LinkModules.cpp revision 26f238589f9bb372d24b6fb2bc32edbf046fd9ee
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/SymbolTable.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/Instructions.h"
26#include "llvm/Assembly/Writer.h"
27#include "llvm/Support/Streams.h"
28#include "llvm/System/Path.h"
29#include <sstream>
30using namespace llvm;
31
32// Error - Simple wrapper function to conditionally assign to E and return true.
33// This just makes error return conditions a little bit simpler...
34static inline bool Error(std::string *E, const std::string &Message) {
35  if (E) *E = Message;
36  return true;
37}
38
39// ToStr - Simple wrapper function to convert a type to a string.
40static std::string ToStr(const Type *Ty, const Module *M) {
41  std::ostringstream OS;
42  WriteTypeSymbolic(OS, Ty, M);
43  return OS.str();
44}
45
46//
47// Function: ResolveTypes()
48//
49// Description:
50//  Attempt to link the two specified types together.
51//
52// Inputs:
53//  DestTy - The type to which we wish to resolve.
54//  SrcTy  - The original type which we want to resolve.
55//  Name   - The name of the type.
56//
57// Outputs:
58//  DestST - The symbol table in which the new type should be placed.
59//
60// Return value:
61//  true  - There is an error and the types cannot yet be linked.
62//  false - No errors.
63//
64static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
65                         TypeSymbolTable *DestST, const std::string &Name) {
66  if (DestTy == SrcTy) return false;       // If already equal, noop
67
68  // Does the type already exist in the module?
69  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
70    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
71      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
72    } else {
73      return true;  // Cannot link types... neither is opaque and not-equal
74    }
75  } else {                       // Type not in dest module.  Add it now.
76    if (DestTy)                  // Type _is_ in module, just opaque...
77      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
78                           ->refineAbstractTypeTo(SrcTy);
79    else if (!Name.empty())
80      DestST->insert(Name, const_cast<Type*>(SrcTy));
81  }
82  return false;
83}
84
85static const FunctionType *getFT(const PATypeHolder &TH) {
86  return cast<FunctionType>(TH.get());
87}
88static const StructType *getST(const PATypeHolder &TH) {
89  return cast<StructType>(TH.get());
90}
91
92// RecursiveResolveTypes - This is just like ResolveTypes, except that it
93// recurses down into derived types, merging the used types if the parent types
94// are compatible.
95static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
96                                   const PATypeHolder &SrcTy,
97                                   TypeSymbolTable *DestST,
98                                   const std::string &Name,
99                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
100  const Type *SrcTyT = SrcTy.get();
101  const Type *DestTyT = DestTy.get();
102  if (DestTyT == SrcTyT) return false;       // If already equal, noop
103
104  // If we found our opaque type, resolve it now!
105  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
106    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
107
108  // Two types cannot be resolved together if they are of different primitive
109  // type.  For example, we cannot resolve an int to a float.
110  if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
111
112  // Otherwise, resolve the used type used by this derived type...
113  switch (DestTyT->getTypeID()) {
114  case Type::IntegerTyID: {
115    if (cast<IntegerType>(DestTyT)->getBitWidth() !=
116        cast<IntegerType>(SrcTyT)->getBitWidth())
117      return true;
118    return false;
119  }
120  case Type::FunctionTyID: {
121    if (cast<FunctionType>(DestTyT)->isVarArg() !=
122        cast<FunctionType>(SrcTyT)->isVarArg() ||
123        cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
124        cast<FunctionType>(SrcTyT)->getNumContainedTypes())
125      return true;
126    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
127      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
128                                 getFT(SrcTy)->getContainedType(i), DestST, "",
129                                 Pointers))
130        return true;
131    return false;
132  }
133  case Type::StructTyID: {
134    if (getST(DestTy)->getNumContainedTypes() !=
135        getST(SrcTy)->getNumContainedTypes()) return 1;
136    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
137      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
138                                 getST(SrcTy)->getContainedType(i), DestST, "",
139                                 Pointers))
140        return true;
141    return false;
142  }
143  case Type::ArrayTyID: {
144    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
145    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
146    if (DAT->getNumElements() != SAT->getNumElements()) return true;
147    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
148                                  DestST, "", Pointers);
149  }
150  case Type::PointerTyID: {
151    // If this is a pointer type, check to see if we have already seen it.  If
152    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
153    // an associative container for this search, because the type pointers (keys
154    // in the container) change whenever types get resolved...
155    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
156      if (Pointers[i].first == DestTy)
157        return Pointers[i].second != SrcTy;
158
159    // Otherwise, add the current pointers to the vector to stop recursion on
160    // this pair.
161    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
162    bool Result =
163      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
164                             cast<PointerType>(SrcTy.get())->getElementType(),
165                             DestST, "", Pointers);
166    Pointers.pop_back();
167    return Result;
168  }
169  default: assert(0 && "Unexpected type!"); return true;
170  }
171}
172
173static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
174                                  const PATypeHolder &SrcTy,
175                                  TypeSymbolTable *DestST,
176                                  const std::string &Name){
177  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
178  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
179}
180
181
182// LinkTypes - Go through the symbol table of the Src module and see if any
183// types are named in the src module that are not named in the Dst module.
184// Make sure there are no type name conflicts.
185static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
186        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
187  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
188
189  // Look for a type plane for Type's...
190  TypeSymbolTable::const_iterator TI = SrcST->begin();
191  TypeSymbolTable::const_iterator TE = SrcST->end();
192  if (TI == TE) return false;  // No named types, do nothing.
193
194  // Some types cannot be resolved immediately because they depend on other
195  // types being resolved to each other first.  This contains a list of types we
196  // are waiting to recheck.
197  std::vector<std::string> DelayedTypesToResolve;
198
199  for ( ; TI != TE; ++TI ) {
200    const std::string &Name = TI->first;
201    const Type *RHS = TI->second;
202
203    // Check to see if this type name is already in the dest module...
204    Type *Entry = DestST->lookup(Name);
205
206    if (ResolveTypes(Entry, RHS, DestST, Name)) {
207      // They look different, save the types 'till later to resolve.
208      DelayedTypesToResolve.push_back(Name);
209    }
210  }
211
212  // Iteratively resolve types while we can...
213  while (!DelayedTypesToResolve.empty()) {
214    // Loop over all of the types, attempting to resolve them if possible...
215    unsigned OldSize = DelayedTypesToResolve.size();
216
217    // Try direct resolution by name...
218    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
219      const std::string &Name = DelayedTypesToResolve[i];
220      Type *T1 = SrcST->lookup(Name);
221      Type *T2 = DestST->lookup(Name);
222      if (!ResolveTypes(T2, T1, DestST, Name)) {
223        // We are making progress!
224        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
225        --i;
226      }
227    }
228
229    // Did we not eliminate any types?
230    if (DelayedTypesToResolve.size() == OldSize) {
231      // Attempt to resolve subelements of types.  This allows us to merge these
232      // two types: { int* } and { opaque* }
233      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
234        const std::string &Name = DelayedTypesToResolve[i];
235        PATypeHolder T1(SrcST->lookup(Name));
236        PATypeHolder T2(DestST->lookup(Name));
237
238        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
239          // We are making progress!
240          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
241
242          // Go back to the main loop, perhaps we can resolve directly by name
243          // now...
244          break;
245        }
246      }
247
248      // If we STILL cannot resolve the types, then there is something wrong.
249      if (DelayedTypesToResolve.size() == OldSize) {
250        // Remove the symbol name from the destination.
251        DelayedTypesToResolve.pop_back();
252      }
253    }
254  }
255
256
257  return false;
258}
259
260static void PrintMap(const std::map<const Value*, Value*> &M) {
261  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
262       I != E; ++I) {
263    cerr << " Fr: " << (void*)I->first << " ";
264    I->first->dump();
265    cerr << " To: " << (void*)I->second << " ";
266    I->second->dump();
267    cerr << "\n";
268  }
269}
270
271
272// RemapOperand - Use ValueMap to convert references from one module to another.
273// This is somewhat sophisticated in that it can automatically handle constant
274// references correctly as well.
275static Value *RemapOperand(const Value *In,
276                           std::map<const Value*, Value*> &ValueMap) {
277  std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
278  if (I != ValueMap.end()) return I->second;
279
280  // Check to see if it's a constant that we are interesting in transforming.
281  Value *Result = 0;
282  if (const Constant *CPV = dyn_cast<Constant>(In)) {
283    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
284        isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
285      return const_cast<Constant*>(CPV);   // Simple constants stay identical.
286
287    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
288      std::vector<Constant*> Operands(CPA->getNumOperands());
289      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
290        Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
291      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
292    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
293      std::vector<Constant*> Operands(CPS->getNumOperands());
294      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
295        Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
296      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
297    } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
298      Result = const_cast<Constant*>(CPV);
299    } else if (isa<GlobalValue>(CPV)) {
300      Result = cast<Constant>(RemapOperand(CPV, ValueMap));
301    } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CPV)) {
302      std::vector<Constant*> Operands(CP->getNumOperands());
303      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
304        Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
305      Result = ConstantPacked::get(Operands);
306    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
307      std::vector<Constant*> Ops;
308      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
309        Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
310      Result = CE->getWithOperands(Ops);
311    } else {
312      assert(0 && "Unknown type of derived type constant value!");
313    }
314  } else if (isa<InlineAsm>(In)) {
315    Result = const_cast<Value*>(In);
316  }
317
318  // Cache the mapping in our local map structure...
319  if (Result) {
320    ValueMap.insert(std::make_pair(In, Result));
321    return Result;
322  }
323
324
325  cerr << "LinkModules ValueMap: \n";
326  PrintMap(ValueMap);
327
328  cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
329  assert(0 && "Couldn't remap value!");
330  return 0;
331}
332
333/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
334/// in the symbol table.  This is good for all clients except for us.  Go
335/// through the trouble to force this back.
336static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
337  assert(GV->getName() != Name && "Can't force rename to self");
338  SymbolTable &ST = GV->getParent()->getValueSymbolTable();
339
340  // If there is a conflict, rename the conflict.
341  Value *ConflictVal = ST.lookup(GV->getType(), Name);
342  assert(ConflictVal&&"Why do we have to force rename if there is no conflic?");
343  GlobalValue *ConflictGV = cast<GlobalValue>(ConflictVal);
344  assert(ConflictGV->hasInternalLinkage() &&
345         "Not conflicting with a static global, should link instead!");
346
347  ConflictGV->setName("");          // Eliminate the conflict
348  GV->setName(Name);                // Force the name back
349  ConflictGV->setName(Name);        // This will cause ConflictGV to get renamed
350  assert(GV->getName() == Name && ConflictGV->getName() != Name &&
351         "ForceRenaming didn't work");
352}
353
354/// GetLinkageResult - This analyzes the two global values and determines what
355/// the result will look like in the destination module.  In particular, it
356/// computes the resultant linkage type, computes whether the global in the
357/// source should be copied over to the destination (replacing the existing
358/// one), and computes whether this linkage is an error or not.
359static bool GetLinkageResult(GlobalValue *Dest, GlobalValue *Src,
360                             GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
361                             std::string *Err) {
362  assert((!Dest || !Src->hasInternalLinkage()) &&
363         "If Src has internal linkage, Dest shouldn't be set!");
364  if (!Dest) {
365    // Linking something to nothing.
366    LinkFromSrc = true;
367    LT = Src->getLinkage();
368  } else if (Src->isExternal()) {
369    // If Src is external or if both Src & Drc are external..  Just link the
370    // external globals, we aren't adding anything.
371    if (Src->hasDLLImportLinkage()) {
372      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
373      if (Dest->isExternal()) {
374        LinkFromSrc = true;
375        LT = Src->getLinkage();
376      }
377    } else if (Dest->hasExternalWeakLinkage()) {
378      //If the Dest is weak, use the source linkage
379      LinkFromSrc = true;
380      LT = Src->getLinkage();
381    } else {
382      LinkFromSrc = false;
383      LT = Dest->getLinkage();
384    }
385  } else if (Dest->isExternal() && !Dest->hasDLLImportLinkage()) {
386    // If Dest is external but Src is not:
387    LinkFromSrc = true;
388    LT = Src->getLinkage();
389  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
390    if (Src->getLinkage() != Dest->getLinkage())
391      return Error(Err, "Linking globals named '" + Src->getName() +
392            "': can only link appending global with another appending global!");
393    LinkFromSrc = true; // Special cased.
394    LT = Src->getLinkage();
395  } else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage()) {
396    // At this point we know that Dest has LinkOnce, External*, Weak, DLL* linkage.
397    if ((Dest->hasLinkOnceLinkage() && Src->hasWeakLinkage()) ||
398        Dest->hasExternalWeakLinkage()) {
399      LinkFromSrc = true;
400      LT = Src->getLinkage();
401    } else {
402      LinkFromSrc = false;
403      LT = Dest->getLinkage();
404    }
405  } else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage()) {
406    // At this point we know that Src has External* or DLL* linkage.
407    if (Src->hasExternalWeakLinkage()) {
408      LinkFromSrc = false;
409      LT = Dest->getLinkage();
410    } else {
411      LinkFromSrc = true;
412      LT = GlobalValue::ExternalLinkage;
413    }
414  } else {
415    assert((Dest->hasExternalLinkage() ||
416            Dest->hasDLLImportLinkage() ||
417            Dest->hasDLLExportLinkage() ||
418            Dest->hasExternalWeakLinkage()) &&
419           (Src->hasExternalLinkage() ||
420            Src->hasDLLImportLinkage() ||
421            Src->hasDLLExportLinkage() ||
422            Src->hasExternalWeakLinkage()) &&
423           "Unexpected linkage type!");
424    return Error(Err, "Linking globals named '" + Src->getName() +
425                 "': symbol multiply defined!");
426  }
427  return false;
428}
429
430// LinkGlobals - Loop through the global variables in the src module and merge
431// them into the dest module.
432static bool LinkGlobals(Module *Dest, Module *Src,
433                        std::map<const Value*, Value*> &ValueMap,
434                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
435                        std::map<std::string, GlobalValue*> &GlobalsByName,
436                        std::string *Err) {
437  // We will need a module level symbol table if the src module has a module
438  // level symbol table...
439  TypeSymbolTable *TST = &Dest->getTypeSymbolTable();
440
441  // Loop over all of the globals in the src module, mapping them over as we go
442  for (Module::global_iterator I = Src->global_begin(), E = Src->global_end();
443       I != E; ++I) {
444    GlobalVariable *SGV = I;
445    GlobalVariable *DGV = 0;
446    // Check to see if may have to link the global.
447    if (SGV->hasName() && !SGV->hasInternalLinkage())
448      if (!(DGV = Dest->getGlobalVariable(SGV->getName(),
449                                          SGV->getType()->getElementType()))) {
450        std::map<std::string, GlobalValue*>::iterator EGV =
451          GlobalsByName.find(SGV->getName());
452        if (EGV != GlobalsByName.end())
453          DGV = dyn_cast<GlobalVariable>(EGV->second);
454        if (DGV)
455          // If types don't agree due to opaque types, try to resolve them.
456          RecursiveResolveTypes(SGV->getType(), DGV->getType(), TST, "");
457      }
458
459    if (DGV && DGV->hasInternalLinkage())
460      DGV = 0;
461
462    assert(SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
463           SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage() &&
464           "Global must either be external or have an initializer!");
465
466    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
467    bool LinkFromSrc = false;
468    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
469      return true;
470
471    if (!DGV) {
472      // No linking to be performed, simply create an identical version of the
473      // symbol over in the dest module... the initializer will be filled in
474      // later by LinkGlobalInits...
475      GlobalVariable *NewDGV =
476        new GlobalVariable(SGV->getType()->getElementType(),
477                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
478                           SGV->getName(), Dest);
479      // Propagate alignment info.
480      NewDGV->setAlignment(SGV->getAlignment());
481
482      // If the LLVM runtime renamed the global, but it is an externally visible
483      // symbol, DGV must be an existing global with internal linkage.  Rename
484      // it.
485      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
486        ForceRenaming(NewDGV, SGV->getName());
487
488      // Make sure to remember this mapping...
489      ValueMap.insert(std::make_pair(SGV, NewDGV));
490      if (SGV->hasAppendingLinkage())
491        // Keep track that this is an appending variable...
492        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
493    } else if (DGV->hasAppendingLinkage()) {
494      // No linking is performed yet.  Just insert a new copy of the global, and
495      // keep track of the fact that it is an appending variable in the
496      // AppendingVars map.  The name is cleared out so that no linkage is
497      // performed.
498      GlobalVariable *NewDGV =
499        new GlobalVariable(SGV->getType()->getElementType(),
500                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
501                           "", Dest);
502
503      // Propagate alignment info.
504      NewDGV->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
505
506      // Make sure to remember this mapping...
507      ValueMap.insert(std::make_pair(SGV, NewDGV));
508
509      // Keep track that this is an appending variable...
510      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
511    } else {
512      // Propagate alignment info.
513      DGV->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
514
515      // Otherwise, perform the mapping as instructed by GetLinkageResult.  If
516      // the types don't match, and if we are to link from the source, nuke DGV
517      // and create a new one of the appropriate type.
518      if (SGV->getType() != DGV->getType() && LinkFromSrc) {
519        GlobalVariable *NewDGV =
520          new GlobalVariable(SGV->getType()->getElementType(),
521                             DGV->isConstant(), DGV->getLinkage());
522        NewDGV->setAlignment(DGV->getAlignment());
523        Dest->getGlobalList().insert(DGV, NewDGV);
524        DGV->replaceAllUsesWith(
525            ConstantExpr::getBitCast(NewDGV, DGV->getType()));
526        DGV->eraseFromParent();
527        NewDGV->setName(SGV->getName());
528        DGV = NewDGV;
529      }
530
531      DGV->setLinkage(NewLinkage);
532
533      if (LinkFromSrc) {
534        // Inherit const as appropriate
535        DGV->setConstant(SGV->isConstant());
536        DGV->setInitializer(0);
537      } else {
538        if (SGV->isConstant() && !DGV->isConstant()) {
539          if (DGV->isExternal())
540            DGV->setConstant(true);
541        }
542        SGV->setLinkage(GlobalValue::ExternalLinkage);
543        SGV->setInitializer(0);
544      }
545
546      ValueMap.insert(
547        std::make_pair(SGV, ConstantExpr::getBitCast(DGV, SGV->getType())));
548    }
549  }
550  return false;
551}
552
553
554// LinkGlobalInits - Update the initializers in the Dest module now that all
555// globals that may be referenced are in Dest.
556static bool LinkGlobalInits(Module *Dest, const Module *Src,
557                            std::map<const Value*, Value*> &ValueMap,
558                            std::string *Err) {
559
560  // Loop over all of the globals in the src module, mapping them over as we go
561  for (Module::const_global_iterator I = Src->global_begin(),
562       E = Src->global_end(); I != E; ++I) {
563    const GlobalVariable *SGV = I;
564
565    if (SGV->hasInitializer()) {      // Only process initialized GV's
566      // Figure out what the initializer looks like in the dest module...
567      Constant *SInit =
568        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
569
570      GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
571      if (DGV->hasInitializer()) {
572        if (SGV->hasExternalLinkage()) {
573          if (DGV->getInitializer() != SInit)
574            return Error(Err, "Global Variable Collision on '" +
575                         ToStr(SGV->getType(), Src) +"':%"+SGV->getName()+
576                         " - Global variables have different initializers");
577        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
578          // Nothing is required, mapped values will take the new global
579          // automatically.
580        } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
581          // Nothing is required, mapped values will take the new global
582          // automatically.
583        } else if (DGV->hasAppendingLinkage()) {
584          assert(0 && "Appending linkage unimplemented!");
585        } else {
586          assert(0 && "Unknown linkage!");
587        }
588      } else {
589        // Copy the initializer over now...
590        DGV->setInitializer(SInit);
591      }
592    }
593  }
594  return false;
595}
596
597// LinkFunctionProtos - Link the functions together between the two modules,
598// without doing function bodies... this just adds external function prototypes
599// to the Dest function...
600//
601static bool LinkFunctionProtos(Module *Dest, const Module *Src,
602                               std::map<const Value*, Value*> &ValueMap,
603                               std::map<std::string,
604                               GlobalValue*> &GlobalsByName,
605                               std::string *Err) {
606  TypeSymbolTable *TST = &Dest->getTypeSymbolTable();
607
608  // Loop over all of the functions in the src module, mapping them over as we
609  // go
610  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
611    const Function *SF = I;   // SrcFunction
612    Function *DF = 0;
613    if (SF->hasName() && !SF->hasInternalLinkage()) {
614      // Check to see if may have to link the function.
615      if (!(DF = Dest->getFunction(SF->getName(), SF->getFunctionType()))) {
616        std::map<std::string, GlobalValue*>::iterator EF =
617          GlobalsByName.find(SF->getName());
618        if (EF != GlobalsByName.end())
619          DF = dyn_cast<Function>(EF->second);
620        if (DF && RecursiveResolveTypes(SF->getType(), DF->getType(), TST, ""))
621          DF = 0;  // FIXME: gross.
622      }
623    }
624
625    if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
626      // Function does not already exist, simply insert an function signature
627      // identical to SF into the dest module...
628      Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
629                                     SF->getName(), Dest);
630      NewDF->setCallingConv(SF->getCallingConv());
631
632      // If the LLVM runtime renamed the function, but it is an externally
633      // visible symbol, DF must be an existing function with internal linkage.
634      // Rename it.
635      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
636        ForceRenaming(NewDF, SF->getName());
637
638      // ... and remember this mapping...
639      ValueMap.insert(std::make_pair(SF, NewDF));
640    } else if (SF->isExternal()) {
641      // If SF is external or if both SF & DF are external..  Just link the
642      // external functions, we aren't adding anything.
643      if (SF->hasDLLImportLinkage()) {
644        if (DF->isExternal()) {
645          ValueMap.insert(std::make_pair(SF, DF));
646          DF->setLinkage(SF->getLinkage());
647        }
648      } else {
649        ValueMap.insert(std::make_pair(SF, DF));
650      }
651    } else if (DF->isExternal() && !DF->hasDLLImportLinkage()) {
652      // If DF is external but SF is not...
653      // Link the external functions, update linkage qualifiers
654      ValueMap.insert(std::make_pair(SF, DF));
655      DF->setLinkage(SF->getLinkage());
656    } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
657      // At this point we know that DF has LinkOnce, Weak, or External* linkage.
658      ValueMap.insert(std::make_pair(SF, DF));
659
660      // Linkonce+Weak = Weak
661      // *+External Weak = *
662      if ((DF->hasLinkOnceLinkage() && SF->hasWeakLinkage()) ||
663          DF->hasExternalWeakLinkage())
664        DF->setLinkage(SF->getLinkage());
665
666
667    } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
668      // At this point we know that SF has LinkOnce or External* linkage.
669      ValueMap.insert(std::make_pair(SF, DF));
670      if (!SF->hasLinkOnceLinkage() && !SF->hasExternalWeakLinkage())
671        // Don't inherit linkonce & external weak linkage
672        DF->setLinkage(SF->getLinkage());
673    } else if (SF->getLinkage() != DF->getLinkage()) {
674      return Error(Err, "Functions named '" + SF->getName() +
675                   "' have different linkage specifiers!");
676    } else if (SF->hasExternalLinkage()) {
677      // The function is defined in both modules!!
678      return Error(Err, "Function '" +
679                   ToStr(SF->getFunctionType(), Src) + "':\"" +
680                   SF->getName() + "\" - Function is already defined!");
681    } else {
682      assert(0 && "Unknown linkage configuration found!");
683    }
684  }
685  return false;
686}
687
688// LinkFunctionBody - Copy the source function over into the dest function and
689// fix up references to values.  At this point we know that Dest is an external
690// function, and that Src is not.
691static bool LinkFunctionBody(Function *Dest, Function *Src,
692                             std::map<const Value*, Value*> &GlobalMap,
693                             std::string *Err) {
694  assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
695
696  // Go through and convert function arguments over, remembering the mapping.
697  Function::arg_iterator DI = Dest->arg_begin();
698  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
699       I != E; ++I, ++DI) {
700    DI->setName(I->getName());  // Copy the name information over...
701
702    // Add a mapping to our local map
703    GlobalMap.insert(std::make_pair(I, DI));
704  }
705
706  // Splice the body of the source function into the dest function.
707  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
708
709  // At this point, all of the instructions and values of the function are now
710  // copied over.  The only problem is that they are still referencing values in
711  // the Source function as operands.  Loop through all of the operands of the
712  // functions and patch them up to point to the local versions...
713  //
714  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
715    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
716      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
717           OI != OE; ++OI)
718        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
719          *OI = RemapOperand(*OI, GlobalMap);
720
721  // There is no need to map the arguments anymore.
722  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
723       I != E; ++I)
724    GlobalMap.erase(I);
725
726  return false;
727}
728
729
730// LinkFunctionBodies - Link in the function bodies that are defined in the
731// source module into the DestModule.  This consists basically of copying the
732// function over and fixing up references to values.
733static bool LinkFunctionBodies(Module *Dest, Module *Src,
734                               std::map<const Value*, Value*> &ValueMap,
735                               std::string *Err) {
736
737  // Loop over all of the functions in the src module, mapping them over as we
738  // go
739  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
740    if (!SF->isExternal()) {                  // No body if function is external
741      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
742
743      // DF not external SF external?
744      if (DF->isExternal()) {
745        // Only provide the function body if there isn't one already.
746        if (LinkFunctionBody(DF, SF, ValueMap, Err))
747          return true;
748      }
749    }
750  }
751  return false;
752}
753
754// LinkAppendingVars - If there were any appending global variables, link them
755// together now.  Return true on error.
756static bool LinkAppendingVars(Module *M,
757                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
758                              std::string *ErrorMsg) {
759  if (AppendingVars.empty()) return false; // Nothing to do.
760
761  // Loop over the multimap of appending vars, processing any variables with the
762  // same name, forming a new appending global variable with both of the
763  // initializers merged together, then rewrite references to the old variables
764  // and delete them.
765  std::vector<Constant*> Inits;
766  while (AppendingVars.size() > 1) {
767    // Get the first two elements in the map...
768    std::multimap<std::string,
769      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
770
771    // If the first two elements are for different names, there is no pair...
772    // Otherwise there is a pair, so link them together...
773    if (First->first == Second->first) {
774      GlobalVariable *G1 = First->second, *G2 = Second->second;
775      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
776      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
777
778      // Check to see that they two arrays agree on type...
779      if (T1->getElementType() != T2->getElementType())
780        return Error(ErrorMsg,
781         "Appending variables with different element types need to be linked!");
782      if (G1->isConstant() != G2->isConstant())
783        return Error(ErrorMsg,
784                     "Appending variables linked with different const'ness!");
785
786      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
787      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
788
789      G1->setName("");   // Clear G1's name in case of a conflict!
790
791      // Create the new global variable...
792      GlobalVariable *NG =
793        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
794                           /*init*/0, First->first, M);
795
796      // Merge the initializer...
797      Inits.reserve(NewSize);
798      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
799        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
800          Inits.push_back(I->getOperand(i));
801      } else {
802        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
803        Constant *CV = Constant::getNullValue(T1->getElementType());
804        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
805          Inits.push_back(CV);
806      }
807      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
808        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
809          Inits.push_back(I->getOperand(i));
810      } else {
811        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
812        Constant *CV = Constant::getNullValue(T2->getElementType());
813        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
814          Inits.push_back(CV);
815      }
816      NG->setInitializer(ConstantArray::get(NewType, Inits));
817      Inits.clear();
818
819      // Replace any uses of the two global variables with uses of the new
820      // global...
821
822      // FIXME: This should rewrite simple/straight-forward uses such as
823      // getelementptr instructions to not use the Cast!
824      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G1->getType()));
825      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G2->getType()));
826
827      // Remove the two globals from the module now...
828      M->getGlobalList().erase(G1);
829      M->getGlobalList().erase(G2);
830
831      // Put the new global into the AppendingVars map so that we can handle
832      // linking of more than two vars...
833      Second->second = NG;
834    }
835    AppendingVars.erase(First);
836  }
837
838  return false;
839}
840
841
842// LinkModules - This function links two modules together, with the resulting
843// left module modified to be the composite of the two input modules.  If an
844// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
845// the problem.  Upon failure, the Dest module could be in a modified state, and
846// shouldn't be relied on to be consistent.
847bool
848Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
849  assert(Dest != 0 && "Invalid Destination module");
850  assert(Src  != 0 && "Invalid Source Module");
851
852  std::string DataLayout;
853
854  if (Dest->getEndianness() == Module::AnyEndianness)
855    if (Src->getEndianness() == Module::BigEndian)
856      DataLayout.append("E");
857    else if (Src->getEndianness() == Module::LittleEndian)
858      DataLayout.append("e");
859  if (Dest->getPointerSize() == Module::AnyPointerSize)
860    if (Src->getPointerSize() == Module::Pointer64)
861      DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
862    else if (Src->getPointerSize() == Module::Pointer32)
863      DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
864  if (Dest->getTargetTriple().empty())
865    Dest->setTargetTriple(Src->getTargetTriple());
866  Dest->setDataLayout(DataLayout);
867
868  if (Src->getDataLayout().length() > 0 && Dest->getDataLayout().length() > 0 &&
869      Src->getDataLayout().compare(Dest->getDataLayout()) != 0)
870    cerr << "WARNING: Linking two modules of different data layouts!\n";
871  if (!Src->getTargetTriple().empty() &&
872      Dest->getTargetTriple() != Src->getTargetTriple())
873    cerr << "WARNING: Linking two modules of different target triples!\n";
874
875  if (!Src->getModuleInlineAsm().empty()) {
876    if (Dest->getModuleInlineAsm().empty())
877      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
878    else
879      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
880                               Src->getModuleInlineAsm());
881  }
882
883  // Update the destination module's dependent libraries list with the libraries
884  // from the source module. There's no opportunity for duplicates here as the
885  // Module ensures that duplicate insertions are discarded.
886  Module::lib_iterator SI = Src->lib_begin();
887  Module::lib_iterator SE = Src->lib_end();
888  while ( SI != SE ) {
889    Dest->addLibrary(*SI);
890    ++SI;
891  }
892
893  // LinkTypes - Go through the symbol table of the Src module and see if any
894  // types are named in the src module that are not named in the Dst module.
895  // Make sure there are no type name conflicts.
896  if (LinkTypes(Dest, Src, ErrorMsg)) return true;
897
898  // ValueMap - Mapping of values from what they used to be in Src, to what they
899  // are now in Dest.
900  std::map<const Value*, Value*> ValueMap;
901
902  // AppendingVars - Keep track of global variables in the destination module
903  // with appending linkage.  After the module is linked together, they are
904  // appended and the module is rewritten.
905  std::multimap<std::string, GlobalVariable *> AppendingVars;
906
907  // GlobalsByName - The LLVM SymbolTable class fights our best efforts at
908  // linking by separating globals by type.  Until PR411 is fixed, we replicate
909  // it's functionality here.
910  std::map<std::string, GlobalValue*> GlobalsByName;
911
912  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
913       I != E; ++I) {
914    // Add all of the appending globals already in the Dest module to
915    // AppendingVars.
916    if (I->hasAppendingLinkage())
917      AppendingVars.insert(std::make_pair(I->getName(), I));
918
919    // Keep track of all globals by name.
920    if (!I->hasInternalLinkage() && I->hasName())
921      GlobalsByName[I->getName()] = I;
922  }
923
924  // Keep track of all globals by name.
925  for (Module::iterator I = Dest->begin(), E = Dest->end(); I != E; ++I)
926    if (!I->hasInternalLinkage() && I->hasName())
927      GlobalsByName[I->getName()] = I;
928
929  // Insert all of the globals in src into the Dest module... without linking
930  // initializers (which could refer to functions not yet mapped over).
931  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, GlobalsByName, ErrorMsg))
932    return true;
933
934  // Link the functions together between the two modules, without doing function
935  // bodies... this just adds external function prototypes to the Dest
936  // function...  We do this so that when we begin processing function bodies,
937  // all of the global values that may be referenced are available in our
938  // ValueMap.
939  if (LinkFunctionProtos(Dest, Src, ValueMap, GlobalsByName, ErrorMsg))
940    return true;
941
942  // Update the initializers in the Dest module now that all globals that may
943  // be referenced are in Dest.
944  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
945
946  // Link in the function bodies that are defined in the source module into the
947  // DestModule.  This consists basically of copying the function over and
948  // fixing up references to values.
949  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
950
951  // If there were any appending global variables, link them together now.
952  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
953
954  // If the source library's module id is in the dependent library list of the
955  // destination library, remove it since that module is now linked in.
956  sys::Path modId;
957  modId.set(Src->getModuleIdentifier());
958  if (!modId.isEmpty())
959    Dest->removeLibrary(modId.getBasename());
960
961  return false;
962}
963
964// vim: sw=2
965