LinkModules.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Linker/Linker.h"
15#include "llvm-c/Linker.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Module.h"
21#include "llvm/IR/TypeFinder.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Transforms/Utils/Cloning.h"
26#include <cctype>
27using namespace llvm;
28
29
30//===----------------------------------------------------------------------===//
31// TypeMap implementation.
32//===----------------------------------------------------------------------===//
33
34namespace {
35  typedef SmallPtrSet<StructType*, 32> TypeSet;
36
37class TypeMapTy : public ValueMapTypeRemapper {
38  /// MappedTypes - This is a mapping from a source type to a destination type
39  /// to use.
40  DenseMap<Type*, Type*> MappedTypes;
41
42  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
43  /// we speculatively add types to MappedTypes, but keep track of them here in
44  /// case we need to roll back.
45  SmallVector<Type*, 16> SpeculativeTypes;
46
47  /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
48  /// source module that are mapped to an opaque struct in the destination
49  /// module.
50  SmallVector<StructType*, 16> SrcDefinitionsToResolve;
51
52  /// DstResolvedOpaqueTypes - This is the set of opaque types in the
53  /// destination modules who are getting a body from the source module.
54  SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
55
56public:
57  TypeMapTy(TypeSet &Set) : DstStructTypesSet(Set) {}
58
59  TypeSet &DstStructTypesSet;
60  /// addTypeMapping - Indicate that the specified type in the destination
61  /// module is conceptually equivalent to the specified type in the source
62  /// module.
63  void addTypeMapping(Type *DstTy, Type *SrcTy);
64
65  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
66  /// module from a type definition in the source module.
67  void linkDefinedTypeBodies();
68
69  /// get - Return the mapped type to use for the specified input type from the
70  /// source module.
71  Type *get(Type *SrcTy);
72
73  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
74
75  /// dump - Dump out the type map for debugging purposes.
76  void dump() const {
77    for (DenseMap<Type*, Type*>::const_iterator
78           I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
79      dbgs() << "TypeMap: ";
80      I->first->dump();
81      dbgs() << " => ";
82      I->second->dump();
83      dbgs() << '\n';
84    }
85  }
86
87private:
88  Type *getImpl(Type *T);
89  /// remapType - Implement the ValueMapTypeRemapper interface.
90  Type *remapType(Type *SrcTy) override {
91    return get(SrcTy);
92  }
93
94  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
95};
96}
97
98void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
99  Type *&Entry = MappedTypes[SrcTy];
100  if (Entry) return;
101
102  if (DstTy == SrcTy) {
103    Entry = DstTy;
104    return;
105  }
106
107  // Check to see if these types are recursively isomorphic and establish a
108  // mapping between them if so.
109  if (!areTypesIsomorphic(DstTy, SrcTy)) {
110    // Oops, they aren't isomorphic.  Just discard this request by rolling out
111    // any speculative mappings we've established.
112    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
113      MappedTypes.erase(SpeculativeTypes[i]);
114  }
115  SpeculativeTypes.clear();
116}
117
118/// areTypesIsomorphic - Recursively walk this pair of types, returning true
119/// if they are isomorphic, false if they are not.
120bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
121  // Two types with differing kinds are clearly not isomorphic.
122  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
123
124  // If we have an entry in the MappedTypes table, then we have our answer.
125  Type *&Entry = MappedTypes[SrcTy];
126  if (Entry)
127    return Entry == DstTy;
128
129  // Two identical types are clearly isomorphic.  Remember this
130  // non-speculatively.
131  if (DstTy == SrcTy) {
132    Entry = DstTy;
133    return true;
134  }
135
136  // Okay, we have two types with identical kinds that we haven't seen before.
137
138  // If this is an opaque struct type, special case it.
139  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
140    // Mapping an opaque type to any struct, just keep the dest struct.
141    if (SSTy->isOpaque()) {
142      Entry = DstTy;
143      SpeculativeTypes.push_back(SrcTy);
144      return true;
145    }
146
147    // Mapping a non-opaque source type to an opaque dest.  If this is the first
148    // type that we're mapping onto this destination type then we succeed.  Keep
149    // the dest, but fill it in later.  This doesn't need to be speculative.  If
150    // this is the second (different) type that we're trying to map onto the
151    // same opaque type then we fail.
152    if (cast<StructType>(DstTy)->isOpaque()) {
153      // We can only map one source type onto the opaque destination type.
154      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
155        return false;
156      SrcDefinitionsToResolve.push_back(SSTy);
157      Entry = DstTy;
158      return true;
159    }
160  }
161
162  // If the number of subtypes disagree between the two types, then we fail.
163  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
164    return false;
165
166  // Fail if any of the extra properties (e.g. array size) of the type disagree.
167  if (isa<IntegerType>(DstTy))
168    return false;  // bitwidth disagrees.
169  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
170    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
171      return false;
172
173  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
174    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
175      return false;
176  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
177    StructType *SSTy = cast<StructType>(SrcTy);
178    if (DSTy->isLiteral() != SSTy->isLiteral() ||
179        DSTy->isPacked() != SSTy->isPacked())
180      return false;
181  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
182    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
183      return false;
184  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
185    if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
186      return false;
187  }
188
189  // Otherwise, we speculate that these two types will line up and recursively
190  // check the subelements.
191  Entry = DstTy;
192  SpeculativeTypes.push_back(SrcTy);
193
194  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
195    if (!areTypesIsomorphic(DstTy->getContainedType(i),
196                            SrcTy->getContainedType(i)))
197      return false;
198
199  // If everything seems to have lined up, then everything is great.
200  return true;
201}
202
203/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
204/// module from a type definition in the source module.
205void TypeMapTy::linkDefinedTypeBodies() {
206  SmallVector<Type*, 16> Elements;
207  SmallString<16> TmpName;
208
209  // Note that processing entries in this loop (calling 'get') can add new
210  // entries to the SrcDefinitionsToResolve vector.
211  while (!SrcDefinitionsToResolve.empty()) {
212    StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
213    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
214
215    // TypeMap is a many-to-one mapping, if there were multiple types that
216    // provide a body for DstSTy then previous iterations of this loop may have
217    // already handled it.  Just ignore this case.
218    if (!DstSTy->isOpaque()) continue;
219    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
220
221    // Map the body of the source type over to a new body for the dest type.
222    Elements.resize(SrcSTy->getNumElements());
223    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
224      Elements[i] = getImpl(SrcSTy->getElementType(i));
225
226    DstSTy->setBody(Elements, SrcSTy->isPacked());
227
228    // If DstSTy has no name or has a longer name than STy, then viciously steal
229    // STy's name.
230    if (!SrcSTy->hasName()) continue;
231    StringRef SrcName = SrcSTy->getName();
232
233    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
234      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
235      SrcSTy->setName("");
236      DstSTy->setName(TmpName.str());
237      TmpName.clear();
238    }
239  }
240
241  DstResolvedOpaqueTypes.clear();
242}
243
244/// get - Return the mapped type to use for the specified input type from the
245/// source module.
246Type *TypeMapTy::get(Type *Ty) {
247  Type *Result = getImpl(Ty);
248
249  // If this caused a reference to any struct type, resolve it before returning.
250  if (!SrcDefinitionsToResolve.empty())
251    linkDefinedTypeBodies();
252  return Result;
253}
254
255/// getImpl - This is the recursive version of get().
256Type *TypeMapTy::getImpl(Type *Ty) {
257  // If we already have an entry for this type, return it.
258  Type **Entry = &MappedTypes[Ty];
259  if (*Entry) return *Entry;
260
261  // If this is not a named struct type, then just map all of the elements and
262  // then rebuild the type from inside out.
263  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
264    // If there are no element types to map, then the type is itself.  This is
265    // true for the anonymous {} struct, things like 'float', integers, etc.
266    if (Ty->getNumContainedTypes() == 0)
267      return *Entry = Ty;
268
269    // Remap all of the elements, keeping track of whether any of them change.
270    bool AnyChange = false;
271    SmallVector<Type*, 4> ElementTypes;
272    ElementTypes.resize(Ty->getNumContainedTypes());
273    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
274      ElementTypes[i] = getImpl(Ty->getContainedType(i));
275      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
276    }
277
278    // If we found our type while recursively processing stuff, just use it.
279    Entry = &MappedTypes[Ty];
280    if (*Entry) return *Entry;
281
282    // If all of the element types mapped directly over, then the type is usable
283    // as-is.
284    if (!AnyChange)
285      return *Entry = Ty;
286
287    // Otherwise, rebuild a modified type.
288    switch (Ty->getTypeID()) {
289    default: llvm_unreachable("unknown derived type to remap");
290    case Type::ArrayTyID:
291      return *Entry = ArrayType::get(ElementTypes[0],
292                                     cast<ArrayType>(Ty)->getNumElements());
293    case Type::VectorTyID:
294      return *Entry = VectorType::get(ElementTypes[0],
295                                      cast<VectorType>(Ty)->getNumElements());
296    case Type::PointerTyID:
297      return *Entry = PointerType::get(ElementTypes[0],
298                                      cast<PointerType>(Ty)->getAddressSpace());
299    case Type::FunctionTyID:
300      return *Entry = FunctionType::get(ElementTypes[0],
301                                        makeArrayRef(ElementTypes).slice(1),
302                                        cast<FunctionType>(Ty)->isVarArg());
303    case Type::StructTyID:
304      // Note that this is only reached for anonymous structs.
305      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
306                                      cast<StructType>(Ty)->isPacked());
307    }
308  }
309
310  // Otherwise, this is an unmapped named struct.  If the struct can be directly
311  // mapped over, just use it as-is.  This happens in a case when the linked-in
312  // module has something like:
313  //   %T = type {%T*, i32}
314  //   @GV = global %T* null
315  // where T does not exist at all in the destination module.
316  //
317  // The other case we watch for is when the type is not in the destination
318  // module, but that it has to be rebuilt because it refers to something that
319  // is already mapped.  For example, if the destination module has:
320  //  %A = type { i32 }
321  // and the source module has something like
322  //  %A' = type { i32 }
323  //  %B = type { %A'* }
324  //  @GV = global %B* null
325  // then we want to create a new type: "%B = type { %A*}" and have it take the
326  // pristine "%B" name from the source module.
327  //
328  // To determine which case this is, we have to recursively walk the type graph
329  // speculating that we'll be able to reuse it unmodified.  Only if this is
330  // safe would we map the entire thing over.  Because this is an optimization,
331  // and is not required for the prettiness of the linked module, we just skip
332  // it and always rebuild a type here.
333  StructType *STy = cast<StructType>(Ty);
334
335  // If the type is opaque, we can just use it directly.
336  if (STy->isOpaque()) {
337    // A named structure type from src module is used. Add it to the Set of
338    // identified structs in the destination module.
339    DstStructTypesSet.insert(STy);
340    return *Entry = STy;
341  }
342
343  // Otherwise we create a new type and resolve its body later.  This will be
344  // resolved by the top level of get().
345  SrcDefinitionsToResolve.push_back(STy);
346  StructType *DTy = StructType::create(STy->getContext());
347  // A new identified structure type was created. Add it to the set of
348  // identified structs in the destination module.
349  DstStructTypesSet.insert(DTy);
350  DstResolvedOpaqueTypes.insert(DTy);
351  return *Entry = DTy;
352}
353
354//===----------------------------------------------------------------------===//
355// ModuleLinker implementation.
356//===----------------------------------------------------------------------===//
357
358namespace {
359  class ModuleLinker;
360
361  /// ValueMaterializerTy - Creates prototypes for functions that are lazily
362  /// linked on the fly. This speeds up linking for modules with many
363  /// lazily linked functions of which few get used.
364  class ValueMaterializerTy : public ValueMaterializer {
365    TypeMapTy &TypeMap;
366    Module *DstM;
367    std::vector<Function*> &LazilyLinkFunctions;
368  public:
369    ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
370                        std::vector<Function*> &LazilyLinkFunctions) :
371      ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
372      LazilyLinkFunctions(LazilyLinkFunctions) {
373    }
374
375    Value *materializeValueFor(Value *V) override;
376  };
377
378  /// ModuleLinker - This is an implementation class for the LinkModules
379  /// function, which is the entrypoint for this file.
380  class ModuleLinker {
381    Module *DstM, *SrcM;
382
383    TypeMapTy TypeMap;
384    ValueMaterializerTy ValMaterializer;
385
386    /// ValueMap - Mapping of values from what they used to be in Src, to what
387    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
388    /// some overhead due to the use of Value handles which the Linker doesn't
389    /// actually need, but this allows us to reuse the ValueMapper code.
390    ValueToValueMapTy ValueMap;
391
392    struct AppendingVarInfo {
393      GlobalVariable *NewGV;  // New aggregate global in dest module.
394      Constant *DstInit;      // Old initializer from dest module.
395      Constant *SrcInit;      // Old initializer from src module.
396    };
397
398    std::vector<AppendingVarInfo> AppendingVars;
399
400    unsigned Mode; // Mode to treat source module.
401
402    // Set of items not to link in from source.
403    SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
404
405    // Vector of functions to lazily link in.
406    std::vector<Function*> LazilyLinkFunctions;
407
408    bool SuppressWarnings;
409
410  public:
411    std::string ErrorMsg;
412
413    ModuleLinker(Module *dstM, TypeSet &Set, Module *srcM, unsigned mode,
414                 bool SuppressWarnings=false)
415        : DstM(dstM), SrcM(srcM), TypeMap(Set),
416          ValMaterializer(TypeMap, DstM, LazilyLinkFunctions), Mode(mode),
417          SuppressWarnings(SuppressWarnings) {}
418
419    bool run();
420
421  private:
422    /// emitError - Helper method for setting a message and returning an error
423    /// code.
424    bool emitError(const Twine &Message) {
425      ErrorMsg = Message.str();
426      return true;
427    }
428
429    /// getLinkageResult - This analyzes the two global values and determines
430    /// what the result will look like in the destination module.
431    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
432                          GlobalValue::LinkageTypes &LT,
433                          GlobalValue::VisibilityTypes &Vis,
434                          bool &LinkFromSrc);
435
436    /// getLinkedToGlobal - Given a global in the source module, return the
437    /// global in the destination module that is being linked to, if any.
438    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
439      // If the source has no name it can't link.  If it has local linkage,
440      // there is no name match-up going on.
441      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
442        return 0;
443
444      // Otherwise see if we have a match in the destination module's symtab.
445      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
446      if (DGV == 0) return 0;
447
448      // If we found a global with the same name in the dest module, but it has
449      // internal linkage, we are really not doing any linkage here.
450      if (DGV->hasLocalLinkage())
451        return 0;
452
453      // Otherwise, we do in fact link to the destination global.
454      return DGV;
455    }
456
457    void computeTypeMapping();
458
459    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
460    bool linkGlobalProto(GlobalVariable *SrcGV);
461    bool linkFunctionProto(Function *SrcF);
462    bool linkAliasProto(GlobalAlias *SrcA);
463    bool linkModuleFlagsMetadata();
464
465    void linkAppendingVarInit(const AppendingVarInfo &AVI);
466    void linkGlobalInits();
467    void linkFunctionBody(Function *Dst, Function *Src);
468    void linkAliasBodies();
469    void linkNamedMDNodes();
470  };
471}
472
473/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
474/// in the symbol table.  This is good for all clients except for us.  Go
475/// through the trouble to force this back.
476static void forceRenaming(GlobalValue *GV, StringRef Name) {
477  // If the global doesn't force its name or if it already has the right name,
478  // there is nothing for us to do.
479  if (GV->hasLocalLinkage() || GV->getName() == Name)
480    return;
481
482  Module *M = GV->getParent();
483
484  // If there is a conflict, rename the conflict.
485  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
486    GV->takeName(ConflictGV);
487    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
488    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
489  } else {
490    GV->setName(Name);              // Force the name back
491  }
492}
493
494/// copyGVAttributes - copy additional attributes (those not needed to construct
495/// a GlobalValue) from the SrcGV to the DestGV.
496static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
497  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
498  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
499  DestGV->copyAttributesFrom(SrcGV);
500  DestGV->setAlignment(Alignment);
501
502  forceRenaming(DestGV, SrcGV->getName());
503}
504
505static bool isLessConstraining(GlobalValue::VisibilityTypes a,
506                               GlobalValue::VisibilityTypes b) {
507  if (a == GlobalValue::HiddenVisibility)
508    return false;
509  if (b == GlobalValue::HiddenVisibility)
510    return true;
511  if (a == GlobalValue::ProtectedVisibility)
512    return false;
513  if (b == GlobalValue::ProtectedVisibility)
514    return true;
515  return false;
516}
517
518Value *ValueMaterializerTy::materializeValueFor(Value *V) {
519  Function *SF = dyn_cast<Function>(V);
520  if (!SF)
521    return NULL;
522
523  Function *DF = Function::Create(TypeMap.get(SF->getFunctionType()),
524                                  SF->getLinkage(), SF->getName(), DstM);
525  copyGVAttributes(DF, SF);
526
527  LazilyLinkFunctions.push_back(SF);
528  return DF;
529}
530
531
532/// getLinkageResult - This analyzes the two global values and determines what
533/// the result will look like in the destination module.  In particular, it
534/// computes the resultant linkage type and visibility, computes whether the
535/// global in the source should be copied over to the destination (replacing
536/// the existing one), and computes whether this linkage is an error or not.
537bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
538                                    GlobalValue::LinkageTypes &LT,
539                                    GlobalValue::VisibilityTypes &Vis,
540                                    bool &LinkFromSrc) {
541  assert(Dest && "Must have two globals being queried");
542  assert(!Src->hasLocalLinkage() &&
543         "If Src has internal linkage, Dest shouldn't be set!");
544
545  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
546  bool DestIsDeclaration = Dest->isDeclaration();
547
548  if (SrcIsDeclaration) {
549    // If Src is external or if both Src & Dest are external..  Just link the
550    // external globals, we aren't adding anything.
551    if (Src->hasDLLImportStorageClass()) {
552      // If one of GVs is marked as DLLImport, result should be dllimport'ed.
553      if (DestIsDeclaration) {
554        LinkFromSrc = true;
555        LT = Src->getLinkage();
556      }
557    } else if (Dest->hasExternalWeakLinkage()) {
558      // If the Dest is weak, use the source linkage.
559      LinkFromSrc = true;
560      LT = Src->getLinkage();
561    } else {
562      LinkFromSrc = false;
563      LT = Dest->getLinkage();
564    }
565  } else if (DestIsDeclaration && !Dest->hasDLLImportStorageClass()) {
566    // If Dest is external but Src is not:
567    LinkFromSrc = true;
568    LT = Src->getLinkage();
569  } else if (Src->isWeakForLinker()) {
570    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
571    // or DLL* linkage.
572    if (Dest->hasExternalWeakLinkage() ||
573        Dest->hasAvailableExternallyLinkage() ||
574        (Dest->hasLinkOnceLinkage() &&
575         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
576      LinkFromSrc = true;
577      LT = Src->getLinkage();
578    } else {
579      LinkFromSrc = false;
580      LT = Dest->getLinkage();
581    }
582  } else if (Dest->isWeakForLinker()) {
583    // At this point we know that Src has External* or DLL* linkage.
584    if (Src->hasExternalWeakLinkage()) {
585      LinkFromSrc = false;
586      LT = Dest->getLinkage();
587    } else {
588      LinkFromSrc = true;
589      LT = GlobalValue::ExternalLinkage;
590    }
591  } else {
592    assert((Dest->hasExternalLinkage()  || Dest->hasExternalWeakLinkage()) &&
593           (Src->hasExternalLinkage()   || Src->hasExternalWeakLinkage()) &&
594           "Unexpected linkage type!");
595    return emitError("Linking globals named '" + Src->getName() +
596                 "': symbol multiply defined!");
597  }
598
599  // Compute the visibility. We follow the rules in the System V Application
600  // Binary Interface.
601  Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
602    Dest->getVisibility() : Src->getVisibility();
603  return false;
604}
605
606/// computeTypeMapping - Loop over all of the linked values to compute type
607/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
608/// we have two struct types 'Foo' but one got renamed when the module was
609/// loaded into the same LLVMContext.
610void ModuleLinker::computeTypeMapping() {
611  // Incorporate globals.
612  for (Module::global_iterator I = SrcM->global_begin(),
613       E = SrcM->global_end(); I != E; ++I) {
614    GlobalValue *DGV = getLinkedToGlobal(I);
615    if (DGV == 0) continue;
616
617    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
618      TypeMap.addTypeMapping(DGV->getType(), I->getType());
619      continue;
620    }
621
622    // Unify the element type of appending arrays.
623    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
624    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
625    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
626  }
627
628  // Incorporate functions.
629  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
630    if (GlobalValue *DGV = getLinkedToGlobal(I))
631      TypeMap.addTypeMapping(DGV->getType(), I->getType());
632  }
633
634  // Incorporate types by name, scanning all the types in the source module.
635  // At this point, the destination module may have a type "%foo = { i32 }" for
636  // example.  When the source module got loaded into the same LLVMContext, if
637  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
638  TypeFinder SrcStructTypes;
639  SrcStructTypes.run(*SrcM, true);
640  SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
641                                                 SrcStructTypes.end());
642
643  for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
644    StructType *ST = SrcStructTypes[i];
645    if (!ST->hasName()) continue;
646
647    // Check to see if there is a dot in the name followed by a digit.
648    size_t DotPos = ST->getName().rfind('.');
649    if (DotPos == 0 || DotPos == StringRef::npos ||
650        ST->getName().back() == '.' ||
651        !isdigit(static_cast<unsigned char>(ST->getName()[DotPos+1])))
652      continue;
653
654    // Check to see if the destination module has a struct with the prefix name.
655    if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
656      // Don't use it if this actually came from the source module. They're in
657      // the same LLVMContext after all. Also don't use it unless the type is
658      // actually used in the destination module. This can happen in situations
659      // like this:
660      //
661      //      Module A                         Module B
662      //      --------                         --------
663      //   %Z = type { %A }                %B = type { %C.1 }
664      //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
665      //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
666      //   %C = type { i8* }               %B.3 = type { %C.1 }
667      //
668      // When we link Module B with Module A, the '%B' in Module B is
669      // used. However, that would then use '%C.1'. But when we process '%C.1',
670      // we prefer to take the '%C' version. So we are then left with both
671      // '%C.1' and '%C' being used for the same types. This leads to some
672      // variables using one type and some using the other.
673      if (!SrcStructTypesSet.count(DST) && TypeMap.DstStructTypesSet.count(DST))
674        TypeMap.addTypeMapping(DST, ST);
675  }
676
677  // Don't bother incorporating aliases, they aren't generally typed well.
678
679  // Now that we have discovered all of the type equivalences, get a body for
680  // any 'opaque' types in the dest module that are now resolved.
681  TypeMap.linkDefinedTypeBodies();
682}
683
684/// linkAppendingVarProto - If there were any appending global variables, link
685/// them together now.  Return true on error.
686bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
687                                         GlobalVariable *SrcGV) {
688
689  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
690    return emitError("Linking globals named '" + SrcGV->getName() +
691           "': can only link appending global with another appending global!");
692
693  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
694  ArrayType *SrcTy =
695    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
696  Type *EltTy = DstTy->getElementType();
697
698  // Check to see that they two arrays agree on type.
699  if (EltTy != SrcTy->getElementType())
700    return emitError("Appending variables with different element types!");
701  if (DstGV->isConstant() != SrcGV->isConstant())
702    return emitError("Appending variables linked with different const'ness!");
703
704  if (DstGV->getAlignment() != SrcGV->getAlignment())
705    return emitError(
706             "Appending variables with different alignment need to be linked!");
707
708  if (DstGV->getVisibility() != SrcGV->getVisibility())
709    return emitError(
710            "Appending variables with different visibility need to be linked!");
711
712  if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
713    return emitError(
714        "Appending variables with different unnamed_addr need to be linked!");
715
716  if (DstGV->getSection() != SrcGV->getSection())
717    return emitError(
718          "Appending variables with different section name need to be linked!");
719
720  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
721  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
722
723  // Create the new global variable.
724  GlobalVariable *NG =
725    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
726                       DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
727                       DstGV->getThreadLocalMode(),
728                       DstGV->getType()->getAddressSpace());
729
730  // Propagate alignment, visibility and section info.
731  copyGVAttributes(NG, DstGV);
732
733  AppendingVarInfo AVI;
734  AVI.NewGV = NG;
735  AVI.DstInit = DstGV->getInitializer();
736  AVI.SrcInit = SrcGV->getInitializer();
737  AppendingVars.push_back(AVI);
738
739  // Replace any uses of the two global variables with uses of the new
740  // global.
741  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
742
743  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
744  DstGV->eraseFromParent();
745
746  // Track the source variable so we don't try to link it.
747  DoNotLinkFromSource.insert(SrcGV);
748
749  return false;
750}
751
752/// linkGlobalProto - Loop through the global variables in the src module and
753/// merge them into the dest module.
754bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
755  GlobalValue *DGV = getLinkedToGlobal(SGV);
756  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
757  bool HasUnnamedAddr = SGV->hasUnnamedAddr();
758
759  if (DGV) {
760    // Concatenation of appending linkage variables is magic and handled later.
761    if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
762      return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
763
764    // Determine whether linkage of these two globals follows the source
765    // module's definition or the destination module's definition.
766    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
767    GlobalValue::VisibilityTypes NV;
768    bool LinkFromSrc = false;
769    if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
770      return true;
771    NewVisibility = NV;
772    HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
773
774    // If we're not linking from the source, then keep the definition that we
775    // have.
776    if (!LinkFromSrc) {
777      // Special case for const propagation.
778      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
779        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
780          DGVar->setConstant(true);
781
782      // Set calculated linkage, visibility and unnamed_addr.
783      DGV->setLinkage(NewLinkage);
784      DGV->setVisibility(*NewVisibility);
785      DGV->setUnnamedAddr(HasUnnamedAddr);
786
787      // Make sure to remember this mapping.
788      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
789
790      // Track the source global so that we don't attempt to copy it over when
791      // processing global initializers.
792      DoNotLinkFromSource.insert(SGV);
793
794      return false;
795    }
796  }
797
798  // No linking to be performed or linking from the source: simply create an
799  // identical version of the symbol over in the dest module... the
800  // initializer will be filled in later by LinkGlobalInits.
801  GlobalVariable *NewDGV =
802    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
803                       SGV->isConstant(), SGV->getLinkage(), /*init*/0,
804                       SGV->getName(), /*insertbefore*/0,
805                       SGV->getThreadLocalMode(),
806                       SGV->getType()->getAddressSpace());
807  // Propagate alignment, visibility and section info.
808  copyGVAttributes(NewDGV, SGV);
809  if (NewVisibility)
810    NewDGV->setVisibility(*NewVisibility);
811  NewDGV->setUnnamedAddr(HasUnnamedAddr);
812
813  if (DGV) {
814    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
815    DGV->eraseFromParent();
816  }
817
818  // Make sure to remember this mapping.
819  ValueMap[SGV] = NewDGV;
820  return false;
821}
822
823/// linkFunctionProto - Link the function in the source module into the
824/// destination module if needed, setting up mapping information.
825bool ModuleLinker::linkFunctionProto(Function *SF) {
826  GlobalValue *DGV = getLinkedToGlobal(SF);
827  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
828  bool HasUnnamedAddr = SF->hasUnnamedAddr();
829
830  if (DGV) {
831    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
832    bool LinkFromSrc = false;
833    GlobalValue::VisibilityTypes NV;
834    if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
835      return true;
836    NewVisibility = NV;
837    HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
838
839    if (!LinkFromSrc) {
840      // Set calculated linkage
841      DGV->setLinkage(NewLinkage);
842      DGV->setVisibility(*NewVisibility);
843      DGV->setUnnamedAddr(HasUnnamedAddr);
844
845      // Make sure to remember this mapping.
846      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
847
848      // Track the function from the source module so we don't attempt to remap
849      // it.
850      DoNotLinkFromSource.insert(SF);
851
852      return false;
853    }
854  }
855
856  // If the function is to be lazily linked, don't create it just yet.
857  // The ValueMaterializerTy will deal with creating it if it's used.
858  if (!DGV && (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
859               SF->hasAvailableExternallyLinkage())) {
860    DoNotLinkFromSource.insert(SF);
861    return false;
862  }
863
864  // If there is no linkage to be performed or we are linking from the source,
865  // bring SF over.
866  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
867                                     SF->getLinkage(), SF->getName(), DstM);
868  copyGVAttributes(NewDF, SF);
869  if (NewVisibility)
870    NewDF->setVisibility(*NewVisibility);
871  NewDF->setUnnamedAddr(HasUnnamedAddr);
872
873  if (DGV) {
874    // Any uses of DF need to change to NewDF, with cast.
875    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
876    DGV->eraseFromParent();
877  }
878
879  ValueMap[SF] = NewDF;
880  return false;
881}
882
883/// LinkAliasProto - Set up prototypes for any aliases that come over from the
884/// source module.
885bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
886  GlobalValue *DGV = getLinkedToGlobal(SGA);
887  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
888
889  if (DGV) {
890    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
891    GlobalValue::VisibilityTypes NV;
892    bool LinkFromSrc = false;
893    if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
894      return true;
895    NewVisibility = NV;
896
897    if (!LinkFromSrc) {
898      // Set calculated linkage.
899      DGV->setLinkage(NewLinkage);
900      DGV->setVisibility(*NewVisibility);
901
902      // Make sure to remember this mapping.
903      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
904
905      // Track the alias from the source module so we don't attempt to remap it.
906      DoNotLinkFromSource.insert(SGA);
907
908      return false;
909    }
910  }
911
912  // If there is no linkage to be performed or we're linking from the source,
913  // bring over SGA.
914  GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
915                                       SGA->getLinkage(), SGA->getName(),
916                                       /*aliasee*/0, DstM);
917  copyGVAttributes(NewDA, SGA);
918  if (NewVisibility)
919    NewDA->setVisibility(*NewVisibility);
920
921  if (DGV) {
922    // Any uses of DGV need to change to NewDA, with cast.
923    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
924    DGV->eraseFromParent();
925  }
926
927  ValueMap[SGA] = NewDA;
928  return false;
929}
930
931static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
932  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
933
934  for (unsigned i = 0; i != NumElements; ++i)
935    Dest.push_back(C->getAggregateElement(i));
936}
937
938void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
939  // Merge the initializer.
940  SmallVector<Constant*, 16> Elements;
941  getArrayElements(AVI.DstInit, Elements);
942
943  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap, &ValMaterializer);
944  getArrayElements(SrcInit, Elements);
945
946  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
947  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
948}
949
950/// linkGlobalInits - Update the initializers in the Dest module now that all
951/// globals that may be referenced are in Dest.
952void ModuleLinker::linkGlobalInits() {
953  // Loop over all of the globals in the src module, mapping them over as we go
954  for (Module::const_global_iterator I = SrcM->global_begin(),
955       E = SrcM->global_end(); I != E; ++I) {
956
957    // Only process initialized GV's or ones not already in dest.
958    if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
959
960    // Grab destination global variable.
961    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
962    // Figure out what the initializer looks like in the dest module.
963    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
964                                 RF_None, &TypeMap, &ValMaterializer));
965  }
966}
967
968/// linkFunctionBody - Copy the source function over into the dest function and
969/// fix up references to values.  At this point we know that Dest is an external
970/// function, and that Src is not.
971void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
972  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
973
974  // Go through and convert function arguments over, remembering the mapping.
975  Function::arg_iterator DI = Dst->arg_begin();
976  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
977       I != E; ++I, ++DI) {
978    DI->setName(I->getName());  // Copy the name over.
979
980    // Add a mapping to our mapping.
981    ValueMap[I] = DI;
982  }
983
984  if (Mode == Linker::DestroySource) {
985    // Splice the body of the source function into the dest function.
986    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
987
988    // At this point, all of the instructions and values of the function are now
989    // copied over.  The only problem is that they are still referencing values in
990    // the Source function as operands.  Loop through all of the operands of the
991    // functions and patch them up to point to the local versions.
992    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
993      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
994        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries,
995                         &TypeMap, &ValMaterializer);
996
997  } else {
998    // Clone the body of the function into the dest function.
999    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
1000    CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL,
1001                      &TypeMap, &ValMaterializer);
1002  }
1003
1004  // There is no need to map the arguments anymore.
1005  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1006       I != E; ++I)
1007    ValueMap.erase(I);
1008
1009}
1010
1011/// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
1012void ModuleLinker::linkAliasBodies() {
1013  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
1014       I != E; ++I) {
1015    if (DoNotLinkFromSource.count(I))
1016      continue;
1017    if (Constant *Aliasee = I->getAliasee()) {
1018      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
1019      DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None,
1020                              &TypeMap, &ValMaterializer));
1021    }
1022  }
1023}
1024
1025/// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
1026/// module.
1027void ModuleLinker::linkNamedMDNodes() {
1028  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1029  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
1030       E = SrcM->named_metadata_end(); I != E; ++I) {
1031    // Don't link module flags here. Do them separately.
1032    if (&*I == SrcModFlags) continue;
1033    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
1034    // Add Src elements into Dest node.
1035    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1036      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
1037                                   RF_None, &TypeMap, &ValMaterializer));
1038  }
1039}
1040
1041/// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
1042/// module.
1043bool ModuleLinker::linkModuleFlagsMetadata() {
1044  // If the source module has no module flags, we are done.
1045  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1046  if (!SrcModFlags) return false;
1047
1048  // If the destination module doesn't have module flags yet, then just copy
1049  // over the source module's flags.
1050  NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1051  if (DstModFlags->getNumOperands() == 0) {
1052    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1053      DstModFlags->addOperand(SrcModFlags->getOperand(I));
1054
1055    return false;
1056  }
1057
1058  // First build a map of the existing module flags and requirements.
1059  DenseMap<MDString*, MDNode*> Flags;
1060  SmallSetVector<MDNode*, 16> Requirements;
1061  for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1062    MDNode *Op = DstModFlags->getOperand(I);
1063    ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
1064    MDString *ID = cast<MDString>(Op->getOperand(1));
1065
1066    if (Behavior->getZExtValue() == Module::Require) {
1067      Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1068    } else {
1069      Flags[ID] = Op;
1070    }
1071  }
1072
1073  // Merge in the flags from the source module, and also collect its set of
1074  // requirements.
1075  bool HasErr = false;
1076  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1077    MDNode *SrcOp = SrcModFlags->getOperand(I);
1078    ConstantInt *SrcBehavior = cast<ConstantInt>(SrcOp->getOperand(0));
1079    MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1080    MDNode *DstOp = Flags.lookup(ID);
1081    unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1082
1083    // If this is a requirement, add it and continue.
1084    if (SrcBehaviorValue == Module::Require) {
1085      // If the destination module does not already have this requirement, add
1086      // it.
1087      if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1088        DstModFlags->addOperand(SrcOp);
1089      }
1090      continue;
1091    }
1092
1093    // If there is no existing flag with this ID, just add it.
1094    if (!DstOp) {
1095      Flags[ID] = SrcOp;
1096      DstModFlags->addOperand(SrcOp);
1097      continue;
1098    }
1099
1100    // Otherwise, perform a merge.
1101    ConstantInt *DstBehavior = cast<ConstantInt>(DstOp->getOperand(0));
1102    unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1103
1104    // If either flag has override behavior, handle it first.
1105    if (DstBehaviorValue == Module::Override) {
1106      // Diagnose inconsistent flags which both have override behavior.
1107      if (SrcBehaviorValue == Module::Override &&
1108          SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1109        HasErr |= emitError("linking module flags '" + ID->getString() +
1110                            "': IDs have conflicting override values");
1111      }
1112      continue;
1113    } else if (SrcBehaviorValue == Module::Override) {
1114      // Update the destination flag to that of the source.
1115      DstOp->replaceOperandWith(0, SrcBehavior);
1116      DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
1117      continue;
1118    }
1119
1120    // Diagnose inconsistent merge behavior types.
1121    if (SrcBehaviorValue != DstBehaviorValue) {
1122      HasErr |= emitError("linking module flags '" + ID->getString() +
1123                          "': IDs have conflicting behaviors");
1124      continue;
1125    }
1126
1127    // Perform the merge for standard behavior types.
1128    switch (SrcBehaviorValue) {
1129    case Module::Require:
1130    case Module::Override: assert(0 && "not possible"); break;
1131    case Module::Error: {
1132      // Emit an error if the values differ.
1133      if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1134        HasErr |= emitError("linking module flags '" + ID->getString() +
1135                            "': IDs have conflicting values");
1136      }
1137      continue;
1138    }
1139    case Module::Warning: {
1140      // Emit a warning if the values differ.
1141      if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1142        if (!SuppressWarnings) {
1143          errs() << "WARNING: linking module flags '" << ID->getString()
1144                 << "': IDs have conflicting values";
1145        }
1146      }
1147      continue;
1148    }
1149    case Module::Append: {
1150      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1151      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1152      unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands();
1153      Value **VP, **Values = VP = new Value*[NumOps];
1154      for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP)
1155        *VP = DstValue->getOperand(i);
1156      for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP)
1157        *VP = SrcValue->getOperand(i);
1158      DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1159                                               ArrayRef<Value*>(Values,
1160                                                                NumOps)));
1161      delete[] Values;
1162      break;
1163    }
1164    case Module::AppendUnique: {
1165      SmallSetVector<Value*, 16> Elts;
1166      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1167      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1168      for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
1169        Elts.insert(DstValue->getOperand(i));
1170      for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
1171        Elts.insert(SrcValue->getOperand(i));
1172      DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1173                                               ArrayRef<Value*>(Elts.begin(),
1174                                                                Elts.end())));
1175      break;
1176    }
1177    }
1178  }
1179
1180  // Check all of the requirements.
1181  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1182    MDNode *Requirement = Requirements[I];
1183    MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1184    Value *ReqValue = Requirement->getOperand(1);
1185
1186    MDNode *Op = Flags[Flag];
1187    if (!Op || Op->getOperand(2) != ReqValue) {
1188      HasErr |= emitError("linking module flags '" + Flag->getString() +
1189                          "': does not have the required value");
1190      continue;
1191    }
1192  }
1193
1194  return HasErr;
1195}
1196
1197bool ModuleLinker::run() {
1198  assert(DstM && "Null destination module");
1199  assert(SrcM && "Null source module");
1200
1201  // Inherit the target data from the source module if the destination module
1202  // doesn't have one already.
1203  if (!DstM->getDataLayout() && SrcM->getDataLayout())
1204    DstM->setDataLayout(SrcM->getDataLayout());
1205
1206  // Copy the target triple from the source to dest if the dest's is empty.
1207  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1208    DstM->setTargetTriple(SrcM->getTargetTriple());
1209
1210  if (SrcM->getDataLayout() && DstM->getDataLayout() &&
1211      *SrcM->getDataLayout() != *DstM->getDataLayout()) {
1212    if (!SuppressWarnings) {
1213      errs() << "WARNING: Linking two modules of different data layouts: '"
1214             << SrcM->getModuleIdentifier() << "' is '"
1215             << SrcM->getDataLayoutStr() << "' whereas '"
1216             << DstM->getModuleIdentifier() << "' is '"
1217             << DstM->getDataLayoutStr() << "'\n";
1218    }
1219  }
1220  if (!SrcM->getTargetTriple().empty() &&
1221      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1222    if (!SuppressWarnings) {
1223      errs() << "WARNING: Linking two modules of different target triples: "
1224             << SrcM->getModuleIdentifier() << "' is '"
1225             << SrcM->getTargetTriple() << "' whereas '"
1226             << DstM->getModuleIdentifier() << "' is '"
1227             << DstM->getTargetTriple() << "'\n";
1228    }
1229  }
1230
1231  // Append the module inline asm string.
1232  if (!SrcM->getModuleInlineAsm().empty()) {
1233    if (DstM->getModuleInlineAsm().empty())
1234      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1235    else
1236      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1237                               SrcM->getModuleInlineAsm());
1238  }
1239
1240  // Loop over all of the linked values to compute type mappings.
1241  computeTypeMapping();
1242
1243  // Insert all of the globals in src into the DstM module... without linking
1244  // initializers (which could refer to functions not yet mapped over).
1245  for (Module::global_iterator I = SrcM->global_begin(),
1246       E = SrcM->global_end(); I != E; ++I)
1247    if (linkGlobalProto(I))
1248      return true;
1249
1250  // Link the functions together between the two modules, without doing function
1251  // bodies... this just adds external function prototypes to the DstM
1252  // function...  We do this so that when we begin processing function bodies,
1253  // all of the global values that may be referenced are available in our
1254  // ValueMap.
1255  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1256    if (linkFunctionProto(I))
1257      return true;
1258
1259  // If there were any aliases, link them now.
1260  for (Module::alias_iterator I = SrcM->alias_begin(),
1261       E = SrcM->alias_end(); I != E; ++I)
1262    if (linkAliasProto(I))
1263      return true;
1264
1265  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1266    linkAppendingVarInit(AppendingVars[i]);
1267
1268  // Link in the function bodies that are defined in the source module into
1269  // DstM.
1270  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1271    // Skip if not linking from source.
1272    if (DoNotLinkFromSource.count(SF)) continue;
1273
1274    Function *DF = cast<Function>(ValueMap[SF]);
1275    if (SF->hasPrefixData()) {
1276      // Link in the prefix data.
1277      DF->setPrefixData(MapValue(
1278          SF->getPrefixData(), ValueMap, RF_None, &TypeMap, &ValMaterializer));
1279    }
1280
1281    // Skip if no body (function is external) or materialize.
1282    if (SF->isDeclaration()) {
1283      if (!SF->isMaterializable())
1284        continue;
1285      if (SF->Materialize(&ErrorMsg))
1286        return true;
1287    }
1288
1289    linkFunctionBody(DF, SF);
1290    SF->Dematerialize();
1291  }
1292
1293  // Resolve all uses of aliases with aliasees.
1294  linkAliasBodies();
1295
1296  // Remap all of the named MDNodes in Src into the DstM module. We do this
1297  // after linking GlobalValues so that MDNodes that reference GlobalValues
1298  // are properly remapped.
1299  linkNamedMDNodes();
1300
1301  // Merge the module flags into the DstM module.
1302  if (linkModuleFlagsMetadata())
1303    return true;
1304
1305  // Update the initializers in the DstM module now that all globals that may
1306  // be referenced are in DstM.
1307  linkGlobalInits();
1308
1309  // Process vector of lazily linked in functions.
1310  bool LinkedInAnyFunctions;
1311  do {
1312    LinkedInAnyFunctions = false;
1313
1314    for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1315        E = LazilyLinkFunctions.end(); I != E; ++I) {
1316      Function *SF = *I;
1317      if (!SF)
1318        continue;
1319
1320      Function *DF = cast<Function>(ValueMap[SF]);
1321      if (SF->hasPrefixData()) {
1322        // Link in the prefix data.
1323        DF->setPrefixData(MapValue(SF->getPrefixData(),
1324                                   ValueMap,
1325                                   RF_None,
1326                                   &TypeMap,
1327                                   &ValMaterializer));
1328      }
1329
1330      // Materialize if necessary.
1331      if (SF->isDeclaration()) {
1332        if (!SF->isMaterializable())
1333          continue;
1334        if (SF->Materialize(&ErrorMsg))
1335          return true;
1336      }
1337
1338      // Erase from vector *before* the function body is linked - linkFunctionBody could
1339      // invalidate I.
1340      LazilyLinkFunctions.erase(I);
1341
1342      // Link in function body.
1343      linkFunctionBody(DF, SF);
1344      SF->Dematerialize();
1345
1346      // Set flag to indicate we may have more functions to lazily link in
1347      // since we linked in a function.
1348      LinkedInAnyFunctions = true;
1349      break;
1350    }
1351  } while (LinkedInAnyFunctions);
1352
1353  // Now that all of the types from the source are used, resolve any structs
1354  // copied over to the dest that didn't exist there.
1355  TypeMap.linkDefinedTypeBodies();
1356
1357  return false;
1358}
1359
1360Linker::Linker(Module *M, bool SuppressWarnings)
1361    : Composite(M), SuppressWarnings(SuppressWarnings) {
1362  TypeFinder StructTypes;
1363  StructTypes.run(*M, true);
1364  IdentifiedStructTypes.insert(StructTypes.begin(), StructTypes.end());
1365}
1366
1367Linker::~Linker() {
1368}
1369
1370void Linker::deleteModule() {
1371  delete Composite;
1372  Composite = NULL;
1373}
1374
1375bool Linker::linkInModule(Module *Src, unsigned Mode, std::string *ErrorMsg) {
1376  ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src, Mode,
1377                         SuppressWarnings);
1378  if (TheLinker.run()) {
1379    if (ErrorMsg)
1380      *ErrorMsg = TheLinker.ErrorMsg;
1381    return true;
1382  }
1383  return false;
1384}
1385
1386//===----------------------------------------------------------------------===//
1387// LinkModules entrypoint.
1388//===----------------------------------------------------------------------===//
1389
1390/// LinkModules - This function links two modules together, with the resulting
1391/// Dest module modified to be the composite of the two input modules.  If an
1392/// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1393/// the problem.  Upon failure, the Dest module could be in a modified state,
1394/// and shouldn't be relied on to be consistent.
1395bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1396                         std::string *ErrorMsg) {
1397  Linker L(Dest);
1398  return L.linkInModule(Src, Mode, ErrorMsg);
1399}
1400
1401//===----------------------------------------------------------------------===//
1402// C API.
1403//===----------------------------------------------------------------------===//
1404
1405LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
1406                         LLVMLinkerMode Mode, char **OutMessages) {
1407  std::string Messages;
1408  LLVMBool Result = Linker::LinkModules(unwrap(Dest), unwrap(Src),
1409                                        Mode, OutMessages? &Messages : 0);
1410  if (OutMessages)
1411    *OutMessages = strdup(Messages.c_str());
1412  return Result;
1413}
1414