LinkModules.cpp revision 2e013028f2dd99527044d50808a44ae89d6ba537
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Linker.h"
15#include "llvm-c/Linker.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Module.h"
21#include "llvm/IR/TypeFinder.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/raw_ostream.h"
24#include "llvm/Transforms/Utils/Cloning.h"
25using namespace llvm;
26
27//===----------------------------------------------------------------------===//
28// TypeMap implementation.
29//===----------------------------------------------------------------------===//
30
31namespace {
32class TypeMapTy : public ValueMapTypeRemapper {
33  /// MappedTypes - This is a mapping from a source type to a destination type
34  /// to use.
35  DenseMap<Type*, Type*> MappedTypes;
36
37  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
38  /// we speculatively add types to MappedTypes, but keep track of them here in
39  /// case we need to roll back.
40  SmallVector<Type*, 16> SpeculativeTypes;
41
42  /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
43  /// source module that are mapped to an opaque struct in the destination
44  /// module.
45  SmallVector<StructType*, 16> SrcDefinitionsToResolve;
46
47  /// DstResolvedOpaqueTypes - This is the set of opaque types in the
48  /// destination modules who are getting a body from the source module.
49  SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
50
51public:
52  /// addTypeMapping - Indicate that the specified type in the destination
53  /// module is conceptually equivalent to the specified type in the source
54  /// module.
55  void addTypeMapping(Type *DstTy, Type *SrcTy);
56
57  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
58  /// module from a type definition in the source module.
59  void linkDefinedTypeBodies();
60
61  /// get - Return the mapped type to use for the specified input type from the
62  /// source module.
63  Type *get(Type *SrcTy);
64
65  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
66
67  /// dump - Dump out the type map for debugging purposes.
68  void dump() const {
69    for (DenseMap<Type*, Type*>::const_iterator
70           I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
71      dbgs() << "TypeMap: ";
72      I->first->dump();
73      dbgs() << " => ";
74      I->second->dump();
75      dbgs() << '\n';
76    }
77  }
78
79private:
80  Type *getImpl(Type *T);
81  /// remapType - Implement the ValueMapTypeRemapper interface.
82  Type *remapType(Type *SrcTy) {
83    return get(SrcTy);
84  }
85
86  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
87};
88}
89
90void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
91  Type *&Entry = MappedTypes[SrcTy];
92  if (Entry) return;
93
94  if (DstTy == SrcTy) {
95    Entry = DstTy;
96    return;
97  }
98
99  // Check to see if these types are recursively isomorphic and establish a
100  // mapping between them if so.
101  if (!areTypesIsomorphic(DstTy, SrcTy)) {
102    // Oops, they aren't isomorphic.  Just discard this request by rolling out
103    // any speculative mappings we've established.
104    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
105      MappedTypes.erase(SpeculativeTypes[i]);
106  }
107  SpeculativeTypes.clear();
108}
109
110/// areTypesIsomorphic - Recursively walk this pair of types, returning true
111/// if they are isomorphic, false if they are not.
112bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
113  // Two types with differing kinds are clearly not isomorphic.
114  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
115
116  // If we have an entry in the MappedTypes table, then we have our answer.
117  Type *&Entry = MappedTypes[SrcTy];
118  if (Entry)
119    return Entry == DstTy;
120
121  // Two identical types are clearly isomorphic.  Remember this
122  // non-speculatively.
123  if (DstTy == SrcTy) {
124    Entry = DstTy;
125    return true;
126  }
127
128  // Okay, we have two types with identical kinds that we haven't seen before.
129
130  // If this is an opaque struct type, special case it.
131  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
132    // Mapping an opaque type to any struct, just keep the dest struct.
133    if (SSTy->isOpaque()) {
134      Entry = DstTy;
135      SpeculativeTypes.push_back(SrcTy);
136      return true;
137    }
138
139    // Mapping a non-opaque source type to an opaque dest.  If this is the first
140    // type that we're mapping onto this destination type then we succeed.  Keep
141    // the dest, but fill it in later.  This doesn't need to be speculative.  If
142    // this is the second (different) type that we're trying to map onto the
143    // same opaque type then we fail.
144    if (cast<StructType>(DstTy)->isOpaque()) {
145      // We can only map one source type onto the opaque destination type.
146      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
147        return false;
148      SrcDefinitionsToResolve.push_back(SSTy);
149      Entry = DstTy;
150      return true;
151    }
152  }
153
154  // If the number of subtypes disagree between the two types, then we fail.
155  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
156    return false;
157
158  // Fail if any of the extra properties (e.g. array size) of the type disagree.
159  if (isa<IntegerType>(DstTy))
160    return false;  // bitwidth disagrees.
161  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
162    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
163      return false;
164
165  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
166    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
167      return false;
168  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
169    StructType *SSTy = cast<StructType>(SrcTy);
170    if (DSTy->isLiteral() != SSTy->isLiteral() ||
171        DSTy->isPacked() != SSTy->isPacked())
172      return false;
173  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
174    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
175      return false;
176  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
177    if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
178      return false;
179  }
180
181  // Otherwise, we speculate that these two types will line up and recursively
182  // check the subelements.
183  Entry = DstTy;
184  SpeculativeTypes.push_back(SrcTy);
185
186  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
187    if (!areTypesIsomorphic(DstTy->getContainedType(i),
188                            SrcTy->getContainedType(i)))
189      return false;
190
191  // If everything seems to have lined up, then everything is great.
192  return true;
193}
194
195/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
196/// module from a type definition in the source module.
197void TypeMapTy::linkDefinedTypeBodies() {
198  SmallVector<Type*, 16> Elements;
199  SmallString<16> TmpName;
200
201  // Note that processing entries in this loop (calling 'get') can add new
202  // entries to the SrcDefinitionsToResolve vector.
203  while (!SrcDefinitionsToResolve.empty()) {
204    StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
205    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
206
207    // TypeMap is a many-to-one mapping, if there were multiple types that
208    // provide a body for DstSTy then previous iterations of this loop may have
209    // already handled it.  Just ignore this case.
210    if (!DstSTy->isOpaque()) continue;
211    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
212
213    // Map the body of the source type over to a new body for the dest type.
214    Elements.resize(SrcSTy->getNumElements());
215    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
216      Elements[i] = getImpl(SrcSTy->getElementType(i));
217
218    DstSTy->setBody(Elements, SrcSTy->isPacked());
219
220    // If DstSTy has no name or has a longer name than STy, then viciously steal
221    // STy's name.
222    if (!SrcSTy->hasName()) continue;
223    StringRef SrcName = SrcSTy->getName();
224
225    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
226      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
227      SrcSTy->setName("");
228      DstSTy->setName(TmpName.str());
229      TmpName.clear();
230    }
231  }
232
233  DstResolvedOpaqueTypes.clear();
234}
235
236/// get - Return the mapped type to use for the specified input type from the
237/// source module.
238Type *TypeMapTy::get(Type *Ty) {
239  Type *Result = getImpl(Ty);
240
241  // If this caused a reference to any struct type, resolve it before returning.
242  if (!SrcDefinitionsToResolve.empty())
243    linkDefinedTypeBodies();
244  return Result;
245}
246
247/// getImpl - This is the recursive version of get().
248Type *TypeMapTy::getImpl(Type *Ty) {
249  // If we already have an entry for this type, return it.
250  Type **Entry = &MappedTypes[Ty];
251  if (*Entry) return *Entry;
252
253  // If this is not a named struct type, then just map all of the elements and
254  // then rebuild the type from inside out.
255  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
256    // If there are no element types to map, then the type is itself.  This is
257    // true for the anonymous {} struct, things like 'float', integers, etc.
258    if (Ty->getNumContainedTypes() == 0)
259      return *Entry = Ty;
260
261    // Remap all of the elements, keeping track of whether any of them change.
262    bool AnyChange = false;
263    SmallVector<Type*, 4> ElementTypes;
264    ElementTypes.resize(Ty->getNumContainedTypes());
265    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
266      ElementTypes[i] = getImpl(Ty->getContainedType(i));
267      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
268    }
269
270    // If we found our type while recursively processing stuff, just use it.
271    Entry = &MappedTypes[Ty];
272    if (*Entry) return *Entry;
273
274    // If all of the element types mapped directly over, then the type is usable
275    // as-is.
276    if (!AnyChange)
277      return *Entry = Ty;
278
279    // Otherwise, rebuild a modified type.
280    switch (Ty->getTypeID()) {
281    default: llvm_unreachable("unknown derived type to remap");
282    case Type::ArrayTyID:
283      return *Entry = ArrayType::get(ElementTypes[0],
284                                     cast<ArrayType>(Ty)->getNumElements());
285    case Type::VectorTyID:
286      return *Entry = VectorType::get(ElementTypes[0],
287                                      cast<VectorType>(Ty)->getNumElements());
288    case Type::PointerTyID:
289      return *Entry = PointerType::get(ElementTypes[0],
290                                      cast<PointerType>(Ty)->getAddressSpace());
291    case Type::FunctionTyID:
292      return *Entry = FunctionType::get(ElementTypes[0],
293                                        makeArrayRef(ElementTypes).slice(1),
294                                        cast<FunctionType>(Ty)->isVarArg());
295    case Type::StructTyID:
296      // Note that this is only reached for anonymous structs.
297      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
298                                      cast<StructType>(Ty)->isPacked());
299    }
300  }
301
302  // Otherwise, this is an unmapped named struct.  If the struct can be directly
303  // mapped over, just use it as-is.  This happens in a case when the linked-in
304  // module has something like:
305  //   %T = type {%T*, i32}
306  //   @GV = global %T* null
307  // where T does not exist at all in the destination module.
308  //
309  // The other case we watch for is when the type is not in the destination
310  // module, but that it has to be rebuilt because it refers to something that
311  // is already mapped.  For example, if the destination module has:
312  //  %A = type { i32 }
313  // and the source module has something like
314  //  %A' = type { i32 }
315  //  %B = type { %A'* }
316  //  @GV = global %B* null
317  // then we want to create a new type: "%B = type { %A*}" and have it take the
318  // pristine "%B" name from the source module.
319  //
320  // To determine which case this is, we have to recursively walk the type graph
321  // speculating that we'll be able to reuse it unmodified.  Only if this is
322  // safe would we map the entire thing over.  Because this is an optimization,
323  // and is not required for the prettiness of the linked module, we just skip
324  // it and always rebuild a type here.
325  StructType *STy = cast<StructType>(Ty);
326
327  // If the type is opaque, we can just use it directly.
328  if (STy->isOpaque())
329    return *Entry = STy;
330
331  // Otherwise we create a new type and resolve its body later.  This will be
332  // resolved by the top level of get().
333  SrcDefinitionsToResolve.push_back(STy);
334  StructType *DTy = StructType::create(STy->getContext());
335  DstResolvedOpaqueTypes.insert(DTy);
336  return *Entry = DTy;
337}
338
339//===----------------------------------------------------------------------===//
340// ModuleLinker implementation.
341//===----------------------------------------------------------------------===//
342
343namespace {
344  /// ModuleLinker - This is an implementation class for the LinkModules
345  /// function, which is the entrypoint for this file.
346  class ModuleLinker {
347    Module *DstM, *SrcM;
348
349    TypeMapTy TypeMap;
350
351    /// ValueMap - Mapping of values from what they used to be in Src, to what
352    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
353    /// some overhead due to the use of Value handles which the Linker doesn't
354    /// actually need, but this allows us to reuse the ValueMapper code.
355    ValueToValueMapTy ValueMap;
356
357    struct AppendingVarInfo {
358      GlobalVariable *NewGV;  // New aggregate global in dest module.
359      Constant *DstInit;      // Old initializer from dest module.
360      Constant *SrcInit;      // Old initializer from src module.
361    };
362
363    std::vector<AppendingVarInfo> AppendingVars;
364
365    unsigned Mode; // Mode to treat source module.
366
367    // Set of items not to link in from source.
368    SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
369
370    // Vector of functions to lazily link in.
371    std::vector<Function*> LazilyLinkFunctions;
372
373  public:
374    std::string ErrorMsg;
375
376    ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
377      : DstM(dstM), SrcM(srcM), Mode(mode) { }
378
379    bool run();
380
381  private:
382    /// emitError - Helper method for setting a message and returning an error
383    /// code.
384    bool emitError(const Twine &Message) {
385      ErrorMsg = Message.str();
386      return true;
387    }
388
389    /// getLinkageResult - This analyzes the two global values and determines
390    /// what the result will look like in the destination module.
391    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
392                          GlobalValue::LinkageTypes &LT,
393                          GlobalValue::VisibilityTypes &Vis,
394                          bool &LinkFromSrc);
395
396    /// getLinkedToGlobal - Given a global in the source module, return the
397    /// global in the destination module that is being linked to, if any.
398    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
399      // If the source has no name it can't link.  If it has local linkage,
400      // there is no name match-up going on.
401      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
402        return 0;
403
404      // Otherwise see if we have a match in the destination module's symtab.
405      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
406      if (DGV == 0) return 0;
407
408      // If we found a global with the same name in the dest module, but it has
409      // internal linkage, we are really not doing any linkage here.
410      if (DGV->hasLocalLinkage())
411        return 0;
412
413      // Otherwise, we do in fact link to the destination global.
414      return DGV;
415    }
416
417    void computeTypeMapping();
418
419    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
420    bool linkGlobalProto(GlobalVariable *SrcGV);
421    bool linkFunctionProto(Function *SrcF);
422    bool linkAliasProto(GlobalAlias *SrcA);
423    bool linkModuleFlagsMetadata();
424
425    void linkAppendingVarInit(const AppendingVarInfo &AVI);
426    void linkGlobalInits();
427    void linkFunctionBody(Function *Dst, Function *Src);
428    void linkAliasBodies();
429    void linkNamedMDNodes();
430  };
431}
432
433/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
434/// in the symbol table.  This is good for all clients except for us.  Go
435/// through the trouble to force this back.
436static void forceRenaming(GlobalValue *GV, StringRef Name) {
437  // If the global doesn't force its name or if it already has the right name,
438  // there is nothing for us to do.
439  if (GV->hasLocalLinkage() || GV->getName() == Name)
440    return;
441
442  Module *M = GV->getParent();
443
444  // If there is a conflict, rename the conflict.
445  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
446    GV->takeName(ConflictGV);
447    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
448    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
449  } else {
450    GV->setName(Name);              // Force the name back
451  }
452}
453
454/// copyGVAttributes - copy additional attributes (those not needed to construct
455/// a GlobalValue) from the SrcGV to the DestGV.
456static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
457  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
458  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
459  DestGV->copyAttributesFrom(SrcGV);
460  DestGV->setAlignment(Alignment);
461
462  forceRenaming(DestGV, SrcGV->getName());
463}
464
465static bool isLessConstraining(GlobalValue::VisibilityTypes a,
466                               GlobalValue::VisibilityTypes b) {
467  if (a == GlobalValue::HiddenVisibility)
468    return false;
469  if (b == GlobalValue::HiddenVisibility)
470    return true;
471  if (a == GlobalValue::ProtectedVisibility)
472    return false;
473  if (b == GlobalValue::ProtectedVisibility)
474    return true;
475  return false;
476}
477
478/// getLinkageResult - This analyzes the two global values and determines what
479/// the result will look like in the destination module.  In particular, it
480/// computes the resultant linkage type and visibility, computes whether the
481/// global in the source should be copied over to the destination (replacing
482/// the existing one), and computes whether this linkage is an error or not.
483bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
484                                    GlobalValue::LinkageTypes &LT,
485                                    GlobalValue::VisibilityTypes &Vis,
486                                    bool &LinkFromSrc) {
487  assert(Dest && "Must have two globals being queried");
488  assert(!Src->hasLocalLinkage() &&
489         "If Src has internal linkage, Dest shouldn't be set!");
490
491  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
492  bool DestIsDeclaration = Dest->isDeclaration();
493
494  if (SrcIsDeclaration) {
495    // If Src is external or if both Src & Dest are external..  Just link the
496    // external globals, we aren't adding anything.
497    if (Src->hasDLLImportLinkage()) {
498      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
499      if (DestIsDeclaration) {
500        LinkFromSrc = true;
501        LT = Src->getLinkage();
502      }
503    } else if (Dest->hasExternalWeakLinkage()) {
504      // If the Dest is weak, use the source linkage.
505      LinkFromSrc = true;
506      LT = Src->getLinkage();
507    } else {
508      LinkFromSrc = false;
509      LT = Dest->getLinkage();
510    }
511  } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
512    // If Dest is external but Src is not:
513    LinkFromSrc = true;
514    LT = Src->getLinkage();
515  } else if (Src->isWeakForLinker()) {
516    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
517    // or DLL* linkage.
518    if (Dest->hasExternalWeakLinkage() ||
519        Dest->hasAvailableExternallyLinkage() ||
520        (Dest->hasLinkOnceLinkage() &&
521         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
522      LinkFromSrc = true;
523      LT = Src->getLinkage();
524    } else {
525      LinkFromSrc = false;
526      LT = Dest->getLinkage();
527    }
528  } else if (Dest->isWeakForLinker()) {
529    // At this point we know that Src has External* or DLL* linkage.
530    if (Src->hasExternalWeakLinkage()) {
531      LinkFromSrc = false;
532      LT = Dest->getLinkage();
533    } else {
534      LinkFromSrc = true;
535      LT = GlobalValue::ExternalLinkage;
536    }
537  } else {
538    assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
539            Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
540           (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
541            Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
542           "Unexpected linkage type!");
543    return emitError("Linking globals named '" + Src->getName() +
544                 "': symbol multiply defined!");
545  }
546
547  // Compute the visibility. We follow the rules in the System V Application
548  // Binary Interface.
549  Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
550    Dest->getVisibility() : Src->getVisibility();
551  return false;
552}
553
554/// computeTypeMapping - Loop over all of the linked values to compute type
555/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
556/// we have two struct types 'Foo' but one got renamed when the module was
557/// loaded into the same LLVMContext.
558void ModuleLinker::computeTypeMapping() {
559  // Incorporate globals.
560  for (Module::global_iterator I = SrcM->global_begin(),
561       E = SrcM->global_end(); I != E; ++I) {
562    GlobalValue *DGV = getLinkedToGlobal(I);
563    if (DGV == 0) continue;
564
565    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
566      TypeMap.addTypeMapping(DGV->getType(), I->getType());
567      continue;
568    }
569
570    // Unify the element type of appending arrays.
571    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
572    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
573    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
574  }
575
576  // Incorporate functions.
577  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
578    if (GlobalValue *DGV = getLinkedToGlobal(I))
579      TypeMap.addTypeMapping(DGV->getType(), I->getType());
580  }
581
582  // Incorporate types by name, scanning all the types in the source module.
583  // At this point, the destination module may have a type "%foo = { i32 }" for
584  // example.  When the source module got loaded into the same LLVMContext, if
585  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
586  TypeFinder SrcStructTypes;
587  SrcStructTypes.run(*SrcM, true);
588  SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
589                                                 SrcStructTypes.end());
590
591  TypeFinder DstStructTypes;
592  DstStructTypes.run(*DstM, true);
593  SmallPtrSet<StructType*, 32> DstStructTypesSet(DstStructTypes.begin(),
594                                                 DstStructTypes.end());
595
596  for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
597    StructType *ST = SrcStructTypes[i];
598    if (!ST->hasName()) continue;
599
600    // Check to see if there is a dot in the name followed by a digit.
601    size_t DotPos = ST->getName().rfind('.');
602    if (DotPos == 0 || DotPos == StringRef::npos ||
603        ST->getName().back() == '.' ||
604        !isdigit(static_cast<unsigned char>(ST->getName()[DotPos+1])))
605      continue;
606
607    // Check to see if the destination module has a struct with the prefix name.
608    if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
609      // Don't use it if this actually came from the source module. They're in
610      // the same LLVMContext after all. Also don't use it unless the type is
611      // actually used in the destination module. This can happen in situations
612      // like this:
613      //
614      //      Module A                         Module B
615      //      --------                         --------
616      //   %Z = type { %A }                %B = type { %C.1 }
617      //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
618      //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
619      //   %C = type { i8* }               %B.3 = type { %C.1 }
620      //
621      // When we link Module B with Module A, the '%B' in Module B is
622      // used. However, that would then use '%C.1'. But when we process '%C.1',
623      // we prefer to take the '%C' version. So we are then left with both
624      // '%C.1' and '%C' being used for the same types. This leads to some
625      // variables using one type and some using the other.
626      if (!SrcStructTypesSet.count(DST) && DstStructTypesSet.count(DST))
627        TypeMap.addTypeMapping(DST, ST);
628  }
629
630  // Don't bother incorporating aliases, they aren't generally typed well.
631
632  // Now that we have discovered all of the type equivalences, get a body for
633  // any 'opaque' types in the dest module that are now resolved.
634  TypeMap.linkDefinedTypeBodies();
635}
636
637/// linkAppendingVarProto - If there were any appending global variables, link
638/// them together now.  Return true on error.
639bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
640                                         GlobalVariable *SrcGV) {
641
642  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
643    return emitError("Linking globals named '" + SrcGV->getName() +
644           "': can only link appending global with another appending global!");
645
646  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
647  ArrayType *SrcTy =
648    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
649  Type *EltTy = DstTy->getElementType();
650
651  // Check to see that they two arrays agree on type.
652  if (EltTy != SrcTy->getElementType())
653    return emitError("Appending variables with different element types!");
654  if (DstGV->isConstant() != SrcGV->isConstant())
655    return emitError("Appending variables linked with different const'ness!");
656
657  if (DstGV->getAlignment() != SrcGV->getAlignment())
658    return emitError(
659             "Appending variables with different alignment need to be linked!");
660
661  if (DstGV->getVisibility() != SrcGV->getVisibility())
662    return emitError(
663            "Appending variables with different visibility need to be linked!");
664
665  if (DstGV->getSection() != SrcGV->getSection())
666    return emitError(
667          "Appending variables with different section name need to be linked!");
668
669  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
670  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
671
672  // Create the new global variable.
673  GlobalVariable *NG =
674    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
675                       DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
676                       DstGV->getThreadLocalMode(),
677                       DstGV->getType()->getAddressSpace());
678
679  // Propagate alignment, visibility and section info.
680  copyGVAttributes(NG, DstGV);
681
682  AppendingVarInfo AVI;
683  AVI.NewGV = NG;
684  AVI.DstInit = DstGV->getInitializer();
685  AVI.SrcInit = SrcGV->getInitializer();
686  AppendingVars.push_back(AVI);
687
688  // Replace any uses of the two global variables with uses of the new
689  // global.
690  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
691
692  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
693  DstGV->eraseFromParent();
694
695  // Track the source variable so we don't try to link it.
696  DoNotLinkFromSource.insert(SrcGV);
697
698  return false;
699}
700
701/// linkGlobalProto - Loop through the global variables in the src module and
702/// merge them into the dest module.
703bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
704  GlobalValue *DGV = getLinkedToGlobal(SGV);
705  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
706
707  if (DGV) {
708    // Concatenation of appending linkage variables is magic and handled later.
709    if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
710      return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
711
712    // Determine whether linkage of these two globals follows the source
713    // module's definition or the destination module's definition.
714    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
715    GlobalValue::VisibilityTypes NV;
716    bool LinkFromSrc = false;
717    if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
718      return true;
719    NewVisibility = NV;
720
721    // If we're not linking from the source, then keep the definition that we
722    // have.
723    if (!LinkFromSrc) {
724      // Special case for const propagation.
725      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
726        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
727          DGVar->setConstant(true);
728
729      // Set calculated linkage and visibility.
730      DGV->setLinkage(NewLinkage);
731      DGV->setVisibility(*NewVisibility);
732
733      // Make sure to remember this mapping.
734      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
735
736      // Track the source global so that we don't attempt to copy it over when
737      // processing global initializers.
738      DoNotLinkFromSource.insert(SGV);
739
740      return false;
741    }
742  }
743
744  // No linking to be performed or linking from the source: simply create an
745  // identical version of the symbol over in the dest module... the
746  // initializer will be filled in later by LinkGlobalInits.
747  GlobalVariable *NewDGV =
748    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
749                       SGV->isConstant(), SGV->getLinkage(), /*init*/0,
750                       SGV->getName(), /*insertbefore*/0,
751                       SGV->getThreadLocalMode(),
752                       SGV->getType()->getAddressSpace());
753  // Propagate alignment, visibility and section info.
754  copyGVAttributes(NewDGV, SGV);
755  if (NewVisibility)
756    NewDGV->setVisibility(*NewVisibility);
757
758  if (DGV) {
759    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
760    DGV->eraseFromParent();
761  }
762
763  // Make sure to remember this mapping.
764  ValueMap[SGV] = NewDGV;
765  return false;
766}
767
768/// linkFunctionProto - Link the function in the source module into the
769/// destination module if needed, setting up mapping information.
770bool ModuleLinker::linkFunctionProto(Function *SF) {
771  GlobalValue *DGV = getLinkedToGlobal(SF);
772  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
773
774  if (DGV) {
775    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
776    bool LinkFromSrc = false;
777    GlobalValue::VisibilityTypes NV;
778    if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
779      return true;
780    NewVisibility = NV;
781
782    if (!LinkFromSrc) {
783      // Set calculated linkage
784      DGV->setLinkage(NewLinkage);
785      DGV->setVisibility(*NewVisibility);
786
787      // Make sure to remember this mapping.
788      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
789
790      // Track the function from the source module so we don't attempt to remap
791      // it.
792      DoNotLinkFromSource.insert(SF);
793
794      return false;
795    }
796  }
797
798  // If there is no linkage to be performed or we are linking from the source,
799  // bring SF over.
800  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
801                                     SF->getLinkage(), SF->getName(), DstM);
802  copyGVAttributes(NewDF, SF);
803  if (NewVisibility)
804    NewDF->setVisibility(*NewVisibility);
805
806  if (DGV) {
807    // Any uses of DF need to change to NewDF, with cast.
808    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
809    DGV->eraseFromParent();
810  } else {
811    // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
812    if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
813        SF->hasAvailableExternallyLinkage()) {
814      DoNotLinkFromSource.insert(SF);
815      LazilyLinkFunctions.push_back(SF);
816    }
817  }
818
819  ValueMap[SF] = NewDF;
820  return false;
821}
822
823/// LinkAliasProto - Set up prototypes for any aliases that come over from the
824/// source module.
825bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
826  GlobalValue *DGV = getLinkedToGlobal(SGA);
827  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
828
829  if (DGV) {
830    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
831    GlobalValue::VisibilityTypes NV;
832    bool LinkFromSrc = false;
833    if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
834      return true;
835    NewVisibility = NV;
836
837    if (!LinkFromSrc) {
838      // Set calculated linkage.
839      DGV->setLinkage(NewLinkage);
840      DGV->setVisibility(*NewVisibility);
841
842      // Make sure to remember this mapping.
843      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
844
845      // Track the alias from the source module so we don't attempt to remap it.
846      DoNotLinkFromSource.insert(SGA);
847
848      return false;
849    }
850  }
851
852  // If there is no linkage to be performed or we're linking from the source,
853  // bring over SGA.
854  GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
855                                       SGA->getLinkage(), SGA->getName(),
856                                       /*aliasee*/0, DstM);
857  copyGVAttributes(NewDA, SGA);
858  if (NewVisibility)
859    NewDA->setVisibility(*NewVisibility);
860
861  if (DGV) {
862    // Any uses of DGV need to change to NewDA, with cast.
863    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
864    DGV->eraseFromParent();
865  }
866
867  ValueMap[SGA] = NewDA;
868  return false;
869}
870
871static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
872  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
873
874  for (unsigned i = 0; i != NumElements; ++i)
875    Dest.push_back(C->getAggregateElement(i));
876}
877
878void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
879  // Merge the initializer.
880  SmallVector<Constant*, 16> Elements;
881  getArrayElements(AVI.DstInit, Elements);
882
883  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
884  getArrayElements(SrcInit, Elements);
885
886  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
887  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
888}
889
890/// linkGlobalInits - Update the initializers in the Dest module now that all
891/// globals that may be referenced are in Dest.
892void ModuleLinker::linkGlobalInits() {
893  // Loop over all of the globals in the src module, mapping them over as we go
894  for (Module::const_global_iterator I = SrcM->global_begin(),
895       E = SrcM->global_end(); I != E; ++I) {
896
897    // Only process initialized GV's or ones not already in dest.
898    if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
899
900    // Grab destination global variable.
901    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
902    // Figure out what the initializer looks like in the dest module.
903    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
904                                 RF_None, &TypeMap));
905  }
906}
907
908/// linkFunctionBody - Copy the source function over into the dest function and
909/// fix up references to values.  At this point we know that Dest is an external
910/// function, and that Src is not.
911void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
912  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
913
914  // Go through and convert function arguments over, remembering the mapping.
915  Function::arg_iterator DI = Dst->arg_begin();
916  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
917       I != E; ++I, ++DI) {
918    DI->setName(I->getName());  // Copy the name over.
919
920    // Add a mapping to our mapping.
921    ValueMap[I] = DI;
922  }
923
924  if (Mode == Linker::DestroySource) {
925    // Splice the body of the source function into the dest function.
926    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
927
928    // At this point, all of the instructions and values of the function are now
929    // copied over.  The only problem is that they are still referencing values in
930    // the Source function as operands.  Loop through all of the operands of the
931    // functions and patch them up to point to the local versions.
932    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
933      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
934        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
935
936  } else {
937    // Clone the body of the function into the dest function.
938    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
939    CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
940  }
941
942  // There is no need to map the arguments anymore.
943  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
944       I != E; ++I)
945    ValueMap.erase(I);
946
947}
948
949/// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
950void ModuleLinker::linkAliasBodies() {
951  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
952       I != E; ++I) {
953    if (DoNotLinkFromSource.count(I))
954      continue;
955    if (Constant *Aliasee = I->getAliasee()) {
956      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
957      DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
958    }
959  }
960}
961
962/// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
963/// module.
964void ModuleLinker::linkNamedMDNodes() {
965  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
966  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
967       E = SrcM->named_metadata_end(); I != E; ++I) {
968    // Don't link module flags here. Do them separately.
969    if (&*I == SrcModFlags) continue;
970    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
971    // Add Src elements into Dest node.
972    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
973      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
974                                   RF_None, &TypeMap));
975  }
976}
977
978/// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
979/// module.
980bool ModuleLinker::linkModuleFlagsMetadata() {
981  // If the source module has no module flags, we are done.
982  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
983  if (!SrcModFlags) return false;
984
985  // If the destination module doesn't have module flags yet, then just copy
986  // over the source module's flags.
987  NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
988  if (DstModFlags->getNumOperands() == 0) {
989    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
990      DstModFlags->addOperand(SrcModFlags->getOperand(I));
991
992    return false;
993  }
994
995  // First build a map of the existing module flags and requirements.
996  DenseMap<MDString*, MDNode*> Flags;
997  SmallSetVector<MDNode*, 16> Requirements;
998  for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
999    MDNode *Op = DstModFlags->getOperand(I);
1000    ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
1001    MDString *ID = cast<MDString>(Op->getOperand(1));
1002
1003    if (Behavior->getZExtValue() == Module::Require) {
1004      Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1005    } else {
1006      Flags[ID] = Op;
1007    }
1008  }
1009
1010  // Merge in the flags from the source module, and also collect its set of
1011  // requirements.
1012  bool HasErr = false;
1013  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1014    MDNode *SrcOp = SrcModFlags->getOperand(I);
1015    ConstantInt *SrcBehavior = cast<ConstantInt>(SrcOp->getOperand(0));
1016    MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1017    MDNode *DstOp = Flags.lookup(ID);
1018    unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1019
1020    // If this is a requirement, add it and continue.
1021    if (SrcBehaviorValue == Module::Require) {
1022      // If the destination module does not already have this requirement, add
1023      // it.
1024      if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1025        DstModFlags->addOperand(SrcOp);
1026      }
1027      continue;
1028    }
1029
1030    // If there is no existing flag with this ID, just add it.
1031    if (!DstOp) {
1032      Flags[ID] = SrcOp;
1033      DstModFlags->addOperand(SrcOp);
1034      continue;
1035    }
1036
1037    // Otherwise, perform a merge.
1038    ConstantInt *DstBehavior = cast<ConstantInt>(DstOp->getOperand(0));
1039    unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1040
1041    // If either flag has override behavior, handle it first.
1042    if (DstBehaviorValue == Module::Override) {
1043      // Diagnose inconsistent flags which both have override behavior.
1044      if (SrcBehaviorValue == Module::Override &&
1045          SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1046        HasErr |= emitError("linking module flags '" + ID->getString() +
1047                            "': IDs have conflicting override values");
1048      }
1049      continue;
1050    } else if (SrcBehaviorValue == Module::Override) {
1051      // Update the destination flag to that of the source.
1052      DstOp->replaceOperandWith(0, SrcBehavior);
1053      DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
1054      continue;
1055    }
1056
1057    // Diagnose inconsistent merge behavior types.
1058    if (SrcBehaviorValue != DstBehaviorValue) {
1059      HasErr |= emitError("linking module flags '" + ID->getString() +
1060                          "': IDs have conflicting behaviors");
1061      continue;
1062    }
1063
1064    // Perform the merge for standard behavior types.
1065    switch (SrcBehaviorValue) {
1066    case Module::Require:
1067    case Module::Override: assert(0 && "not possible"); break;
1068    case Module::Error: {
1069      // Emit an error if the values differ.
1070      if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1071        HasErr |= emitError("linking module flags '" + ID->getString() +
1072                            "': IDs have conflicting values");
1073      }
1074      continue;
1075    }
1076    case Module::Warning: {
1077      // Emit a warning if the values differ.
1078      if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1079        errs() << "WARNING: linking module flags '" << ID->getString()
1080               << "': IDs have conflicting values";
1081      }
1082      continue;
1083    }
1084    case Module::Append: {
1085      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1086      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1087      unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands();
1088      Value **VP, **Values = VP = new Value*[NumOps];
1089      for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP)
1090        *VP = DstValue->getOperand(i);
1091      for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP)
1092        *VP = SrcValue->getOperand(i);
1093      DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1094                                               ArrayRef<Value*>(Values,
1095                                                                NumOps)));
1096      delete[] Values;
1097      break;
1098    }
1099    case Module::AppendUnique: {
1100      SmallSetVector<Value*, 16> Elts;
1101      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1102      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1103      for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
1104        Elts.insert(DstValue->getOperand(i));
1105      for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
1106        Elts.insert(SrcValue->getOperand(i));
1107      DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1108                                               ArrayRef<Value*>(Elts.begin(),
1109                                                                Elts.end())));
1110      break;
1111    }
1112    }
1113  }
1114
1115  // Check all of the requirements.
1116  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1117    MDNode *Requirement = Requirements[I];
1118    MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1119    Value *ReqValue = Requirement->getOperand(1);
1120
1121    MDNode *Op = Flags[Flag];
1122    if (!Op || Op->getOperand(2) != ReqValue) {
1123      HasErr |= emitError("linking module flags '" + Flag->getString() +
1124                          "': does not have the required value");
1125      continue;
1126    }
1127  }
1128
1129  return HasErr;
1130}
1131
1132bool ModuleLinker::run() {
1133  assert(DstM && "Null destination module");
1134  assert(SrcM && "Null source module");
1135
1136  // Inherit the target data from the source module if the destination module
1137  // doesn't have one already.
1138  if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
1139    DstM->setDataLayout(SrcM->getDataLayout());
1140
1141  // Copy the target triple from the source to dest if the dest's is empty.
1142  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1143    DstM->setTargetTriple(SrcM->getTargetTriple());
1144
1145  if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
1146      SrcM->getDataLayout() != DstM->getDataLayout())
1147    errs() << "WARNING: Linking two modules of different data layouts!\n";
1148  if (!SrcM->getTargetTriple().empty() &&
1149      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1150    errs() << "WARNING: Linking two modules of different target triples: ";
1151    if (!SrcM->getModuleIdentifier().empty())
1152      errs() << SrcM->getModuleIdentifier() << ": ";
1153    errs() << "'" << SrcM->getTargetTriple() << "' and '"
1154           << DstM->getTargetTriple() << "'\n";
1155  }
1156
1157  // Append the module inline asm string.
1158  if (!SrcM->getModuleInlineAsm().empty()) {
1159    if (DstM->getModuleInlineAsm().empty())
1160      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1161    else
1162      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1163                               SrcM->getModuleInlineAsm());
1164  }
1165
1166  // Loop over all of the linked values to compute type mappings.
1167  computeTypeMapping();
1168
1169  // Insert all of the globals in src into the DstM module... without linking
1170  // initializers (which could refer to functions not yet mapped over).
1171  for (Module::global_iterator I = SrcM->global_begin(),
1172       E = SrcM->global_end(); I != E; ++I)
1173    if (linkGlobalProto(I))
1174      return true;
1175
1176  // Link the functions together between the two modules, without doing function
1177  // bodies... this just adds external function prototypes to the DstM
1178  // function...  We do this so that when we begin processing function bodies,
1179  // all of the global values that may be referenced are available in our
1180  // ValueMap.
1181  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1182    if (linkFunctionProto(I))
1183      return true;
1184
1185  // If there were any aliases, link them now.
1186  for (Module::alias_iterator I = SrcM->alias_begin(),
1187       E = SrcM->alias_end(); I != E; ++I)
1188    if (linkAliasProto(I))
1189      return true;
1190
1191  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1192    linkAppendingVarInit(AppendingVars[i]);
1193
1194  // Update the initializers in the DstM module now that all globals that may
1195  // be referenced are in DstM.
1196  linkGlobalInits();
1197
1198  // Link in the function bodies that are defined in the source module into
1199  // DstM.
1200  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1201    // Skip if not linking from source.
1202    if (DoNotLinkFromSource.count(SF)) continue;
1203
1204    // Skip if no body (function is external) or materialize.
1205    if (SF->isDeclaration()) {
1206      if (!SF->isMaterializable())
1207        continue;
1208      if (SF->Materialize(&ErrorMsg))
1209        return true;
1210    }
1211
1212    linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
1213    SF->Dematerialize();
1214  }
1215
1216  // Resolve all uses of aliases with aliasees.
1217  linkAliasBodies();
1218
1219  // Remap all of the named MDNodes in Src into the DstM module. We do this
1220  // after linking GlobalValues so that MDNodes that reference GlobalValues
1221  // are properly remapped.
1222  linkNamedMDNodes();
1223
1224  // Merge the module flags into the DstM module.
1225  if (linkModuleFlagsMetadata())
1226    return true;
1227
1228  // Process vector of lazily linked in functions.
1229  bool LinkedInAnyFunctions;
1230  do {
1231    LinkedInAnyFunctions = false;
1232
1233    for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1234        E = LazilyLinkFunctions.end(); I != E; ++I) {
1235      if (!*I)
1236        continue;
1237
1238      Function *SF = *I;
1239      Function *DF = cast<Function>(ValueMap[SF]);
1240
1241      if (!DF->use_empty()) {
1242
1243        // Materialize if necessary.
1244        if (SF->isDeclaration()) {
1245          if (!SF->isMaterializable())
1246            continue;
1247          if (SF->Materialize(&ErrorMsg))
1248            return true;
1249        }
1250
1251        // Link in function body.
1252        linkFunctionBody(DF, SF);
1253        SF->Dematerialize();
1254
1255        // "Remove" from vector by setting the element to 0.
1256        *I = 0;
1257
1258        // Set flag to indicate we may have more functions to lazily link in
1259        // since we linked in a function.
1260        LinkedInAnyFunctions = true;
1261      }
1262    }
1263  } while (LinkedInAnyFunctions);
1264
1265  // Remove any prototypes of functions that were not actually linked in.
1266  for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1267      E = LazilyLinkFunctions.end(); I != E; ++I) {
1268    if (!*I)
1269      continue;
1270
1271    Function *SF = *I;
1272    Function *DF = cast<Function>(ValueMap[SF]);
1273    if (DF->use_empty())
1274      DF->eraseFromParent();
1275  }
1276
1277  // Now that all of the types from the source are used, resolve any structs
1278  // copied over to the dest that didn't exist there.
1279  TypeMap.linkDefinedTypeBodies();
1280
1281  return false;
1282}
1283
1284Linker::Linker(Module *M) : Composite(M) {}
1285
1286Linker::~Linker() {
1287}
1288
1289bool Linker::linkInModule(Module *Src, unsigned Mode, std::string *ErrorMsg) {
1290  ModuleLinker TheLinker(Composite, Src, Mode);
1291  if (TheLinker.run()) {
1292    if (ErrorMsg)
1293      *ErrorMsg = TheLinker.ErrorMsg;
1294    return true;
1295  }
1296  return false;
1297}
1298
1299//===----------------------------------------------------------------------===//
1300// LinkModules entrypoint.
1301//===----------------------------------------------------------------------===//
1302
1303/// LinkModules - This function links two modules together, with the resulting
1304/// Dest module modified to be the composite of the two input modules.  If an
1305/// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1306/// the problem.  Upon failure, the Dest module could be in a modified state,
1307/// and shouldn't be relied on to be consistent.
1308bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1309                         std::string *ErrorMsg) {
1310  Linker L(Dest);
1311  return L.linkInModule(Src, Mode, ErrorMsg);
1312}
1313
1314//===----------------------------------------------------------------------===//
1315// C API.
1316//===----------------------------------------------------------------------===//
1317
1318LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
1319                         LLVMLinkerMode Mode, char **OutMessages) {
1320  std::string Messages;
1321  LLVMBool Result = Linker::LinkModules(unwrap(Dest), unwrap(Src),
1322                                        Mode, OutMessages? &Messages : 0);
1323  if (OutMessages)
1324    *OutMessages = strdup(Messages.c_str());
1325  return Result;
1326}
1327