LinkModules.cpp revision 5d5f2c37d57276c9320dd2677d355d47fa4bc5c4
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Linker.h"
15#include "llvm-c/Linker.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Module.h"
21#include "llvm/IR/TypeFinder.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/raw_ostream.h"
24#include "llvm/Transforms/Utils/Cloning.h"
25#include <cctype>
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29// TypeMap implementation.
30//===----------------------------------------------------------------------===//
31
32namespace {
33  typedef SmallPtrSet<StructType*, 32> TypeSet;
34
35class TypeMapTy : public ValueMapTypeRemapper {
36  /// MappedTypes - This is a mapping from a source type to a destination type
37  /// to use.
38  DenseMap<Type*, Type*> MappedTypes;
39
40  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
41  /// we speculatively add types to MappedTypes, but keep track of them here in
42  /// case we need to roll back.
43  SmallVector<Type*, 16> SpeculativeTypes;
44
45  /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
46  /// source module that are mapped to an opaque struct in the destination
47  /// module.
48  SmallVector<StructType*, 16> SrcDefinitionsToResolve;
49
50  /// DstResolvedOpaqueTypes - This is the set of opaque types in the
51  /// destination modules who are getting a body from the source module.
52  SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
53
54public:
55  TypeMapTy(TypeSet &Set) : DstStructTypesSet(Set) {}
56
57  TypeSet &DstStructTypesSet;
58  /// addTypeMapping - Indicate that the specified type in the destination
59  /// module is conceptually equivalent to the specified type in the source
60  /// module.
61  void addTypeMapping(Type *DstTy, Type *SrcTy);
62
63  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
64  /// module from a type definition in the source module.
65  void linkDefinedTypeBodies();
66
67  /// get - Return the mapped type to use for the specified input type from the
68  /// source module.
69  Type *get(Type *SrcTy);
70
71  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
72
73  /// dump - Dump out the type map for debugging purposes.
74  void dump() const {
75    for (DenseMap<Type*, Type*>::const_iterator
76           I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
77      dbgs() << "TypeMap: ";
78      I->first->dump();
79      dbgs() << " => ";
80      I->second->dump();
81      dbgs() << '\n';
82    }
83  }
84
85private:
86  Type *getImpl(Type *T);
87  /// remapType - Implement the ValueMapTypeRemapper interface.
88  Type *remapType(Type *SrcTy) {
89    return get(SrcTy);
90  }
91
92  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
93};
94}
95
96void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
97  Type *&Entry = MappedTypes[SrcTy];
98  if (Entry) return;
99
100  if (DstTy == SrcTy) {
101    Entry = DstTy;
102    return;
103  }
104
105  // Check to see if these types are recursively isomorphic and establish a
106  // mapping between them if so.
107  if (!areTypesIsomorphic(DstTy, SrcTy)) {
108    // Oops, they aren't isomorphic.  Just discard this request by rolling out
109    // any speculative mappings we've established.
110    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
111      MappedTypes.erase(SpeculativeTypes[i]);
112  }
113  SpeculativeTypes.clear();
114}
115
116/// areTypesIsomorphic - Recursively walk this pair of types, returning true
117/// if they are isomorphic, false if they are not.
118bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
119  // Two types with differing kinds are clearly not isomorphic.
120  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
121
122  // If we have an entry in the MappedTypes table, then we have our answer.
123  Type *&Entry = MappedTypes[SrcTy];
124  if (Entry)
125    return Entry == DstTy;
126
127  // Two identical types are clearly isomorphic.  Remember this
128  // non-speculatively.
129  if (DstTy == SrcTy) {
130    Entry = DstTy;
131    return true;
132  }
133
134  // Okay, we have two types with identical kinds that we haven't seen before.
135
136  // If this is an opaque struct type, special case it.
137  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
138    // Mapping an opaque type to any struct, just keep the dest struct.
139    if (SSTy->isOpaque()) {
140      Entry = DstTy;
141      SpeculativeTypes.push_back(SrcTy);
142      return true;
143    }
144
145    // Mapping a non-opaque source type to an opaque dest.  If this is the first
146    // type that we're mapping onto this destination type then we succeed.  Keep
147    // the dest, but fill it in later.  This doesn't need to be speculative.  If
148    // this is the second (different) type that we're trying to map onto the
149    // same opaque type then we fail.
150    if (cast<StructType>(DstTy)->isOpaque()) {
151      // We can only map one source type onto the opaque destination type.
152      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
153        return false;
154      SrcDefinitionsToResolve.push_back(SSTy);
155      Entry = DstTy;
156      return true;
157    }
158  }
159
160  // If the number of subtypes disagree between the two types, then we fail.
161  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
162    return false;
163
164  // Fail if any of the extra properties (e.g. array size) of the type disagree.
165  if (isa<IntegerType>(DstTy))
166    return false;  // bitwidth disagrees.
167  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
168    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
169      return false;
170
171  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
172    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
173      return false;
174  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
175    StructType *SSTy = cast<StructType>(SrcTy);
176    if (DSTy->isLiteral() != SSTy->isLiteral() ||
177        DSTy->isPacked() != SSTy->isPacked())
178      return false;
179  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
180    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
181      return false;
182  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
183    if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
184      return false;
185  }
186
187  // Otherwise, we speculate that these two types will line up and recursively
188  // check the subelements.
189  Entry = DstTy;
190  SpeculativeTypes.push_back(SrcTy);
191
192  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
193    if (!areTypesIsomorphic(DstTy->getContainedType(i),
194                            SrcTy->getContainedType(i)))
195      return false;
196
197  // If everything seems to have lined up, then everything is great.
198  return true;
199}
200
201/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
202/// module from a type definition in the source module.
203void TypeMapTy::linkDefinedTypeBodies() {
204  SmallVector<Type*, 16> Elements;
205  SmallString<16> TmpName;
206
207  // Note that processing entries in this loop (calling 'get') can add new
208  // entries to the SrcDefinitionsToResolve vector.
209  while (!SrcDefinitionsToResolve.empty()) {
210    StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
211    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
212
213    // TypeMap is a many-to-one mapping, if there were multiple types that
214    // provide a body for DstSTy then previous iterations of this loop may have
215    // already handled it.  Just ignore this case.
216    if (!DstSTy->isOpaque()) continue;
217    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
218
219    // Map the body of the source type over to a new body for the dest type.
220    Elements.resize(SrcSTy->getNumElements());
221    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
222      Elements[i] = getImpl(SrcSTy->getElementType(i));
223
224    DstSTy->setBody(Elements, SrcSTy->isPacked());
225
226    // If DstSTy has no name or has a longer name than STy, then viciously steal
227    // STy's name.
228    if (!SrcSTy->hasName()) continue;
229    StringRef SrcName = SrcSTy->getName();
230
231    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
232      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
233      SrcSTy->setName("");
234      DstSTy->setName(TmpName.str());
235      TmpName.clear();
236    }
237  }
238
239  DstResolvedOpaqueTypes.clear();
240}
241
242/// get - Return the mapped type to use for the specified input type from the
243/// source module.
244Type *TypeMapTy::get(Type *Ty) {
245  Type *Result = getImpl(Ty);
246
247  // If this caused a reference to any struct type, resolve it before returning.
248  if (!SrcDefinitionsToResolve.empty())
249    linkDefinedTypeBodies();
250  return Result;
251}
252
253/// getImpl - This is the recursive version of get().
254Type *TypeMapTy::getImpl(Type *Ty) {
255  // If we already have an entry for this type, return it.
256  Type **Entry = &MappedTypes[Ty];
257  if (*Entry) return *Entry;
258
259  // If this is not a named struct type, then just map all of the elements and
260  // then rebuild the type from inside out.
261  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
262    // If there are no element types to map, then the type is itself.  This is
263    // true for the anonymous {} struct, things like 'float', integers, etc.
264    if (Ty->getNumContainedTypes() == 0)
265      return *Entry = Ty;
266
267    // Remap all of the elements, keeping track of whether any of them change.
268    bool AnyChange = false;
269    SmallVector<Type*, 4> ElementTypes;
270    ElementTypes.resize(Ty->getNumContainedTypes());
271    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
272      ElementTypes[i] = getImpl(Ty->getContainedType(i));
273      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
274    }
275
276    // If we found our type while recursively processing stuff, just use it.
277    Entry = &MappedTypes[Ty];
278    if (*Entry) return *Entry;
279
280    // If all of the element types mapped directly over, then the type is usable
281    // as-is.
282    if (!AnyChange)
283      return *Entry = Ty;
284
285    // Otherwise, rebuild a modified type.
286    switch (Ty->getTypeID()) {
287    default: llvm_unreachable("unknown derived type to remap");
288    case Type::ArrayTyID:
289      return *Entry = ArrayType::get(ElementTypes[0],
290                                     cast<ArrayType>(Ty)->getNumElements());
291    case Type::VectorTyID:
292      return *Entry = VectorType::get(ElementTypes[0],
293                                      cast<VectorType>(Ty)->getNumElements());
294    case Type::PointerTyID:
295      return *Entry = PointerType::get(ElementTypes[0],
296                                      cast<PointerType>(Ty)->getAddressSpace());
297    case Type::FunctionTyID:
298      return *Entry = FunctionType::get(ElementTypes[0],
299                                        makeArrayRef(ElementTypes).slice(1),
300                                        cast<FunctionType>(Ty)->isVarArg());
301    case Type::StructTyID:
302      // Note that this is only reached for anonymous structs.
303      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
304                                      cast<StructType>(Ty)->isPacked());
305    }
306  }
307
308  // Otherwise, this is an unmapped named struct.  If the struct can be directly
309  // mapped over, just use it as-is.  This happens in a case when the linked-in
310  // module has something like:
311  //   %T = type {%T*, i32}
312  //   @GV = global %T* null
313  // where T does not exist at all in the destination module.
314  //
315  // The other case we watch for is when the type is not in the destination
316  // module, but that it has to be rebuilt because it refers to something that
317  // is already mapped.  For example, if the destination module has:
318  //  %A = type { i32 }
319  // and the source module has something like
320  //  %A' = type { i32 }
321  //  %B = type { %A'* }
322  //  @GV = global %B* null
323  // then we want to create a new type: "%B = type { %A*}" and have it take the
324  // pristine "%B" name from the source module.
325  //
326  // To determine which case this is, we have to recursively walk the type graph
327  // speculating that we'll be able to reuse it unmodified.  Only if this is
328  // safe would we map the entire thing over.  Because this is an optimization,
329  // and is not required for the prettiness of the linked module, we just skip
330  // it and always rebuild a type here.
331  StructType *STy = cast<StructType>(Ty);
332
333  // If the type is opaque, we can just use it directly.
334  if (STy->isOpaque()) {
335    // A named structure type from src module is used. Add it to the Set of
336    // identified structs in the destination module.
337    DstStructTypesSet.insert(STy);
338    return *Entry = STy;
339  }
340
341  // Otherwise we create a new type and resolve its body later.  This will be
342  // resolved by the top level of get().
343  SrcDefinitionsToResolve.push_back(STy);
344  StructType *DTy = StructType::create(STy->getContext());
345  // A new identified structure type was created. Add it to the set of
346  // identified structs in the destination module.
347  DstStructTypesSet.insert(DTy);
348  DstResolvedOpaqueTypes.insert(DTy);
349  return *Entry = DTy;
350}
351
352//===----------------------------------------------------------------------===//
353// ModuleLinker implementation.
354//===----------------------------------------------------------------------===//
355
356namespace {
357  class ModuleLinker;
358
359  /// ValueMaterializerTy - Creates prototypes for functions that are lazily
360  /// linked on the fly. This speeds up linking for modules with many
361  /// lazily linked functions of which few get used.
362  class ValueMaterializerTy : public ValueMaterializer {
363    TypeMapTy &TypeMap;
364    Module *DstM;
365    std::vector<Function*> &LazilyLinkFunctions;
366  public:
367    ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
368                        std::vector<Function*> &LazilyLinkFunctions) :
369      ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
370      LazilyLinkFunctions(LazilyLinkFunctions) {
371    }
372
373    virtual Value *materializeValueFor(Value *V);
374  };
375
376  /// ModuleLinker - This is an implementation class for the LinkModules
377  /// function, which is the entrypoint for this file.
378  class ModuleLinker {
379    Module *DstM, *SrcM;
380
381    TypeMapTy TypeMap;
382    ValueMaterializerTy ValMaterializer;
383
384    /// ValueMap - Mapping of values from what they used to be in Src, to what
385    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
386    /// some overhead due to the use of Value handles which the Linker doesn't
387    /// actually need, but this allows us to reuse the ValueMapper code.
388    ValueToValueMapTy ValueMap;
389
390    struct AppendingVarInfo {
391      GlobalVariable *NewGV;  // New aggregate global in dest module.
392      Constant *DstInit;      // Old initializer from dest module.
393      Constant *SrcInit;      // Old initializer from src module.
394    };
395
396    std::vector<AppendingVarInfo> AppendingVars;
397
398    unsigned Mode; // Mode to treat source module.
399
400    // Set of items not to link in from source.
401    SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
402
403    // Vector of functions to lazily link in.
404    std::vector<Function*> LazilyLinkFunctions;
405
406  public:
407    std::string ErrorMsg;
408
409    ModuleLinker(Module *dstM, TypeSet &Set, Module *srcM, unsigned mode)
410      : DstM(dstM), SrcM(srcM), TypeMap(Set),
411        ValMaterializer(TypeMap, DstM, LazilyLinkFunctions),
412        Mode(mode) { }
413
414    bool run();
415
416  private:
417    /// emitError - Helper method for setting a message and returning an error
418    /// code.
419    bool emitError(const Twine &Message) {
420      ErrorMsg = Message.str();
421      return true;
422    }
423
424    /// getLinkageResult - This analyzes the two global values and determines
425    /// what the result will look like in the destination module.
426    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
427                          GlobalValue::LinkageTypes &LT,
428                          GlobalValue::VisibilityTypes &Vis,
429                          bool &LinkFromSrc);
430
431    /// getLinkedToGlobal - Given a global in the source module, return the
432    /// global in the destination module that is being linked to, if any.
433    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
434      // If the source has no name it can't link.  If it has local linkage,
435      // there is no name match-up going on.
436      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
437        return 0;
438
439      // Otherwise see if we have a match in the destination module's symtab.
440      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
441      if (DGV == 0) return 0;
442
443      // If we found a global with the same name in the dest module, but it has
444      // internal linkage, we are really not doing any linkage here.
445      if (DGV->hasLocalLinkage())
446        return 0;
447
448      // Otherwise, we do in fact link to the destination global.
449      return DGV;
450    }
451
452    void computeTypeMapping();
453
454    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
455    bool linkGlobalProto(GlobalVariable *SrcGV);
456    bool linkFunctionProto(Function *SrcF);
457    bool linkAliasProto(GlobalAlias *SrcA);
458    bool linkModuleFlagsMetadata();
459
460    void linkAppendingVarInit(const AppendingVarInfo &AVI);
461    void linkGlobalInits();
462    void linkFunctionBody(Function *Dst, Function *Src);
463    void linkAliasBodies();
464    void linkNamedMDNodes();
465  };
466}
467
468/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
469/// in the symbol table.  This is good for all clients except for us.  Go
470/// through the trouble to force this back.
471static void forceRenaming(GlobalValue *GV, StringRef Name) {
472  // If the global doesn't force its name or if it already has the right name,
473  // there is nothing for us to do.
474  if (GV->hasLocalLinkage() || GV->getName() == Name)
475    return;
476
477  Module *M = GV->getParent();
478
479  // If there is a conflict, rename the conflict.
480  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
481    GV->takeName(ConflictGV);
482    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
483    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
484  } else {
485    GV->setName(Name);              // Force the name back
486  }
487}
488
489/// copyGVAttributes - copy additional attributes (those not needed to construct
490/// a GlobalValue) from the SrcGV to the DestGV.
491static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
492  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
493  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
494  DestGV->copyAttributesFrom(SrcGV);
495  DestGV->setAlignment(Alignment);
496
497  forceRenaming(DestGV, SrcGV->getName());
498}
499
500static bool isLessConstraining(GlobalValue::VisibilityTypes a,
501                               GlobalValue::VisibilityTypes b) {
502  if (a == GlobalValue::HiddenVisibility)
503    return false;
504  if (b == GlobalValue::HiddenVisibility)
505    return true;
506  if (a == GlobalValue::ProtectedVisibility)
507    return false;
508  if (b == GlobalValue::ProtectedVisibility)
509    return true;
510  return false;
511}
512
513Value *ValueMaterializerTy::materializeValueFor(Value *V) {
514  Function *SF = dyn_cast<Function>(V);
515  if (!SF)
516    return NULL;
517
518  Function *DF = Function::Create(TypeMap.get(SF->getFunctionType()),
519                                  SF->getLinkage(), SF->getName(), DstM);
520  copyGVAttributes(DF, SF);
521
522  LazilyLinkFunctions.push_back(SF);
523  return DF;
524}
525
526
527/// getLinkageResult - This analyzes the two global values and determines what
528/// the result will look like in the destination module.  In particular, it
529/// computes the resultant linkage type and visibility, computes whether the
530/// global in the source should be copied over to the destination (replacing
531/// the existing one), and computes whether this linkage is an error or not.
532bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
533                                    GlobalValue::LinkageTypes &LT,
534                                    GlobalValue::VisibilityTypes &Vis,
535                                    bool &LinkFromSrc) {
536  assert(Dest && "Must have two globals being queried");
537  assert(!Src->hasLocalLinkage() &&
538         "If Src has internal linkage, Dest shouldn't be set!");
539
540  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
541  bool DestIsDeclaration = Dest->isDeclaration();
542
543  if (SrcIsDeclaration) {
544    // If Src is external or if both Src & Dest are external..  Just link the
545    // external globals, we aren't adding anything.
546    if (Src->hasDLLImportLinkage()) {
547      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
548      if (DestIsDeclaration) {
549        LinkFromSrc = true;
550        LT = Src->getLinkage();
551      }
552    } else if (Dest->hasExternalWeakLinkage()) {
553      // If the Dest is weak, use the source linkage.
554      LinkFromSrc = true;
555      LT = Src->getLinkage();
556    } else {
557      LinkFromSrc = false;
558      LT = Dest->getLinkage();
559    }
560  } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
561    // If Dest is external but Src is not:
562    LinkFromSrc = true;
563    LT = Src->getLinkage();
564  } else if (Src->isWeakForLinker()) {
565    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
566    // or DLL* linkage.
567    if (Dest->hasExternalWeakLinkage() ||
568        Dest->hasAvailableExternallyLinkage() ||
569        (Dest->hasLinkOnceLinkage() &&
570         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
571      LinkFromSrc = true;
572      LT = Src->getLinkage();
573    } else {
574      LinkFromSrc = false;
575      LT = Dest->getLinkage();
576    }
577  } else if (Dest->isWeakForLinker()) {
578    // At this point we know that Src has External* or DLL* linkage.
579    if (Src->hasExternalWeakLinkage()) {
580      LinkFromSrc = false;
581      LT = Dest->getLinkage();
582    } else {
583      LinkFromSrc = true;
584      LT = GlobalValue::ExternalLinkage;
585    }
586  } else {
587    assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
588            Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
589           (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
590            Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
591           "Unexpected linkage type!");
592    return emitError("Linking globals named '" + Src->getName() +
593                 "': symbol multiply defined!");
594  }
595
596  // Compute the visibility. We follow the rules in the System V Application
597  // Binary Interface.
598  Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
599    Dest->getVisibility() : Src->getVisibility();
600  return false;
601}
602
603/// computeTypeMapping - Loop over all of the linked values to compute type
604/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
605/// we have two struct types 'Foo' but one got renamed when the module was
606/// loaded into the same LLVMContext.
607void ModuleLinker::computeTypeMapping() {
608  // Incorporate globals.
609  for (Module::global_iterator I = SrcM->global_begin(),
610       E = SrcM->global_end(); I != E; ++I) {
611    GlobalValue *DGV = getLinkedToGlobal(I);
612    if (DGV == 0) continue;
613
614    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
615      TypeMap.addTypeMapping(DGV->getType(), I->getType());
616      continue;
617    }
618
619    // Unify the element type of appending arrays.
620    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
621    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
622    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
623  }
624
625  // Incorporate functions.
626  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
627    if (GlobalValue *DGV = getLinkedToGlobal(I))
628      TypeMap.addTypeMapping(DGV->getType(), I->getType());
629  }
630
631  // Incorporate types by name, scanning all the types in the source module.
632  // At this point, the destination module may have a type "%foo = { i32 }" for
633  // example.  When the source module got loaded into the same LLVMContext, if
634  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
635  TypeFinder SrcStructTypes;
636  SrcStructTypes.run(*SrcM, true);
637  SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
638                                                 SrcStructTypes.end());
639
640  for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
641    StructType *ST = SrcStructTypes[i];
642    if (!ST->hasName()) continue;
643
644    // Check to see if there is a dot in the name followed by a digit.
645    size_t DotPos = ST->getName().rfind('.');
646    if (DotPos == 0 || DotPos == StringRef::npos ||
647        ST->getName().back() == '.' ||
648        !isdigit(static_cast<unsigned char>(ST->getName()[DotPos+1])))
649      continue;
650
651    // Check to see if the destination module has a struct with the prefix name.
652    if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
653      // Don't use it if this actually came from the source module. They're in
654      // the same LLVMContext after all. Also don't use it unless the type is
655      // actually used in the destination module. This can happen in situations
656      // like this:
657      //
658      //      Module A                         Module B
659      //      --------                         --------
660      //   %Z = type { %A }                %B = type { %C.1 }
661      //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
662      //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
663      //   %C = type { i8* }               %B.3 = type { %C.1 }
664      //
665      // When we link Module B with Module A, the '%B' in Module B is
666      // used. However, that would then use '%C.1'. But when we process '%C.1',
667      // we prefer to take the '%C' version. So we are then left with both
668      // '%C.1' and '%C' being used for the same types. This leads to some
669      // variables using one type and some using the other.
670      if (!SrcStructTypesSet.count(DST) && TypeMap.DstStructTypesSet.count(DST))
671        TypeMap.addTypeMapping(DST, ST);
672  }
673
674  // Don't bother incorporating aliases, they aren't generally typed well.
675
676  // Now that we have discovered all of the type equivalences, get a body for
677  // any 'opaque' types in the dest module that are now resolved.
678  TypeMap.linkDefinedTypeBodies();
679}
680
681/// linkAppendingVarProto - If there were any appending global variables, link
682/// them together now.  Return true on error.
683bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
684                                         GlobalVariable *SrcGV) {
685
686  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
687    return emitError("Linking globals named '" + SrcGV->getName() +
688           "': can only link appending global with another appending global!");
689
690  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
691  ArrayType *SrcTy =
692    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
693  Type *EltTy = DstTy->getElementType();
694
695  // Check to see that they two arrays agree on type.
696  if (EltTy != SrcTy->getElementType())
697    return emitError("Appending variables with different element types!");
698  if (DstGV->isConstant() != SrcGV->isConstant())
699    return emitError("Appending variables linked with different const'ness!");
700
701  if (DstGV->getAlignment() != SrcGV->getAlignment())
702    return emitError(
703             "Appending variables with different alignment need to be linked!");
704
705  if (DstGV->getVisibility() != SrcGV->getVisibility())
706    return emitError(
707            "Appending variables with different visibility need to be linked!");
708
709  if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
710    return emitError(
711        "Appending variables with different unnamed_addr need to be linked!");
712
713  if (DstGV->getSection() != SrcGV->getSection())
714    return emitError(
715          "Appending variables with different section name need to be linked!");
716
717  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
718  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
719
720  // Create the new global variable.
721  GlobalVariable *NG =
722    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
723                       DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
724                       DstGV->getThreadLocalMode(),
725                       DstGV->getType()->getAddressSpace());
726
727  // Propagate alignment, visibility and section info.
728  copyGVAttributes(NG, DstGV);
729
730  AppendingVarInfo AVI;
731  AVI.NewGV = NG;
732  AVI.DstInit = DstGV->getInitializer();
733  AVI.SrcInit = SrcGV->getInitializer();
734  AppendingVars.push_back(AVI);
735
736  // Replace any uses of the two global variables with uses of the new
737  // global.
738  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
739
740  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
741  DstGV->eraseFromParent();
742
743  // Track the source variable so we don't try to link it.
744  DoNotLinkFromSource.insert(SrcGV);
745
746  return false;
747}
748
749/// linkGlobalProto - Loop through the global variables in the src module and
750/// merge them into the dest module.
751bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
752  GlobalValue *DGV = getLinkedToGlobal(SGV);
753  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
754  bool HasUnnamedAddr = SGV->hasUnnamedAddr();
755
756  if (DGV) {
757    // Concatenation of appending linkage variables is magic and handled later.
758    if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
759      return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
760
761    // Determine whether linkage of these two globals follows the source
762    // module's definition or the destination module's definition.
763    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
764    GlobalValue::VisibilityTypes NV;
765    bool LinkFromSrc = false;
766    if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
767      return true;
768    NewVisibility = NV;
769    HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
770
771    // If we're not linking from the source, then keep the definition that we
772    // have.
773    if (!LinkFromSrc) {
774      // Special case for const propagation.
775      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
776        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
777          DGVar->setConstant(true);
778
779      // Set calculated linkage, visibility and unnamed_addr.
780      DGV->setLinkage(NewLinkage);
781      DGV->setVisibility(*NewVisibility);
782      DGV->setUnnamedAddr(HasUnnamedAddr);
783
784      // Make sure to remember this mapping.
785      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
786
787      // Track the source global so that we don't attempt to copy it over when
788      // processing global initializers.
789      DoNotLinkFromSource.insert(SGV);
790
791      return false;
792    }
793  }
794
795  // No linking to be performed or linking from the source: simply create an
796  // identical version of the symbol over in the dest module... the
797  // initializer will be filled in later by LinkGlobalInits.
798  GlobalVariable *NewDGV =
799    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
800                       SGV->isConstant(), SGV->getLinkage(), /*init*/0,
801                       SGV->getName(), /*insertbefore*/0,
802                       SGV->getThreadLocalMode(),
803                       SGV->getType()->getAddressSpace());
804  // Propagate alignment, visibility and section info.
805  copyGVAttributes(NewDGV, SGV);
806  if (NewVisibility)
807    NewDGV->setVisibility(*NewVisibility);
808  NewDGV->setUnnamedAddr(HasUnnamedAddr);
809
810  if (DGV) {
811    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
812    DGV->eraseFromParent();
813  }
814
815  // Make sure to remember this mapping.
816  ValueMap[SGV] = NewDGV;
817  return false;
818}
819
820/// linkFunctionProto - Link the function in the source module into the
821/// destination module if needed, setting up mapping information.
822bool ModuleLinker::linkFunctionProto(Function *SF) {
823  GlobalValue *DGV = getLinkedToGlobal(SF);
824  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
825  bool HasUnnamedAddr = SF->hasUnnamedAddr();
826
827  if (DGV) {
828    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
829    bool LinkFromSrc = false;
830    GlobalValue::VisibilityTypes NV;
831    if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
832      return true;
833    NewVisibility = NV;
834    HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
835
836    if (!LinkFromSrc) {
837      // Set calculated linkage
838      DGV->setLinkage(NewLinkage);
839      DGV->setVisibility(*NewVisibility);
840      DGV->setUnnamedAddr(HasUnnamedAddr);
841
842      // Make sure to remember this mapping.
843      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
844
845      // Track the function from the source module so we don't attempt to remap
846      // it.
847      DoNotLinkFromSource.insert(SF);
848
849      return false;
850    }
851  }
852
853  // If the function is to be lazily linked, don't create it just yet.
854  // The ValueMaterializerTy will deal with creating it if it's used.
855  if (!DGV && (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
856               SF->hasAvailableExternallyLinkage())) {
857    DoNotLinkFromSource.insert(SF);
858    return false;
859  }
860
861  // If there is no linkage to be performed or we are linking from the source,
862  // bring SF over.
863  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
864                                     SF->getLinkage(), SF->getName(), DstM);
865  copyGVAttributes(NewDF, SF);
866  if (NewVisibility)
867    NewDF->setVisibility(*NewVisibility);
868  NewDF->setUnnamedAddr(HasUnnamedAddr);
869
870  if (DGV) {
871    // Any uses of DF need to change to NewDF, with cast.
872    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
873    DGV->eraseFromParent();
874  }
875
876  ValueMap[SF] = NewDF;
877  return false;
878}
879
880/// LinkAliasProto - Set up prototypes for any aliases that come over from the
881/// source module.
882bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
883  GlobalValue *DGV = getLinkedToGlobal(SGA);
884  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
885
886  if (DGV) {
887    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
888    GlobalValue::VisibilityTypes NV;
889    bool LinkFromSrc = false;
890    if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
891      return true;
892    NewVisibility = NV;
893
894    if (!LinkFromSrc) {
895      // Set calculated linkage.
896      DGV->setLinkage(NewLinkage);
897      DGV->setVisibility(*NewVisibility);
898
899      // Make sure to remember this mapping.
900      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
901
902      // Track the alias from the source module so we don't attempt to remap it.
903      DoNotLinkFromSource.insert(SGA);
904
905      return false;
906    }
907  }
908
909  // If there is no linkage to be performed or we're linking from the source,
910  // bring over SGA.
911  GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
912                                       SGA->getLinkage(), SGA->getName(),
913                                       /*aliasee*/0, DstM);
914  copyGVAttributes(NewDA, SGA);
915  if (NewVisibility)
916    NewDA->setVisibility(*NewVisibility);
917
918  if (DGV) {
919    // Any uses of DGV need to change to NewDA, with cast.
920    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
921    DGV->eraseFromParent();
922  }
923
924  ValueMap[SGA] = NewDA;
925  return false;
926}
927
928static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
929  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
930
931  for (unsigned i = 0; i != NumElements; ++i)
932    Dest.push_back(C->getAggregateElement(i));
933}
934
935void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
936  // Merge the initializer.
937  SmallVector<Constant*, 16> Elements;
938  getArrayElements(AVI.DstInit, Elements);
939
940  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap, &ValMaterializer);
941  getArrayElements(SrcInit, Elements);
942
943  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
944  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
945}
946
947/// linkGlobalInits - Update the initializers in the Dest module now that all
948/// globals that may be referenced are in Dest.
949void ModuleLinker::linkGlobalInits() {
950  // Loop over all of the globals in the src module, mapping them over as we go
951  for (Module::const_global_iterator I = SrcM->global_begin(),
952       E = SrcM->global_end(); I != E; ++I) {
953
954    // Only process initialized GV's or ones not already in dest.
955    if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
956
957    // Grab destination global variable.
958    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
959    // Figure out what the initializer looks like in the dest module.
960    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
961                                 RF_None, &TypeMap, &ValMaterializer));
962  }
963}
964
965/// linkFunctionBody - Copy the source function over into the dest function and
966/// fix up references to values.  At this point we know that Dest is an external
967/// function, and that Src is not.
968void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
969  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
970
971  // Go through and convert function arguments over, remembering the mapping.
972  Function::arg_iterator DI = Dst->arg_begin();
973  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
974       I != E; ++I, ++DI) {
975    DI->setName(I->getName());  // Copy the name over.
976
977    // Add a mapping to our mapping.
978    ValueMap[I] = DI;
979  }
980
981  if (Mode == Linker::DestroySource) {
982    // Splice the body of the source function into the dest function.
983    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
984
985    // At this point, all of the instructions and values of the function are now
986    // copied over.  The only problem is that they are still referencing values in
987    // the Source function as operands.  Loop through all of the operands of the
988    // functions and patch them up to point to the local versions.
989    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
990      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
991        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries,
992                         &TypeMap, &ValMaterializer);
993
994  } else {
995    // Clone the body of the function into the dest function.
996    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
997    CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL,
998                      &TypeMap, &ValMaterializer);
999  }
1000
1001  // There is no need to map the arguments anymore.
1002  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1003       I != E; ++I)
1004    ValueMap.erase(I);
1005
1006}
1007
1008/// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
1009void ModuleLinker::linkAliasBodies() {
1010  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
1011       I != E; ++I) {
1012    if (DoNotLinkFromSource.count(I))
1013      continue;
1014    if (Constant *Aliasee = I->getAliasee()) {
1015      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
1016      DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None,
1017                              &TypeMap, &ValMaterializer));
1018    }
1019  }
1020}
1021
1022/// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
1023/// module.
1024void ModuleLinker::linkNamedMDNodes() {
1025  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1026  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
1027       E = SrcM->named_metadata_end(); I != E; ++I) {
1028    // Don't link module flags here. Do them separately.
1029    if (&*I == SrcModFlags) continue;
1030    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
1031    // Add Src elements into Dest node.
1032    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1033      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
1034                                   RF_None, &TypeMap, &ValMaterializer));
1035  }
1036}
1037
1038/// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
1039/// module.
1040bool ModuleLinker::linkModuleFlagsMetadata() {
1041  // If the source module has no module flags, we are done.
1042  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1043  if (!SrcModFlags) return false;
1044
1045  // If the destination module doesn't have module flags yet, then just copy
1046  // over the source module's flags.
1047  NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1048  if (DstModFlags->getNumOperands() == 0) {
1049    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1050      DstModFlags->addOperand(SrcModFlags->getOperand(I));
1051
1052    return false;
1053  }
1054
1055  // First build a map of the existing module flags and requirements.
1056  DenseMap<MDString*, MDNode*> Flags;
1057  SmallSetVector<MDNode*, 16> Requirements;
1058  for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1059    MDNode *Op = DstModFlags->getOperand(I);
1060    ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
1061    MDString *ID = cast<MDString>(Op->getOperand(1));
1062
1063    if (Behavior->getZExtValue() == Module::Require) {
1064      Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1065    } else {
1066      Flags[ID] = Op;
1067    }
1068  }
1069
1070  // Merge in the flags from the source module, and also collect its set of
1071  // requirements.
1072  bool HasErr = false;
1073  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1074    MDNode *SrcOp = SrcModFlags->getOperand(I);
1075    ConstantInt *SrcBehavior = cast<ConstantInt>(SrcOp->getOperand(0));
1076    MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1077    MDNode *DstOp = Flags.lookup(ID);
1078    unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1079
1080    // If this is a requirement, add it and continue.
1081    if (SrcBehaviorValue == Module::Require) {
1082      // If the destination module does not already have this requirement, add
1083      // it.
1084      if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1085        DstModFlags->addOperand(SrcOp);
1086      }
1087      continue;
1088    }
1089
1090    // If there is no existing flag with this ID, just add it.
1091    if (!DstOp) {
1092      Flags[ID] = SrcOp;
1093      DstModFlags->addOperand(SrcOp);
1094      continue;
1095    }
1096
1097    // Otherwise, perform a merge.
1098    ConstantInt *DstBehavior = cast<ConstantInt>(DstOp->getOperand(0));
1099    unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1100
1101    // If either flag has override behavior, handle it first.
1102    if (DstBehaviorValue == Module::Override) {
1103      // Diagnose inconsistent flags which both have override behavior.
1104      if (SrcBehaviorValue == Module::Override &&
1105          SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1106        HasErr |= emitError("linking module flags '" + ID->getString() +
1107                            "': IDs have conflicting override values");
1108      }
1109      continue;
1110    } else if (SrcBehaviorValue == Module::Override) {
1111      // Update the destination flag to that of the source.
1112      DstOp->replaceOperandWith(0, SrcBehavior);
1113      DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
1114      continue;
1115    }
1116
1117    // Diagnose inconsistent merge behavior types.
1118    if (SrcBehaviorValue != DstBehaviorValue) {
1119      HasErr |= emitError("linking module flags '" + ID->getString() +
1120                          "': IDs have conflicting behaviors");
1121      continue;
1122    }
1123
1124    // Perform the merge for standard behavior types.
1125    switch (SrcBehaviorValue) {
1126    case Module::Require:
1127    case Module::Override: assert(0 && "not possible"); break;
1128    case Module::Error: {
1129      // Emit an error if the values differ.
1130      if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1131        HasErr |= emitError("linking module flags '" + ID->getString() +
1132                            "': IDs have conflicting values");
1133      }
1134      continue;
1135    }
1136    case Module::Warning: {
1137      // Emit a warning if the values differ.
1138      if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1139        errs() << "WARNING: linking module flags '" << ID->getString()
1140               << "': IDs have conflicting values";
1141      }
1142      continue;
1143    }
1144    case Module::Append: {
1145      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1146      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1147      unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands();
1148      Value **VP, **Values = VP = new Value*[NumOps];
1149      for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP)
1150        *VP = DstValue->getOperand(i);
1151      for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP)
1152        *VP = SrcValue->getOperand(i);
1153      DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1154                                               ArrayRef<Value*>(Values,
1155                                                                NumOps)));
1156      delete[] Values;
1157      break;
1158    }
1159    case Module::AppendUnique: {
1160      SmallSetVector<Value*, 16> Elts;
1161      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1162      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1163      for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
1164        Elts.insert(DstValue->getOperand(i));
1165      for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
1166        Elts.insert(SrcValue->getOperand(i));
1167      DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1168                                               ArrayRef<Value*>(Elts.begin(),
1169                                                                Elts.end())));
1170      break;
1171    }
1172    }
1173  }
1174
1175  // Check all of the requirements.
1176  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1177    MDNode *Requirement = Requirements[I];
1178    MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1179    Value *ReqValue = Requirement->getOperand(1);
1180
1181    MDNode *Op = Flags[Flag];
1182    if (!Op || Op->getOperand(2) != ReqValue) {
1183      HasErr |= emitError("linking module flags '" + Flag->getString() +
1184                          "': does not have the required value");
1185      continue;
1186    }
1187  }
1188
1189  return HasErr;
1190}
1191
1192bool ModuleLinker::run() {
1193  assert(DstM && "Null destination module");
1194  assert(SrcM && "Null source module");
1195
1196  // Inherit the target data from the source module if the destination module
1197  // doesn't have one already.
1198  if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
1199    DstM->setDataLayout(SrcM->getDataLayout());
1200
1201  // Copy the target triple from the source to dest if the dest's is empty.
1202  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1203    DstM->setTargetTriple(SrcM->getTargetTriple());
1204
1205  if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
1206      SrcM->getDataLayout() != DstM->getDataLayout())
1207    errs() << "WARNING: Linking two modules of different data layouts!\n";
1208  if (!SrcM->getTargetTriple().empty() &&
1209      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1210    errs() << "WARNING: Linking two modules of different target triples: ";
1211    if (!SrcM->getModuleIdentifier().empty())
1212      errs() << SrcM->getModuleIdentifier() << ": ";
1213    errs() << "'" << SrcM->getTargetTriple() << "' and '"
1214           << DstM->getTargetTriple() << "'\n";
1215  }
1216
1217  // Append the module inline asm string.
1218  if (!SrcM->getModuleInlineAsm().empty()) {
1219    if (DstM->getModuleInlineAsm().empty())
1220      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1221    else
1222      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1223                               SrcM->getModuleInlineAsm());
1224  }
1225
1226  // Loop over all of the linked values to compute type mappings.
1227  computeTypeMapping();
1228
1229  // Insert all of the globals in src into the DstM module... without linking
1230  // initializers (which could refer to functions not yet mapped over).
1231  for (Module::global_iterator I = SrcM->global_begin(),
1232       E = SrcM->global_end(); I != E; ++I)
1233    if (linkGlobalProto(I))
1234      return true;
1235
1236  // Link the functions together between the two modules, without doing function
1237  // bodies... this just adds external function prototypes to the DstM
1238  // function...  We do this so that when we begin processing function bodies,
1239  // all of the global values that may be referenced are available in our
1240  // ValueMap.
1241  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1242    if (linkFunctionProto(I))
1243      return true;
1244
1245  // If there were any aliases, link them now.
1246  for (Module::alias_iterator I = SrcM->alias_begin(),
1247       E = SrcM->alias_end(); I != E; ++I)
1248    if (linkAliasProto(I))
1249      return true;
1250
1251  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1252    linkAppendingVarInit(AppendingVars[i]);
1253
1254  // Link in the function bodies that are defined in the source module into
1255  // DstM.
1256  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1257    // Skip if not linking from source.
1258    if (DoNotLinkFromSource.count(SF)) continue;
1259
1260    Function *DF = cast<Function>(ValueMap[SF]);
1261    if (SF->hasPrefixData()) {
1262      // Link in the prefix data.
1263      DF->setPrefixData(MapValue(
1264          SF->getPrefixData(), ValueMap, RF_None, &TypeMap, &ValMaterializer));
1265    }
1266
1267    // Skip if no body (function is external) or materialize.
1268    if (SF->isDeclaration()) {
1269      if (!SF->isMaterializable())
1270        continue;
1271      if (SF->Materialize(&ErrorMsg))
1272        return true;
1273    }
1274
1275    linkFunctionBody(DF, SF);
1276    SF->Dematerialize();
1277  }
1278
1279  // Resolve all uses of aliases with aliasees.
1280  linkAliasBodies();
1281
1282  // Remap all of the named MDNodes in Src into the DstM module. We do this
1283  // after linking GlobalValues so that MDNodes that reference GlobalValues
1284  // are properly remapped.
1285  linkNamedMDNodes();
1286
1287  // Merge the module flags into the DstM module.
1288  if (linkModuleFlagsMetadata())
1289    return true;
1290
1291  // Process vector of lazily linked in functions.
1292  bool LinkedInAnyFunctions;
1293  do {
1294    LinkedInAnyFunctions = false;
1295
1296    for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1297        E = LazilyLinkFunctions.end(); I != E; ++I) {
1298      Function *SF = *I;
1299      if (!SF)
1300        continue;
1301
1302      Function *DF = cast<Function>(ValueMap[SF]);
1303      if (SF->hasPrefixData()) {
1304        // Link in the prefix data.
1305        DF->setPrefixData(MapValue(SF->getPrefixData(),
1306                                   ValueMap,
1307                                   RF_None,
1308                                   &TypeMap,
1309                                   &ValMaterializer));
1310      }
1311
1312      // Materialize if necessary.
1313      if (SF->isDeclaration()) {
1314        if (!SF->isMaterializable())
1315          continue;
1316        if (SF->Materialize(&ErrorMsg))
1317          return true;
1318      }
1319
1320      // Erase from vector *before* the function body is linked - linkFunctionBody could
1321      // invalidate I.
1322      LazilyLinkFunctions.erase(I);
1323
1324      // Link in function body.
1325      linkFunctionBody(DF, SF);
1326      SF->Dematerialize();
1327
1328      // Set flag to indicate we may have more functions to lazily link in
1329      // since we linked in a function.
1330      LinkedInAnyFunctions = true;
1331      break;
1332    }
1333  } while (LinkedInAnyFunctions);
1334
1335  // Update the initializers in the DstM module now that all globals that may
1336  // be referenced are in DstM.
1337  linkGlobalInits();
1338
1339  // Now that all of the types from the source are used, resolve any structs
1340  // copied over to the dest that didn't exist there.
1341  TypeMap.linkDefinedTypeBodies();
1342
1343  return false;
1344}
1345
1346Linker::Linker(Module *M) : Composite(M) {
1347  TypeFinder StructTypes;
1348  StructTypes.run(*M, true);
1349  IdentifiedStructTypes.insert(StructTypes.begin(), StructTypes.end());
1350}
1351
1352Linker::~Linker() {
1353}
1354
1355void Linker::deleteModule() {
1356  delete Composite;
1357  Composite = NULL;
1358}
1359
1360bool Linker::linkInModule(Module *Src, unsigned Mode, std::string *ErrorMsg) {
1361  ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src, Mode);
1362  if (TheLinker.run()) {
1363    if (ErrorMsg)
1364      *ErrorMsg = TheLinker.ErrorMsg;
1365    return true;
1366  }
1367  return false;
1368}
1369
1370//===----------------------------------------------------------------------===//
1371// LinkModules entrypoint.
1372//===----------------------------------------------------------------------===//
1373
1374/// LinkModules - This function links two modules together, with the resulting
1375/// Dest module modified to be the composite of the two input modules.  If an
1376/// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1377/// the problem.  Upon failure, the Dest module could be in a modified state,
1378/// and shouldn't be relied on to be consistent.
1379bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1380                         std::string *ErrorMsg) {
1381  Linker L(Dest);
1382  return L.linkInModule(Src, Mode, ErrorMsg);
1383}
1384
1385//===----------------------------------------------------------------------===//
1386// C API.
1387//===----------------------------------------------------------------------===//
1388
1389LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
1390                         LLVMLinkerMode Mode, char **OutMessages) {
1391  std::string Messages;
1392  LLVMBool Result = Linker::LinkModules(unwrap(Dest), unwrap(Src),
1393                                        Mode, OutMessages? &Messages : 0);
1394  if (OutMessages)
1395    *OutMessages = strdup(Messages.c_str());
1396  return Result;
1397}
1398