LinkModules.cpp revision 5df3186f598163258fabf3448d9372843804d1ab
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/Instructions.h"
26#include "llvm/Assembly/Writer.h"
27#include "llvm/Support/Streams.h"
28#include "llvm/System/Path.h"
29#include "llvm/ADT/DenseMap.h"
30#include <sstream>
31using namespace llvm;
32
33// Error - Simple wrapper function to conditionally assign to E and return true.
34// This just makes error return conditions a little bit simpler...
35static inline bool Error(std::string *E, const std::string &Message) {
36  if (E) *E = Message;
37  return true;
38}
39
40// Function: ResolveTypes()
41//
42// Description:
43//  Attempt to link the two specified types together.
44//
45// Inputs:
46//  DestTy - The type to which we wish to resolve.
47//  SrcTy  - The original type which we want to resolve.
48//
49// Outputs:
50//  DestST - The symbol table in which the new type should be placed.
51//
52// Return value:
53//  true  - There is an error and the types cannot yet be linked.
54//  false - No errors.
55//
56static bool ResolveTypes(const Type *DestTy, const Type *SrcTy) {
57  if (DestTy == SrcTy) return false;       // If already equal, noop
58  assert(DestTy && SrcTy && "Can't handle null types");
59
60  if (const OpaqueType *OT = dyn_cast<OpaqueType>(DestTy)) {
61    // Type _is_ in module, just opaque...
62    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(SrcTy);
63  } else if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
64    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
65  } else {
66    return true;  // Cannot link types... not-equal and neither is opaque.
67  }
68  return false;
69}
70
71/// LinkerTypeMap - This implements a map of types that is stable
72/// even if types are resolved/refined to other types.  This is not a general
73/// purpose map, it is specific to the linker's use.
74namespace {
75class LinkerTypeMap : public AbstractTypeUser {
76  typedef DenseMap<const Type*, PATypeHolder> TheMapTy;
77  TheMapTy TheMap;
78
79  LinkerTypeMap(const LinkerTypeMap&); // DO NOT IMPLEMENT
80  void operator=(const LinkerTypeMap&); // DO NOT IMPLEMENT
81public:
82  LinkerTypeMap() {}
83  ~LinkerTypeMap() {
84    for (DenseMap<const Type*, PATypeHolder>::iterator I = TheMap.begin(),
85         E = TheMap.end(); I != E; ++I)
86      I->first->removeAbstractTypeUser(this);
87  }
88
89  /// lookup - Return the value for the specified type or null if it doesn't
90  /// exist.
91  const Type *lookup(const Type *Ty) const {
92    TheMapTy::const_iterator I = TheMap.find(Ty);
93    if (I != TheMap.end()) return I->second;
94    return 0;
95  }
96
97  /// erase - Remove the specified type, returning true if it was in the set.
98  bool erase(const Type *Ty) {
99    if (!TheMap.erase(Ty))
100      return false;
101    if (Ty->isAbstract())
102      Ty->removeAbstractTypeUser(this);
103    return true;
104  }
105
106  /// insert - This returns true if the pointer was new to the set, false if it
107  /// was already in the set.
108  bool insert(const Type *Src, const Type *Dst) {
109    if (!TheMap.insert(std::make_pair(Src, PATypeHolder(Dst))).second)
110      return false;  // Already in map.
111    if (Src->isAbstract())
112      Src->addAbstractTypeUser(this);
113    return true;
114  }
115
116protected:
117  /// refineAbstractType - The callback method invoked when an abstract type is
118  /// resolved to another type.  An object must override this method to update
119  /// its internal state to reference NewType instead of OldType.
120  ///
121  virtual void refineAbstractType(const DerivedType *OldTy,
122                                  const Type *NewTy) {
123    TheMapTy::iterator I = TheMap.find(OldTy);
124    const Type *DstTy = I->second;
125
126    TheMap.erase(I);
127    if (OldTy->isAbstract())
128      OldTy->removeAbstractTypeUser(this);
129
130    // Don't reinsert into the map if the key is concrete now.
131    if (NewTy->isAbstract())
132      insert(NewTy, DstTy);
133  }
134
135  /// The other case which AbstractTypeUsers must be aware of is when a type
136  /// makes the transition from being abstract (where it has clients on it's
137  /// AbstractTypeUsers list) to concrete (where it does not).  This method
138  /// notifies ATU's when this occurs for a type.
139  virtual void typeBecameConcrete(const DerivedType *AbsTy) {
140    TheMap.erase(AbsTy);
141    AbsTy->removeAbstractTypeUser(this);
142  }
143
144  // for debugging...
145  virtual void dump() const {
146    cerr << "AbstractTypeSet!\n";
147  }
148};
149}
150
151
152// RecursiveResolveTypes - This is just like ResolveTypes, except that it
153// recurses down into derived types, merging the used types if the parent types
154// are compatible.
155static bool RecursiveResolveTypesI(const Type *DstTy, const Type *SrcTy,
156                                   LinkerTypeMap &Pointers) {
157  if (DstTy == SrcTy) return false;       // If already equal, noop
158
159  // If we found our opaque type, resolve it now!
160  if (isa<OpaqueType>(DstTy) || isa<OpaqueType>(SrcTy))
161    return ResolveTypes(DstTy, SrcTy);
162
163  // Two types cannot be resolved together if they are of different primitive
164  // type.  For example, we cannot resolve an int to a float.
165  if (DstTy->getTypeID() != SrcTy->getTypeID()) return true;
166
167  // If neither type is abstract, then they really are just different types.
168  if (!DstTy->isAbstract() && !SrcTy->isAbstract())
169    return true;
170
171  // Otherwise, resolve the used type used by this derived type...
172  switch (DstTy->getTypeID()) {
173  default:
174    return true;
175  case Type::FunctionTyID: {
176    const FunctionType *DstFT = cast<FunctionType>(DstTy);
177    const FunctionType *SrcFT = cast<FunctionType>(SrcTy);
178    if (DstFT->isVarArg() != SrcFT->isVarArg() ||
179        DstFT->getNumContainedTypes() != SrcFT->getNumContainedTypes())
180      return true;
181
182    // Use TypeHolder's so recursive resolution won't break us.
183    PATypeHolder ST(SrcFT), DT(DstFT);
184    for (unsigned i = 0, e = DstFT->getNumContainedTypes(); i != e; ++i) {
185      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
186      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
187        return true;
188    }
189    return false;
190  }
191  case Type::StructTyID: {
192    const StructType *DstST = cast<StructType>(DstTy);
193    const StructType *SrcST = cast<StructType>(SrcTy);
194    if (DstST->getNumContainedTypes() != SrcST->getNumContainedTypes())
195      return true;
196
197    PATypeHolder ST(SrcST), DT(DstST);
198    for (unsigned i = 0, e = DstST->getNumContainedTypes(); i != e; ++i) {
199      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
200      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
201        return true;
202    }
203    return false;
204  }
205  case Type::ArrayTyID: {
206    const ArrayType *DAT = cast<ArrayType>(DstTy);
207    const ArrayType *SAT = cast<ArrayType>(SrcTy);
208    if (DAT->getNumElements() != SAT->getNumElements()) return true;
209    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
210                                  Pointers);
211  }
212  case Type::VectorTyID: {
213    const VectorType *DVT = cast<VectorType>(DstTy);
214    const VectorType *SVT = cast<VectorType>(SrcTy);
215    if (DVT->getNumElements() != SVT->getNumElements()) return true;
216    return RecursiveResolveTypesI(DVT->getElementType(), SVT->getElementType(),
217                                  Pointers);
218  }
219  case Type::PointerTyID: {
220    const PointerType *DstPT = cast<PointerType>(DstTy);
221    const PointerType *SrcPT = cast<PointerType>(SrcTy);
222
223    if (DstPT->getAddressSpace() != SrcPT->getAddressSpace())
224      return true;
225
226    // If this is a pointer type, check to see if we have already seen it.  If
227    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
228    // an associative container for this search, because the type pointers (keys
229    // in the container) change whenever types get resolved.
230    if (SrcPT->isAbstract())
231      if (const Type *ExistingDestTy = Pointers.lookup(SrcPT))
232        return ExistingDestTy != DstPT;
233
234    if (DstPT->isAbstract())
235      if (const Type *ExistingSrcTy = Pointers.lookup(DstPT))
236        return ExistingSrcTy != SrcPT;
237    // Otherwise, add the current pointers to the vector to stop recursion on
238    // this pair.
239    if (DstPT->isAbstract())
240      Pointers.insert(DstPT, SrcPT);
241    if (SrcPT->isAbstract())
242      Pointers.insert(SrcPT, DstPT);
243
244    return RecursiveResolveTypesI(DstPT->getElementType(),
245                                  SrcPT->getElementType(), Pointers);
246  }
247  }
248}
249
250static bool RecursiveResolveTypes(const Type *DestTy, const Type *SrcTy) {
251  LinkerTypeMap PointerTypes;
252  return RecursiveResolveTypesI(DestTy, SrcTy, PointerTypes);
253}
254
255
256// LinkTypes - Go through the symbol table of the Src module and see if any
257// types are named in the src module that are not named in the Dst module.
258// Make sure there are no type name conflicts.
259static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
260        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
261  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
262
263  // Look for a type plane for Type's...
264  TypeSymbolTable::const_iterator TI = SrcST->begin();
265  TypeSymbolTable::const_iterator TE = SrcST->end();
266  if (TI == TE) return false;  // No named types, do nothing.
267
268  // Some types cannot be resolved immediately because they depend on other
269  // types being resolved to each other first.  This contains a list of types we
270  // are waiting to recheck.
271  std::vector<std::string> DelayedTypesToResolve;
272
273  for ( ; TI != TE; ++TI ) {
274    const std::string &Name = TI->first;
275    const Type *RHS = TI->second;
276
277    // Check to see if this type name is already in the dest module.
278    Type *Entry = DestST->lookup(Name);
279
280    // If the name is just in the source module, bring it over to the dest.
281    if (Entry == 0) {
282      if (!Name.empty())
283        DestST->insert(Name, const_cast<Type*>(RHS));
284    } else if (ResolveTypes(Entry, RHS)) {
285      // They look different, save the types 'till later to resolve.
286      DelayedTypesToResolve.push_back(Name);
287    }
288  }
289
290  // Iteratively resolve types while we can...
291  while (!DelayedTypesToResolve.empty()) {
292    // Loop over all of the types, attempting to resolve them if possible...
293    unsigned OldSize = DelayedTypesToResolve.size();
294
295    // Try direct resolution by name...
296    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
297      const std::string &Name = DelayedTypesToResolve[i];
298      Type *T1 = SrcST->lookup(Name);
299      Type *T2 = DestST->lookup(Name);
300      if (!ResolveTypes(T2, T1)) {
301        // We are making progress!
302        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
303        --i;
304      }
305    }
306
307    // Did we not eliminate any types?
308    if (DelayedTypesToResolve.size() == OldSize) {
309      // Attempt to resolve subelements of types.  This allows us to merge these
310      // two types: { int* } and { opaque* }
311      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
312        const std::string &Name = DelayedTypesToResolve[i];
313        if (!RecursiveResolveTypes(SrcST->lookup(Name), DestST->lookup(Name))) {
314          // We are making progress!
315          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
316
317          // Go back to the main loop, perhaps we can resolve directly by name
318          // now...
319          break;
320        }
321      }
322
323      // If we STILL cannot resolve the types, then there is something wrong.
324      if (DelayedTypesToResolve.size() == OldSize) {
325        // Remove the symbol name from the destination.
326        DelayedTypesToResolve.pop_back();
327      }
328    }
329  }
330
331
332  return false;
333}
334
335#ifndef NDEBUG
336static void PrintMap(const std::map<const Value*, Value*> &M) {
337  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
338       I != E; ++I) {
339    cerr << " Fr: " << (void*)I->first << " ";
340    I->first->dump();
341    cerr << " To: " << (void*)I->second << " ";
342    I->second->dump();
343    cerr << "\n";
344  }
345}
346#endif
347
348
349// RemapOperand - Use ValueMap to convert constants from one module to another.
350static Value *RemapOperand(const Value *In,
351                           std::map<const Value*, Value*> &ValueMap) {
352  std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
353  if (I != ValueMap.end())
354    return I->second;
355
356  // Check to see if it's a constant that we are interested in transforming.
357  Value *Result = 0;
358  if (const Constant *CPV = dyn_cast<Constant>(In)) {
359    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
360        isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
361      return const_cast<Constant*>(CPV);   // Simple constants stay identical.
362
363    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
364      std::vector<Constant*> Operands(CPA->getNumOperands());
365      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
366        Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
367      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
368    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
369      std::vector<Constant*> Operands(CPS->getNumOperands());
370      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
371        Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
372      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
373    } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
374      Result = const_cast<Constant*>(CPV);
375    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
376      std::vector<Constant*> Operands(CP->getNumOperands());
377      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
378        Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
379      Result = ConstantVector::get(Operands);
380    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
381      std::vector<Constant*> Ops;
382      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
383        Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
384      Result = CE->getWithOperands(Ops);
385    } else {
386      assert(!isa<GlobalValue>(CPV) && "Unmapped global?");
387      assert(0 && "Unknown type of derived type constant value!");
388    }
389  } else if (isa<InlineAsm>(In)) {
390    Result = const_cast<Value*>(In);
391  }
392
393  // Cache the mapping in our local map structure
394  if (Result) {
395    ValueMap[In] = Result;
396    return Result;
397  }
398
399#ifndef NDEBUG
400  cerr << "LinkModules ValueMap: \n";
401  PrintMap(ValueMap);
402
403  cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
404  assert(0 && "Couldn't remap value!");
405#endif
406  return 0;
407}
408
409/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
410/// in the symbol table.  This is good for all clients except for us.  Go
411/// through the trouble to force this back.
412static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
413  assert(GV->getName() != Name && "Can't force rename to self");
414  ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
415
416  // If there is a conflict, rename the conflict.
417  if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
418    assert(ConflictGV->hasInternalLinkage() &&
419           "Not conflicting with a static global, should link instead!");
420    GV->takeName(ConflictGV);
421    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
422    assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
423  } else {
424    GV->setName(Name);              // Force the name back
425  }
426}
427
428/// CopyGVAttributes - copy additional attributes (those not needed to construct
429/// a GlobalValue) from the SrcGV to the DestGV.
430static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
431  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
432  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
433  DestGV->copyAttributesFrom(SrcGV);
434  DestGV->setAlignment(Alignment);
435}
436
437/// GetLinkageResult - This analyzes the two global values and determines what
438/// the result will look like in the destination module.  In particular, it
439/// computes the resultant linkage type, computes whether the global in the
440/// source should be copied over to the destination (replacing the existing
441/// one), and computes whether this linkage is an error or not. It also performs
442/// visibility checks: we cannot link together two symbols with different
443/// visibilities.
444static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
445                             GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
446                             std::string *Err) {
447  assert((!Dest || !Src->hasInternalLinkage()) &&
448         "If Src has internal linkage, Dest shouldn't be set!");
449  if (!Dest) {
450    // Linking something to nothing.
451    LinkFromSrc = true;
452    LT = Src->getLinkage();
453  } else if (Src->isDeclaration()) {
454    // If Src is external or if both Src & Dest are external..  Just link the
455    // external globals, we aren't adding anything.
456    if (Src->hasDLLImportLinkage()) {
457      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
458      if (Dest->isDeclaration()) {
459        LinkFromSrc = true;
460        LT = Src->getLinkage();
461      }
462    } else if (Dest->hasExternalWeakLinkage()) {
463      //If the Dest is weak, use the source linkage
464      LinkFromSrc = true;
465      LT = Src->getLinkage();
466    } else {
467      LinkFromSrc = false;
468      LT = Dest->getLinkage();
469    }
470  } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
471    // If Dest is external but Src is not:
472    LinkFromSrc = true;
473    LT = Src->getLinkage();
474  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
475    if (Src->getLinkage() != Dest->getLinkage())
476      return Error(Err, "Linking globals named '" + Src->getName() +
477            "': can only link appending global with another appending global!");
478    LinkFromSrc = true; // Special cased.
479    LT = Src->getLinkage();
480  } else if (Src->mayBeOverridden()) {
481    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
482    // or DLL* linkage.
483    if ((Dest->hasLinkOnceLinkage() &&
484          (Src->hasWeakLinkage() || Src->hasCommonLinkage())) ||
485        Dest->hasExternalWeakLinkage()) {
486      LinkFromSrc = true;
487      LT = Src->getLinkage();
488    } else {
489      LinkFromSrc = false;
490      LT = Dest->getLinkage();
491    }
492  } else if (Dest->mayBeOverridden()) {
493    // At this point we know that Src has External* or DLL* linkage.
494    if (Src->hasExternalWeakLinkage()) {
495      LinkFromSrc = false;
496      LT = Dest->getLinkage();
497    } else {
498      LinkFromSrc = true;
499      LT = GlobalValue::ExternalLinkage;
500    }
501  } else {
502    assert((Dest->hasExternalLinkage() ||
503            Dest->hasDLLImportLinkage() ||
504            Dest->hasDLLExportLinkage() ||
505            Dest->hasExternalWeakLinkage()) &&
506           (Src->hasExternalLinkage() ||
507            Src->hasDLLImportLinkage() ||
508            Src->hasDLLExportLinkage() ||
509            Src->hasExternalWeakLinkage()) &&
510           "Unexpected linkage type!");
511    return Error(Err, "Linking globals named '" + Src->getName() +
512                 "': symbol multiply defined!");
513  }
514
515  // Check visibility
516  if (Dest && Src->getVisibility() != Dest->getVisibility())
517    if (!Src->isDeclaration() && !Dest->isDeclaration())
518      return Error(Err, "Linking globals named '" + Src->getName() +
519                   "': symbols have different visibilities!");
520  return false;
521}
522
523// LinkGlobals - Loop through the global variables in the src module and merge
524// them into the dest module.
525static bool LinkGlobals(Module *Dest, const Module *Src,
526                        std::map<const Value*, Value*> &ValueMap,
527                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
528                        std::string *Err) {
529  ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
530
531  // Loop over all of the globals in the src module, mapping them over as we go
532  for (Module::const_global_iterator I = Src->global_begin(),
533       E = Src->global_end(); I != E; ++I) {
534    const GlobalVariable *SGV = I;
535    GlobalValue *DGV = 0;
536
537    // Check to see if may have to link the global with the global, alias or
538    // function.
539    if (SGV->hasName() && !SGV->hasInternalLinkage())
540      DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SGV->getNameStart(),
541                                                        SGV->getNameEnd()));
542
543    // If we found a global with the same name in the dest module, but it has
544    // internal linkage, we are really not doing any linkage here.
545    if (DGV && DGV->hasInternalLinkage())
546      DGV = 0;
547
548    // If types don't agree due to opaque types, try to resolve them.
549    if (DGV && DGV->getType() != SGV->getType())
550      RecursiveResolveTypes(SGV->getType(), DGV->getType());
551
552    assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
553            SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
554           "Global must either be external or have an initializer!");
555
556    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
557    bool LinkFromSrc = false;
558    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
559      return true;
560
561    if (DGV == 0) {
562      // No linking to be performed, simply create an identical version of the
563      // symbol over in the dest module... the initializer will be filled in
564      // later by LinkGlobalInits.
565      GlobalVariable *NewDGV =
566        new GlobalVariable(SGV->getType()->getElementType(),
567                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
568                           SGV->getName(), Dest, false,
569                           SGV->getType()->getAddressSpace());
570      // Propagate alignment, visibility and section info.
571      CopyGVAttributes(NewDGV, SGV);
572
573      // If the LLVM runtime renamed the global, but it is an externally visible
574      // symbol, DGV must be an existing global with internal linkage.  Rename
575      // it.
576      if (!NewDGV->hasInternalLinkage() && NewDGV->getName() != SGV->getName())
577        ForceRenaming(NewDGV, SGV->getName());
578
579      // Make sure to remember this mapping.
580      ValueMap[SGV] = NewDGV;
581
582      // Keep track that this is an appending variable.
583      if (SGV->hasAppendingLinkage())
584        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
585      continue;
586    }
587
588    // If the visibilities of the symbols disagree and the destination is a
589    // prototype, take the visibility of its input.
590    if (DGV->isDeclaration())
591      DGV->setVisibility(SGV->getVisibility());
592
593    if (DGV->hasAppendingLinkage()) {
594      // No linking is performed yet.  Just insert a new copy of the global, and
595      // keep track of the fact that it is an appending variable in the
596      // AppendingVars map.  The name is cleared out so that no linkage is
597      // performed.
598      GlobalVariable *NewDGV =
599        new GlobalVariable(SGV->getType()->getElementType(),
600                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
601                           "", Dest, false,
602                           SGV->getType()->getAddressSpace());
603
604      // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
605      NewDGV->setAlignment(DGV->getAlignment());
606      // Propagate alignment, section and visibility info.
607      CopyGVAttributes(NewDGV, SGV);
608
609      // Make sure to remember this mapping...
610      ValueMap[SGV] = NewDGV;
611
612      // Keep track that this is an appending variable...
613      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
614      continue;
615    }
616
617    if (LinkFromSrc) {
618      if (isa<GlobalAlias>(DGV))
619        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
620                     "': symbol multiple defined");
621
622      // If the types don't match, and if we are to link from the source, nuke
623      // DGV and create a new one of the appropriate type.  Note that the thing
624      // we are replacing may be a function (if a prototype, weak, etc) or a
625      // global variable.
626      GlobalVariable *NewDGV =
627        new GlobalVariable(SGV->getType()->getElementType(), SGV->isConstant(),
628                           NewLinkage, /*init*/0, DGV->getName(), Dest, false,
629                           SGV->getType()->getAddressSpace());
630
631      // Propagate alignment, section, and visibility info.
632      CopyGVAttributes(NewDGV, SGV);
633      DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
634
635      // DGV will conflict with NewDGV because they both had the same
636      // name. We must erase this now so ForceRenaming doesn't assert
637      // because DGV might not have internal linkage.
638      if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
639        Var->eraseFromParent();
640      else
641        cast<Function>(DGV)->eraseFromParent();
642      DGV = NewDGV;
643
644      // If the symbol table renamed the global, but it is an externally visible
645      // symbol, DGV must be an existing global with internal linkage.  Rename.
646      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
647        ForceRenaming(NewDGV, SGV->getName());
648
649      // Inherit const as appropriate.
650      NewDGV->setConstant(SGV->isConstant());
651
652      // Make sure to remember this mapping.
653      ValueMap[SGV] = NewDGV;
654      continue;
655    }
656
657    // Not "link from source", keep the one in the DestModule and remap the
658    // input onto it.
659
660    // Special case for const propagation.
661    if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
662      if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
663        DGVar->setConstant(true);
664
665    // SGV is global, but DGV is alias. The only valid mapping is when SGV is
666    // external declaration, which is effectively a no-op. Also make sure
667    // linkage calculation was correct.
668    if (isa<GlobalAlias>(DGV) && !SGV->isDeclaration())
669      return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
670                   "': symbol multiple defined");
671
672    // Set calculated linkage
673    DGV->setLinkage(NewLinkage);
674
675    // Make sure to remember this mapping...
676    ValueMap[SGV] = ConstantExpr::getBitCast(DGV, SGV->getType());
677  }
678  return false;
679}
680
681static GlobalValue::LinkageTypes
682CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
683  if (SGV->hasExternalLinkage() || DGV->hasExternalLinkage())
684    return GlobalValue::ExternalLinkage;
685  else if (SGV->hasWeakLinkage() || DGV->hasWeakLinkage())
686    return GlobalValue::WeakLinkage;
687  else {
688    assert(SGV->hasInternalLinkage() && DGV->hasInternalLinkage() &&
689           "Unexpected linkage type");
690    return GlobalValue::InternalLinkage;
691  }
692}
693
694// LinkAlias - Loop through the alias in the src module and link them into the
695// dest module. We're assuming, that all functions/global variables were already
696// linked in.
697static bool LinkAlias(Module *Dest, const Module *Src,
698                      std::map<const Value*, Value*> &ValueMap,
699                      std::string *Err) {
700  // Loop over all alias in the src module
701  for (Module::const_alias_iterator I = Src->alias_begin(),
702         E = Src->alias_end(); I != E; ++I) {
703    const GlobalAlias *SGA = I;
704    const GlobalValue *SAliasee = SGA->getAliasedGlobal();
705    GlobalAlias *NewGA = NULL;
706
707    // Globals were already linked, thus we can just query ValueMap for variant
708    // of SAliasee in Dest.
709    std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
710    assert(VMI != ValueMap.end() && "Aliasee not linked");
711    GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
712    GlobalValue* DGV = NULL;
713
714    // Try to find something 'similar' to SGA in destination module.
715    if (!DGV && !SGA->hasInternalLinkage()) {
716      DGV = Dest->getNamedAlias(SGA->getName());
717
718      // If types don't agree due to opaque types, try to resolve them.
719      if (DGV && DGV->getType() != SGA->getType())
720        RecursiveResolveTypes(SGA->getType(), DGV->getType());
721    }
722
723    if (!DGV && !SGA->hasInternalLinkage()) {
724      DGV = Dest->getGlobalVariable(SGA->getName());
725
726      // If types don't agree due to opaque types, try to resolve them.
727      if (DGV && DGV->getType() != SGA->getType())
728        RecursiveResolveTypes(SGA->getType(), DGV->getType());
729    }
730
731    if (!DGV && !SGA->hasInternalLinkage()) {
732      DGV = Dest->getFunction(SGA->getName());
733
734      // If types don't agree due to opaque types, try to resolve them.
735      if (DGV && DGV->getType() != SGA->getType())
736        RecursiveResolveTypes(SGA->getType(), DGV->getType());
737    }
738
739    // No linking to be performed on internal stuff.
740    if (DGV && DGV->hasInternalLinkage())
741      DGV = NULL;
742
743    if (GlobalAlias *DGA = dyn_cast_or_null<GlobalAlias>(DGV)) {
744      // Types are known to be the same, check whether aliasees equal. As
745      // globals are already linked we just need query ValueMap to find the
746      // mapping.
747      if (DAliasee == DGA->getAliasedGlobal()) {
748        // This is just two copies of the same alias. Propagate linkage, if
749        // necessary.
750        DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
751
752        NewGA = DGA;
753        // Proceed to 'common' steps
754      } else
755        return Error(Err, "Alias Collision on '"  + SGA->getName()+
756                     "': aliases have different aliasees");
757    } else if (GlobalVariable *DGVar = dyn_cast_or_null<GlobalVariable>(DGV)) {
758      // The only allowed way is to link alias with external declaration or weak
759      // symbol..
760      if (DGVar->isDeclaration() || DGVar->mayBeOverridden()) {
761        // But only if aliasee is global too...
762        if (!isa<GlobalVariable>(DAliasee))
763          return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
764                       "': aliasee is not global variable");
765
766        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
767                                SGA->getName(), DAliasee, Dest);
768        CopyGVAttributes(NewGA, SGA);
769
770        // Any uses of DGV need to change to NewGA, with cast, if needed.
771        if (SGA->getType() != DGVar->getType())
772          DGVar->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
773                                                             DGVar->getType()));
774        else
775          DGVar->replaceAllUsesWith(NewGA);
776
777        // DGVar will conflict with NewGA because they both had the same
778        // name. We must erase this now so ForceRenaming doesn't assert
779        // because DGV might not have internal linkage.
780        DGVar->eraseFromParent();
781
782        // Proceed to 'common' steps
783      } else
784        return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
785                     "': symbol multiple defined");
786    } else if (Function *DF = dyn_cast_or_null<Function>(DGV)) {
787      // The only allowed way is to link alias with external declaration or weak
788      // symbol...
789      if (DF->isDeclaration() || DF->mayBeOverridden()) {
790        // But only if aliasee is function too...
791        if (!isa<Function>(DAliasee))
792          return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
793                       "': aliasee is not function");
794
795        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
796                                SGA->getName(), DAliasee, Dest);
797        CopyGVAttributes(NewGA, SGA);
798
799        // Any uses of DF need to change to NewGA, with cast, if needed.
800        if (SGA->getType() != DF->getType())
801          DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
802                                                          DF->getType()));
803        else
804          DF->replaceAllUsesWith(NewGA);
805
806        // DF will conflict with NewGA because they both had the same
807        // name. We must erase this now so ForceRenaming doesn't assert
808        // because DF might not have internal linkage.
809        DF->eraseFromParent();
810
811        // Proceed to 'common' steps
812      } else
813        return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
814                     "': symbol multiple defined");
815    } else {
816      // No linking to be performed, simply create an identical version of the
817      // alias over in the dest module...
818
819      NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
820                              SGA->getName(), DAliasee, Dest);
821      CopyGVAttributes(NewGA, SGA);
822
823      // Proceed to 'common' steps
824    }
825
826    assert(NewGA && "No alias was created in destination module!");
827
828    // If the symbol table renamed the alias, but it is an externally visible
829    // symbol, DGA must be an global value with internal linkage. Rename it.
830    if (NewGA->getName() != SGA->getName() &&
831        !NewGA->hasInternalLinkage())
832      ForceRenaming(NewGA, SGA->getName());
833
834    // Remember this mapping so uses in the source module get remapped
835    // later by RemapOperand.
836    ValueMap[SGA] = NewGA;
837  }
838
839  return false;
840}
841
842
843// LinkGlobalInits - Update the initializers in the Dest module now that all
844// globals that may be referenced are in Dest.
845static bool LinkGlobalInits(Module *Dest, const Module *Src,
846                            std::map<const Value*, Value*> &ValueMap,
847                            std::string *Err) {
848  // Loop over all of the globals in the src module, mapping them over as we go
849  for (Module::const_global_iterator I = Src->global_begin(),
850       E = Src->global_end(); I != E; ++I) {
851    const GlobalVariable *SGV = I;
852
853    if (SGV->hasInitializer()) {      // Only process initialized GV's
854      // Figure out what the initializer looks like in the dest module...
855      Constant *SInit =
856        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
857
858      GlobalVariable *DGV =
859        cast<GlobalVariable>(ValueMap[SGV]->stripPointerCasts());
860      if (DGV->hasInitializer()) {
861        if (SGV->hasExternalLinkage()) {
862          if (DGV->getInitializer() != SInit)
863            return Error(Err, "Global Variable Collision on '" + SGV->getName() +
864                         "': global variables have different initializers");
865        } else if (DGV->mayBeOverridden()) {
866          // Nothing is required, mapped values will take the new global
867          // automatically.
868        } else if (SGV->mayBeOverridden()) {
869          // Nothing is required, mapped values will take the new global
870          // automatically.
871        } else if (DGV->hasAppendingLinkage()) {
872          assert(0 && "Appending linkage unimplemented!");
873        } else {
874          assert(0 && "Unknown linkage!");
875        }
876      } else {
877        // Copy the initializer over now...
878        DGV->setInitializer(SInit);
879      }
880    }
881  }
882  return false;
883}
884
885// LinkFunctionProtos - Link the functions together between the two modules,
886// without doing function bodies... this just adds external function prototypes
887// to the Dest function...
888//
889static bool LinkFunctionProtos(Module *Dest, const Module *Src,
890                               std::map<const Value*, Value*> &ValueMap,
891                               std::string *Err) {
892  ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
893
894  // Loop over all of the functions in the src module, mapping them over
895  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
896    const Function *SF = I;   // SrcFunction
897    GlobalValue *DGV = 0;
898
899    // Check to see if may have to link the function with the global, alias or
900    // function.
901    if (SF->hasName() && !SF->hasInternalLinkage())
902      DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SF->getNameStart(),
903                                                        SF->getNameEnd()));
904
905    // If we found a global with the same name in the dest module, but it has
906    // internal linkage, we are really not doing any linkage here.
907    if (DGV && DGV->hasInternalLinkage())
908      DGV = 0;
909
910    // If types don't agree due to opaque types, try to resolve them.
911    if (DGV && DGV->getType() != SF->getType())
912      RecursiveResolveTypes(SF->getType(), DGV->getType());
913
914    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
915    bool LinkFromSrc = false;
916    if (GetLinkageResult(DGV, SF, NewLinkage, LinkFromSrc, Err))
917      return true;
918
919    // If there is no linkage to be performed, just bring over SF without
920    // modifying it.
921    if (DGV == 0) {
922      // Function does not already exist, simply insert an function signature
923      // identical to SF into the dest module.
924      Function *NewDF = Function::Create(SF->getFunctionType(),
925                                         SF->getLinkage(),
926                                         SF->getName(), Dest);
927      CopyGVAttributes(NewDF, SF);
928
929      // If the LLVM runtime renamed the function, but it is an externally
930      // visible symbol, DF must be an existing function with internal linkage.
931      // Rename it.
932      if (!NewDF->hasInternalLinkage() && NewDF->getName() != SF->getName())
933        ForceRenaming(NewDF, SF->getName());
934
935      // ... and remember this mapping...
936      ValueMap[SF] = NewDF;
937      continue;
938    }
939
940    // If the visibilities of the symbols disagree and the destination is a
941    // prototype, take the visibility of its input.
942    if (DGV->isDeclaration())
943      DGV->setVisibility(SF->getVisibility());
944
945    if (LinkFromSrc) {
946      if (isa<GlobalAlias>(DGV))
947        return Error(Err, "Function-Alias Collision on '" + SF->getName() +
948                     "': symbol multiple defined");
949
950      // We have a definition of the same name but different type in the
951      // source module. Copy the prototype to the destination and replace
952      // uses of the destination's prototype with the new prototype.
953      Function *NewDF = Function::Create(SF->getFunctionType(), NewLinkage,
954                                         SF->getName(), Dest);
955      CopyGVAttributes(NewDF, SF);
956
957      // Any uses of DF need to change to NewDF, with cast
958      DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
959
960      // DF will conflict with NewDF because they both had the same. We must
961      // erase this now so ForceRenaming doesn't assert because DF might
962      // not have internal linkage.
963      if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
964        Var->eraseFromParent();
965      else
966        cast<Function>(DGV)->eraseFromParent();
967
968      // If the symbol table renamed the function, but it is an externally
969      // visible symbol, DF must be an existing function with internal
970      // linkage.  Rename it.
971      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
972        ForceRenaming(NewDF, SF->getName());
973
974      // Remember this mapping so uses in the source module get remapped
975      // later by RemapOperand.
976      ValueMap[SF] = NewDF;
977      continue;
978    }
979
980    // Not "link from source", keep the one in the DestModule and remap the
981    // input onto it.
982
983    if (isa<GlobalAlias>(DGV)) {
984      // The only valid mappings are:
985      // - SF is external declaration, which is effectively a no-op.
986      // - SF is weak, when we just need to throw SF out.
987      if (!SF->isDeclaration())
988        return Error(Err, "Function-Alias Collision on '" + SF->getName() +
989                     "': symbol multiple defined");
990    }
991
992    // Set calculated linkage
993    DGV->setLinkage(NewLinkage);
994
995    // Make sure to remember this mapping.
996    ValueMap[SF] = ConstantExpr::getBitCast(DGV, SF->getType());
997  }
998  return false;
999}
1000
1001// LinkFunctionBody - Copy the source function over into the dest function and
1002// fix up references to values.  At this point we know that Dest is an external
1003// function, and that Src is not.
1004static bool LinkFunctionBody(Function *Dest, Function *Src,
1005                             std::map<const Value*, Value*> &ValueMap,
1006                             std::string *Err) {
1007  assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
1008
1009  // Go through and convert function arguments over, remembering the mapping.
1010  Function::arg_iterator DI = Dest->arg_begin();
1011  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1012       I != E; ++I, ++DI) {
1013    DI->setName(I->getName());  // Copy the name information over...
1014
1015    // Add a mapping to our local map
1016    ValueMap[I] = DI;
1017  }
1018
1019  // Splice the body of the source function into the dest function.
1020  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
1021
1022  // At this point, all of the instructions and values of the function are now
1023  // copied over.  The only problem is that they are still referencing values in
1024  // the Source function as operands.  Loop through all of the operands of the
1025  // functions and patch them up to point to the local versions...
1026  //
1027  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
1028    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1029      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1030           OI != OE; ++OI)
1031        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
1032          *OI = RemapOperand(*OI, ValueMap);
1033
1034  // There is no need to map the arguments anymore.
1035  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1036       I != E; ++I)
1037    ValueMap.erase(I);
1038
1039  return false;
1040}
1041
1042
1043// LinkFunctionBodies - Link in the function bodies that are defined in the
1044// source module into the DestModule.  This consists basically of copying the
1045// function over and fixing up references to values.
1046static bool LinkFunctionBodies(Module *Dest, Module *Src,
1047                               std::map<const Value*, Value*> &ValueMap,
1048                               std::string *Err) {
1049
1050  // Loop over all of the functions in the src module, mapping them over as we
1051  // go
1052  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
1053    if (!SF->isDeclaration()) {               // No body if function is external
1054      Function *DF = dyn_cast<Function>(ValueMap[SF]); // Destination function
1055
1056      // DF not external SF external?
1057      if (DF && DF->isDeclaration())
1058        // Only provide the function body if there isn't one already.
1059        if (LinkFunctionBody(DF, SF, ValueMap, Err))
1060          return true;
1061    }
1062  }
1063  return false;
1064}
1065
1066// LinkAppendingVars - If there were any appending global variables, link them
1067// together now.  Return true on error.
1068static bool LinkAppendingVars(Module *M,
1069                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
1070                              std::string *ErrorMsg) {
1071  if (AppendingVars.empty()) return false; // Nothing to do.
1072
1073  // Loop over the multimap of appending vars, processing any variables with the
1074  // same name, forming a new appending global variable with both of the
1075  // initializers merged together, then rewrite references to the old variables
1076  // and delete them.
1077  std::vector<Constant*> Inits;
1078  while (AppendingVars.size() > 1) {
1079    // Get the first two elements in the map...
1080    std::multimap<std::string,
1081      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
1082
1083    // If the first two elements are for different names, there is no pair...
1084    // Otherwise there is a pair, so link them together...
1085    if (First->first == Second->first) {
1086      GlobalVariable *G1 = First->second, *G2 = Second->second;
1087      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
1088      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
1089
1090      // Check to see that they two arrays agree on type...
1091      if (T1->getElementType() != T2->getElementType())
1092        return Error(ErrorMsg,
1093         "Appending variables with different element types need to be linked!");
1094      if (G1->isConstant() != G2->isConstant())
1095        return Error(ErrorMsg,
1096                     "Appending variables linked with different const'ness!");
1097
1098      if (G1->getAlignment() != G2->getAlignment())
1099        return Error(ErrorMsg,
1100         "Appending variables with different alignment need to be linked!");
1101
1102      if (G1->getVisibility() != G2->getVisibility())
1103        return Error(ErrorMsg,
1104         "Appending variables with different visibility need to be linked!");
1105
1106      if (G1->getSection() != G2->getSection())
1107        return Error(ErrorMsg,
1108         "Appending variables with different section name need to be linked!");
1109
1110      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
1111      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
1112
1113      G1->setName("");   // Clear G1's name in case of a conflict!
1114
1115      // Create the new global variable...
1116      GlobalVariable *NG =
1117        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
1118                           /*init*/0, First->first, M, G1->isThreadLocal(),
1119                           G1->getType()->getAddressSpace());
1120
1121      // Propagate alignment, visibility and section info.
1122      CopyGVAttributes(NG, G1);
1123
1124      // Merge the initializer...
1125      Inits.reserve(NewSize);
1126      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1127        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1128          Inits.push_back(I->getOperand(i));
1129      } else {
1130        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1131        Constant *CV = Constant::getNullValue(T1->getElementType());
1132        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1133          Inits.push_back(CV);
1134      }
1135      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1136        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1137          Inits.push_back(I->getOperand(i));
1138      } else {
1139        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1140        Constant *CV = Constant::getNullValue(T2->getElementType());
1141        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1142          Inits.push_back(CV);
1143      }
1144      NG->setInitializer(ConstantArray::get(NewType, Inits));
1145      Inits.clear();
1146
1147      // Replace any uses of the two global variables with uses of the new
1148      // global...
1149
1150      // FIXME: This should rewrite simple/straight-forward uses such as
1151      // getelementptr instructions to not use the Cast!
1152      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G1->getType()));
1153      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G2->getType()));
1154
1155      // Remove the two globals from the module now...
1156      M->getGlobalList().erase(G1);
1157      M->getGlobalList().erase(G2);
1158
1159      // Put the new global into the AppendingVars map so that we can handle
1160      // linking of more than two vars...
1161      Second->second = NG;
1162    }
1163    AppendingVars.erase(First);
1164  }
1165
1166  return false;
1167}
1168
1169static bool ResolveAliases(Module *Dest) {
1170  for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1171       I != E; ++I)
1172    if (const GlobalValue *GV = I->resolveAliasedGlobal())
1173      if (GV != I && !GV->isDeclaration())
1174        I->replaceAllUsesWith(const_cast<GlobalValue*>(GV));
1175
1176  return false;
1177}
1178
1179// LinkModules - This function links two modules together, with the resulting
1180// left module modified to be the composite of the two input modules.  If an
1181// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1182// the problem.  Upon failure, the Dest module could be in a modified state, and
1183// shouldn't be relied on to be consistent.
1184bool
1185Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1186  assert(Dest != 0 && "Invalid Destination module");
1187  assert(Src  != 0 && "Invalid Source Module");
1188
1189  if (Dest->getDataLayout().empty()) {
1190    if (!Src->getDataLayout().empty()) {
1191      Dest->setDataLayout(Src->getDataLayout());
1192    } else {
1193      std::string DataLayout;
1194
1195      if (Dest->getEndianness() == Module::AnyEndianness) {
1196        if (Src->getEndianness() == Module::BigEndian)
1197          DataLayout.append("E");
1198        else if (Src->getEndianness() == Module::LittleEndian)
1199          DataLayout.append("e");
1200      }
1201
1202      if (Dest->getPointerSize() == Module::AnyPointerSize) {
1203        if (Src->getPointerSize() == Module::Pointer64)
1204          DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1205        else if (Src->getPointerSize() == Module::Pointer32)
1206          DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1207      }
1208      Dest->setDataLayout(DataLayout);
1209    }
1210  }
1211
1212  // Copy the target triple from the source to dest if the dest's is empty.
1213  if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1214    Dest->setTargetTriple(Src->getTargetTriple());
1215
1216  if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1217      Src->getDataLayout() != Dest->getDataLayout())
1218    cerr << "WARNING: Linking two modules of different data layouts!\n";
1219  if (!Src->getTargetTriple().empty() &&
1220      Dest->getTargetTriple() != Src->getTargetTriple())
1221    cerr << "WARNING: Linking two modules of different target triples!\n";
1222
1223  // Append the module inline asm string.
1224  if (!Src->getModuleInlineAsm().empty()) {
1225    if (Dest->getModuleInlineAsm().empty())
1226      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1227    else
1228      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1229                               Src->getModuleInlineAsm());
1230  }
1231
1232  // Update the destination module's dependent libraries list with the libraries
1233  // from the source module. There's no opportunity for duplicates here as the
1234  // Module ensures that duplicate insertions are discarded.
1235  for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1236       SI != SE; ++SI)
1237    Dest->addLibrary(*SI);
1238
1239  // LinkTypes - Go through the symbol table of the Src module and see if any
1240  // types are named in the src module that are not named in the Dst module.
1241  // Make sure there are no type name conflicts.
1242  if (LinkTypes(Dest, Src, ErrorMsg))
1243    return true;
1244
1245  // ValueMap - Mapping of values from what they used to be in Src, to what they
1246  // are now in Dest.
1247  std::map<const Value*, Value*> ValueMap;
1248
1249  // AppendingVars - Keep track of global variables in the destination module
1250  // with appending linkage.  After the module is linked together, they are
1251  // appended and the module is rewritten.
1252  std::multimap<std::string, GlobalVariable *> AppendingVars;
1253  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1254       I != E; ++I) {
1255    // Add all of the appending globals already in the Dest module to
1256    // AppendingVars.
1257    if (I->hasAppendingLinkage())
1258      AppendingVars.insert(std::make_pair(I->getName(), I));
1259  }
1260
1261  // Insert all of the globals in src into the Dest module... without linking
1262  // initializers (which could refer to functions not yet mapped over).
1263  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1264    return true;
1265
1266  // Link the functions together between the two modules, without doing function
1267  // bodies... this just adds external function prototypes to the Dest
1268  // function...  We do this so that when we begin processing function bodies,
1269  // all of the global values that may be referenced are available in our
1270  // ValueMap.
1271  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1272    return true;
1273
1274  // If there were any alias, link them now. We really need to do this now,
1275  // because all of the aliases that may be referenced need to be available in
1276  // ValueMap
1277  if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1278
1279  // Update the initializers in the Dest module now that all globals that may
1280  // be referenced are in Dest.
1281  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1282
1283  // Link in the function bodies that are defined in the source module into the
1284  // DestModule.  This consists basically of copying the function over and
1285  // fixing up references to values.
1286  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1287
1288  // If there were any appending global variables, link them together now.
1289  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1290
1291  // Resolve all uses of aliases with aliasees
1292  if (ResolveAliases(Dest)) return true;
1293
1294  // If the source library's module id is in the dependent library list of the
1295  // destination library, remove it since that module is now linked in.
1296  sys::Path modId;
1297  modId.set(Src->getModuleIdentifier());
1298  if (!modId.isEmpty())
1299    Dest->removeLibrary(modId.getBasename());
1300
1301  return false;
1302}
1303
1304// vim: sw=2
1305