LinkModules.cpp revision 28c3cff8250b3fe2adc6479306fe7dbdb48a1bdb
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/Instructions.h"
26#include "llvm/Assembly/Writer.h"
27#include "llvm/Support/Streams.h"
28#include "llvm/System/Path.h"
29#include <sstream>
30using namespace llvm;
31
32// Error - Simple wrapper function to conditionally assign to E and return true.
33// This just makes error return conditions a little bit simpler...
34static inline bool Error(std::string *E, const std::string &Message) {
35  if (E) *E = Message;
36  return true;
37}
38
39// ToStr - Simple wrapper function to convert a type to a string.
40static std::string ToStr(const Type *Ty, const Module *M) {
41  std::ostringstream OS;
42  WriteTypeSymbolic(OS, Ty, M);
43  return OS.str();
44}
45
46//
47// Function: ResolveTypes()
48//
49// Description:
50//  Attempt to link the two specified types together.
51//
52// Inputs:
53//  DestTy - The type to which we wish to resolve.
54//  SrcTy  - The original type which we want to resolve.
55//  Name   - The name of the type.
56//
57// Outputs:
58//  DestST - The symbol table in which the new type should be placed.
59//
60// Return value:
61//  true  - There is an error and the types cannot yet be linked.
62//  false - No errors.
63//
64static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
65                         TypeSymbolTable *DestST, const std::string &Name) {
66  if (DestTy == SrcTy) return false;       // If already equal, noop
67
68  // Does the type already exist in the module?
69  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
70    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
71      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
72    } else {
73      return true;  // Cannot link types... neither is opaque and not-equal
74    }
75  } else {                       // Type not in dest module.  Add it now.
76    if (DestTy)                  // Type _is_ in module, just opaque...
77      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
78                           ->refineAbstractTypeTo(SrcTy);
79    else if (!Name.empty())
80      DestST->insert(Name, const_cast<Type*>(SrcTy));
81  }
82  return false;
83}
84
85static const FunctionType *getFT(const PATypeHolder &TH) {
86  return cast<FunctionType>(TH.get());
87}
88static const StructType *getST(const PATypeHolder &TH) {
89  return cast<StructType>(TH.get());
90}
91
92// RecursiveResolveTypes - This is just like ResolveTypes, except that it
93// recurses down into derived types, merging the used types if the parent types
94// are compatible.
95static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
96                                   const PATypeHolder &SrcTy,
97                                   TypeSymbolTable *DestST,
98                                   const std::string &Name,
99                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
100  const Type *SrcTyT = SrcTy.get();
101  const Type *DestTyT = DestTy.get();
102  if (DestTyT == SrcTyT) return false;       // If already equal, noop
103
104  // If we found our opaque type, resolve it now!
105  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
106    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
107
108  // Two types cannot be resolved together if they are of different primitive
109  // type.  For example, we cannot resolve an int to a float.
110  if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
111
112  // Otherwise, resolve the used type used by this derived type...
113  switch (DestTyT->getTypeID()) {
114  case Type::IntegerTyID: {
115    if (cast<IntegerType>(DestTyT)->getBitWidth() !=
116        cast<IntegerType>(SrcTyT)->getBitWidth())
117      return true;
118    return false;
119  }
120  case Type::FunctionTyID: {
121    if (cast<FunctionType>(DestTyT)->isVarArg() !=
122        cast<FunctionType>(SrcTyT)->isVarArg() ||
123        cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
124        cast<FunctionType>(SrcTyT)->getNumContainedTypes())
125      return true;
126    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
127      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
128                                 getFT(SrcTy)->getContainedType(i), DestST, "",
129                                 Pointers))
130        return true;
131    return false;
132  }
133  case Type::StructTyID: {
134    if (getST(DestTy)->getNumContainedTypes() !=
135        getST(SrcTy)->getNumContainedTypes()) return 1;
136    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
137      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
138                                 getST(SrcTy)->getContainedType(i), DestST, "",
139                                 Pointers))
140        return true;
141    return false;
142  }
143  case Type::ArrayTyID: {
144    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
145    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
146    if (DAT->getNumElements() != SAT->getNumElements()) return true;
147    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
148                                  DestST, "", Pointers);
149  }
150  case Type::PointerTyID: {
151    // If this is a pointer type, check to see if we have already seen it.  If
152    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
153    // an associative container for this search, because the type pointers (keys
154    // in the container) change whenever types get resolved...
155    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
156      if (Pointers[i].first == DestTy)
157        return Pointers[i].second != SrcTy;
158
159    // Otherwise, add the current pointers to the vector to stop recursion on
160    // this pair.
161    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
162    bool Result =
163      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
164                             cast<PointerType>(SrcTy.get())->getElementType(),
165                             DestST, "", Pointers);
166    Pointers.pop_back();
167    return Result;
168  }
169  default: assert(0 && "Unexpected type!"); return true;
170  }
171}
172
173static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
174                                  const PATypeHolder &SrcTy,
175                                  TypeSymbolTable *DestST,
176                                  const std::string &Name){
177  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
178  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
179}
180
181
182// LinkTypes - Go through the symbol table of the Src module and see if any
183// types are named in the src module that are not named in the Dst module.
184// Make sure there are no type name conflicts.
185static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
186        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
187  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
188
189  // Look for a type plane for Type's...
190  TypeSymbolTable::const_iterator TI = SrcST->begin();
191  TypeSymbolTable::const_iterator TE = SrcST->end();
192  if (TI == TE) return false;  // No named types, do nothing.
193
194  // Some types cannot be resolved immediately because they depend on other
195  // types being resolved to each other first.  This contains a list of types we
196  // are waiting to recheck.
197  std::vector<std::string> DelayedTypesToResolve;
198
199  for ( ; TI != TE; ++TI ) {
200    const std::string &Name = TI->first;
201    const Type *RHS = TI->second;
202
203    // Check to see if this type name is already in the dest module...
204    Type *Entry = DestST->lookup(Name);
205
206    if (ResolveTypes(Entry, RHS, DestST, Name)) {
207      // They look different, save the types 'till later to resolve.
208      DelayedTypesToResolve.push_back(Name);
209    }
210  }
211
212  // Iteratively resolve types while we can...
213  while (!DelayedTypesToResolve.empty()) {
214    // Loop over all of the types, attempting to resolve them if possible...
215    unsigned OldSize = DelayedTypesToResolve.size();
216
217    // Try direct resolution by name...
218    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
219      const std::string &Name = DelayedTypesToResolve[i];
220      Type *T1 = SrcST->lookup(Name);
221      Type *T2 = DestST->lookup(Name);
222      if (!ResolveTypes(T2, T1, DestST, Name)) {
223        // We are making progress!
224        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
225        --i;
226      }
227    }
228
229    // Did we not eliminate any types?
230    if (DelayedTypesToResolve.size() == OldSize) {
231      // Attempt to resolve subelements of types.  This allows us to merge these
232      // two types: { int* } and { opaque* }
233      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
234        const std::string &Name = DelayedTypesToResolve[i];
235        PATypeHolder T1(SrcST->lookup(Name));
236        PATypeHolder T2(DestST->lookup(Name));
237
238        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
239          // We are making progress!
240          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
241
242          // Go back to the main loop, perhaps we can resolve directly by name
243          // now...
244          break;
245        }
246      }
247
248      // If we STILL cannot resolve the types, then there is something wrong.
249      if (DelayedTypesToResolve.size() == OldSize) {
250        // Remove the symbol name from the destination.
251        DelayedTypesToResolve.pop_back();
252      }
253    }
254  }
255
256
257  return false;
258}
259
260static void PrintMap(const std::map<const Value*, Value*> &M) {
261  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
262       I != E; ++I) {
263    cerr << " Fr: " << (void*)I->first << " ";
264    I->first->dump();
265    cerr << " To: " << (void*)I->second << " ";
266    I->second->dump();
267    cerr << "\n";
268  }
269}
270
271
272// RemapOperand - Use ValueMap to convert constants from one module to another.
273static Value *RemapOperand(const Value *In,
274                           std::map<const Value*, Value*> &ValueMap) {
275  std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
276  if (I != ValueMap.end())
277    return I->second;
278
279  // Check to see if it's a constant that we are interested in transforming.
280  Value *Result = 0;
281  if (const Constant *CPV = dyn_cast<Constant>(In)) {
282    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
283        isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
284      return const_cast<Constant*>(CPV);   // Simple constants stay identical.
285
286    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
287      std::vector<Constant*> Operands(CPA->getNumOperands());
288      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
289        Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
290      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
291    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
292      std::vector<Constant*> Operands(CPS->getNumOperands());
293      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
294        Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
295      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
296    } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
297      Result = const_cast<Constant*>(CPV);
298    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
299      std::vector<Constant*> Operands(CP->getNumOperands());
300      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
301        Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
302      Result = ConstantVector::get(Operands);
303    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
304      std::vector<Constant*> Ops;
305      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
306        Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
307      Result = CE->getWithOperands(Ops);
308    } else if (isa<GlobalValue>(CPV)) {
309      assert(0 && "Unmapped global?");
310    } else {
311      assert(0 && "Unknown type of derived type constant value!");
312    }
313  } else if (isa<InlineAsm>(In)) {
314    Result = const_cast<Value*>(In);
315  }
316
317  // Cache the mapping in our local map structure
318  if (Result) {
319    ValueMap[In] = Result;
320    return Result;
321  }
322
323
324  cerr << "LinkModules ValueMap: \n";
325  PrintMap(ValueMap);
326
327  cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
328  assert(0 && "Couldn't remap value!");
329  return 0;
330}
331
332/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
333/// in the symbol table.  This is good for all clients except for us.  Go
334/// through the trouble to force this back.
335static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
336  assert(GV->getName() != Name && "Can't force rename to self");
337  ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
338
339  // If there is a conflict, rename the conflict.
340  if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
341    assert(ConflictGV->hasInternalLinkage() &&
342           "Not conflicting with a static global, should link instead!");
343    GV->takeName(ConflictGV);
344    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
345    assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
346  } else {
347    GV->setName(Name);              // Force the name back
348  }
349}
350
351/// CopyGVAttributes - copy additional attributes (those not needed to construct
352/// a GlobalValue) from the SrcGV to the DestGV.
353static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
354  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
355  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
356  DestGV->copyAttributesFrom(SrcGV);
357  DestGV->setAlignment(Alignment);
358}
359
360/// GetLinkageResult - This analyzes the two global values and determines what
361/// the result will look like in the destination module.  In particular, it
362/// computes the resultant linkage type, computes whether the global in the
363/// source should be copied over to the destination (replacing the existing
364/// one), and computes whether this linkage is an error or not. It also performs
365/// visibility checks: we cannot link together two symbols with different
366/// visibilities.
367static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
368                             GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
369                             std::string *Err) {
370  assert((!Dest || !Src->hasInternalLinkage()) &&
371         "If Src has internal linkage, Dest shouldn't be set!");
372  if (!Dest) {
373    // Linking something to nothing.
374    LinkFromSrc = true;
375    LT = Src->getLinkage();
376  } else if (Src->isDeclaration()) {
377    // If Src is external or if both Src & Dest are external..  Just link the
378    // external globals, we aren't adding anything.
379    if (Src->hasDLLImportLinkage()) {
380      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
381      if (Dest->isDeclaration()) {
382        LinkFromSrc = true;
383        LT = Src->getLinkage();
384      }
385    } else if (Dest->hasExternalWeakLinkage()) {
386      //If the Dest is weak, use the source linkage
387      LinkFromSrc = true;
388      LT = Src->getLinkage();
389    } else {
390      LinkFromSrc = false;
391      LT = Dest->getLinkage();
392    }
393  } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
394    // If Dest is external but Src is not:
395    LinkFromSrc = true;
396    LT = Src->getLinkage();
397  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
398    if (Src->getLinkage() != Dest->getLinkage())
399      return Error(Err, "Linking globals named '" + Src->getName() +
400            "': can only link appending global with another appending global!");
401    LinkFromSrc = true; // Special cased.
402    LT = Src->getLinkage();
403  } else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage() ||
404             Src->hasCommonLinkage()) {
405    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
406    // or DLL* linkage.
407    if ((Dest->hasLinkOnceLinkage() &&
408          (Src->hasWeakLinkage() || Src->hasCommonLinkage())) ||
409        Dest->hasExternalWeakLinkage()) {
410      LinkFromSrc = true;
411      LT = Src->getLinkage();
412    } else {
413      LinkFromSrc = false;
414      LT = Dest->getLinkage();
415    }
416  } else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage() ||
417             Dest->hasCommonLinkage()) {
418    // At this point we know that Src has External* or DLL* linkage.
419    if (Src->hasExternalWeakLinkage()) {
420      LinkFromSrc = false;
421      LT = Dest->getLinkage();
422    } else {
423      LinkFromSrc = true;
424      LT = GlobalValue::ExternalLinkage;
425    }
426  } else {
427    assert((Dest->hasExternalLinkage() ||
428            Dest->hasDLLImportLinkage() ||
429            Dest->hasDLLExportLinkage() ||
430            Dest->hasExternalWeakLinkage()) &&
431           (Src->hasExternalLinkage() ||
432            Src->hasDLLImportLinkage() ||
433            Src->hasDLLExportLinkage() ||
434            Src->hasExternalWeakLinkage()) &&
435           "Unexpected linkage type!");
436    return Error(Err, "Linking globals named '" + Src->getName() +
437                 "': symbol multiply defined!");
438  }
439
440  // Check visibility
441  if (Dest && Src->getVisibility() != Dest->getVisibility())
442    if (!Src->isDeclaration() && !Dest->isDeclaration())
443      return Error(Err, "Linking globals named '" + Src->getName() +
444                   "': symbols have different visibilities!");
445  return false;
446}
447
448// LinkGlobals - Loop through the global variables in the src module and merge
449// them into the dest module.
450static bool LinkGlobals(Module *Dest, const Module *Src,
451                        std::map<const Value*, Value*> &ValueMap,
452                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
453                        std::string *Err) {
454  // Loop over all of the globals in the src module, mapping them over as we go
455  for (Module::const_global_iterator I = Src->global_begin(), E = Src->global_end();
456       I != E; ++I) {
457    const GlobalVariable *SGV = I;
458    GlobalValue *DGV = 0;
459
460    // Check to see if may have to link the global with the global
461    if (SGV->hasName() && !SGV->hasInternalLinkage()) {
462      DGV = Dest->getGlobalVariable(SGV->getName());
463      if (DGV && DGV->getType() != SGV->getType())
464        // If types don't agree due to opaque types, try to resolve them.
465        RecursiveResolveTypes(SGV->getType(), DGV->getType(),
466                              &Dest->getTypeSymbolTable(), "");
467    }
468
469    // Check to see if may have to link the global with the alias
470    if (!DGV && SGV->hasName() && !SGV->hasInternalLinkage()) {
471      DGV = Dest->getNamedAlias(SGV->getName());
472      if (DGV && DGV->getType() != SGV->getType())
473        // If types don't agree due to opaque types, try to resolve them.
474        RecursiveResolveTypes(SGV->getType(), DGV->getType(),
475                              &Dest->getTypeSymbolTable(), "");
476    }
477
478    if (DGV && DGV->hasInternalLinkage())
479      DGV = 0;
480
481    assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
482            SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
483           "Global must either be external or have an initializer!");
484
485    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
486    bool LinkFromSrc = false;
487    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
488      return true;
489
490    if (!DGV) {
491      // No linking to be performed, simply create an identical version of the
492      // symbol over in the dest module... the initializer will be filled in
493      // later by LinkGlobalInits...
494      GlobalVariable *NewDGV =
495        new GlobalVariable(SGV->getType()->getElementType(),
496                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
497                           SGV->getName(), Dest);
498      // Propagate alignment, visibility and section info.
499      CopyGVAttributes(NewDGV, SGV);
500
501      // If the LLVM runtime renamed the global, but it is an externally visible
502      // symbol, DGV must be an existing global with internal linkage.  Rename
503      // it.
504      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
505        ForceRenaming(NewDGV, SGV->getName());
506
507      // Make sure to remember this mapping...
508      ValueMap[SGV] = NewDGV;
509
510      if (SGV->hasAppendingLinkage())
511        // Keep track that this is an appending variable...
512        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
513    } else if (DGV->hasAppendingLinkage()) {
514      // No linking is performed yet.  Just insert a new copy of the global, and
515      // keep track of the fact that it is an appending variable in the
516      // AppendingVars map.  The name is cleared out so that no linkage is
517      // performed.
518      GlobalVariable *NewDGV =
519        new GlobalVariable(SGV->getType()->getElementType(),
520                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
521                           "", Dest);
522
523      // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
524      NewDGV->setAlignment(DGV->getAlignment());
525      // Propagate alignment, section and visibility info.
526      CopyGVAttributes(NewDGV, SGV);
527
528      // Make sure to remember this mapping...
529      ValueMap[SGV] = NewDGV;
530
531      // Keep track that this is an appending variable...
532      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
533    } else if (GlobalAlias *DGA = dyn_cast<GlobalAlias>(DGV)) {
534      // SGV is global, but DGV is alias. The only valid mapping is when SGV is
535      // external declaration, which is effectively a no-op. Also make sure
536      // linkage calculation was correct.
537      if (SGV->isDeclaration() && !LinkFromSrc) {
538        // Make sure to remember this mapping...
539        ValueMap[SGV] = DGA;
540      } else
541        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
542                     "': symbol multiple defined");
543    } else if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
544      // Otherwise, perform the global-global mapping as instructed by
545      // GetLinkageResult.
546      if (LinkFromSrc) {
547        // Propagate alignment, section, and visibility info.
548        CopyGVAttributes(DGVar, SGV);
549
550        // If the types don't match, and if we are to link from the source, nuke
551        // DGV and create a new one of the appropriate type.
552        if (SGV->getType() != DGVar->getType()) {
553          GlobalVariable *NewDGV =
554            new GlobalVariable(SGV->getType()->getElementType(),
555                               DGVar->isConstant(), DGVar->getLinkage(),
556                               /*init*/0, DGVar->getName(), Dest);
557          CopyGVAttributes(NewDGV, DGVar);
558          DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV,
559                                                           DGVar->getType()));
560          // DGVar will conflict with NewDGV because they both had the same
561          // name. We must erase this now so ForceRenaming doesn't assert
562          // because DGV might not have internal linkage.
563          DGVar->eraseFromParent();
564
565          // If the symbol table renamed the global, but it is an externally
566          // visible symbol, DGV must be an existing global with internal
567          // linkage. Rename it.
568          if (NewDGV->getName() != SGV->getName() &&
569              !NewDGV->hasInternalLinkage())
570            ForceRenaming(NewDGV, SGV->getName());
571
572          DGVar = NewDGV;
573        }
574
575        // Inherit const as appropriate
576        DGVar->setConstant(SGV->isConstant());
577
578        // Set initializer to zero, so we can link the stuff later
579        DGVar->setInitializer(0);
580      } else {
581        // Special case for const propagation
582        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
583          DGVar->setConstant(true);
584      }
585
586      // Set calculated linkage
587      DGVar->setLinkage(NewLinkage);
588
589      // Make sure to remember this mapping...
590      ValueMap[SGV] = ConstantExpr::getBitCast(DGVar, SGV->getType());
591    }
592  }
593  return false;
594}
595
596static GlobalValue::LinkageTypes
597CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
598  if (SGV->hasExternalLinkage() || DGV->hasExternalLinkage())
599    return GlobalValue::ExternalLinkage;
600  else if (SGV->hasWeakLinkage() || DGV->hasWeakLinkage())
601    return GlobalValue::WeakLinkage;
602  else {
603    assert(SGV->hasInternalLinkage() && DGV->hasInternalLinkage() &&
604           "Unexpected linkage type");
605    return GlobalValue::InternalLinkage;
606  }
607}
608
609// LinkAlias - Loop through the alias in the src module and link them into the
610// dest module. We're assuming, that all functions/global variables were already
611// linked in.
612static bool LinkAlias(Module *Dest, const Module *Src,
613                      std::map<const Value*, Value*> &ValueMap,
614                      std::string *Err) {
615  // Loop over all alias in the src module
616  for (Module::const_alias_iterator I = Src->alias_begin(),
617         E = Src->alias_end(); I != E; ++I) {
618    const GlobalAlias *SGA = I;
619    const GlobalValue *SAliasee = SGA->getAliasedGlobal();
620    GlobalAlias *NewGA = NULL;
621
622    // Globals were already linked, thus we can just query ValueMap for variant
623    // of SAliasee in Dest.
624    std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
625    assert(VMI != ValueMap.end() && "Aliasee not linked");
626    GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
627    GlobalValue* DGV = NULL;
628
629    // Try to find something 'similar' to SGA in destination module.
630    if (!DGV && !SGA->hasInternalLinkage()) {
631      DGV = Dest->getNamedAlias(SGA->getName());
632
633      // If types don't agree due to opaque types, try to resolve them.
634      if (DGV && DGV->getType() != SGA->getType())
635        if (RecursiveResolveTypes(SGA->getType(), DGV->getType(),
636                                  &Dest->getTypeSymbolTable(), ""))
637          return Error(Err, "Alias Collision on '" + SGA->getName()+
638                       "': aliases have different types");
639    }
640
641    if (!DGV && !SGA->hasInternalLinkage()) {
642      DGV = Dest->getGlobalVariable(SGA->getName());
643
644      // If types don't agree due to opaque types, try to resolve them.
645      if (DGV && DGV->getType() != SGA->getType())
646        if (RecursiveResolveTypes(SGA->getType(), DGV->getType(),
647                                  &Dest->getTypeSymbolTable(), ""))
648          return Error(Err, "Alias Collision on '" + SGA->getName()+
649                       "': aliases have different types");
650    }
651
652    if (!DGV && !SGA->hasInternalLinkage()) {
653      DGV = Dest->getFunction(SGA->getName());
654
655      // If types don't agree due to opaque types, try to resolve them.
656      if (DGV && DGV->getType() != SGA->getType())
657        if (RecursiveResolveTypes(SGA->getType(), DGV->getType(),
658                                  &Dest->getTypeSymbolTable(), ""))
659          return Error(Err, "Alias Collision on '" + SGA->getName()+
660                       "': aliases have different types");
661    }
662
663    // No linking to be performed on internal stuff.
664    if (DGV && DGV->hasInternalLinkage())
665      DGV = NULL;
666
667    if (GlobalAlias *DGA = dyn_cast_or_null<GlobalAlias>(DGV)) {
668      // Types are known to be the same, check whether aliasees equal. As
669      // globals are already linked we just need query ValueMap to find the
670      // mapping.
671      if (DAliasee == DGA->getAliasedGlobal()) {
672        // This is just two copies of the same alias. Propagate linkage, if
673        // necessary.
674        DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
675
676        NewGA = DGA;
677        // Proceed to 'common' steps
678      } else
679        return Error(Err, "Alias Collision on '"  + SGA->getName()+
680                     "': aliases have different aliasees");
681    } else if (GlobalVariable *DGVar = dyn_cast_or_null<GlobalVariable>(DGV)) {
682      // The only allowed way is to link alias with external declaration.
683      if (DGVar->isDeclaration()) {
684        // But only if aliasee is global too...
685        if (!isa<GlobalVariable>(DAliasee))
686          return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
687                       "': aliasee is not global variable");
688
689        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
690                                SGA->getName(), DAliasee, Dest);
691        CopyGVAttributes(NewGA, SGA);
692
693        // Any uses of DGV need to change to NewGA, with cast, if needed.
694        if (SGA->getType() != DGVar->getType())
695          DGVar->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
696                                                             DGVar->getType()));
697        else
698          DGVar->replaceAllUsesWith(NewGA);
699
700        // DGVar will conflict with NewGA because they both had the same
701        // name. We must erase this now so ForceRenaming doesn't assert
702        // because DGV might not have internal linkage.
703        DGVar->eraseFromParent();
704
705        // Proceed to 'common' steps
706      } else
707        return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
708                     "': symbol multiple defined");
709    } else if (Function *DF = dyn_cast_or_null<Function>(DGV)) {
710      // The only allowed way is to link alias with external declaration.
711      if (DF->isDeclaration()) {
712        // But only if aliasee is function too...
713        if (!isa<Function>(DAliasee))
714          return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
715                       "': aliasee is not function");
716
717        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
718                                SGA->getName(), DAliasee, Dest);
719        CopyGVAttributes(NewGA, SGA);
720
721        // Any uses of DF need to change to NewGA, with cast, if needed.
722        if (SGA->getType() != DF->getType())
723          DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
724                                                          DF->getType()));
725        else
726          DF->replaceAllUsesWith(NewGA);
727
728        // DF will conflict with NewGA because they both had the same
729        // name. We must erase this now so ForceRenaming doesn't assert
730        // because DF might not have internal linkage.
731        DF->eraseFromParent();
732
733        // Proceed to 'common' steps
734      } else
735        return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
736                     "': symbol multiple defined");
737    } else {
738      // No linking to be performed, simply create an identical version of the
739      // alias over in the dest module...
740
741      NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
742                              SGA->getName(), DAliasee, Dest);
743      CopyGVAttributes(NewGA, SGA);
744
745      // Proceed to 'common' steps
746    }
747
748    assert(NewGA && "No alias was created in destination module!");
749
750    // If the symbol table renamed the alias, but it is an externally visible
751    // symbol, DGA must be an global value with internal linkage. Rename it.
752    if (NewGA->getName() != SGA->getName() &&
753        !NewGA->hasInternalLinkage())
754      ForceRenaming(NewGA, SGA->getName());
755
756    // Remember this mapping so uses in the source module get remapped
757    // later by RemapOperand.
758    ValueMap[SGA] = NewGA;
759  }
760
761  return false;
762}
763
764
765// LinkGlobalInits - Update the initializers in the Dest module now that all
766// globals that may be referenced are in Dest.
767static bool LinkGlobalInits(Module *Dest, const Module *Src,
768                            std::map<const Value*, Value*> &ValueMap,
769                            std::string *Err) {
770
771  // Loop over all of the globals in the src module, mapping them over as we go
772  for (Module::const_global_iterator I = Src->global_begin(),
773       E = Src->global_end(); I != E; ++I) {
774    const GlobalVariable *SGV = I;
775
776    if (SGV->hasInitializer()) {      // Only process initialized GV's
777      // Figure out what the initializer looks like in the dest module...
778      Constant *SInit =
779        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
780
781      GlobalVariable *DGV =
782        cast<GlobalVariable>(ValueMap[SGV]->stripPointerCasts());
783      if (DGV->hasInitializer()) {
784        if (SGV->hasExternalLinkage()) {
785          if (DGV->getInitializer() != SInit)
786            return Error(Err, "Global Variable Collision on '" + SGV->getName() +
787                         "': global variables have different initializers");
788        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage() ||
789                   DGV->hasCommonLinkage()) {
790          // Nothing is required, mapped values will take the new global
791          // automatically.
792        } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage() ||
793                   SGV->hasCommonLinkage()) {
794          // Nothing is required, mapped values will take the new global
795          // automatically.
796        } else if (DGV->hasAppendingLinkage()) {
797          assert(0 && "Appending linkage unimplemented!");
798        } else {
799          assert(0 && "Unknown linkage!");
800        }
801      } else {
802        // Copy the initializer over now...
803        DGV->setInitializer(SInit);
804      }
805    }
806  }
807  return false;
808}
809
810// LinkFunctionProtos - Link the functions together between the two modules,
811// without doing function bodies... this just adds external function prototypes
812// to the Dest function...
813//
814static bool LinkFunctionProtos(Module *Dest, const Module *Src,
815                               std::map<const Value*, Value*> &ValueMap,
816                               std::string *Err) {
817  // Loop over all of the functions in the src module, mapping them over
818  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
819    const Function *SF = I;   // SrcFunction
820    Function *DF = 0;
821    if (SF->hasName() && !SF->hasInternalLinkage()) {
822      // Check to see if may have to link the function.
823      DF = Dest->getFunction(SF->getName());
824      if (DF && SF->getType() != DF->getType())
825        // If types don't agree because of opaque, try to resolve them
826        RecursiveResolveTypes(SF->getType(), DF->getType(),
827                              &Dest->getTypeSymbolTable(), "");
828    }
829
830    // Check visibility
831    if (DF && !DF->hasInternalLinkage() &&
832        SF->getVisibility() != DF->getVisibility()) {
833      // If one is a prototype, ignore its visibility.  Prototypes are always
834      // overridden by the definition.
835      if (!SF->isDeclaration() && !DF->isDeclaration())
836        return Error(Err, "Linking functions named '" + SF->getName() +
837                     "': symbols have different visibilities!");
838    }
839
840    if (DF && DF->hasInternalLinkage())
841      DF = NULL;
842
843    if (DF && DF->getType() != SF->getType()) {
844      if (DF->isDeclaration() && !SF->isDeclaration()) {
845        // We have a definition of the same name but different type in the
846        // source module. Copy the prototype to the destination and replace
847        // uses of the destination's prototype with the new prototype.
848        Function *NewDF = Function::Create(SF->getFunctionType(),
849                                           SF->getLinkage(),
850                                           SF->getName(), Dest);
851        CopyGVAttributes(NewDF, SF);
852
853        // Any uses of DF need to change to NewDF, with cast
854        DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DF->getType()));
855
856        // DF will conflict with NewDF because they both had the same. We must
857        // erase this now so ForceRenaming doesn't assert because DF might
858        // not have internal linkage.
859        DF->eraseFromParent();
860
861        // If the symbol table renamed the function, but it is an externally
862        // visible symbol, DF must be an existing function with internal
863        // linkage.  Rename it.
864        if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
865          ForceRenaming(NewDF, SF->getName());
866
867        // Remember this mapping so uses in the source module get remapped
868        // later by RemapOperand.
869        ValueMap[SF] = NewDF;
870      } else if (SF->isDeclaration()) {
871        // We have two functions of the same name but different type and the
872        // source is a declaration while the destination is not. Any use of
873        // the source must be mapped to the destination, with a cast.
874        ValueMap[SF] = ConstantExpr::getBitCast(DF, SF->getType());
875      } else {
876        // We have two functions of the same name but different types and they
877        // are both definitions. This is an error.
878        return Error(Err, "Function '" + DF->getName() + "' defined as both '" +
879                     ToStr(SF->getFunctionType(), Src) + "' and '" +
880                     ToStr(DF->getFunctionType(), Dest) + "'");
881      }
882    } else if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
883      // Function does not already exist, simply insert an function signature
884      // identical to SF into the dest module.
885      Function *NewDF = Function::Create(SF->getFunctionType(),
886                                         SF->getLinkage(),
887                                         SF->getName(), Dest);
888      CopyGVAttributes(NewDF, SF);
889
890      // If the LLVM runtime renamed the function, but it is an externally
891      // visible symbol, DF must be an existing function with internal linkage.
892      // Rename it.
893      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
894        ForceRenaming(NewDF, SF->getName());
895
896      // ... and remember this mapping...
897      ValueMap[SF] = NewDF;
898    } else if (SF->isDeclaration()) {
899      // If SF is a declaration or if both SF & DF are declarations, just link
900      // the declarations, we aren't adding anything.
901      if (SF->hasDLLImportLinkage()) {
902        if (DF->isDeclaration()) {
903          ValueMap.insert(std::make_pair(SF, DF));
904          DF->setLinkage(SF->getLinkage());
905        }
906      } else {
907        ValueMap[SF] = DF;
908      }
909    } else if (DF->isDeclaration() && !DF->hasDLLImportLinkage()) {
910      // If DF is external but SF is not...
911      // Link the external functions, update linkage qualifiers
912      ValueMap.insert(std::make_pair(SF, DF));
913      DF->setLinkage(SF->getLinkage());
914      // Visibility of prototype is overridden by vis of definition.
915      DF->setVisibility(SF->getVisibility());
916    } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage() ||
917               SF->hasCommonLinkage()) {
918      // At this point we know that DF has LinkOnce, Weak, or External* linkage.
919      ValueMap[SF] = DF;
920
921      // Linkonce+Weak = Weak
922      // *+External Weak = *
923      if ((DF->hasLinkOnceLinkage() &&
924              (SF->hasWeakLinkage() || SF->hasCommonLinkage())) ||
925          DF->hasExternalWeakLinkage())
926        DF->setLinkage(SF->getLinkage());
927    } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage() ||
928               DF->hasCommonLinkage()) {
929      // At this point we know that SF has LinkOnce or External* linkage.
930      ValueMap[SF] = DF;
931      if (!SF->hasLinkOnceLinkage() && !SF->hasExternalWeakLinkage())
932        // Don't inherit linkonce & external weak linkage
933        DF->setLinkage(SF->getLinkage());
934    } else if (SF->getLinkage() != DF->getLinkage()) {
935        return Error(Err, "Functions named '" + SF->getName() +
936                     "' have different linkage specifiers!");
937    } else if (SF->hasExternalLinkage()) {
938      // The function is defined identically in both modules!!
939      return Error(Err, "Function '" +
940                   ToStr(SF->getFunctionType(), Src) + "':\"" +
941                   SF->getName() + "\" - Function is already defined!");
942    } else {
943      assert(0 && "Unknown linkage configuration found!");
944    }
945  }
946  return false;
947}
948
949// LinkFunctionBody - Copy the source function over into the dest function and
950// fix up references to values.  At this point we know that Dest is an external
951// function, and that Src is not.
952static bool LinkFunctionBody(Function *Dest, Function *Src,
953                             std::map<const Value*, Value*> &ValueMap,
954                             std::string *Err) {
955  assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
956
957  // Go through and convert function arguments over, remembering the mapping.
958  Function::arg_iterator DI = Dest->arg_begin();
959  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
960       I != E; ++I, ++DI) {
961    DI->setName(I->getName());  // Copy the name information over...
962
963    // Add a mapping to our local map
964    ValueMap[I] = DI;
965  }
966
967  // Splice the body of the source function into the dest function.
968  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
969
970  // At this point, all of the instructions and values of the function are now
971  // copied over.  The only problem is that they are still referencing values in
972  // the Source function as operands.  Loop through all of the operands of the
973  // functions and patch them up to point to the local versions...
974  //
975  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
976    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
977      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
978           OI != OE; ++OI)
979        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
980          *OI = RemapOperand(*OI, ValueMap);
981
982  // There is no need to map the arguments anymore.
983  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
984       I != E; ++I)
985    ValueMap.erase(I);
986
987  return false;
988}
989
990
991// LinkFunctionBodies - Link in the function bodies that are defined in the
992// source module into the DestModule.  This consists basically of copying the
993// function over and fixing up references to values.
994static bool LinkFunctionBodies(Module *Dest, Module *Src,
995                               std::map<const Value*, Value*> &ValueMap,
996                               std::string *Err) {
997
998  // Loop over all of the functions in the src module, mapping them over as we
999  // go
1000  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
1001    if (!SF->isDeclaration()) {               // No body if function is external
1002      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
1003
1004      // DF not external SF external?
1005      if (DF->isDeclaration())
1006        // Only provide the function body if there isn't one already.
1007        if (LinkFunctionBody(DF, SF, ValueMap, Err))
1008          return true;
1009    }
1010  }
1011  return false;
1012}
1013
1014// LinkAppendingVars - If there were any appending global variables, link them
1015// together now.  Return true on error.
1016static bool LinkAppendingVars(Module *M,
1017                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
1018                              std::string *ErrorMsg) {
1019  if (AppendingVars.empty()) return false; // Nothing to do.
1020
1021  // Loop over the multimap of appending vars, processing any variables with the
1022  // same name, forming a new appending global variable with both of the
1023  // initializers merged together, then rewrite references to the old variables
1024  // and delete them.
1025  std::vector<Constant*> Inits;
1026  while (AppendingVars.size() > 1) {
1027    // Get the first two elements in the map...
1028    std::multimap<std::string,
1029      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
1030
1031    // If the first two elements are for different names, there is no pair...
1032    // Otherwise there is a pair, so link them together...
1033    if (First->first == Second->first) {
1034      GlobalVariable *G1 = First->second, *G2 = Second->second;
1035      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
1036      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
1037
1038      // Check to see that they two arrays agree on type...
1039      if (T1->getElementType() != T2->getElementType())
1040        return Error(ErrorMsg,
1041         "Appending variables with different element types need to be linked!");
1042      if (G1->isConstant() != G2->isConstant())
1043        return Error(ErrorMsg,
1044                     "Appending variables linked with different const'ness!");
1045
1046      if (G1->getAlignment() != G2->getAlignment())
1047        return Error(ErrorMsg,
1048         "Appending variables with different alignment need to be linked!");
1049
1050      if (G1->getVisibility() != G2->getVisibility())
1051        return Error(ErrorMsg,
1052         "Appending variables with different visibility need to be linked!");
1053
1054      if (G1->getSection() != G2->getSection())
1055        return Error(ErrorMsg,
1056         "Appending variables with different section name need to be linked!");
1057
1058      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
1059      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
1060
1061      G1->setName("");   // Clear G1's name in case of a conflict!
1062
1063      // Create the new global variable...
1064      GlobalVariable *NG =
1065        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
1066                           /*init*/0, First->first, M, G1->isThreadLocal());
1067
1068      // Propagate alignment, visibility and section info.
1069      CopyGVAttributes(NG, G1);
1070
1071      // Merge the initializer...
1072      Inits.reserve(NewSize);
1073      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1074        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1075          Inits.push_back(I->getOperand(i));
1076      } else {
1077        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1078        Constant *CV = Constant::getNullValue(T1->getElementType());
1079        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1080          Inits.push_back(CV);
1081      }
1082      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1083        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1084          Inits.push_back(I->getOperand(i));
1085      } else {
1086        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1087        Constant *CV = Constant::getNullValue(T2->getElementType());
1088        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1089          Inits.push_back(CV);
1090      }
1091      NG->setInitializer(ConstantArray::get(NewType, Inits));
1092      Inits.clear();
1093
1094      // Replace any uses of the two global variables with uses of the new
1095      // global...
1096
1097      // FIXME: This should rewrite simple/straight-forward uses such as
1098      // getelementptr instructions to not use the Cast!
1099      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G1->getType()));
1100      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G2->getType()));
1101
1102      // Remove the two globals from the module now...
1103      M->getGlobalList().erase(G1);
1104      M->getGlobalList().erase(G2);
1105
1106      // Put the new global into the AppendingVars map so that we can handle
1107      // linking of more than two vars...
1108      Second->second = NG;
1109    }
1110    AppendingVars.erase(First);
1111  }
1112
1113  return false;
1114}
1115
1116static bool ResolveAliases(Module *Dest) {
1117  for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1118       I != E; ++I)
1119    if (const GlobalValue *GV = I->resolveAliasedGlobal())
1120      if (!GV->isDeclaration())
1121        I->replaceAllUsesWith(const_cast<GlobalValue*>(GV));
1122
1123  return false;
1124}
1125
1126// LinkModules - This function links two modules together, with the resulting
1127// left module modified to be the composite of the two input modules.  If an
1128// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1129// the problem.  Upon failure, the Dest module could be in a modified state, and
1130// shouldn't be relied on to be consistent.
1131bool
1132Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1133  assert(Dest != 0 && "Invalid Destination module");
1134  assert(Src  != 0 && "Invalid Source Module");
1135
1136  if (Dest->getDataLayout().empty()) {
1137    if (!Src->getDataLayout().empty()) {
1138      Dest->setDataLayout(Src->getDataLayout());
1139    } else {
1140      std::string DataLayout;
1141
1142      if (Dest->getEndianness() == Module::AnyEndianness) {
1143        if (Src->getEndianness() == Module::BigEndian)
1144          DataLayout.append("E");
1145        else if (Src->getEndianness() == Module::LittleEndian)
1146          DataLayout.append("e");
1147      }
1148
1149      if (Dest->getPointerSize() == Module::AnyPointerSize) {
1150        if (Src->getPointerSize() == Module::Pointer64)
1151          DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1152        else if (Src->getPointerSize() == Module::Pointer32)
1153          DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1154      }
1155      Dest->setDataLayout(DataLayout);
1156    }
1157  }
1158
1159  // Copy the target triple from the source to dest if the dest's is empty.
1160  if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1161    Dest->setTargetTriple(Src->getTargetTriple());
1162
1163  if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1164      Src->getDataLayout() != Dest->getDataLayout())
1165    cerr << "WARNING: Linking two modules of different data layouts!\n";
1166  if (!Src->getTargetTriple().empty() &&
1167      Dest->getTargetTriple() != Src->getTargetTriple())
1168    cerr << "WARNING: Linking two modules of different target triples!\n";
1169
1170  // Append the module inline asm string.
1171  if (!Src->getModuleInlineAsm().empty()) {
1172    if (Dest->getModuleInlineAsm().empty())
1173      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1174    else
1175      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1176                               Src->getModuleInlineAsm());
1177  }
1178
1179  // Update the destination module's dependent libraries list with the libraries
1180  // from the source module. There's no opportunity for duplicates here as the
1181  // Module ensures that duplicate insertions are discarded.
1182  for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1183       SI != SE; ++SI)
1184    Dest->addLibrary(*SI);
1185
1186  // LinkTypes - Go through the symbol table of the Src module and see if any
1187  // types are named in the src module that are not named in the Dst module.
1188  // Make sure there are no type name conflicts.
1189  if (LinkTypes(Dest, Src, ErrorMsg))
1190    return true;
1191
1192  // ValueMap - Mapping of values from what they used to be in Src, to what they
1193  // are now in Dest.
1194  std::map<const Value*, Value*> ValueMap;
1195
1196  // AppendingVars - Keep track of global variables in the destination module
1197  // with appending linkage.  After the module is linked together, they are
1198  // appended and the module is rewritten.
1199  std::multimap<std::string, GlobalVariable *> AppendingVars;
1200  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1201       I != E; ++I) {
1202    // Add all of the appending globals already in the Dest module to
1203    // AppendingVars.
1204    if (I->hasAppendingLinkage())
1205      AppendingVars.insert(std::make_pair(I->getName(), I));
1206  }
1207
1208  // Insert all of the globals in src into the Dest module... without linking
1209  // initializers (which could refer to functions not yet mapped over).
1210  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1211    return true;
1212
1213  // Link the functions together between the two modules, without doing function
1214  // bodies... this just adds external function prototypes to the Dest
1215  // function...  We do this so that when we begin processing function bodies,
1216  // all of the global values that may be referenced are available in our
1217  // ValueMap.
1218  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1219    return true;
1220
1221  // If there were any alias, link them now. We really need to do this now,
1222  // because all of the aliases that may be referenced need to be available in
1223  // ValueMap
1224  if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1225
1226  // Update the initializers in the Dest module now that all globals that may
1227  // be referenced are in Dest.
1228  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1229
1230  // Link in the function bodies that are defined in the source module into the
1231  // DestModule.  This consists basically of copying the function over and
1232  // fixing up references to values.
1233  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1234
1235  // If there were any appending global variables, link them together now.
1236  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1237
1238  // Resolve all uses of aliases with aliasees
1239  if (ResolveAliases(Dest)) return true;
1240
1241  // If the source library's module id is in the dependent library list of the
1242  // destination library, remove it since that module is now linked in.
1243  sys::Path modId;
1244  modId.set(Src->getModuleIdentifier());
1245  if (!modId.isEmpty())
1246    Dest->removeLibrary(modId.getBasename());
1247
1248  return false;
1249}
1250
1251// vim: sw=2
1252