dyn_cast<OpaqueType>(DestTy)) {
64    // Type _is_ in module, just opaque...
65    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(SrcTy);
66  } else if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
67    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
68  } else {
69    return true;  // Cannot link types... not-equal and neither is opaque.
70  }
71  return false;
72}
73
74/// LinkerTypeMap - This implements a map of types that is stable
75/// even if types are resolved/refined to other types.  This is not a general
76/// purpose map, it is specific to the linker's use.
77namespace {
78class LinkerTypeMap : public AbstractTypeUser {
79  typedef DenseMap<const Type*, PATypeHolder> TheMapTy;
80  TheMapTy TheMap;
81
82  LinkerTypeMap(const LinkerTypeMap&); // DO NOT IMPLEMENT
83  void operator=(const LinkerTypeMap&); // DO NOT IMPLEMENT
84public:
85  LinkerTypeMap() {}
86  ~LinkerTypeMap() {
87    for (DenseMap<const Type*, PATypeHolder>::iterator I = TheMap.begin(),
88         E = TheMap.end(); I != E; ++I)
89      I->first->removeAbstractTypeUser(this);
90  }
91
92  /// lookup - Return the value for the specified type or null if it doesn't
93  /// exist.
94  const Type *lookup(const Type *Ty) const {
95    TheMapTy::const_iterator I = TheMap.find(Ty);
96    if (I != TheMap.end()) return I->second;
97    return 0;
98  }
99
100  /// insert - This returns true if the pointer was new to the set, false if it
101  /// was already in the set.
102  bool insert(const Type *Src, const Type *Dst) {
103    if (!TheMap.insert(std::make_pair(Src, PATypeHolder(Dst))).second)
104      return false;  // Already in map.
105    if (Src->isAbstract())
106      Src->addAbstractTypeUser(this);
107    return true;
108  }
109
110protected:
111  /// refineAbstractType - The callback method invoked when an abstract type is
112  /// resolved to another type.  An object must override this method to update
113  /// its internal state to reference NewType instead of OldType.
114  ///
115  virtual void refineAbstractType(const DerivedType *OldTy,
116                                  const Type *NewTy) {
117    TheMapTy::iterator I = TheMap.find(OldTy);
118    const Type *DstTy = I->second;
119
120    TheMap.erase(I);
121    if (OldTy->isAbstract())
122      OldTy->removeAbstractTypeUser(this);
123
124    // Don't reinsert into the map if the key is concrete now.
125    if (NewTy->isAbstract())
126      insert(NewTy, DstTy);
127  }
128
129  /// The other case which AbstractTypeUsers must be aware of is when a type
130  /// makes the transition from being abstract (where it has clients on it's
131  /// AbstractTypeUsers list) to concrete (where it does not).  This method
132  /// notifies ATU's when this occurs for a type.
133  virtual void typeBecameConcrete(const DerivedType *AbsTy) {
134    TheMap.erase(AbsTy);
135    AbsTy->removeAbstractTypeUser(this);
136  }
137
138  // for debugging...
139  virtual void dump() const {
140    dbgs() << "AbstractTypeSet!\n";
141  }
142};
143}
144
145
146// RecursiveResolveTypes - This is just like ResolveTypes, except that it
147// recurses down into derived types, merging the used types if the parent types
148// are compatible.
149static bool RecursiveResolveTypesI(const Type *DstTy, const Type *SrcTy,
150                                   LinkerTypeMap &Pointers) {
151  if (DstTy == SrcTy) return false;       // If already equal, noop
152
153  // If we found our opaque type, resolve it now!
154  if (DstTy->isOpaqueTy() || SrcTy->isOpaqueTy())
155    return ResolveTypes(DstTy, SrcTy);
156
157  // Two types cannot be resolved together if they are of different primitive
158  // type.  For example, we cannot resolve an int to a float.
159  if (DstTy->getTypeID() != SrcTy->getTypeID()) return true;
160
161  // If neither type is abstract, then they really are just different types.
162  if (!DstTy->isAbstract() && !SrcTy->isAbstract())
163    return true;
164
165  // Otherwise, resolve the used type used by this derived type...
166  switch (DstTy->getTypeID()) {
167  default:
168    return true;
169  case Type::FunctionTyID: {
170    const FunctionType *DstFT = cast<FunctionType>(DstTy);
171    const FunctionType *SrcFT = cast<FunctionType>(SrcTy);
172    if (DstFT->isVarArg() != SrcFT->isVarArg() ||
173        DstFT->getNumContainedTypes() != SrcFT->getNumContainedTypes())
174      return true;
175
176    // Use TypeHolder's so recursive resolution won't break us.
177    PATypeHolder ST(SrcFT), DT(DstFT);
178    for (unsigned i = 0, e = DstFT->getNumContainedTypes(); i != e; ++i) {
179      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
180      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
181        return true;
182    }
183    return false;
184  }
185  case Type::StructTyID: {
186    const StructType *DstST = cast<StructType>(DstTy);
187    const StructType *SrcST = cast<StructType>(SrcTy);
188    if (DstST->getNumContainedTypes() != SrcST->getNumContainedTypes())
189      return true;
190
191    PATypeHolder ST(SrcST), DT(DstST);
192    for (unsigned i = 0, e = DstST->getNumContainedTypes(); i != e; ++i) {
193      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
194      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
195        return true;
196    }
197    return false;
198  }
199  case Type::ArrayTyID: {
200    const ArrayType *DAT = cast<ArrayType>(DstTy);
201    const ArrayType *SAT = cast<ArrayType>(SrcTy);
202    if (DAT->getNumElements() != SAT->getNumElements()) return true;
203    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
204                                  Pointers);
205  }
206  case Type::VectorTyID: {
207    const VectorType *DVT = cast<VectorType>(DstTy);
208    const VectorType *SVT = cast<VectorType>(SrcTy);
209    if (DVT->getNumElements() != SVT->getNumElements()) return true;
210    return RecursiveResolveTypesI(DVT->getElementType(), SVT->getElementType(),
211                                  Pointers);
212  }
213  case Type::PointerTyID: {
214    const PointerType *DstPT = cast<PointerType>(DstTy);
215    const PointerType *SrcPT = cast<PointerType>(SrcTy);
216
217    if (DstPT->getAddressSpace() != SrcPT->getAddressSpace())
218      return true;
219
220    // If this is a pointer type, check to see if we have already seen it.  If
221    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
222    // an associative container for this search, because the type pointers (keys
223    // in the container) change whenever types get resolved.
224    if (SrcPT->isAbstract())
225      if (const Type *ExistingDestTy = Pointers.lookup(SrcPT))
226        return ExistingDestTy != DstPT;
227
228    if (DstPT->isAbstract())
229      if (const Type *ExistingSrcTy = Pointers.lookup(DstPT))
230        return ExistingSrcTy != SrcPT;
231    // Otherwise, add the current pointers to the vector to stop recursion on
232    // this pair.
233    if (DstPT->isAbstract())
234      Pointers.insert(DstPT, SrcPT);
235    if (SrcPT->isAbstract())
236      Pointers.insert(SrcPT, DstPT);
237
238    return RecursiveResolveTypesI(DstPT->getElementType(),
239                                  SrcPT->getElementType(), Pointers);
240  }
241  }
242}
243
244static bool RecursiveResolveTypes(const Type *DestTy, const Type *SrcTy) {
245  LinkerTypeMap PointerTypes;
246  return RecursiveResolveTypesI(DestTy, SrcTy, PointerTypes);
247}
248
249
250// LinkTypes - Go through the symbol table of the Src module and see if any
251// types are named in the src module that are not named in the Dst module.
252// Make sure there are no type name conflicts.
253static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
254        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
255  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
256
257  // Look for a type plane for Type's...
258  TypeSymbolTable::const_iterator TI = SrcST->begin();
259  TypeSymbolTable::const_iterator TE = SrcST->end();
260  if (TI == TE) return false;  // No named types, do nothing.
261
262  // Some types cannot be resolved immediately because they depend on other
263  // types being resolved to each other first.  This contains a list of types we
264  // are waiting to recheck.
265  std::vector<std::string> DelayedTypesToResolve;
266
267  for ( ; TI != TE; ++TI ) {
268    const std::string &Name = TI->first;
269    const Type *RHS = TI->second;
270
271    // Check to see if this type name is already in the dest module.
272    Type *Entry = DestST->lookup(Name);
273
274    // If the name is just in the source module, bring it over to the dest.
275    if (Entry == 0) {
276      if (!Name.empty())
277        DestST->insert(Name, const_cast<Type*>(RHS));
278    } else if (ResolveTypes(Entry, RHS)) {
279      // They look different, save the types 'till later to resolve.
280      DelayedTypesToResolve.push_back(Name);
281    }
282  }
283
284  // Iteratively resolve types while we can...
285  while (!DelayedTypesToResolve.empty()) {
286    // Loop over all of the types, attempting to resolve them if possible...
287    unsigned OldSize = DelayedTypesToResolve.size();
288
289    // Try direct resolution by name...
290    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
291      const std::string &Name = DelayedTypesToResolve[i];
292      Type *T1 = SrcST->lookup(Name);
293      Type *T2 = DestST->lookup(Name);
294      if (!ResolveTypes(T2, T1)) {
295        // We are making progress!
296        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
297        --i;
298      }
299    }
300
301    // Did we not eliminate any types?
302    if (DelayedTypesToResolve.size() == OldSize) {
303      // Attempt to resolve subelements of types.  This allows us to merge these
304      // two types: { int* } and { opaque* }
305      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
306        const std::string &Name = DelayedTypesToResolve[i];
307        if (!RecursiveResolveTypes(SrcST->lookup(Name), DestST->lookup(Name))) {
308          // We are making progress!
309          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
310
311          // Go back to the main loop, perhaps we can resolve directly by name
312          // now...
313          break;
314        }
315      }
316
317      // If we STILL cannot resolve the types, then there is something wrong.
318      if (DelayedTypesToResolve.size() == OldSize) {
319        // Remove the symbol name from the destination.
320        DelayedTypesToResolve.pop_back();
321      }
322    }
323  }
324
325
326  return false;
327}
328
329/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
330/// in the symbol table.  This is good for all clients except for us.  Go
331/// through the trouble to force this back.
332static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
333  assert(GV->getName() != Name && "Can't force rename to self");
334  ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
335
336  // If there is a conflict, rename the conflict.
337  if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
338    assert(ConflictGV->hasLocalLinkage() &&
339           "Not conflicting with a static global, should link instead!");
340    GV->takeName(ConflictGV);
341    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
342    assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
343  } else {
344    GV->setName(Name);              // Force the name back
345  }
346}
347
348/// CopyGVAttributes - copy additional attributes (those not needed to construct
349/// a GlobalValue) from the SrcGV to the DestGV.
350static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
351  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
352  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
353  DestGV->copyAttributesFrom(SrcGV);
354  DestGV->setAlignment(Alignment);
355}
356
357/// GetLinkageResult - This analyzes the two global values and determines what
358/// the result will look like in the destination module.  In particular, it
359/// computes the resultant linkage type, computes whether the global in the
360/// source should be copied over to the destination (replacing the existing
361/// one), and computes whether this linkage is an error or not. It also performs
362/// visibility checks: we cannot link together two symbols with different
363/// visibilities.
364static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
365                             GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
366                             std::string *Err) {
367  assert((!Dest || !Src->hasLocalLinkage()) &&
368         "If Src has internal linkage, Dest shouldn't be set!");
369  if (!Dest) {
370    // Linking something to nothing.
371    LinkFromSrc = true;
372    LT = Src->getLinkage();
373  } else if (Src->isDeclaration()) {
374    // If Src is external or if both Src & Dest are external..  Just link the
375    // external globals, we aren't adding anything.
376    if (Src->hasDLLImportLinkage()) {
377      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
378      if (Dest->isDeclaration()) {
379        LinkFromSrc = true;
380        LT = Src->getLinkage();
381      }
382    } else if (Dest->hasExternalWeakLinkage()) {
383      // If the Dest is weak, use the source linkage.
384      LinkFromSrc = true;
385      LT = Src->getLinkage();
386    } else {
387      LinkFromSrc = false;
388      LT = Dest->getLinkage();
389    }
390  } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
391    // If Dest is external but Src is not:
392    LinkFromSrc = true;
393    LT = Src->getLinkage();
394  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
395    if (Src->getLinkage() != Dest->getLinkage())
396      return Error(Err, "Linking globals named '" + Src->getName() +
397            "': can only link appending global with another appending global!");
398    LinkFromSrc = true; // Special cased.
399    LT = Src->getLinkage();
400  } else if (Src->isWeakForLinker()) {
401    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
402    // or DLL* linkage.
403    if (Dest->hasExternalWeakLinkage() ||
404        Dest->hasAvailableExternallyLinkage() ||
405        (Dest->hasLinkOnceLinkage() &&
406         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
407      LinkFromSrc = true;
408      LT = Src->getLinkage();
409    } else {
410      LinkFromSrc = false;
411      LT = Dest->getLinkage();
412    }
413  } else if (Dest->isWeakForLinker()) {
414    // At this point we know that Src has External* or DLL* linkage.
415    if (Src->hasExternalWeakLinkage()) {
416      LinkFromSrc = false;
417      LT = Dest->getLinkage();
418    } else {
419      LinkFromSrc = true;
420      LT = GlobalValue::ExternalLinkage;
421    }
422  } else {
423    assert((Dest->hasExternalLinkage() ||
424            Dest->hasDLLImportLinkage() ||
425            Dest->hasDLLExportLinkage() ||
426            Dest->hasExternalWeakLinkage()) &&
427           (Src->hasExternalLinkage() ||
428            Src->hasDLLImportLinkage() ||
429            Src->hasDLLExportLinkage() ||
430            Src->hasExternalWeakLinkage()) &&
431           "Unexpected linkage type!");
432    return Error(Err, "Linking globals named '" + Src->getName() +
433                 "': symbol multiply defined!");
434  }
435
436  // Check visibility
437  if (Dest && Src->getVisibility() != Dest->getVisibility())
438    if (!Src->isDeclaration() && !Dest->isDeclaration())
439      return Error(Err, "Linking globals named '" + Src->getName() +
440                   "': symbols have different visibilities!");
441  return false;
442}
443
444// Insert all of the named mdnoes in Src into the Dest module.
445static void LinkNamedMDNodes(Module *Dest, Module *Src,
446                             ValueToValueMapTy &ValueMap) {
447  for (Module::const_named_metadata_iterator I = Src->named_metadata_begin(),
448         E = Src->named_metadata_end(); I != E; ++I) {
449    const NamedMDNode *SrcNMD = I;
450    NamedMDNode *DestNMD = Dest->getOrInsertNamedMetadata(SrcNMD->getName());
451    // Add Src elements into Dest node.
452    for (unsigned i = 0, e = SrcNMD->getNumOperands(); i != e; ++i)
453      DestNMD->addOperand(cast<MDNode>(MapValue(SrcNMD->getOperand(i),
454                                                ValueMap,
455                                                true)));
456  }
457}
458
459// LinkGlobals - Loop through the global variables in the src module and merge
460// them into the dest module.
461static bool LinkGlobals(Module *Dest, const Module *Src,
462                        ValueToValueMapTy &ValueMap,
463                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
464                        std::string *Err) {
465  ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
466
467  // Loop over all of the globals in the src module, mapping them over as we go
468  for (Module::const_global_iterator I = Src->global_begin(),
469       E = Src->global_end(); I != E; ++I) {
470    const GlobalVariable *SGV = I;
471    GlobalValue *DGV = 0;
472
473    // Check to see if may have to link the global with the global, alias or
474    // function.
475    if (SGV->hasName() && !SGV->hasLocalLinkage())
476      DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SGV->getName()));
477
478    // If we found a global with the same name in the dest module, but it has
479    // internal linkage, we are really not doing any linkage here.
480    if (DGV && DGV->hasLocalLinkage())
481      DGV = 0;
482
483    // If types don't agree due to opaque types, try to resolve them.
484    if (DGV && DGV->getType() != SGV->getType())
485      RecursiveResolveTypes(SGV->getType(), DGV->getType());
486
487    assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
488            SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
489           "Global must either be external or have an initializer!");
490
491    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
492    bool LinkFromSrc = false;
493    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
494      return true;
495
496    if (DGV == 0) {
497      // No linking to be performed, simply create an identical version of the
498      // symbol over in the dest module... the initializer will be filled in
499      // later by LinkGlobalInits.
500      GlobalVariable *NewDGV =
501        new GlobalVariable(*Dest, SGV->getType()->getElementType(),
502                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
503                           SGV->getName(), 0, false,
504                           SGV->getType()->getAddressSpace());
505      // Propagate alignment, visibility and section info.
506      CopyGVAttributes(NewDGV, SGV);
507
508      // If the LLVM runtime renamed the global, but it is an externally visible
509      // symbol, DGV must be an existing global with internal linkage.  Rename
510      // it.
511      if (!NewDGV->hasLocalLinkage() && NewDGV->getName() != SGV->getName())
512        ForceRenaming(NewDGV, SGV->getName());
513
514      // Make sure to remember this mapping.
515      ValueMap[SGV] = NewDGV;
516
517      // Keep track that this is an appending variable.
518      if (SGV->hasAppendingLinkage())
519        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
520      continue;
521    }
522
523    // If the visibilities of the symbols disagree and the destination is a
524    // prototype, take the visibility of its input.
525    if (DGV->isDeclaration())
526      DGV->setVisibility(SGV->getVisibility());
527
528    if (DGV->hasAppendingLinkage()) {
529      // No linking is performed yet.  Just insert a new copy of the global, and
530      // keep track of the fact that it is an appending variable in the
531      // AppendingVars map.  The name is cleared out so that no linkage is
532      // performed.
533      GlobalVariable *NewDGV =
534        new GlobalVariable(*Dest, SGV->getType()->getElementType(),
535                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
536                           "", 0, false,
537                           SGV->getType()->getAddressSpace());
538
539      // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
540      NewDGV->setAlignment(DGV->getAlignment());
541      // Propagate alignment, section and visibility info.
542      CopyGVAttributes(NewDGV, SGV);
543
544      // Make sure to remember this mapping...
545      ValueMap[SGV] = NewDGV;
546
547      // Keep track that this is an appending variable...
548      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
549      continue;
550    }
551
552    if (LinkFromSrc) {
553      if (isa<GlobalAlias>(DGV))
554        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
555                     "': symbol multiple defined");
556
557      // If the types don't match, and if we are to link from the source, nuke
558      // DGV and create a new one of the appropriate type.  Note that the thing
559      // we are replacing may be a function (if a prototype, weak, etc) or a
560      // global variable.
561      GlobalVariable *NewDGV =
562        new GlobalVariable(*Dest, SGV->getType()->getElementType(),
563                           SGV->isConstant(), NewLinkage, /*init*/0,
564                           DGV->getName(), 0, false,
565                           SGV->getType()->getAddressSpace());
566
567      // Propagate alignment, section, and visibility info.
568      CopyGVAttributes(NewDGV, SGV);
569      DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV,
570                                                              DGV->getType()));
571
572      // DGV will conflict with NewDGV because they both had the same
573      // name. We must erase this now so ForceRenaming doesn't assert
574      // because DGV might not have internal linkage.
575      if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
576        Var->eraseFromParent();
577      else
578        cast<Function>(DGV)->eraseFromParent();
579
580      // If the symbol table renamed the global, but it is an externally visible
581      // symbol, DGV must be an existing global with internal linkage.  Rename.
582      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasLocalLinkage())
583        ForceRenaming(NewDGV, SGV->getName());
584
585      // Inherit const as appropriate.
586      NewDGV->setConstant(SGV->isConstant());
587
588      // Make sure to remember this mapping.
589      ValueMap[SGV] = NewDGV;
590      continue;
591    }
592
593    // Not "link from source", keep the one in the DestModule and remap the
594    // input onto it.
595
596    // Special case for const propagation.
597    if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
598      if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
599        DGVar->setConstant(true);
600
601    // SGV is global, but DGV is alias.
602    if (isa<GlobalAlias>(DGV)) {
603      // The only valid mappings are:
604      // - SGV is external declaration, which is effectively a no-op.
605      // - SGV is weak, when we just need to throw SGV out.
606      if (!SGV->isDeclaration() && !SGV->isWeakForLinker())
607        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
608                     "': symbol multiple defined");
609    }
610
611    // Set calculated linkage
612    DGV->setLinkage(NewLinkage);
613
614    // Make sure to remember this mapping...
615    ValueMap[SGV] = ConstantExpr::getBitCast(DGV, SGV->getType());
616  }
617  return false;
618}
619
620static GlobalValue::LinkageTypes
621CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
622  GlobalValue::LinkageTypes SL = SGV->getLinkage();
623  GlobalValue::LinkageTypes DL = DGV->getLinkage();
624  if (SL == GlobalValue::ExternalLinkage || DL == GlobalValue::ExternalLinkage)
625    return GlobalValue::ExternalLinkage;
626  else if (SL == GlobalValue::WeakAnyLinkage ||
627           DL == GlobalValue::WeakAnyLinkage)
628    return GlobalValue::WeakAnyLinkage;
629  else if (SL == GlobalValue::WeakODRLinkage ||
630           DL == GlobalValue::WeakODRLinkage)
631    return GlobalValue::WeakODRLinkage;
632  else if (SL == GlobalValue::InternalLinkage &&
633           DL == GlobalValue::InternalLinkage)
634    return GlobalValue::InternalLinkage;
635  else if (SL == GlobalValue::LinkerPrivateLinkage &&
636           DL == GlobalValue::LinkerPrivateLinkage)
637    return GlobalValue::LinkerPrivateLinkage;
638  else if (SL == GlobalValue::LinkerPrivateWeakLinkage &&
639           DL == GlobalValue::LinkerPrivateWeakLinkage)
640    return GlobalValue::LinkerPrivateWeakLinkage;
641  else if (SL == GlobalValue::LinkerPrivateWeakDefAutoLinkage &&
642           DL == GlobalValue::LinkerPrivateWeakDefAutoLinkage)
643    return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
644  else {
645    assert (SL == GlobalValue::PrivateLinkage &&
646            DL == GlobalValue::PrivateLinkage && "Unexpected linkage type");
647    return GlobalValue::PrivateLinkage;
648  }
649}
650
651// LinkAlias - Loop through the alias in the src module and link them into the
652// dest module. We're assuming, that all functions/global variables were already
653// linked in.
654static bool LinkAlias(Module *Dest, const Module *Src,
655                      ValueToValueMapTy &ValueMap,
656                      std::string *Err) {
657  // Loop over all alias in the src module
658  for (Module::const_alias_iterator I = Src->alias_begin(),
659         E = Src->alias_end(); I != E; ++I) {
660    const GlobalAlias *SGA = I;
661    const GlobalValue *SAliasee = SGA->getAliasedGlobal();
662    GlobalAlias *NewGA = NULL;
663
664    // Globals were already linked, thus we can just query ValueMap for variant
665    // of SAliasee in Dest.
666    ValueToValueMapTy::const_iterator VMI = ValueMap.find(SAliasee);
667    assert(VMI != ValueMap.end() && "Aliasee not linked");
668    GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
669    GlobalValue* DGV = NULL;
670
671    // Fixup aliases to bitcasts.  Note that aliases to GEPs are still broken
672    // by this, but aliases to GEPs are broken to a lot of other things, so
673    // it's less important.
674    Constant *DAliaseeConst = DAliasee;
675    if (SGA->getType() != DAliasee->getType())
676      DAliaseeConst = ConstantExpr::getBitCast(DAliasee, SGA->getType());
677
678    // Try to find something 'similar' to SGA in destination module.
679    if (!DGV && !SGA->hasLocalLinkage()) {
680      DGV = Dest->getNamedAlias(SGA->getName());
681
682      // If types don't agree due to opaque types, try to resolve them.
683      if (DGV && DGV->getType() != SGA->getType())
684        RecursiveResolveTypes(SGA->getType(), DGV->getType());
685    }
686
687    if (!DGV && !SGA->hasLocalLinkage()) {
688      DGV = Dest->getGlobalVariable(SGA->getName());
689
690      // If types don't agree due to opaque types, try to resolve them.
691      if (DGV && DGV->getType() != SGA->getType())
692        RecursiveResolveTypes(SGA->getType(), DGV->getType());
693    }
694
695    if (!DGV && !SGA->hasLocalLinkage()) {
696      DGV = Dest->getFunction(SGA->getName());
697
698      // If types don't agree due to opaque types, try to resolve them.
699      if (DGV && DGV->getType() != SGA->getType())
700        RecursiveResolveTypes(SGA->getType(), DGV->getType());
701    }
702
703    // No linking to be performed on internal stuff.
704    if (DGV && DGV->hasLocalLinkage())
705      DGV = NULL;
706
707    if (GlobalAlias *DGA = dyn_cast_or_null<GlobalAlias>(DGV)) {
708      // Types are known to be the same, check whether aliasees equal. As
709      // globals are already linked we just need query ValueMap to find the
710      // mapping.
711      if (DAliasee == DGA->getAliasedGlobal()) {
712        // This is just two copies of the same alias. Propagate linkage, if
713        // necessary.
714        DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
715
716        NewGA = DGA;
717        // Proceed to 'common' steps
718      } else
719        return Error(Err, "Alias Collision on '"  + SGA->getName()+
720                     "': aliases have different aliasees");
721    } else if (GlobalVariable *DGVar = dyn_cast_or_null<GlobalVariable>(DGV)) {
722      // The only allowed way is to link alias with external declaration or weak
723      // symbol..
724      if (DGVar->isDeclaration() || DGVar->isWeakForLinker()) {
725        // But only if aliasee is global too...
726        if (!isa<GlobalVariable>(DAliasee))
727          return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
728                       "': aliasee is not global variable");
729
730        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
731                                SGA->getName(), DAliaseeConst, Dest);
732        CopyGVAttributes(NewGA, SGA);
733
734        // Any uses of DGV need to change to NewGA, with cast, if needed.
735        if (SGA->getType() != DGVar->getType())
736          DGVar->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
737                                                             DGVar->getType()));
738        else
739          DGVar->replaceAllUsesWith(NewGA);
740
741        // DGVar will conflict with NewGA because they both had the same
742        // name. We must erase this now so ForceRenaming doesn't assert
743        // because DGV might not have internal linkage.
744        DGVar->eraseFromParent();
745
746        // Proceed to 'common' steps
747      } else
748        return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
749                     "': symbol multiple defined");
750    } else if (Function *DF = dyn_cast_or_null<Function>(DGV)) {
751      // The only allowed way is to link alias with external declaration or weak
752      // symbol...
753      if (DF->isDeclaration() || DF->isWeakForLinker()) {
754        // But only if aliasee is function too...
755        if (!isa<Function>(DAliasee))
756          return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
757                       "': aliasee is not function");
758
759        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
760                                SGA->getName(), DAliaseeConst, Dest);
761        CopyGVAttributes(NewGA, SGA);
762
763        // Any uses of DF need to change to NewGA, with cast, if needed.
764        if (SGA->getType() != DF->getType())
765          DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
766                                                          DF->getType()));
767        else
768          DF->replaceAllUsesWith(NewGA);
769
770        // DF will conflict with NewGA because they both had the same
771        // name. We must erase this now so ForceRenaming doesn't assert
772        // because DF might not have internal linkage.
773        DF->eraseFromParent();
774
775        // Proceed to 'common' steps
776      } else
777        return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
778                     "': symbol multiple defined");
779    } else {
780      // No linking to be performed, simply create an identical version of the
781      // alias over in the dest module...
782      NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
783                              SGA->getName(), DAliaseeConst, Dest);
784      CopyGVAttributes(NewGA, SGA);
785
786      // Proceed to 'common' steps
787    }
788
789    assert(NewGA && "No alias was created in destination module!");
790
791    // If the symbol table renamed the alias, but it is an externally visible
792    // symbol, DGA must be an global value with internal linkage. Rename it.
793    if (NewGA->getName() != SGA->getName() &&
794        !NewGA->hasLocalLinkage())
795      ForceRenaming(NewGA, SGA->getName());
796
797    // Remember this mapping so uses in the source module get remapped
798    // later by MapValue.
799    ValueMap[SGA] = NewGA;
800  }
801
802  return false;
803}
804
805
806// LinkGlobalInits - Update the initializers in the Dest module now that all
807// globals that may be referenced are in Dest.
808static bool LinkGlobalInits(Module *Dest, const Module *Src,
809                            ValueToValueMapTy &ValueMap,
810                            std::string *Err) {
811  // Loop over all of the globals in the src module, mapping them over as we go
812  for (Module::const_global_iterator I = Src->global_begin(),
813       E = Src->global_end(); I != E; ++I) {
814    const GlobalVariable *SGV = I;
815
816    if (SGV->hasInitializer()) {      // Only process initialized GV's
817      // Figure out what the initializer looks like in the dest module...
818      Constant *SInit =
819        cast<Constant>(MapValue(SGV->getInitializer(), ValueMap, true));
820      // Grab destination global variable or alias.
821      GlobalValue *DGV = cast<GlobalValue>(ValueMap[SGV]->stripPointerCasts());
822
823      // If dest if global variable, check that initializers match.
824      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
825        if (DGVar->hasInitializer()) {
826          if (SGV->hasExternalLinkage()) {
827            if (DGVar->getInitializer() != SInit)
828              return Error(Err, "Global Variable Collision on '" +
829                           SGV->getName() +
830                           "': global variables have different initializers");
831          } else if (DGVar->isWeakForLinker()) {
832            // Nothing is required, mapped values will take the new global
833            // automatically.
834          } else if (SGV->isWeakForLinker()) {
835            // Nothing is required, mapped values will take the new global
836            // automatically.
837          } else if (DGVar->hasAppendingLinkage()) {
838            llvm_unreachable("Appending linkage unimplemented!");
839          } else {
840            llvm_unreachable("Unknown linkage!");
841          }
842        } else {
843          // Copy the initializer over now...
844          DGVar->setInitializer(SInit);
845        }
846      } else {
847        // Destination is alias, the only valid situation is when source is
848        // weak. Also, note, that we already checked linkage in LinkGlobals(),
849        // thus we assert here.
850        // FIXME: Should we weaken this assumption, 'dereference' alias and
851        // check for initializer of aliasee?
852        assert(SGV->isWeakForLinker());
853      }
854    }
855  }
856  return false;
857}
858
859// LinkFunctionProtos - Link the functions together between the two modules,
860// without doing function bodies... this just adds external function prototypes
861// to the Dest function...
862//
863static bool LinkFunctionProtos(Module *Dest, const Module *Src,
864                               ValueToValueMapTy &ValueMap,
865                               std::string *Err) {
866  ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
867
868  // Loop over all of the functions in the src module, mapping them over
869  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
870    const Function *SF = I;   // SrcFunction
871    GlobalValue *DGV = 0;
872
873    // Check to see if may have to link the function with the global, alias or
874    // function.
875    if (SF->hasName() && !SF->hasLocalLinkage())
876      DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SF->getName()));
877
878    // If we found a global with the same name in the dest module, but it has
879    // internal linkage, we are really not doing any linkage here.
880    if (DGV && DGV->hasLocalLinkage())
881      DGV = 0;
882
883    // If types don't agree due to opaque types, try to resolve them.
884    if (DGV && DGV->getType() != SF->getType())
885      RecursiveResolveTypes(SF->getType(), DGV->getType());
886
887    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
888    bool LinkFromSrc = false;
889    if (GetLinkageResult(DGV, SF, NewLinkage, LinkFromSrc, Err))
890      return true;
891
892    // If there is no linkage to be performed, just bring over SF without
893    // modifying it.
894    if (DGV == 0) {
895      // Function does not already exist, simply insert an function signature
896      // identical to SF into the dest module.
897      Function *NewDF = Function::Create(SF->getFunctionType(),
898                                         SF->getLinkage(),
899                                         SF->getName(), Dest);
900      CopyGVAttributes(NewDF, SF);
901
902      // If the LLVM runtime renamed the function, but it is an externally
903      // visible symbol, DF must be an existing function with internal linkage.
904      // Rename it.
905      if (!NewDF->hasLocalLinkage() && NewDF->getName() != SF->getName())
906        ForceRenaming(NewDF, SF->getName());
907
908      // ... and remember this mapping...
909      ValueMap[SF] = NewDF;
910      continue;
911    }
912
913    // If the visibilities of the symbols disagree and the destination is a
914    // prototype, take the visibility of its input.
915    if (DGV->isDeclaration())
916      DGV->setVisibility(SF->getVisibility());
917
918    if (LinkFromSrc) {
919      if (isa<GlobalAlias>(DGV))
920        return Error(Err, "Function-Alias Collision on '" + SF->getName() +
921                     "': symbol multiple defined");
922
923      // We have a definition of the same name but different type in the
924      // source module. Copy the prototype to the destination and replace
925      // uses of the destination's prototype with the new prototype.
926      Function *NewDF = Function::Create(SF->getFunctionType(), NewLinkage,
927                                         SF->getName(), Dest);
928      CopyGVAttributes(NewDF, SF);
929
930      // Any uses of DF need to change to NewDF, with cast
931      DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF,
932                                                              DGV->getType()));
933
934      // DF will conflict with NewDF because they both had the same. We must
935      // erase this now so ForceRenaming doesn't assert because DF might
936      // not have internal linkage.
937      if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
938        Var->eraseFromParent();
939      else
940        cast<Function>(DGV)->eraseFromParent();
941
942      // If the symbol table renamed the function, but it is an externally
943      // visible symbol, DF must be an existing function with internal
944      // linkage.  Rename it.
945      if (NewDF->getName() != SF->getName() && !NewDF->hasLocalLinkage())
946        ForceRenaming(NewDF, SF->getName());
947
948      // Remember this mapping so uses in the source module get remapped
949      // later by MapValue.
950      ValueMap[SF] = NewDF;
951      continue;
952    }
953
954    // Not "link from source", keep the one in the DestModule and remap the
955    // input onto it.
956
957    if (isa<GlobalAlias>(DGV)) {
958      // The only valid mappings are:
959      // - SF is external declaration, which is effectively a no-op.
960      // - SF is weak, when we just need to throw SF out.
961      if (!SF->isDeclaration() && !SF->isWeakForLinker())
962        return Error(Err, "Function-Alias Collision on '" + SF->getName() +
963                     "': symbol multiple defined");
964    }
965
966    // Set calculated linkage
967    DGV->setLinkage(NewLinkage);
968
969    // Make sure to remember this mapping.
970    ValueMap[SF] = ConstantExpr::getBitCast(DGV, SF->getType());
971  }
972  return false;
973}
974
975// LinkFunctionBody - Copy the source function over into the dest function and
976// fix up references to values.  At this point we know that Dest is an external
977// function, and that Src is not.
978static bool LinkFunctionBody(Function *Dest, Function *Src,
979                             ValueToValueMapTy &ValueMap,
980                             std::string *Err) {
981  assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
982
983  // Go through and convert function arguments over, remembering the mapping.
984  Function::arg_iterator DI = Dest->arg_begin();
985  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
986       I != E; ++I, ++DI) {
987    DI->setName(I->getName());  // Copy the name information over...
988
989    // Add a mapping to our local map
990    ValueMap[I] = DI;
991  }
992
993  // Splice the body of the source function into the dest function.
994  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
995
996  // At this point, all of the instructions and values of the function are now
997  // copied over.  The only problem is that they are still referencing values in
998  // the Source function as operands.  Loop through all of the operands of the
999  // functions and patch them up to point to the local versions...
1000  //
1001  // This is the same as RemapInstruction, except that it avoids remapping
1002  // instruction and basic block operands.
1003  //
1004  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
1005    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1006      // Remap operands.
1007      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1008           OI != OE; ++OI)
1009        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
1010          *OI = MapValue(*OI, ValueMap, true);
1011
1012      // Remap attached metadata.
1013      SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1014      I->getAllMetadata(MDs);
1015      for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
1016           MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) {
1017        Value *Old = MI->second;
1018        if (!isa<Instruction>(Old) && !isa<BasicBlock>(Old)) {
1019          Value *New = MapValue(Old, ValueMap, true);
1020          if (New != Old)
1021            I->setMetadata(MI->first, cast<MDNode>(New));
1022        }
1023      }
1024    }
1025
1026  // There is no need to map the arguments anymore.
1027  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1028       I != E; ++I)
1029    ValueMap.erase(I);
1030
1031  return false;
1032}
1033
1034
1035// LinkFunctionBodies - Link in the function bodies that are defined in the
1036// source module into the DestModule.  This consists basically of copying the
1037// function over and fixing up references to values.
1038static bool LinkFunctionBodies(Module *Dest, Module *Src,
1039                               ValueToValueMapTy &ValueMap,
1040                               std::string *Err) {
1041
1042  // Loop over all of the functions in the src module, mapping them over as we
1043  // go
1044  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
1045    if (!SF->isDeclaration()) {               // No body if function is external
1046      Function *DF = dyn_cast<Function>(ValueMap[SF]); // Destination function
1047
1048      // DF not external SF external?
1049      if (DF && DF->isDeclaration())
1050        // Only provide the function body if there isn't one already.
1051        if (LinkFunctionBody(DF, SF, ValueMap, Err))
1052          return true;
1053    }
1054  }
1055  return false;
1056}
1057
1058// LinkAppendingVars - If there were any appending global variables, link them
1059// together now.  Return true on error.
1060static bool LinkAppendingVars(Module *M,
1061                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
1062                              std::string *ErrorMsg) {
1063  if (AppendingVars.empty()) return false; // Nothing to do.
1064
1065  // Loop over the multimap of appending vars, processing any variables with the
1066  // same name, forming a new appending global variable with both of the
1067  // initializers merged together, then rewrite references to the old variables
1068  // and delete them.
1069  std::vector<Constant*> Inits;
1070  while (AppendingVars.size() > 1) {
1071    // Get the first two elements in the map...
1072    std::multimap<std::string,
1073      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
1074
1075    // If the first two elements are for different names, there is no pair...
1076    // Otherwise there is a pair, so link them together...
1077    if (First->first == Second->first) {
1078      GlobalVariable *G1 = First->second, *G2 = Second->second;
1079      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
1080      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
1081
1082      // Check to see that they two arrays agree on type...
1083      if (T1->getElementType() != T2->getElementType())
1084        return Error(ErrorMsg,
1085         "Appending variables with different element types need to be linked!");
1086      if (G1->isConstant() != G2->isConstant())
1087        return Error(ErrorMsg,
1088                     "Appending variables linked with different const'ness!");
1089
1090      if (G1->getAlignment() != G2->getAlignment())
1091        return Error(ErrorMsg,
1092         "Appending variables with different alignment need to be linked!");
1093
1094      if (G1->getVisibility() != G2->getVisibility())
1095        return Error(ErrorMsg,
1096         "Appending variables with different visibility need to be linked!");
1097
1098      if (G1->getSection() != G2->getSection())
1099        return Error(ErrorMsg,
1100         "Appending variables with different section name need to be linked!");
1101
1102      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
1103      ArrayType *NewType = ArrayType::get(T1->getElementType(),
1104                                                         NewSize);
1105
1106      G1->setName("");   // Clear G1's name in case of a conflict!
1107
1108      // Create the new global variable...
1109      GlobalVariable *NG =
1110        new GlobalVariable(*M, NewType, G1->isConstant(), G1->getLinkage(),
1111                           /*init*/0, First->first, 0, G1->isThreadLocal(),
1112                           G1->getType()->getAddressSpace());
1113
1114      // Propagate alignment, visibility and section info.
1115      CopyGVAttributes(NG, G1);
1116
1117      // Merge the initializer...
1118      Inits.reserve(NewSize);
1119      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1120        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1121          Inits.push_back(I->getOperand(i));
1122      } else {
1123        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1124        Constant *CV = Constant::getNullValue(T1->getElementType());
1125        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1126          Inits.push_back(CV);
1127      }
1128      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1129        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1130          Inits.push_back(I->getOperand(i));
1131      } else {
1132        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1133        Constant *CV = Constant::getNullValue(T2->getElementType());
1134        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1135          Inits.push_back(CV);
1136      }
1137      NG->setInitializer(ConstantArray::get(NewType, Inits));
1138      Inits.clear();
1139
1140      // Replace any uses of the two global variables with uses of the new
1141      // global...
1142
1143      // FIXME: This should rewrite simple/straight-forward uses such as
1144      // getelementptr instructions to not use the Cast!
1145      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
1146                             G1->getType()));
1147      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
1148                             G2->getType()));
1149
1150      // Remove the two globals from the module now...
1151      M->getGlobalList().erase(G1);
1152      M->getGlobalList().erase(G2);
1153
1154      // Put the new global into the AppendingVars map so that we can handle
1155      // linking of more than two vars...
1156      Second->second = NG;
1157    }
1158    AppendingVars.erase(First);
1159  }
1160
1161  return false;
1162}
1163
1164static bool ResolveAliases(Module *Dest) {
1165  for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1166       I != E; ++I)
1167    // We can't sue resolveGlobalAlias here because we need to preserve
1168    // bitcasts and GEPs.
1169    if (const Constant *C = I->getAliasee()) {
1170      while (dyn_cast<GlobalAlias>(C))
1171        C = cast<GlobalAlias>(C)->getAliasee();
1172      const GlobalValue *GV = dyn_cast<GlobalValue>(C);
1173      if (C != I && !(GV && GV->isDeclaration()))
1174        I->replaceAllUsesWith(const_cast<Constant*>(C));
1175    }
1176
1177  return false;
1178}
1179
1180// LinkModules - This function links two modules together, with the resulting
1181// left module modified to be the composite of the two input modules.  If an
1182// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1183// the problem.  Upon failure, the Dest module could be in a modified state, and
1184// shouldn't be relied on to be consistent.
1185bool
1186Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1187  assert(Dest != 0 && "Invalid Destination module");
1188  assert(Src  != 0 && "Invalid Source Module");
1189
1190  if (Dest->getDataLayout().empty()) {
1191    if (!Src->getDataLayout().empty()) {
1192      Dest->setDataLayout(Src->getDataLayout());
1193    } else {
1194      std::string DataLayout;
1195
1196      if (Dest->getEndianness() == Module::AnyEndianness) {
1197        if (Src->getEndianness() == Module::BigEndian)
1198          DataLayout.append("E");
1199        else if (Src->getEndianness() == Module::LittleEndian)
1200          DataLayout.append("e");
1201      }
1202
1203      if (Dest->getPointerSize() == Module::AnyPointerSize) {
1204        if (Src->getPointerSize() == Module::Pointer64)
1205          DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1206        else if (Src->getPointerSize() == Module::Pointer32)
1207          DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1208      }
1209      Dest->setDataLayout(DataLayout);
1210    }
1211  }
1212
1213  // Copy the target triple from the source to dest if the dest's is empty.
1214  if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1215    Dest->setTargetTriple(Src->getTargetTriple());
1216
1217  if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1218      Src->getDataLayout() != Dest->getDataLayout())
1219    errs() << "WARNING: Linking two modules of different data layouts!\n";
1220  if (!Src->getTargetTriple().empty() &&
1221      Dest->getTargetTriple() != Src->getTargetTriple())
1222    errs() << "WARNING: Linking two modules of different target triples!\n";
1223
1224  // Append the module inline asm string.
1225  if (!Src->getModuleInlineAsm().empty()) {
1226    if (Dest->getModuleInlineAsm().empty())
1227      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1228    else
1229      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1230                               Src->getModuleInlineAsm());
1231  }
1232
1233  // Update the destination module's dependent libraries list with the libraries
1234  // from the source module. There's no opportunity for duplicates here as the
1235  // Module ensures that duplicate insertions are discarded.
1236  for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1237       SI != SE; ++SI)
1238    Dest->addLibrary(*SI);
1239
1240  // LinkTypes - Go through the symbol table of the Src module and see if any
1241  // types are named in the src module that are not named in the Dst module.
1242  // Make sure there are no type name conflicts.
1243  if (LinkTypes(Dest, Src, ErrorMsg))
1244    return true;
1245
1246  // ValueMap - Mapping of values from what they used to be in Src, to what they
1247  // are now in Dest.  ValueToValueMapTy is a ValueMap, which involves some
1248  // overhead due to the use of Value handles which the Linker doesn't actually
1249  // need, but this allows us to reuse the ValueMapper code.
1250  ValueToValueMapTy ValueMap;
1251
1252  // AppendingVars - Keep track of global variables in the destination module
1253  // with appending linkage.  After the module is linked together, they are
1254  // appended and the module is rewritten.
1255  std::multimap<std::string, GlobalVariable *> AppendingVars;
1256  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1257       I != E; ++I) {
1258    // Add all of the appending globals already in the Dest module to
1259    // AppendingVars.
1260    if (I->hasAppendingLinkage())
1261      AppendingVars.insert(std::make_pair(I->getName(), I));
1262  }
1263
1264  // Insert all of the globals in src into the Dest module... without linking
1265  // initializers (which could refer to functions not yet mapped over).
1266  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1267    return true;
1268
1269  // Link the functions together between the two modules, without doing function
1270  // bodies... this just adds external function prototypes to the Dest
1271  // function...  We do this so that when we begin processing function bodies,
1272  // all of the global values that may be referenced are available in our
1273  // ValueMap.
1274  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1275    return true;
1276
1277  // If there were any alias, link them now. We really need to do this now,
1278  // because all of the aliases that may be referenced need to be available in
1279  // ValueMap
1280  if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1281
1282  // Update the initializers in the Dest module now that all globals that may
1283  // be referenced are in Dest.
1284  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1285
1286  // Link in the function bodies that are defined in the source module into the
1287  // DestModule.  This consists basically of copying the function over and
1288  // fixing up references to values.
1289  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1290
1291  // If there were any appending global variables, link them together now.
1292  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1293
1294  // Resolve all uses of aliases with aliasees
1295  if (ResolveAliases(Dest)) return true;
1296
1297  // Remap all of the named mdnoes in Src into the Dest module. We do this
1298  // after linking GlobalValues so that MDNodes that reference GlobalValues
1299  // are properly remapped.
1300  LinkNamedMDNodes(Dest, Src, ValueMap);
1301
1302  // If the source library's module id is in the dependent library list of the
1303  // destination library, remove it since that module is now linked in.
1304  sys::Path modId;
1305  modId.set(Src->getModuleIdentifier());
1306  if (!modId.isEmpty())
1307    Dest->removeLibrary(modId.getBasename());
1308
1309  return false;
1310}
1311
1312// vim: sw=2
1313