LinkModules.cpp revision 35956558e26e655aaa2e8ad6ee405365271869a4
1//===- Linker.cpp - Module Linker Implementation --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Utils/Linker.h"
20#include "llvm/Module.h"
21#include "llvm/SymbolTable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/iOther.h"
24#include "llvm/Constants.h"
25
26// Error - Simple wrapper function to conditionally assign to E and return true.
27// This just makes error return conditions a little bit simpler...
28//
29static inline bool Error(std::string *E, const std::string &Message) {
30  if (E) *E = Message;
31  return true;
32}
33
34// ResolveTypes - Attempt to link the two specified types together.  Return true
35// if there is an error and they cannot yet be linked.
36//
37static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
38                         SymbolTable *DestST, const std::string &Name) {
39  if (DestTy == SrcTy) return false;       // If already equal, noop
40
41  // Does the type already exist in the module?
42  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
43    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
44      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
45    } else {
46      return true;  // Cannot link types... neither is opaque and not-equal
47    }
48  } else {                       // Type not in dest module.  Add it now.
49    if (DestTy)                  // Type _is_ in module, just opaque...
50      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
51                           ->refineAbstractTypeTo(SrcTy);
52    else if (!Name.empty())
53      DestST->insert(Name, const_cast<Type*>(SrcTy));
54  }
55  return false;
56}
57
58static const FunctionType *getFT(const PATypeHolder &TH) {
59  return cast<FunctionType>(TH.get());
60}
61static const StructType *getST(const PATypeHolder &TH) {
62  return cast<StructType>(TH.get());
63}
64
65// RecursiveResolveTypes - This is just like ResolveTypes, except that it
66// recurses down into derived types, merging the used types if the parent types
67// are compatible.
68//
69static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
70                                   const PATypeHolder &SrcTy,
71                                   SymbolTable *DestST, const std::string &Name,
72                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
73  const Type *SrcTyT = SrcTy.get();
74  const Type *DestTyT = DestTy.get();
75  if (DestTyT == SrcTyT) return false;       // If already equal, noop
76
77  // If we found our opaque type, resolve it now!
78  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
79    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
80
81  // Two types cannot be resolved together if they are of different primitive
82  // type.  For example, we cannot resolve an int to a float.
83  if (DestTyT->getPrimitiveID() != SrcTyT->getPrimitiveID()) return true;
84
85  // Otherwise, resolve the used type used by this derived type...
86  switch (DestTyT->getPrimitiveID()) {
87  case Type::FunctionTyID: {
88    if (cast<FunctionType>(DestTyT)->isVarArg() !=
89        cast<FunctionType>(SrcTyT)->isVarArg() ||
90        cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
91        cast<FunctionType>(SrcTyT)->getNumContainedTypes())
92      return true;
93    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
94      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
95                                 getFT(SrcTy)->getContainedType(i), DestST, "",
96                                 Pointers))
97        return true;
98    return false;
99  }
100  case Type::StructTyID: {
101    if (getST(DestTy)->getNumContainedTypes() !=
102        getST(SrcTy)->getNumContainedTypes()) return 1;
103    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
104      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
105                                 getST(SrcTy)->getContainedType(i), DestST, "",
106                                 Pointers))
107        return true;
108    return false;
109  }
110  case Type::ArrayTyID: {
111    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
112    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
113    if (DAT->getNumElements() != SAT->getNumElements()) return true;
114    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
115                                  DestST, "", Pointers);
116  }
117  case Type::PointerTyID: {
118    // If this is a pointer type, check to see if we have already seen it.  If
119    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
120    // an associative container for this search, because the type pointers (keys
121    // in the container) change whenever types get resolved...
122    //
123    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
124      if (Pointers[i].first == DestTy)
125        return Pointers[i].second != SrcTy;
126
127    // Otherwise, add the current pointers to the vector to stop recursion on
128    // this pair.
129    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
130    bool Result =
131      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
132                             cast<PointerType>(SrcTy.get())->getElementType(),
133                             DestST, "", Pointers);
134    Pointers.pop_back();
135    return Result;
136  }
137  default: assert(0 && "Unexpected type!"); return true;
138  }
139}
140
141static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
142                                  const PATypeHolder &SrcTy,
143                                  SymbolTable *DestST, const std::string &Name){
144  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
145  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
146}
147
148
149// LinkTypes - Go through the symbol table of the Src module and see if any
150// types are named in the src module that are not named in the Dst module.
151// Make sure there are no type name conflicts.
152//
153static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
154  SymbolTable       *DestST = &Dest->getSymbolTable();
155  const SymbolTable *SrcST  = &Src->getSymbolTable();
156
157  // Look for a type plane for Type's...
158  SymbolTable::const_iterator PI = SrcST->find(Type::TypeTy);
159  if (PI == SrcST->end()) return false;  // No named types, do nothing.
160
161  // Some types cannot be resolved immediately because they depend on other
162  // types being resolved to each other first.  This contains a list of types we
163  // are waiting to recheck.
164  std::vector<std::string> DelayedTypesToResolve;
165
166  const SymbolTable::VarMap &VM = PI->second;
167  for (SymbolTable::type_const_iterator I = VM.begin(), E = VM.end();
168       I != E; ++I) {
169    const std::string &Name = I->first;
170    Type *RHS = cast<Type>(I->second);
171
172    // Check to see if this type name is already in the dest module...
173    Type *Entry = cast_or_null<Type>(DestST->lookup(Type::TypeTy, Name));
174
175    if (ResolveTypes(Entry, RHS, DestST, Name)) {
176      // They look different, save the types 'till later to resolve.
177      DelayedTypesToResolve.push_back(Name);
178    }
179  }
180
181  // Iteratively resolve types while we can...
182  while (!DelayedTypesToResolve.empty()) {
183    // Loop over all of the types, attempting to resolve them if possible...
184    unsigned OldSize = DelayedTypesToResolve.size();
185
186    // Try direct resolution by name...
187    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
188      const std::string &Name = DelayedTypesToResolve[i];
189      Type *T1 = cast<Type>(VM.find(Name)->second);
190      Type *T2 = cast<Type>(DestST->lookup(Type::TypeTy, Name));
191      if (!ResolveTypes(T2, T1, DestST, Name)) {
192        // We are making progress!
193        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
194        --i;
195      }
196    }
197
198    // Did we not eliminate any types?
199    if (DelayedTypesToResolve.size() == OldSize) {
200      // Attempt to resolve subelements of types.  This allows us to merge these
201      // two types: { int* } and { opaque* }
202      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
203        const std::string &Name = DelayedTypesToResolve[i];
204        PATypeHolder T1(cast<Type>(VM.find(Name)->second));
205        PATypeHolder T2(cast<Type>(DestST->lookup(Type::TypeTy, Name)));
206
207        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
208          // We are making progress!
209          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
210
211          // Go back to the main loop, perhaps we can resolve directly by name
212          // now...
213          break;
214        }
215      }
216
217      // If we STILL cannot resolve the types, then there is something wrong.
218      // Report the warning and delete one of the names.
219      if (DelayedTypesToResolve.size() == OldSize) {
220        const std::string &Name = DelayedTypesToResolve.back();
221
222        const Type *T1 = cast<Type>(VM.find(Name)->second);
223        const Type *T2 = cast<Type>(DestST->lookup(Type::TypeTy, Name));
224        std::cerr << "WARNING: Type conflict between types named '" << Name
225                  <<  "'.\n    Src='" << *T1 << "'.\n   Dest='" << *T2 << "'\n";
226
227        // Remove the symbol name from the destination.
228        DelayedTypesToResolve.pop_back();
229      }
230    }
231  }
232
233
234  return false;
235}
236
237static void PrintMap(const std::map<const Value*, Value*> &M) {
238  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
239       I != E; ++I) {
240    std::cerr << " Fr: " << (void*)I->first << " ";
241    I->first->dump();
242    std::cerr << " To: " << (void*)I->second << " ";
243    I->second->dump();
244    std::cerr << "\n";
245  }
246}
247
248
249// RemapOperand - Use LocalMap and GlobalMap to convert references from one
250// module to another.  This is somewhat sophisticated in that it can
251// automatically handle constant references correctly as well...
252//
253static Value *RemapOperand(const Value *In,
254                           std::map<const Value*, Value*> &LocalMap,
255                           std::map<const Value*, Value*> *GlobalMap) {
256  std::map<const Value*,Value*>::const_iterator I = LocalMap.find(In);
257  if (I != LocalMap.end()) return I->second;
258
259  if (GlobalMap) {
260    I = GlobalMap->find(In);
261    if (I != GlobalMap->end()) return I->second;
262  }
263
264  // Check to see if it's a constant that we are interesting in transforming...
265  if (const Constant *CPV = dyn_cast<Constant>(In)) {
266    if (!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV))
267      return const_cast<Constant*>(CPV);   // Simple constants stay identical...
268
269    Constant *Result = 0;
270
271    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
272      const std::vector<Use> &Ops = CPA->getValues();
273      std::vector<Constant*> Operands(Ops.size());
274      for (unsigned i = 0, e = Ops.size(); i != e; ++i)
275        Operands[i] =
276          cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
277      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
278    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
279      const std::vector<Use> &Ops = CPS->getValues();
280      std::vector<Constant*> Operands(Ops.size());
281      for (unsigned i = 0; i < Ops.size(); ++i)
282        Operands[i] =
283          cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
284      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
285    } else if (isa<ConstantPointerNull>(CPV)) {
286      Result = const_cast<Constant*>(CPV);
287    } else if (const ConstantPointerRef *CPR =
288                      dyn_cast<ConstantPointerRef>(CPV)) {
289      Value *V = RemapOperand(CPR->getValue(), LocalMap, GlobalMap);
290      Result = ConstantPointerRef::get(cast<GlobalValue>(V));
291    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
292      if (CE->getOpcode() == Instruction::GetElementPtr) {
293        Value *Ptr = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
294        std::vector<Constant*> Indices;
295        Indices.reserve(CE->getNumOperands()-1);
296        for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
297          Indices.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),
298                                                        LocalMap, GlobalMap)));
299
300        Result = ConstantExpr::getGetElementPtr(cast<Constant>(Ptr), Indices);
301      } else if (CE->getNumOperands() == 1) {
302        // Cast instruction
303        assert(CE->getOpcode() == Instruction::Cast);
304        Value *V = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
305        Result = ConstantExpr::getCast(cast<Constant>(V), CE->getType());
306      } else if (CE->getNumOperands() == 2) {
307        // Binary operator...
308        Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
309        Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
310
311        Result = ConstantExpr::get(CE->getOpcode(), cast<Constant>(V1),
312                                   cast<Constant>(V2));
313      } else {
314        assert(0 && "Unknown constant expr type!");
315      }
316
317    } else {
318      assert(0 && "Unknown type of derived type constant value!");
319    }
320
321    // Cache the mapping in our local map structure...
322    if (GlobalMap)
323      GlobalMap->insert(std::make_pair(In, Result));
324    else
325      LocalMap.insert(std::make_pair(In, Result));
326    return Result;
327  }
328
329  std::cerr << "XXX LocalMap: \n";
330  PrintMap(LocalMap);
331
332  if (GlobalMap) {
333    std::cerr << "XXX GlobalMap: \n";
334    PrintMap(*GlobalMap);
335  }
336
337  std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
338  assert(0 && "Couldn't remap value!");
339  return 0;
340}
341
342/// FindGlobalNamed - Look in the specified symbol table for a global with the
343/// specified name and type.  If an exactly matching global does not exist, see
344/// if there is a global which is "type compatible" with the specified
345/// name/type.  This allows us to resolve things like '%x = global int*' with
346/// '%x = global opaque*'.
347///
348static GlobalValue *FindGlobalNamed(const std::string &Name, const Type *Ty,
349                                    SymbolTable *ST) {
350  // See if an exact match exists in the symbol table...
351  if (Value *V = ST->lookup(Ty, Name)) return cast<GlobalValue>(V);
352
353  // It doesn't exist exactly, scan through all of the type planes in the symbol
354  // table, checking each of them for a type-compatible version.
355  //
356  for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I)
357    if (I->first != Type::TypeTy) {
358      SymbolTable::VarMap &VM = I->second;
359      // Does this type plane contain an entry with the specified name?
360      SymbolTable::type_iterator TI = VM.find(Name);
361      if (TI != VM.end()) {
362        // Determine whether we can fold the two types together, resolving them.
363        // If so, we can use this value.
364        if (!RecursiveResolveTypes(Ty, I->first, ST, ""))
365          return cast<GlobalValue>(TI->second);
366      }
367    }
368  return 0;  // Otherwise, nothing could be found.
369}
370
371
372// LinkGlobals - Loop through the global variables in the src module and merge
373// them into the dest module.
374//
375static bool LinkGlobals(Module *Dest, const Module *Src,
376                        std::map<const Value*, Value*> &ValueMap,
377                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
378                        std::string *Err) {
379  // We will need a module level symbol table if the src module has a module
380  // level symbol table...
381  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
382
383  // Loop over all of the globals in the src module, mapping them over as we go
384  //
385  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
386    const GlobalVariable *SGV = I;
387    GlobalVariable *DGV = 0;
388    if (SGV->hasName()) {
389      // A same named thing is a global variable, because the only two things
390      // that may be in a module level symbol table are Global Vars and
391      // Functions, and they both have distinct, nonoverlapping, possible types.
392      //
393      DGV = cast_or_null<GlobalVariable>(FindGlobalNamed(SGV->getName(),
394                                                         SGV->getType(), ST));
395    }
396
397    assert(SGV->hasInitializer() || SGV->hasExternalLinkage() &&
398           "Global must either be external or have an initializer!");
399
400    bool SGExtern = SGV->isExternal();
401    bool DGExtern = DGV ? DGV->isExternal() : false;
402
403    if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) {
404      // No linking to be performed, simply create an identical version of the
405      // symbol over in the dest module... the initializer will be filled in
406      // later by LinkGlobalInits...
407      //
408      GlobalVariable *NewDGV =
409        new GlobalVariable(SGV->getType()->getElementType(),
410                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
411                           SGV->getName(), Dest);
412
413      // If the LLVM runtime renamed the global, but it is an externally visible
414      // symbol, DGV must be an existing global with internal linkage.  Rename
415      // it.
416      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage()){
417        assert(DGV && DGV->getName() == SGV->getName() &&
418               DGV->hasInternalLinkage());
419        DGV->setName("");
420        NewDGV->setName(SGV->getName());  // Force the name back
421        DGV->setName(SGV->getName());     // This will cause a renaming
422        assert(NewDGV->getName() == SGV->getName() &&
423               DGV->getName() != SGV->getName());
424      }
425
426      // Make sure to remember this mapping...
427      ValueMap.insert(std::make_pair(SGV, NewDGV));
428      if (SGV->hasAppendingLinkage())
429        // Keep track that this is an appending variable...
430        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
431
432    } else if (SGV->isExternal()) {
433      // If SGV is external or if both SGV & DGV are external..  Just link the
434      // external globals, we aren't adding anything.
435      ValueMap.insert(std::make_pair(SGV, DGV));
436
437    } else if (DGV->isExternal()) {   // If DGV is external but SGV is not...
438      ValueMap.insert(std::make_pair(SGV, DGV));
439      DGV->setLinkage(SGV->getLinkage());    // Inherit linkage!
440    } else if (SGV->hasWeakLinkage() || SGV->hasLinkOnceLinkage()) {
441      // At this point we know that DGV has LinkOnce, Appending, Weak, or
442      // External linkage.  If DGV is Appending, this is an error.
443      if (DGV->hasAppendingLinkage())
444        return Error(Err, "Linking globals named '" + SGV->getName() +
445                     " ' with 'weak' and 'appending' linkage is not allowed!");
446
447      if (SGV->isConstant() != DGV->isConstant())
448        return Error(Err, "Global Variable Collision on '" +
449                     SGV->getType()->getDescription() + " %" + SGV->getName() +
450                     "' - Global variables differ in const'ness");
451
452      // Otherwise, just perform the link.
453      ValueMap.insert(std::make_pair(SGV, DGV));
454
455      // Linkonce+Weak = Weak
456      if (DGV->hasLinkOnceLinkage() && SGV->hasWeakLinkage())
457        DGV->setLinkage(SGV->getLinkage());
458
459    } else if (DGV->hasWeakLinkage() || DGV->hasLinkOnceLinkage()) {
460      // At this point we know that SGV has LinkOnce, Appending, or External
461      // linkage.  If SGV is Appending, this is an error.
462      if (SGV->hasAppendingLinkage())
463        return Error(Err, "Linking globals named '" + SGV->getName() +
464                     " ' with 'weak' and 'appending' linkage is not allowed!");
465
466      if (SGV->isConstant() != DGV->isConstant())
467        return Error(Err, "Global Variable Collision on '" +
468                     SGV->getType()->getDescription() + " %" + SGV->getName() +
469                     "' - Global variables differ in const'ness");
470
471      if (!SGV->hasLinkOnceLinkage())
472        DGV->setLinkage(SGV->getLinkage());    // Inherit linkage!
473      ValueMap.insert(std::make_pair(SGV, DGV));
474
475    } else if (SGV->getLinkage() != DGV->getLinkage()) {
476      return Error(Err, "Global variables named '" + SGV->getName() +
477                   "' have different linkage specifiers!");
478    } else if (SGV->hasExternalLinkage()) {
479      // Allow linking two exactly identical external global variables...
480      if (SGV->isConstant() != DGV->isConstant())
481        return Error(Err, "Global Variable Collision on '" +
482                     SGV->getType()->getDescription() + " %" + SGV->getName() +
483                     "' - Global variables differ in const'ness");
484
485      if (SGV->getInitializer() != DGV->getInitializer())
486        return Error(Err, "Global Variable Collision on '" +
487                     SGV->getType()->getDescription() + " %" + SGV->getName() +
488                    "' - External linkage globals have different initializers");
489
490      ValueMap.insert(std::make_pair(SGV, DGV));
491    } else if (SGV->hasAppendingLinkage()) {
492      // No linking is performed yet.  Just insert a new copy of the global, and
493      // keep track of the fact that it is an appending variable in the
494      // AppendingVars map.  The name is cleared out so that no linkage is
495      // performed.
496      GlobalVariable *NewDGV =
497        new GlobalVariable(SGV->getType()->getElementType(),
498                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
499                           "", Dest);
500
501      // Make sure to remember this mapping...
502      ValueMap.insert(std::make_pair(SGV, NewDGV));
503
504      // Keep track that this is an appending variable...
505      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
506    } else {
507      assert(0 && "Unknown linkage!");
508    }
509  }
510  return false;
511}
512
513
514// LinkGlobalInits - Update the initializers in the Dest module now that all
515// globals that may be referenced are in Dest.
516//
517static bool LinkGlobalInits(Module *Dest, const Module *Src,
518                            std::map<const Value*, Value*> &ValueMap,
519                            std::string *Err) {
520
521  // Loop over all of the globals in the src module, mapping them over as we go
522  //
523  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
524    const GlobalVariable *SGV = I;
525
526    if (SGV->hasInitializer()) {      // Only process initialized GV's
527      // Figure out what the initializer looks like in the dest module...
528      Constant *SInit =
529        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap, 0));
530
531      GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
532      if (DGV->hasInitializer()) {
533        assert(SGV->getLinkage() == DGV->getLinkage());
534        if (SGV->hasExternalLinkage()) {
535          if (DGV->getInitializer() != SInit)
536            return Error(Err, "Global Variable Collision on '" +
537                         SGV->getType()->getDescription() +"':%"+SGV->getName()+
538                         " - Global variables have different initializers");
539        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
540          // Nothing is required, mapped values will take the new global
541          // automatically.
542        } else if (DGV->hasAppendingLinkage()) {
543          assert(0 && "Appending linkage unimplemented!");
544        } else {
545          assert(0 && "Unknown linkage!");
546        }
547      } else {
548        // Copy the initializer over now...
549        DGV->setInitializer(SInit);
550      }
551    }
552  }
553  return false;
554}
555
556// LinkFunctionProtos - Link the functions together between the two modules,
557// without doing function bodies... this just adds external function prototypes
558// to the Dest function...
559//
560static bool LinkFunctionProtos(Module *Dest, const Module *Src,
561                               std::map<const Value*, Value*> &ValueMap,
562                               std::string *Err) {
563  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
564
565  // Loop over all of the functions in the src module, mapping them over as we
566  // go
567  //
568  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
569    const Function *SF = I;   // SrcFunction
570    Function *DF = 0;
571    if (SF->hasName())
572      // The same named thing is a Function, because the only two things
573      // that may be in a module level symbol table are Global Vars and
574      // Functions, and they both have distinct, nonoverlapping, possible types.
575      //
576      DF = cast_or_null<Function>(FindGlobalNamed(SF->getName(), SF->getType(),
577                                                  ST));
578
579    if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
580      // Function does not already exist, simply insert an function signature
581      // identical to SF into the dest module...
582      Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
583                                     SF->getName(), Dest);
584
585      // If the LLVM runtime renamed the function, but it is an externally
586      // visible symbol, DF must be an existing function with internal linkage.
587      // Rename it.
588      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) {
589        assert(DF && DF->getName() == SF->getName() &&DF->hasInternalLinkage());
590        DF->setName("");
591        NewDF->setName(SF->getName());  // Force the name back
592        DF->setName(SF->getName());     // This will cause a renaming
593        assert(NewDF->getName() == SF->getName() &&
594               DF->getName() != SF->getName());
595      }
596
597      // ... and remember this mapping...
598      ValueMap.insert(std::make_pair(SF, NewDF));
599    } else if (SF->isExternal()) {
600      // If SF is external or if both SF & DF are external..  Just link the
601      // external functions, we aren't adding anything.
602      ValueMap.insert(std::make_pair(SF, DF));
603    } else if (DF->isExternal()) {   // If DF is external but SF is not...
604      // Link the external functions, update linkage qualifiers
605      ValueMap.insert(std::make_pair(SF, DF));
606      DF->setLinkage(SF->getLinkage());
607
608    } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
609      // At this point we know that DF has LinkOnce, Weak, or External linkage.
610      ValueMap.insert(std::make_pair(SF, DF));
611
612      // Linkonce+Weak = Weak
613      if (DF->hasLinkOnceLinkage() && SF->hasWeakLinkage())
614        DF->setLinkage(SF->getLinkage());
615
616    } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
617      // At this point we know that SF has LinkOnce or External linkage.
618      ValueMap.insert(std::make_pair(SF, DF));
619      if (!SF->hasLinkOnceLinkage())   // Don't inherit linkonce linkage
620        DF->setLinkage(SF->getLinkage());
621
622    } else if (SF->getLinkage() != DF->getLinkage()) {
623      return Error(Err, "Functions named '" + SF->getName() +
624                   "' have different linkage specifiers!");
625    } else if (SF->hasExternalLinkage()) {
626      // The function is defined in both modules!!
627      return Error(Err, "Function '" +
628                   SF->getFunctionType()->getDescription() + "':\"" +
629                   SF->getName() + "\" - Function is already defined!");
630    } else {
631      assert(0 && "Unknown linkage configuration found!");
632    }
633  }
634  return false;
635}
636
637// LinkFunctionBody - Copy the source function over into the dest function and
638// fix up references to values.  At this point we know that Dest is an external
639// function, and that Src is not.
640//
641static bool LinkFunctionBody(Function *Dest, const Function *Src,
642                             std::map<const Value*, Value*> &GlobalMap,
643                             std::string *Err) {
644  assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
645  std::map<const Value*, Value*> LocalMap;   // Map for function local values
646
647  // Go through and convert function arguments over...
648  Function::aiterator DI = Dest->abegin();
649  for (Function::const_aiterator I = Src->abegin(), E = Src->aend();
650       I != E; ++I, ++DI) {
651    DI->setName(I->getName());  // Copy the name information over...
652
653    // Add a mapping to our local map
654    LocalMap.insert(std::make_pair(I, DI));
655  }
656
657  // Loop over all of the basic blocks, copying the instructions over...
658  //
659  for (Function::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
660    // Create new basic block and add to mapping and the Dest function...
661    BasicBlock *DBB = new BasicBlock(I->getName(), Dest);
662    LocalMap.insert(std::make_pair(I, DBB));
663
664    // Loop over all of the instructions in the src basic block, copying them
665    // over.  Note that this is broken in a strict sense because the cloned
666    // instructions will still be referencing values in the Src module, not
667    // the remapped values.  In our case, however, we will not get caught and
668    // so we can delay patching the values up until later...
669    //
670    for (BasicBlock::const_iterator II = I->begin(), IE = I->end();
671         II != IE; ++II) {
672      Instruction *DI = II->clone();
673      DI->setName(II->getName());
674      DBB->getInstList().push_back(DI);
675      LocalMap.insert(std::make_pair(II, DI));
676    }
677  }
678
679  // At this point, all of the instructions and values of the function are now
680  // copied over.  The only problem is that they are still referencing values in
681  // the Source function as operands.  Loop through all of the operands of the
682  // functions and patch them up to point to the local versions...
683  //
684  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
685    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
686      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
687           OI != OE; ++OI)
688        *OI = RemapOperand(*OI, LocalMap, &GlobalMap);
689
690  return false;
691}
692
693
694// LinkFunctionBodies - Link in the function bodies that are defined in the
695// source module into the DestModule.  This consists basically of copying the
696// function over and fixing up references to values.
697//
698static bool LinkFunctionBodies(Module *Dest, const Module *Src,
699                               std::map<const Value*, Value*> &ValueMap,
700                               std::string *Err) {
701
702  // Loop over all of the functions in the src module, mapping them over as we
703  // go
704  //
705  for (Module::const_iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF){
706    if (!SF->isExternal()) {                  // No body if function is external
707      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
708
709      // DF not external SF external?
710      if (DF->isExternal()) {
711        // Only provide the function body if there isn't one already.
712        if (LinkFunctionBody(DF, SF, ValueMap, Err))
713          return true;
714      }
715    }
716  }
717  return false;
718}
719
720// LinkAppendingVars - If there were any appending global variables, link them
721// together now.  Return true on error.
722//
723static bool LinkAppendingVars(Module *M,
724                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
725                              std::string *ErrorMsg) {
726  if (AppendingVars.empty()) return false; // Nothing to do.
727
728  // Loop over the multimap of appending vars, processing any variables with the
729  // same name, forming a new appending global variable with both of the
730  // initializers merged together, then rewrite references to the old variables
731  // and delete them.
732  //
733  std::vector<Constant*> Inits;
734  while (AppendingVars.size() > 1) {
735    // Get the first two elements in the map...
736    std::multimap<std::string,
737      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
738
739    // If the first two elements are for different names, there is no pair...
740    // Otherwise there is a pair, so link them together...
741    if (First->first == Second->first) {
742      GlobalVariable *G1 = First->second, *G2 = Second->second;
743      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
744      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
745
746      // Check to see that they two arrays agree on type...
747      if (T1->getElementType() != T2->getElementType())
748        return Error(ErrorMsg,
749         "Appending variables with different element types need to be linked!");
750      if (G1->isConstant() != G2->isConstant())
751        return Error(ErrorMsg,
752                     "Appending variables linked with different const'ness!");
753
754      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
755      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
756
757      // Create the new global variable...
758      GlobalVariable *NG =
759        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
760                           /*init*/0, First->first, M);
761
762      // Merge the initializer...
763      Inits.reserve(NewSize);
764      ConstantArray *I = cast<ConstantArray>(G1->getInitializer());
765      for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
766        Inits.push_back(cast<Constant>(I->getValues()[i]));
767      I = cast<ConstantArray>(G2->getInitializer());
768      for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
769        Inits.push_back(cast<Constant>(I->getValues()[i]));
770      NG->setInitializer(ConstantArray::get(NewType, Inits));
771      Inits.clear();
772
773      // Replace any uses of the two global variables with uses of the new
774      // global...
775
776      // FIXME: This should rewrite simple/straight-forward uses such as
777      // getelementptr instructions to not use the Cast!
778      ConstantPointerRef *NGCP = ConstantPointerRef::get(NG);
779      G1->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G1->getType()));
780      G2->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G2->getType()));
781
782      // Remove the two globals from the module now...
783      M->getGlobalList().erase(G1);
784      M->getGlobalList().erase(G2);
785
786      // Put the new global into the AppendingVars map so that we can handle
787      // linking of more than two vars...
788      Second->second = NG;
789    }
790    AppendingVars.erase(First);
791  }
792
793  return false;
794}
795
796
797// LinkModules - This function links two modules together, with the resulting
798// left module modified to be the composite of the two input modules.  If an
799// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
800// the problem.  Upon failure, the Dest module could be in a modified state, and
801// shouldn't be relied on to be consistent.
802//
803bool LinkModules(Module *Dest, const Module *Src, std::string *ErrorMsg) {
804  if (Dest->getEndianness() == Module::AnyEndianness)
805    Dest->setEndianness(Src->getEndianness());
806  if (Dest->getPointerSize() == Module::AnyPointerSize)
807    Dest->setPointerSize(Src->getPointerSize());
808
809  if (Src->getEndianness() != Module::AnyEndianness &&
810      Dest->getEndianness() != Src->getEndianness())
811    std::cerr << "WARNING: Linking two modules of different endianness!\n";
812  if (Src->getPointerSize() != Module::AnyPointerSize &&
813      Dest->getPointerSize() != Src->getPointerSize())
814    std::cerr << "WARNING: Linking two modules of different pointer size!\n";
815
816  // LinkTypes - Go through the symbol table of the Src module and see if any
817  // types are named in the src module that are not named in the Dst module.
818  // Make sure there are no type name conflicts.
819  //
820  if (LinkTypes(Dest, Src, ErrorMsg)) return true;
821
822  // ValueMap - Mapping of values from what they used to be in Src, to what they
823  // are now in Dest.
824  //
825  std::map<const Value*, Value*> ValueMap;
826
827  // AppendingVars - Keep track of global variables in the destination module
828  // with appending linkage.  After the module is linked together, they are
829  // appended and the module is rewritten.
830  //
831  std::multimap<std::string, GlobalVariable *> AppendingVars;
832
833  // Add all of the appending globals already in the Dest module to
834  // AppendingVars.
835  for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I)
836    if (I->hasAppendingLinkage())
837      AppendingVars.insert(std::make_pair(I->getName(), I));
838
839  // Insert all of the globals in src into the Dest module... without linking
840  // initializers (which could refer to functions not yet mapped over).
841  //
842  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg)) return true;
843
844  // Link the functions together between the two modules, without doing function
845  // bodies... this just adds external function prototypes to the Dest
846  // function...  We do this so that when we begin processing function bodies,
847  // all of the global values that may be referenced are available in our
848  // ValueMap.
849  //
850  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg)) return true;
851
852  // Update the initializers in the Dest module now that all globals that may
853  // be referenced are in Dest.
854  //
855  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
856
857  // Link in the function bodies that are defined in the source module into the
858  // DestModule.  This consists basically of copying the function over and
859  // fixing up references to values.
860  //
861  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
862
863  // If there were any appending global variables, link them together now.
864  //
865  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
866
867  return false;
868}
869
870