LinkModules.cpp revision 348e5e763e1297870878c5cb11aadfab2e8e5e7a
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Linker.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Instructions.h"
18#include "llvm/Module.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/Support/raw_ostream.h"
24#include "llvm/Support/Path.h"
25#include "llvm/Transforms/Utils/Cloning.h"
26#include "llvm/Transforms/Utils/ValueMapper.h"
27using namespace llvm;
28
29//===----------------------------------------------------------------------===//
30// TypeMap implementation.
31//===----------------------------------------------------------------------===//
32
33namespace {
34class TypeMapTy : public ValueMapTypeRemapper {
35  /// MappedTypes - This is a mapping from a source type to a destination type
36  /// to use.
37  DenseMap<Type*, Type*> MappedTypes;
38
39  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
40  /// we speculatively add types to MappedTypes, but keep track of them here in
41  /// case we need to roll back.
42  SmallVector<Type*, 16> SpeculativeTypes;
43
44  /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
45  /// source module that are mapped to an opaque struct in the destination
46  /// module.
47  SmallVector<StructType*, 16> SrcDefinitionsToResolve;
48
49  /// DstResolvedOpaqueTypes - This is the set of opaque types in the
50  /// destination modules who are getting a body from the source module.
51  SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
52public:
53
54  /// addTypeMapping - Indicate that the specified type in the destination
55  /// module is conceptually equivalent to the specified type in the source
56  /// module.
57  void addTypeMapping(Type *DstTy, Type *SrcTy);
58
59  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
60  /// module from a type definition in the source module.
61  void linkDefinedTypeBodies();
62
63  /// get - Return the mapped type to use for the specified input type from the
64  /// source module.
65  Type *get(Type *SrcTy);
66
67  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
68
69private:
70  Type *getImpl(Type *T);
71  /// remapType - Implement the ValueMapTypeRemapper interface.
72  Type *remapType(Type *SrcTy) {
73    return get(SrcTy);
74  }
75
76  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
77};
78}
79
80void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
81  Type *&Entry = MappedTypes[SrcTy];
82  if (Entry) return;
83
84  if (DstTy == SrcTy) {
85    Entry = DstTy;
86    return;
87  }
88
89  // Check to see if these types are recursively isomorphic and establish a
90  // mapping between them if so.
91  if (!areTypesIsomorphic(DstTy, SrcTy)) {
92    // Oops, they aren't isomorphic.  Just discard this request by rolling out
93    // any speculative mappings we've established.
94    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
95      MappedTypes.erase(SpeculativeTypes[i]);
96  }
97  SpeculativeTypes.clear();
98}
99
100/// areTypesIsomorphic - Recursively walk this pair of types, returning true
101/// if they are isomorphic, false if they are not.
102bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
103  // Two types with differing kinds are clearly not isomorphic.
104  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
105
106  // If we have an entry in the MappedTypes table, then we have our answer.
107  Type *&Entry = MappedTypes[SrcTy];
108  if (Entry)
109    return Entry == DstTy;
110
111  // Two identical types are clearly isomorphic.  Remember this
112  // non-speculatively.
113  if (DstTy == SrcTy) {
114    Entry = DstTy;
115    return true;
116  }
117
118  // Okay, we have two types with identical kinds that we haven't seen before.
119
120  // If this is an opaque struct type, special case it.
121  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
122    // Mapping an opaque type to any struct, just keep the dest struct.
123    if (SSTy->isOpaque()) {
124      Entry = DstTy;
125      SpeculativeTypes.push_back(SrcTy);
126      return true;
127    }
128
129    // Mapping a non-opaque source type to an opaque dest.  If this is the first
130    // type that we're mapping onto this destination type then we succeed.  Keep
131    // the dest, but fill it in later.  This doesn't need to be speculative.  If
132    // this is the second (different) type that we're trying to map onto the
133    // same opaque type then we fail.
134    if (cast<StructType>(DstTy)->isOpaque()) {
135      // We can only map one source type onto the opaque destination type.
136      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
137        return false;
138      SrcDefinitionsToResolve.push_back(SSTy);
139      Entry = DstTy;
140      return true;
141    }
142  }
143
144  // If the number of subtypes disagree between the two types, then we fail.
145  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
146    return false;
147
148  // Fail if any of the extra properties (e.g. array size) of the type disagree.
149  if (isa<IntegerType>(DstTy))
150    return false;  // bitwidth disagrees.
151  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
152    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
153      return false;
154
155  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
156    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
157      return false;
158  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
159    StructType *SSTy = cast<StructType>(SrcTy);
160    if (DSTy->isLiteral() != SSTy->isLiteral() ||
161        DSTy->isPacked() != SSTy->isPacked())
162      return false;
163  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
164    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
165      return false;
166  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
167    if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
168      return false;
169  }
170
171  // Otherwise, we speculate that these two types will line up and recursively
172  // check the subelements.
173  Entry = DstTy;
174  SpeculativeTypes.push_back(SrcTy);
175
176  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
177    if (!areTypesIsomorphic(DstTy->getContainedType(i),
178                            SrcTy->getContainedType(i)))
179      return false;
180
181  // If everything seems to have lined up, then everything is great.
182  return true;
183}
184
185/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
186/// module from a type definition in the source module.
187void TypeMapTy::linkDefinedTypeBodies() {
188  SmallVector<Type*, 16> Elements;
189  SmallString<16> TmpName;
190
191  // Note that processing entries in this loop (calling 'get') can add new
192  // entries to the SrcDefinitionsToResolve vector.
193  while (!SrcDefinitionsToResolve.empty()) {
194    StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
195    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
196
197    // TypeMap is a many-to-one mapping, if there were multiple types that
198    // provide a body for DstSTy then previous iterations of this loop may have
199    // already handled it.  Just ignore this case.
200    if (!DstSTy->isOpaque()) continue;
201    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
202
203    // Map the body of the source type over to a new body for the dest type.
204    Elements.resize(SrcSTy->getNumElements());
205    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
206      Elements[i] = getImpl(SrcSTy->getElementType(i));
207
208    DstSTy->setBody(Elements, SrcSTy->isPacked());
209
210    // If DstSTy has no name or has a longer name than STy, then viciously steal
211    // STy's name.
212    if (!SrcSTy->hasName()) continue;
213    StringRef SrcName = SrcSTy->getName();
214
215    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
216      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
217      SrcSTy->setName("");
218      DstSTy->setName(TmpName.str());
219      TmpName.clear();
220    }
221  }
222
223  DstResolvedOpaqueTypes.clear();
224}
225
226
227/// get - Return the mapped type to use for the specified input type from the
228/// source module.
229Type *TypeMapTy::get(Type *Ty) {
230  Type *Result = getImpl(Ty);
231
232  // If this caused a reference to any struct type, resolve it before returning.
233  if (!SrcDefinitionsToResolve.empty())
234    linkDefinedTypeBodies();
235  return Result;
236}
237
238/// getImpl - This is the recursive version of get().
239Type *TypeMapTy::getImpl(Type *Ty) {
240  // If we already have an entry for this type, return it.
241  Type **Entry = &MappedTypes[Ty];
242  if (*Entry) return *Entry;
243
244  // If this is not a named struct type, then just map all of the elements and
245  // then rebuild the type from inside out.
246  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
247    // If there are no element types to map, then the type is itself.  This is
248    // true for the anonymous {} struct, things like 'float', integers, etc.
249    if (Ty->getNumContainedTypes() == 0)
250      return *Entry = Ty;
251
252    // Remap all of the elements, keeping track of whether any of them change.
253    bool AnyChange = false;
254    SmallVector<Type*, 4> ElementTypes;
255    ElementTypes.resize(Ty->getNumContainedTypes());
256    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
257      ElementTypes[i] = getImpl(Ty->getContainedType(i));
258      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
259    }
260
261    // If we found our type while recursively processing stuff, just use it.
262    Entry = &MappedTypes[Ty];
263    if (*Entry) return *Entry;
264
265    // If all of the element types mapped directly over, then the type is usable
266    // as-is.
267    if (!AnyChange)
268      return *Entry = Ty;
269
270    // Otherwise, rebuild a modified type.
271    switch (Ty->getTypeID()) {
272    default: llvm_unreachable("unknown derived type to remap");
273    case Type::ArrayTyID:
274      return *Entry = ArrayType::get(ElementTypes[0],
275                                     cast<ArrayType>(Ty)->getNumElements());
276    case Type::VectorTyID:
277      return *Entry = VectorType::get(ElementTypes[0],
278                                      cast<VectorType>(Ty)->getNumElements());
279    case Type::PointerTyID:
280      return *Entry = PointerType::get(ElementTypes[0],
281                                      cast<PointerType>(Ty)->getAddressSpace());
282    case Type::FunctionTyID:
283      return *Entry = FunctionType::get(ElementTypes[0],
284                                        makeArrayRef(ElementTypes).slice(1),
285                                        cast<FunctionType>(Ty)->isVarArg());
286    case Type::StructTyID:
287      // Note that this is only reached for anonymous structs.
288      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
289                                      cast<StructType>(Ty)->isPacked());
290    }
291  }
292
293  // Otherwise, this is an unmapped named struct.  If the struct can be directly
294  // mapped over, just use it as-is.  This happens in a case when the linked-in
295  // module has something like:
296  //   %T = type {%T*, i32}
297  //   @GV = global %T* null
298  // where T does not exist at all in the destination module.
299  //
300  // The other case we watch for is when the type is not in the destination
301  // module, but that it has to be rebuilt because it refers to something that
302  // is already mapped.  For example, if the destination module has:
303  //  %A = type { i32 }
304  // and the source module has something like
305  //  %A' = type { i32 }
306  //  %B = type { %A'* }
307  //  @GV = global %B* null
308  // then we want to create a new type: "%B = type { %A*}" and have it take the
309  // pristine "%B" name from the source module.
310  //
311  // To determine which case this is, we have to recursively walk the type graph
312  // speculating that we'll be able to reuse it unmodified.  Only if this is
313  // safe would we map the entire thing over.  Because this is an optimization,
314  // and is not required for the prettiness of the linked module, we just skip
315  // it and always rebuild a type here.
316  StructType *STy = cast<StructType>(Ty);
317
318  // If the type is opaque, we can just use it directly.
319  if (STy->isOpaque())
320    return *Entry = STy;
321
322  // Otherwise we create a new type and resolve its body later.  This will be
323  // resolved by the top level of get().
324  SrcDefinitionsToResolve.push_back(STy);
325  StructType *DTy = StructType::create(STy->getContext());
326  DstResolvedOpaqueTypes.insert(DTy);
327  return *Entry = DTy;
328}
329
330
331
332//===----------------------------------------------------------------------===//
333// ModuleLinker implementation.
334//===----------------------------------------------------------------------===//
335
336namespace {
337  /// ModuleLinker - This is an implementation class for the LinkModules
338  /// function, which is the entrypoint for this file.
339  class ModuleLinker {
340    Module *DstM, *SrcM;
341
342    TypeMapTy TypeMap;
343
344    /// ValueMap - Mapping of values from what they used to be in Src, to what
345    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
346    /// some overhead due to the use of Value handles which the Linker doesn't
347    /// actually need, but this allows us to reuse the ValueMapper code.
348    ValueToValueMapTy ValueMap;
349
350    struct AppendingVarInfo {
351      GlobalVariable *NewGV;  // New aggregate global in dest module.
352      Constant *DstInit;      // Old initializer from dest module.
353      Constant *SrcInit;      // Old initializer from src module.
354    };
355
356    std::vector<AppendingVarInfo> AppendingVars;
357
358    unsigned Mode; // Mode to treat source module.
359
360    // Set of items not to link in from source.
361    SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
362
363    // Vector of functions to lazily link in.
364    std::vector<Function*> LazilyLinkFunctions;
365
366  public:
367    std::string ErrorMsg;
368
369    ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
370      : DstM(dstM), SrcM(srcM), Mode(mode) { }
371
372    bool run();
373
374  private:
375    /// emitError - Helper method for setting a message and returning an error
376    /// code.
377    bool emitError(const Twine &Message) {
378      ErrorMsg = Message.str();
379      return true;
380    }
381
382    /// getLinkageResult - This analyzes the two global values and determines
383    /// what the result will look like in the destination module.
384    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
385                          GlobalValue::LinkageTypes &LT,
386                          GlobalValue::VisibilityTypes &Vis,
387                          bool &LinkFromSrc);
388
389    /// getLinkedToGlobal - Given a global in the source module, return the
390    /// global in the destination module that is being linked to, if any.
391    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
392      // If the source has no name it can't link.  If it has local linkage,
393      // there is no name match-up going on.
394      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
395        return 0;
396
397      // Otherwise see if we have a match in the destination module's symtab.
398      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
399      if (DGV == 0) return 0;
400
401      // If we found a global with the same name in the dest module, but it has
402      // internal linkage, we are really not doing any linkage here.
403      if (DGV->hasLocalLinkage())
404        return 0;
405
406      // Otherwise, we do in fact link to the destination global.
407      return DGV;
408    }
409
410    void computeTypeMapping();
411    bool categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
412                                   DenseMap<MDString*, MDNode*> &ErrorNode,
413                                   DenseMap<MDString*, MDNode*> &WarningNode,
414                                   DenseMap<MDString*, MDNode*> &OverrideNode,
415                                   DenseMap<MDString*,
416                                   SmallSetVector<MDNode*, 8> > &RequireNodes,
417                                   SmallSetVector<MDString*, 16> &SeenIDs);
418
419    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
420    bool linkGlobalProto(GlobalVariable *SrcGV);
421    bool linkFunctionProto(Function *SrcF);
422    bool linkAliasProto(GlobalAlias *SrcA);
423    bool linkModuleFlagsMetadata();
424
425    void linkAppendingVarInit(const AppendingVarInfo &AVI);
426    void linkGlobalInits();
427    void linkFunctionBody(Function *Dst, Function *Src);
428    void linkAliasBodies();
429    void linkNamedMDNodes();
430  };
431}
432
433
434
435/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
436/// in the symbol table.  This is good for all clients except for us.  Go
437/// through the trouble to force this back.
438static void forceRenaming(GlobalValue *GV, StringRef Name) {
439  // If the global doesn't force its name or if it already has the right name,
440  // there is nothing for us to do.
441  if (GV->hasLocalLinkage() || GV->getName() == Name)
442    return;
443
444  Module *M = GV->getParent();
445
446  // If there is a conflict, rename the conflict.
447  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
448    GV->takeName(ConflictGV);
449    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
450    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
451  } else {
452    GV->setName(Name);              // Force the name back
453  }
454}
455
456/// CopyGVAttributes - copy additional attributes (those not needed to construct
457/// a GlobalValue) from the SrcGV to the DestGV.
458static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
459  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
460  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
461  DestGV->copyAttributesFrom(SrcGV);
462  DestGV->setAlignment(Alignment);
463
464  forceRenaming(DestGV, SrcGV->getName());
465}
466
467static bool isLessConstraining(GlobalValue::VisibilityTypes a,
468                               GlobalValue::VisibilityTypes b) {
469  if (a == GlobalValue::HiddenVisibility)
470    return false;
471  if (b == GlobalValue::HiddenVisibility)
472    return true;
473  if (a == GlobalValue::ProtectedVisibility)
474    return false;
475  if (b == GlobalValue::ProtectedVisibility)
476    return true;
477  return false;
478}
479
480/// getLinkageResult - This analyzes the two global values and determines what
481/// the result will look like in the destination module.  In particular, it
482/// computes the resultant linkage type and visibility, computes whether the
483/// global in the source should be copied over to the destination (replacing
484/// the existing one), and computes whether this linkage is an error or not.
485bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
486                                    GlobalValue::LinkageTypes &LT,
487                                    GlobalValue::VisibilityTypes &Vis,
488                                    bool &LinkFromSrc) {
489  assert(Dest && "Must have two globals being queried");
490  assert(!Src->hasLocalLinkage() &&
491         "If Src has internal linkage, Dest shouldn't be set!");
492
493  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
494  bool DestIsDeclaration = Dest->isDeclaration();
495
496  if (SrcIsDeclaration) {
497    // If Src is external or if both Src & Dest are external..  Just link the
498    // external globals, we aren't adding anything.
499    if (Src->hasDLLImportLinkage()) {
500      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
501      if (DestIsDeclaration) {
502        LinkFromSrc = true;
503        LT = Src->getLinkage();
504      }
505    } else if (Dest->hasExternalWeakLinkage()) {
506      // If the Dest is weak, use the source linkage.
507      LinkFromSrc = true;
508      LT = Src->getLinkage();
509    } else {
510      LinkFromSrc = false;
511      LT = Dest->getLinkage();
512    }
513  } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
514    // If Dest is external but Src is not:
515    LinkFromSrc = true;
516    LT = Src->getLinkage();
517  } else if (Src->isWeakForLinker()) {
518    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
519    // or DLL* linkage.
520    if (Dest->hasExternalWeakLinkage() ||
521        Dest->hasAvailableExternallyLinkage() ||
522        (Dest->hasLinkOnceLinkage() &&
523         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
524      LinkFromSrc = true;
525      LT = Src->getLinkage();
526    } else {
527      LinkFromSrc = false;
528      LT = Dest->getLinkage();
529    }
530  } else if (Dest->isWeakForLinker()) {
531    // At this point we know that Src has External* or DLL* linkage.
532    if (Src->hasExternalWeakLinkage()) {
533      LinkFromSrc = false;
534      LT = Dest->getLinkage();
535    } else {
536      LinkFromSrc = true;
537      LT = GlobalValue::ExternalLinkage;
538    }
539  } else {
540    assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
541            Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
542           (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
543            Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
544           "Unexpected linkage type!");
545    return emitError("Linking globals named '" + Src->getName() +
546                 "': symbol multiply defined!");
547  }
548
549  // Compute the visibility. We follow the rules in the System V Application
550  // Binary Interface.
551  Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
552    Dest->getVisibility() : Src->getVisibility();
553  return false;
554}
555
556/// computeTypeMapping - Loop over all of the linked values to compute type
557/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
558/// we have two struct types 'Foo' but one got renamed when the module was
559/// loaded into the same LLVMContext.
560void ModuleLinker::computeTypeMapping() {
561  // Incorporate globals.
562  for (Module::global_iterator I = SrcM->global_begin(),
563       E = SrcM->global_end(); I != E; ++I) {
564    GlobalValue *DGV = getLinkedToGlobal(I);
565    if (DGV == 0) continue;
566
567    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
568      TypeMap.addTypeMapping(DGV->getType(), I->getType());
569      continue;
570    }
571
572    // Unify the element type of appending arrays.
573    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
574    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
575    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
576  }
577
578  // Incorporate functions.
579  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
580    if (GlobalValue *DGV = getLinkedToGlobal(I))
581      TypeMap.addTypeMapping(DGV->getType(), I->getType());
582  }
583
584  // Incorporate types by name, scanning all the types in the source module.
585  // At this point, the destination module may have a type "%foo = { i32 }" for
586  // example.  When the source module got loaded into the same LLVMContext, if
587  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
588  // Though it isn't required for correctness, attempt to link these up to clean
589  // up the IR.
590  std::vector<StructType*> SrcStructTypes;
591  SrcM->findUsedStructTypes(SrcStructTypes);
592
593  SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
594                                                 SrcStructTypes.end());
595
596  for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
597    StructType *ST = SrcStructTypes[i];
598    if (!ST->hasName()) continue;
599
600    // Check to see if there is a dot in the name followed by a digit.
601    size_t DotPos = ST->getName().rfind('.');
602    if (DotPos == 0 || DotPos == StringRef::npos ||
603        ST->getName().back() == '.' || !isdigit(ST->getName()[DotPos+1]))
604      continue;
605
606    // Check to see if the destination module has a struct with the prefix name.
607    if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
608      // Don't use it if this actually came from the source module.  They're in
609      // the same LLVMContext after all.
610      if (!SrcStructTypesSet.count(DST))
611        TypeMap.addTypeMapping(DST, ST);
612  }
613
614  // Don't bother incorporating aliases, they aren't generally typed well.
615
616  // Now that we have discovered all of the type equivalences, get a body for
617  // any 'opaque' types in the dest module that are now resolved.
618  TypeMap.linkDefinedTypeBodies();
619}
620
621/// linkAppendingVarProto - If there were any appending global variables, link
622/// them together now.  Return true on error.
623bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
624                                         GlobalVariable *SrcGV) {
625
626  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
627    return emitError("Linking globals named '" + SrcGV->getName() +
628           "': can only link appending global with another appending global!");
629
630  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
631  ArrayType *SrcTy =
632    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
633  Type *EltTy = DstTy->getElementType();
634
635  // Check to see that they two arrays agree on type.
636  if (EltTy != SrcTy->getElementType())
637    return emitError("Appending variables with different element types!");
638  if (DstGV->isConstant() != SrcGV->isConstant())
639    return emitError("Appending variables linked with different const'ness!");
640
641  if (DstGV->getAlignment() != SrcGV->getAlignment())
642    return emitError(
643             "Appending variables with different alignment need to be linked!");
644
645  if (DstGV->getVisibility() != SrcGV->getVisibility())
646    return emitError(
647            "Appending variables with different visibility need to be linked!");
648
649  if (DstGV->getSection() != SrcGV->getSection())
650    return emitError(
651          "Appending variables with different section name need to be linked!");
652
653  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
654  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
655
656  // Create the new global variable.
657  GlobalVariable *NG =
658    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
659                       DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
660                       DstGV->isThreadLocal(),
661                       DstGV->getType()->getAddressSpace());
662
663  // Propagate alignment, visibility and section info.
664  CopyGVAttributes(NG, DstGV);
665
666  AppendingVarInfo AVI;
667  AVI.NewGV = NG;
668  AVI.DstInit = DstGV->getInitializer();
669  AVI.SrcInit = SrcGV->getInitializer();
670  AppendingVars.push_back(AVI);
671
672  // Replace any uses of the two global variables with uses of the new
673  // global.
674  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
675
676  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
677  DstGV->eraseFromParent();
678
679  // Track the source variable so we don't try to link it.
680  DoNotLinkFromSource.insert(SrcGV);
681
682  return false;
683}
684
685/// linkGlobalProto - Loop through the global variables in the src module and
686/// merge them into the dest module.
687bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
688  GlobalValue *DGV = getLinkedToGlobal(SGV);
689  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
690
691  if (DGV) {
692    // Concatenation of appending linkage variables is magic and handled later.
693    if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
694      return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
695
696    // Determine whether linkage of these two globals follows the source
697    // module's definition or the destination module's definition.
698    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
699    GlobalValue::VisibilityTypes NV;
700    bool LinkFromSrc = false;
701    if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
702      return true;
703    NewVisibility = NV;
704
705    // If we're not linking from the source, then keep the definition that we
706    // have.
707    if (!LinkFromSrc) {
708      // Special case for const propagation.
709      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
710        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
711          DGVar->setConstant(true);
712
713      // Set calculated linkage and visibility.
714      DGV->setLinkage(NewLinkage);
715      DGV->setVisibility(*NewVisibility);
716
717      // Make sure to remember this mapping.
718      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
719
720      // Track the source global so that we don't attempt to copy it over when
721      // processing global initializers.
722      DoNotLinkFromSource.insert(SGV);
723
724      return false;
725    }
726  }
727
728  // No linking to be performed or linking from the source: simply create an
729  // identical version of the symbol over in the dest module... the
730  // initializer will be filled in later by LinkGlobalInits.
731  GlobalVariable *NewDGV =
732    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
733                       SGV->isConstant(), SGV->getLinkage(), /*init*/0,
734                       SGV->getName(), /*insertbefore*/0,
735                       SGV->isThreadLocal(),
736                       SGV->getType()->getAddressSpace());
737  // Propagate alignment, visibility and section info.
738  CopyGVAttributes(NewDGV, SGV);
739  if (NewVisibility)
740    NewDGV->setVisibility(*NewVisibility);
741
742  if (DGV) {
743    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
744    DGV->eraseFromParent();
745  }
746
747  // Make sure to remember this mapping.
748  ValueMap[SGV] = NewDGV;
749  return false;
750}
751
752/// linkFunctionProto - Link the function in the source module into the
753/// destination module if needed, setting up mapping information.
754bool ModuleLinker::linkFunctionProto(Function *SF) {
755  GlobalValue *DGV = getLinkedToGlobal(SF);
756  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
757
758  if (DGV) {
759    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
760    bool LinkFromSrc = false;
761    GlobalValue::VisibilityTypes NV;
762    if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
763      return true;
764    NewVisibility = NV;
765
766    if (!LinkFromSrc) {
767      // Set calculated linkage
768      DGV->setLinkage(NewLinkage);
769      DGV->setVisibility(*NewVisibility);
770
771      // Make sure to remember this mapping.
772      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
773
774      // Track the function from the source module so we don't attempt to remap
775      // it.
776      DoNotLinkFromSource.insert(SF);
777
778      return false;
779    }
780  }
781
782  // If there is no linkage to be performed or we are linking from the source,
783  // bring SF over.
784  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
785                                     SF->getLinkage(), SF->getName(), DstM);
786  CopyGVAttributes(NewDF, SF);
787  if (NewVisibility)
788    NewDF->setVisibility(*NewVisibility);
789
790  if (DGV) {
791    // Any uses of DF need to change to NewDF, with cast.
792    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
793    DGV->eraseFromParent();
794  } else {
795    // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
796    if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
797        SF->hasAvailableExternallyLinkage()) {
798      DoNotLinkFromSource.insert(SF);
799      LazilyLinkFunctions.push_back(SF);
800    }
801  }
802
803  ValueMap[SF] = NewDF;
804  return false;
805}
806
807/// LinkAliasProto - Set up prototypes for any aliases that come over from the
808/// source module.
809bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
810  GlobalValue *DGV = getLinkedToGlobal(SGA);
811  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
812
813  if (DGV) {
814    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
815    GlobalValue::VisibilityTypes NV;
816    bool LinkFromSrc = false;
817    if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
818      return true;
819    NewVisibility = NV;
820
821    if (!LinkFromSrc) {
822      // Set calculated linkage.
823      DGV->setLinkage(NewLinkage);
824      DGV->setVisibility(*NewVisibility);
825
826      // Make sure to remember this mapping.
827      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
828
829      // Track the alias from the source module so we don't attempt to remap it.
830      DoNotLinkFromSource.insert(SGA);
831
832      return false;
833    }
834  }
835
836  // If there is no linkage to be performed or we're linking from the source,
837  // bring over SGA.
838  GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
839                                       SGA->getLinkage(), SGA->getName(),
840                                       /*aliasee*/0, DstM);
841  CopyGVAttributes(NewDA, SGA);
842  if (NewVisibility)
843    NewDA->setVisibility(*NewVisibility);
844
845  if (DGV) {
846    // Any uses of DGV need to change to NewDA, with cast.
847    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
848    DGV->eraseFromParent();
849  }
850
851  ValueMap[SGA] = NewDA;
852  return false;
853}
854
855static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
856  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
857
858  for (unsigned i = 0; i != NumElements; ++i)
859    Dest.push_back(C->getAggregateElement(i));
860}
861
862void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
863  // Merge the initializer.
864  SmallVector<Constant*, 16> Elements;
865  getArrayElements(AVI.DstInit, Elements);
866
867  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
868  getArrayElements(SrcInit, Elements);
869
870  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
871  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
872}
873
874
875// linkGlobalInits - Update the initializers in the Dest module now that all
876// globals that may be referenced are in Dest.
877void ModuleLinker::linkGlobalInits() {
878  // Loop over all of the globals in the src module, mapping them over as we go
879  for (Module::const_global_iterator I = SrcM->global_begin(),
880       E = SrcM->global_end(); I != E; ++I) {
881
882    // Only process initialized GV's or ones not already in dest.
883    if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
884
885    // Grab destination global variable.
886    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
887    // Figure out what the initializer looks like in the dest module.
888    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
889                                 RF_None, &TypeMap));
890  }
891}
892
893// linkFunctionBody - Copy the source function over into the dest function and
894// fix up references to values.  At this point we know that Dest is an external
895// function, and that Src is not.
896void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
897  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
898
899  // Go through and convert function arguments over, remembering the mapping.
900  Function::arg_iterator DI = Dst->arg_begin();
901  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
902       I != E; ++I, ++DI) {
903    DI->setName(I->getName());  // Copy the name over.
904
905    // Add a mapping to our mapping.
906    ValueMap[I] = DI;
907  }
908
909  if (Mode == Linker::DestroySource) {
910    // Splice the body of the source function into the dest function.
911    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
912
913    // At this point, all of the instructions and values of the function are now
914    // copied over.  The only problem is that they are still referencing values in
915    // the Source function as operands.  Loop through all of the operands of the
916    // functions and patch them up to point to the local versions.
917    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
918      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
919        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
920
921  } else {
922    // Clone the body of the function into the dest function.
923    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
924    CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
925  }
926
927  // There is no need to map the arguments anymore.
928  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
929       I != E; ++I)
930    ValueMap.erase(I);
931
932}
933
934
935void ModuleLinker::linkAliasBodies() {
936  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
937       I != E; ++I) {
938    if (DoNotLinkFromSource.count(I))
939      continue;
940    if (Constant *Aliasee = I->getAliasee()) {
941      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
942      DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
943    }
944  }
945}
946
947/// linkNamedMDNodes - Insert all of the named mdnodes in Src into the Dest
948/// module.
949void ModuleLinker::linkNamedMDNodes() {
950  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
951  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
952       E = SrcM->named_metadata_end(); I != E; ++I) {
953    // Don't link module flags here. Do them separately.
954    if (&*I == SrcModFlags) continue;
955    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
956    // Add Src elements into Dest node.
957    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
958      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
959                                   RF_None, &TypeMap));
960  }
961}
962
963/// categorizeModuleFlagNodes -
964bool ModuleLinker::
965categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
966                          DenseMap<MDString*, MDNode*> &ErrorNode,
967                          DenseMap<MDString*, MDNode*> &WarningNode,
968                          DenseMap<MDString*, MDNode*> &OverrideNode,
969                          DenseMap<MDString*,
970                            SmallSetVector<MDNode*, 8> > &RequireNodes,
971                          SmallSetVector<MDString*, 16> &SeenIDs) {
972  bool HasErr = false;
973
974  for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) {
975    MDNode *Op = ModFlags->getOperand(I);
976    assert(Op->getNumOperands() == 3 && "Invalid module flag metadata!");
977    assert(isa<ConstantInt>(Op->getOperand(0)) &&
978           "Module flag's first operand must be an integer!");
979    assert(isa<MDString>(Op->getOperand(1)) &&
980           "Module flag's second operand must be an MDString!");
981
982    ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
983    MDString *ID = cast<MDString>(Op->getOperand(1));
984    Value *Val = Op->getOperand(2);
985    switch (Behavior->getZExtValue()) {
986    default:
987      assert(false && "Invalid behavior in module flag metadata!");
988      break;
989    case Module::Error: {
990      MDNode *&ErrNode = ErrorNode[ID];
991      if (!ErrNode) ErrNode = Op;
992      if (ErrNode->getOperand(2) != Val)
993        HasErr = emitError("linking module flags '" + ID->getString() +
994                           "': IDs have conflicting values");
995      break;
996    }
997    case Module::Warning: {
998      MDNode *&WarnNode = WarningNode[ID];
999      if (!WarnNode) WarnNode = Op;
1000      if (WarnNode->getOperand(2) != Val)
1001        errs() << "WARNING: linking module flags '" << ID->getString()
1002               << "': IDs have conflicting values";
1003      break;
1004    }
1005    case Module::Require:  RequireNodes[ID].insert(Op);     break;
1006    case Module::Override: {
1007      MDNode *&OvrNode = OverrideNode[ID];
1008      if (!OvrNode) OvrNode = Op;
1009      if (OvrNode->getOperand(2) != Val)
1010        HasErr = emitError("linking module flags '" + ID->getString() +
1011                           "': IDs have conflicting override values");
1012      break;
1013    }
1014    }
1015
1016    SeenIDs.insert(ID);
1017  }
1018
1019  return HasErr;
1020}
1021
1022/// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
1023/// module.
1024bool ModuleLinker::linkModuleFlagsMetadata() {
1025  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1026  if (!SrcModFlags) return false;
1027
1028  NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1029
1030  // If the destination module doesn't have module flags yet, then just copy
1031  // over the source module's flags.
1032  if (DstModFlags->getNumOperands() == 0) {
1033    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1034      DstModFlags->addOperand(SrcModFlags->getOperand(I));
1035
1036    return false;
1037  }
1038
1039  bool HasErr = false;
1040
1041  // Otherwise, we have to merge them based on their behaviors. First,
1042  // categorize all of the nodes in the modules' module flags. If an error or
1043  // warning occurs, then emit the appropriate message(s).
1044  DenseMap<MDString*, MDNode*> ErrorNode;
1045  DenseMap<MDString*, MDNode*> WarningNode;
1046  DenseMap<MDString*, MDNode*> OverrideNode;
1047  DenseMap<MDString*, SmallSetVector<MDNode*, 8> > RequireNodes;
1048  SmallSetVector<MDString*, 16> SeenIDs;
1049
1050  HasErr |= categorizeModuleFlagNodes(SrcModFlags, ErrorNode, WarningNode,
1051                                      OverrideNode, RequireNodes, SeenIDs);
1052  HasErr |= categorizeModuleFlagNodes(DstModFlags, ErrorNode, WarningNode,
1053                                      OverrideNode, RequireNodes, SeenIDs);
1054
1055  // Check that there isn't both an error and warning node for a flag.
1056  for (SmallSetVector<MDString*, 16>::iterator
1057         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1058    MDString *ID = *I;
1059    if (ErrorNode[ID] && WarningNode[ID])
1060      HasErr = emitError("linking module flags '" + ID->getString() +
1061                         "': IDs have conflicting behaviors");
1062  }
1063
1064  // Early exit if we had an error.
1065  if (HasErr) return true;
1066
1067  // Get the destination's module flags ready for new operands.
1068  DstModFlags->dropAllReferences();
1069
1070  // Add all of the module flags to the destination module.
1071  DenseMap<MDString*, SmallVector<MDNode*, 4> > AddedNodes;
1072  for (SmallSetVector<MDString*, 16>::iterator
1073         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1074    MDString *ID = *I;
1075    if (OverrideNode[ID]) {
1076      DstModFlags->addOperand(OverrideNode[ID]);
1077      AddedNodes[ID].push_back(OverrideNode[ID]);
1078    } else if (ErrorNode[ID]) {
1079      DstModFlags->addOperand(ErrorNode[ID]);
1080      AddedNodes[ID].push_back(ErrorNode[ID]);
1081    } else if (WarningNode[ID]) {
1082      DstModFlags->addOperand(WarningNode[ID]);
1083      AddedNodes[ID].push_back(WarningNode[ID]);
1084    }
1085
1086    for (SmallSetVector<MDNode*, 8>::iterator
1087           II = RequireNodes[ID].begin(), IE = RequireNodes[ID].end();
1088         II != IE; ++II)
1089      DstModFlags->addOperand(*II);
1090  }
1091
1092  // Now check that all of the requirements have been satisfied.
1093  for (SmallSetVector<MDString*, 16>::iterator
1094         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1095    MDString *ID = *I;
1096    SmallSetVector<MDNode*, 8> &Set = RequireNodes[ID];
1097
1098    for (SmallSetVector<MDNode*, 8>::iterator
1099           II = Set.begin(), IE = Set.end(); II != IE; ++II) {
1100      MDNode *Node = *II;
1101      assert(isa<MDNode>(Node->getOperand(2)) &&
1102             "Module flag's third operand must be an MDNode!");
1103      MDNode *Val = cast<MDNode>(Node->getOperand(2));
1104
1105      MDString *ReqID = cast<MDString>(Val->getOperand(0));
1106      Value *ReqVal = Val->getOperand(1);
1107
1108      bool HasValue = false;
1109      for (SmallVectorImpl<MDNode*>::iterator
1110             RI = AddedNodes[ReqID].begin(), RE = AddedNodes[ReqID].end();
1111           RI != RE; ++RI) {
1112        MDNode *ReqNode = *RI;
1113        if (ReqNode->getOperand(2) == ReqVal) {
1114          HasValue = true;
1115          break;
1116        }
1117      }
1118
1119      if (!HasValue)
1120        HasErr = emitError("linking module flags '" + ReqID->getString() +
1121                           "': does not have the required value");
1122    }
1123  }
1124
1125  return HasErr;
1126}
1127
1128bool ModuleLinker::run() {
1129  assert(DstM && "Null destination module");
1130  assert(SrcM && "Null source module");
1131
1132  // Inherit the target data from the source module if the destination module
1133  // doesn't have one already.
1134  if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
1135    DstM->setDataLayout(SrcM->getDataLayout());
1136
1137  // Copy the target triple from the source to dest if the dest's is empty.
1138  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1139    DstM->setTargetTriple(SrcM->getTargetTriple());
1140
1141  if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
1142      SrcM->getDataLayout() != DstM->getDataLayout())
1143    errs() << "WARNING: Linking two modules of different data layouts!\n";
1144  if (!SrcM->getTargetTriple().empty() &&
1145      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1146    errs() << "WARNING: Linking two modules of different target triples: ";
1147    if (!SrcM->getModuleIdentifier().empty())
1148      errs() << SrcM->getModuleIdentifier() << ": ";
1149    errs() << "'" << SrcM->getTargetTriple() << "' and '"
1150           << DstM->getTargetTriple() << "'\n";
1151  }
1152
1153  // Append the module inline asm string.
1154  if (!SrcM->getModuleInlineAsm().empty()) {
1155    if (DstM->getModuleInlineAsm().empty())
1156      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1157    else
1158      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1159                               SrcM->getModuleInlineAsm());
1160  }
1161
1162  // Update the destination module's dependent libraries list with the libraries
1163  // from the source module. There's no opportunity for duplicates here as the
1164  // Module ensures that duplicate insertions are discarded.
1165  for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
1166       SI != SE; ++SI)
1167    DstM->addLibrary(*SI);
1168
1169  // If the source library's module id is in the dependent library list of the
1170  // destination library, remove it since that module is now linked in.
1171  StringRef ModuleId = SrcM->getModuleIdentifier();
1172  if (!ModuleId.empty())
1173    DstM->removeLibrary(sys::path::stem(ModuleId));
1174
1175  // Loop over all of the linked values to compute type mappings.
1176  computeTypeMapping();
1177
1178  // Insert all of the globals in src into the DstM module... without linking
1179  // initializers (which could refer to functions not yet mapped over).
1180  for (Module::global_iterator I = SrcM->global_begin(),
1181       E = SrcM->global_end(); I != E; ++I)
1182    if (linkGlobalProto(I))
1183      return true;
1184
1185  // Link the functions together between the two modules, without doing function
1186  // bodies... this just adds external function prototypes to the DstM
1187  // function...  We do this so that when we begin processing function bodies,
1188  // all of the global values that may be referenced are available in our
1189  // ValueMap.
1190  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1191    if (linkFunctionProto(I))
1192      return true;
1193
1194  // If there were any aliases, link them now.
1195  for (Module::alias_iterator I = SrcM->alias_begin(),
1196       E = SrcM->alias_end(); I != E; ++I)
1197    if (linkAliasProto(I))
1198      return true;
1199
1200  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1201    linkAppendingVarInit(AppendingVars[i]);
1202
1203  // Update the initializers in the DstM module now that all globals that may
1204  // be referenced are in DstM.
1205  linkGlobalInits();
1206
1207  // Link in the function bodies that are defined in the source module into
1208  // DstM.
1209  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1210    // Skip if not linking from source.
1211    if (DoNotLinkFromSource.count(SF)) continue;
1212
1213    // Skip if no body (function is external) or materialize.
1214    if (SF->isDeclaration()) {
1215      if (!SF->isMaterializable())
1216        continue;
1217      if (SF->Materialize(&ErrorMsg))
1218        return true;
1219    }
1220
1221    linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
1222  }
1223
1224  // Resolve all uses of aliases with aliasees.
1225  linkAliasBodies();
1226
1227  // Remap all of the named MDNodes in Src into the DstM module. We do this
1228  // after linking GlobalValues so that MDNodes that reference GlobalValues
1229  // are properly remapped.
1230  linkNamedMDNodes();
1231
1232  // Merge the module flags into the DstM module.
1233  if (linkModuleFlagsMetadata())
1234    return true;
1235
1236  // Process vector of lazily linked in functions.
1237  bool LinkedInAnyFunctions;
1238  do {
1239    LinkedInAnyFunctions = false;
1240
1241    for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1242        E = LazilyLinkFunctions.end(); I != E; ++I) {
1243      if (!*I)
1244        continue;
1245
1246      Function *SF = *I;
1247      Function *DF = cast<Function>(ValueMap[SF]);
1248
1249      if (!DF->use_empty()) {
1250
1251        // Materialize if necessary.
1252        if (SF->isDeclaration()) {
1253          if (!SF->isMaterializable())
1254            continue;
1255          if (SF->Materialize(&ErrorMsg))
1256            return true;
1257        }
1258
1259        // Link in function body.
1260        linkFunctionBody(DF, SF);
1261
1262        // "Remove" from vector by setting the element to 0.
1263        *I = 0;
1264
1265        // Set flag to indicate we may have more functions to lazily link in
1266        // since we linked in a function.
1267        LinkedInAnyFunctions = true;
1268      }
1269    }
1270  } while (LinkedInAnyFunctions);
1271
1272  // Remove any prototypes of functions that were not actually linked in.
1273  for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1274      E = LazilyLinkFunctions.end(); I != E; ++I) {
1275    if (!*I)
1276      continue;
1277
1278    Function *SF = *I;
1279    Function *DF = cast<Function>(ValueMap[SF]);
1280    if (DF->use_empty())
1281      DF->eraseFromParent();
1282  }
1283
1284  // Now that all of the types from the source are used, resolve any structs
1285  // copied over to the dest that didn't exist there.
1286  TypeMap.linkDefinedTypeBodies();
1287
1288  return false;
1289}
1290
1291//===----------------------------------------------------------------------===//
1292// LinkModules entrypoint.
1293//===----------------------------------------------------------------------===//
1294
1295// LinkModules - This function links two modules together, with the resulting
1296// left module modified to be the composite of the two input modules.  If an
1297// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1298// the problem.  Upon failure, the Dest module could be in a modified state, and
1299// shouldn't be relied on to be consistent.
1300bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1301                         std::string *ErrorMsg) {
1302  ModuleLinker TheLinker(Dest, Src, Mode);
1303  if (TheLinker.run()) {
1304    if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
1305    return true;
1306  }
1307
1308  return false;
1309}
1310