LinkModules.cpp revision 77c5f733ac51c122ee3f75b8cc247b923d472909
1//===- Linker.cpp - Module Linker Implementation --------------------------===//
2//
3// This file implements the LLVM module linker.
4//
5// Specifically, this:
6//  * Merges global variables between the two modules
7//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
8//  * Merges functions between two modules
9//
10//===----------------------------------------------------------------------===//
11
12#include "llvm/Transforms/Utils/Linker.h"
13#include "llvm/Module.h"
14#include "llvm/SymbolTable.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/iOther.h"
17#include "llvm/Constants.h"
18
19// Error - Simple wrapper function to conditionally assign to E and return true.
20// This just makes error return conditions a little bit simpler...
21//
22static inline bool Error(std::string *E, const std::string &Message) {
23  if (E) *E = Message;
24  return true;
25}
26
27// ResolveTypes - Attempt to link the two specified types together.  Return true
28// if there is an error and they cannot yet be linked.
29//
30static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
31                         SymbolTable *DestST, const std::string &Name) {
32  if (DestTy == SrcTy) return false;       // If already equal, noop
33
34  // Does the type already exist in the module?
35  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
36    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
37      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
38    } else {
39      return true;  // Cannot link types... neither is opaque and not-equal
40    }
41  } else {                       // Type not in dest module.  Add it now.
42    if (DestTy)                  // Type _is_ in module, just opaque...
43      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
44                           ->refineAbstractTypeTo(SrcTy);
45    else if (!Name.empty())
46      DestST->insert(Name, const_cast<Type*>(SrcTy));
47  }
48  return false;
49}
50
51static const FunctionType *getFT(const PATypeHolder &TH) {
52  return cast<FunctionType>(TH.get());
53}
54static const StructType *getST(const PATypeHolder &TH) {
55  return cast<StructType>(TH.get());
56}
57
58// RecursiveResolveTypes - This is just like ResolveTypes, except that it
59// recurses down into derived types, merging the used types if the parent types
60// are compatible.
61//
62static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
63                                   const PATypeHolder &SrcTy,
64                                   SymbolTable *DestST, const std::string &Name,
65                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
66  const Type *SrcTyT = SrcTy.get();
67  const Type *DestTyT = DestTy.get();
68  if (DestTyT == SrcTyT) return false;       // If already equal, noop
69
70  // If we found our opaque type, resolve it now!
71  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
72    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
73
74  // Two types cannot be resolved together if they are of different primitive
75  // type.  For example, we cannot resolve an int to a float.
76  if (DestTyT->getPrimitiveID() != SrcTyT->getPrimitiveID()) return true;
77
78  // Otherwise, resolve the used type used by this derived type...
79  switch (DestTyT->getPrimitiveID()) {
80  case Type::FunctionTyID: {
81    if (cast<FunctionType>(DestTyT)->isVarArg() !=
82        cast<FunctionType>(SrcTyT)->isVarArg())
83      return true;
84    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
85      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
86                                 getFT(SrcTy)->getContainedType(i), DestST, "",
87                                 Pointers))
88        return true;
89    return false;
90  }
91  case Type::StructTyID: {
92    if (getST(DestTy)->getNumContainedTypes() !=
93        getST(SrcTy)->getNumContainedTypes()) return 1;
94    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
95      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
96                                 getST(SrcTy)->getContainedType(i), DestST, "",
97                                 Pointers))
98        return true;
99    return false;
100  }
101  case Type::ArrayTyID: {
102    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
103    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
104    if (DAT->getNumElements() != SAT->getNumElements()) return true;
105    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
106                                  DestST, "", Pointers);
107  }
108  case Type::PointerTyID: {
109    // If this is a pointer type, check to see if we have already seen it.  If
110    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
111    // an associative container for this search, because the type pointers (keys
112    // in the container) change whenever types get resolved...
113    //
114    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
115      if (Pointers[i].first == DestTy)
116        return Pointers[i].second != SrcTy;
117
118    // Otherwise, add the current pointers to the vector to stop recursion on
119    // this pair.
120    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
121    bool Result =
122      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
123                             cast<PointerType>(SrcTy.get())->getElementType(),
124                             DestST, "", Pointers);
125    Pointers.pop_back();
126    return Result;
127  }
128  default: assert(0 && "Unexpected type!"); return true;
129  }
130}
131
132static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
133                                  const PATypeHolder &SrcTy,
134                                  SymbolTable *DestST, const std::string &Name){
135  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
136  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
137}
138
139
140// LinkTypes - Go through the symbol table of the Src module and see if any
141// types are named in the src module that are not named in the Dst module.
142// Make sure there are no type name conflicts.
143//
144static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
145  SymbolTable       *DestST = &Dest->getSymbolTable();
146  const SymbolTable *SrcST  = &Src->getSymbolTable();
147
148  // Look for a type plane for Type's...
149  SymbolTable::const_iterator PI = SrcST->find(Type::TypeTy);
150  if (PI == SrcST->end()) return false;  // No named types, do nothing.
151
152  // Some types cannot be resolved immediately becuse they depend on other types
153  // being resolved to each other first.  This contains a list of types we are
154  // waiting to recheck.
155  std::vector<std::string> DelayedTypesToResolve;
156
157  const SymbolTable::VarMap &VM = PI->second;
158  for (SymbolTable::type_const_iterator I = VM.begin(), E = VM.end();
159       I != E; ++I) {
160    const std::string &Name = I->first;
161    Type *RHS = cast<Type>(I->second);
162
163    // Check to see if this type name is already in the dest module...
164    Type *Entry = cast_or_null<Type>(DestST->lookup(Type::TypeTy, Name));
165
166    if (ResolveTypes(Entry, RHS, DestST, Name)) {
167      // They look different, save the types 'till later to resolve.
168      DelayedTypesToResolve.push_back(Name);
169    }
170  }
171
172  // Iteratively resolve types while we can...
173  while (!DelayedTypesToResolve.empty()) {
174    // Loop over all of the types, attempting to resolve them if possible...
175    unsigned OldSize = DelayedTypesToResolve.size();
176
177    // Try direct resolution by name...
178    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
179      const std::string &Name = DelayedTypesToResolve[i];
180      Type *T1 = cast<Type>(VM.find(Name)->second);
181      Type *T2 = cast<Type>(DestST->lookup(Type::TypeTy, Name));
182      if (!ResolveTypes(T2, T1, DestST, Name)) {
183        // We are making progress!
184        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
185        --i;
186      }
187    }
188
189    // Did we not eliminate any types?
190    if (DelayedTypesToResolve.size() == OldSize) {
191      // Attempt to resolve subelements of types.  This allows us to merge these
192      // two types: { int* } and { opaque* }
193      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
194        const std::string &Name = DelayedTypesToResolve[i];
195        PATypeHolder T1(cast<Type>(VM.find(Name)->second));
196        PATypeHolder T2(cast<Type>(DestST->lookup(Type::TypeTy, Name)));
197
198        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
199          // We are making progress!
200          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
201
202          // Go back to the main loop, perhaps we can resolve directly by name
203          // now...
204          break;
205        }
206      }
207
208      // If we STILL cannot resolve the types, then there is something wrong.
209      // Report the error.
210      if (DelayedTypesToResolve.size() == OldSize) {
211        // Build up an error message of all of the mismatched types.
212        std::string ErrorMessage;
213        for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
214          const std::string &Name = DelayedTypesToResolve[i];
215          const Type *T1 = cast<Type>(VM.find(Name)->second);
216          const Type *T2 = cast<Type>(DestST->lookup(Type::TypeTy, Name));
217          ErrorMessage += "  Type named '" + Name +
218                          "' conflicts.\n    Src='" + T1->getDescription() +
219                          "'.\n   Dest='" + T2->getDescription() + "'\n";
220        }
221        return Error(Err, "Type conflict between types in modules:\n" +
222                     ErrorMessage);
223      }
224    }
225  }
226
227
228  return false;
229}
230
231static void PrintMap(const std::map<const Value*, Value*> &M) {
232  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
233       I != E; ++I) {
234    std::cerr << " Fr: " << (void*)I->first << " ";
235    I->first->dump();
236    std::cerr << " To: " << (void*)I->second << " ";
237    I->second->dump();
238    std::cerr << "\n";
239  }
240}
241
242
243// RemapOperand - Use LocalMap and GlobalMap to convert references from one
244// module to another.  This is somewhat sophisticated in that it can
245// automatically handle constant references correctly as well...
246//
247static Value *RemapOperand(const Value *In,
248                           std::map<const Value*, Value*> &LocalMap,
249                           std::map<const Value*, Value*> *GlobalMap) {
250  std::map<const Value*,Value*>::const_iterator I = LocalMap.find(In);
251  if (I != LocalMap.end()) return I->second;
252
253  if (GlobalMap) {
254    I = GlobalMap->find(In);
255    if (I != GlobalMap->end()) return I->second;
256  }
257
258  // Check to see if it's a constant that we are interesting in transforming...
259  if (const Constant *CPV = dyn_cast<Constant>(In)) {
260    if (!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV))
261      return const_cast<Constant*>(CPV);   // Simple constants stay identical...
262
263    Constant *Result = 0;
264
265    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
266      const std::vector<Use> &Ops = CPA->getValues();
267      std::vector<Constant*> Operands(Ops.size());
268      for (unsigned i = 0, e = Ops.size(); i != e; ++i)
269        Operands[i] =
270          cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
271      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
272    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
273      const std::vector<Use> &Ops = CPS->getValues();
274      std::vector<Constant*> Operands(Ops.size());
275      for (unsigned i = 0; i < Ops.size(); ++i)
276        Operands[i] =
277          cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
278      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
279    } else if (isa<ConstantPointerNull>(CPV)) {
280      Result = const_cast<Constant*>(CPV);
281    } else if (const ConstantPointerRef *CPR =
282                      dyn_cast<ConstantPointerRef>(CPV)) {
283      Value *V = RemapOperand(CPR->getValue(), LocalMap, GlobalMap);
284      Result = ConstantPointerRef::get(cast<GlobalValue>(V));
285    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
286      if (CE->getOpcode() == Instruction::GetElementPtr) {
287        Value *Ptr = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
288        std::vector<Constant*> Indices;
289        Indices.reserve(CE->getNumOperands()-1);
290        for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
291          Indices.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),
292                                                        LocalMap, GlobalMap)));
293
294        Result = ConstantExpr::getGetElementPtr(cast<Constant>(Ptr), Indices);
295      } else if (CE->getNumOperands() == 1) {
296        // Cast instruction
297        assert(CE->getOpcode() == Instruction::Cast);
298        Value *V = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
299        Result = ConstantExpr::getCast(cast<Constant>(V), CE->getType());
300      } else if (CE->getNumOperands() == 2) {
301        // Binary operator...
302        Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
303        Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
304
305        Result = ConstantExpr::get(CE->getOpcode(), cast<Constant>(V1),
306                                   cast<Constant>(V2));
307      } else {
308        assert(0 && "Unknown constant expr type!");
309      }
310
311    } else {
312      assert(0 && "Unknown type of derived type constant value!");
313    }
314
315    // Cache the mapping in our local map structure...
316    if (GlobalMap)
317      GlobalMap->insert(std::make_pair(In, Result));
318    else
319      LocalMap.insert(std::make_pair(In, Result));
320    return Result;
321  }
322
323  std::cerr << "XXX LocalMap: \n";
324  PrintMap(LocalMap);
325
326  if (GlobalMap) {
327    std::cerr << "XXX GlobalMap: \n";
328    PrintMap(*GlobalMap);
329  }
330
331  std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
332  assert(0 && "Couldn't remap value!");
333  return 0;
334}
335
336/// FindGlobalNamed - Look in the specified symbol table for a global with the
337/// specified name and type.  If an exactly matching global does not exist, see
338/// if there is a global which is "type compatible" with the specified
339/// name/type.  This allows us to resolve things like '%x = global int*' with
340/// '%x = global opaque*'.
341///
342static GlobalValue *FindGlobalNamed(const std::string &Name, const Type *Ty,
343                                    SymbolTable *ST) {
344  // See if an exact match exists in the symbol table...
345  if (Value *V = ST->lookup(Ty, Name)) return cast<GlobalValue>(V);
346
347  // It doesn't exist exactly, scan through all of the type planes in the symbol
348  // table, checking each of them for a type-compatible version.
349  //
350  for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I)
351    if (I->first != Type::TypeTy) {
352      SymbolTable::VarMap &VM = I->second;
353      // Does this type plane contain an entry with the specified name?
354      SymbolTable::type_iterator TI = VM.find(Name);
355      if (TI != VM.end()) {
356        // Determine whether we can fold the two types together, resolving them.
357        // If so, we can use this value.
358        if (!RecursiveResolveTypes(Ty, I->first, ST, ""))
359          return cast<GlobalValue>(TI->second);
360      }
361    }
362  return 0;  // Otherwise, nothing could be found.
363}
364
365
366// LinkGlobals - Loop through the global variables in the src module and merge
367// them into the dest module.
368//
369static bool LinkGlobals(Module *Dest, const Module *Src,
370                        std::map<const Value*, Value*> &ValueMap,
371                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
372                        std::string *Err) {
373  // We will need a module level symbol table if the src module has a module
374  // level symbol table...
375  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
376
377  // Loop over all of the globals in the src module, mapping them over as we go
378  //
379  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
380    const GlobalVariable *SGV = I;
381    GlobalVariable *DGV = 0;
382    if (SGV->hasName()) {
383      // A same named thing is a global variable, because the only two things
384      // that may be in a module level symbol table are Global Vars and
385      // Functions, and they both have distinct, nonoverlapping, possible types.
386      //
387      DGV = cast_or_null<GlobalVariable>(FindGlobalNamed(SGV->getName(),
388                                                         SGV->getType(), ST));
389    }
390
391    assert(SGV->hasInitializer() || SGV->hasExternalLinkage() &&
392           "Global must either be external or have an initializer!");
393
394    bool SGExtern = SGV->isExternal();
395    bool DGExtern = DGV ? DGV->isExternal() : false;
396
397    if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) {
398      // No linking to be performed, simply create an identical version of the
399      // symbol over in the dest module... the initializer will be filled in
400      // later by LinkGlobalInits...
401      //
402      GlobalVariable *NewDGV =
403        new GlobalVariable(SGV->getType()->getElementType(),
404                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
405                           SGV->getName(), Dest);
406
407      // If the LLVM runtime renamed the global, but it is an externally visible
408      // symbol, DGV must be an existing global with internal linkage.  Rename
409      // it.
410      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage()){
411        assert(DGV && DGV->getName() == SGV->getName() &&
412               DGV->hasInternalLinkage());
413        DGV->setName("");
414        NewDGV->setName(SGV->getName());  // Force the name back
415        DGV->setName(SGV->getName());     // This will cause a renaming
416        assert(NewDGV->getName() == SGV->getName() &&
417               DGV->getName() != SGV->getName());
418      }
419
420      // Make sure to remember this mapping...
421      ValueMap.insert(std::make_pair(SGV, NewDGV));
422      if (SGV->hasAppendingLinkage())
423        // Keep track that this is an appending variable...
424        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
425
426    } else if (SGV->isExternal()) {
427      // If SGV is external or if both SGV & DGV are external..  Just link the
428      // external globals, we aren't adding anything.
429      ValueMap.insert(std::make_pair(SGV, DGV));
430
431    } else if (DGV->isExternal()) {   // If DGV is external but SGV is not...
432      ValueMap.insert(std::make_pair(SGV, DGV));
433      DGV->setLinkage(SGV->getLinkage());    // Inherit linkage!
434    } else if (SGV->getLinkage() != DGV->getLinkage()) {
435      return Error(Err, "Global variables named '" + SGV->getName() +
436                   "' have different linkage specifiers!");
437    } else if (SGV->hasExternalLinkage()) {
438      // Allow linking two exactly identical external global variables...
439      if (SGV->isConstant() != DGV->isConstant() ||
440          SGV->getInitializer() != DGV->getInitializer())
441        return Error(Err, "Global Variable Collision on '" +
442                     SGV->getType()->getDescription() + " %" + SGV->getName() +
443                     "' - Global variables differ in const'ness");
444      ValueMap.insert(std::make_pair(SGV, DGV));
445    } else if (SGV->hasLinkOnceLinkage()) {
446      // If the global variable has a name, and that name is already in use in
447      // the Dest module, make sure that the name is a compatible global
448      // variable...
449      //
450      // Check to see if the two GV's have the same Const'ness...
451      if (SGV->isConstant() != DGV->isConstant())
452        return Error(Err, "Global Variable Collision on '" +
453                     SGV->getType()->getDescription() + " %" + SGV->getName() +
454                     "' - Global variables differ in const'ness");
455
456      // Okay, everything is cool, remember the mapping...
457      ValueMap.insert(std::make_pair(SGV, DGV));
458    } else if (SGV->hasAppendingLinkage()) {
459      // No linking is performed yet.  Just insert a new copy of the global, and
460      // keep track of the fact that it is an appending variable in the
461      // AppendingVars map.  The name is cleared out so that no linkage is
462      // performed.
463      GlobalVariable *NewDGV =
464        new GlobalVariable(SGV->getType()->getElementType(),
465                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
466                           "", Dest);
467
468      // Make sure to remember this mapping...
469      ValueMap.insert(std::make_pair(SGV, NewDGV));
470
471      // Keep track that this is an appending variable...
472      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
473    } else {
474      assert(0 && "Unknown linkage!");
475    }
476  }
477  return false;
478}
479
480
481// LinkGlobalInits - Update the initializers in the Dest module now that all
482// globals that may be referenced are in Dest.
483//
484static bool LinkGlobalInits(Module *Dest, const Module *Src,
485                            std::map<const Value*, Value*> &ValueMap,
486                            std::string *Err) {
487
488  // Loop over all of the globals in the src module, mapping them over as we go
489  //
490  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
491    const GlobalVariable *SGV = I;
492
493    if (SGV->hasInitializer()) {      // Only process initialized GV's
494      // Figure out what the initializer looks like in the dest module...
495      Constant *SInit =
496        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap, 0));
497
498      GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
499      if (DGV->hasInitializer()) {
500        assert(SGV->getLinkage() == DGV->getLinkage());
501        if (SGV->hasExternalLinkage()) {
502          if (DGV->getInitializer() != SInit)
503            return Error(Err, "Global Variable Collision on '" +
504                         SGV->getType()->getDescription() +"':%"+SGV->getName()+
505                         " - Global variables have different initializers");
506        } else if (DGV->hasLinkOnceLinkage()) {
507          // Nothing is required, mapped values will take the new global
508          // automatically.
509        } else if (DGV->hasAppendingLinkage()) {
510          assert(0 && "Appending linkage unimplemented!");
511        } else {
512          assert(0 && "Unknown linkage!");
513        }
514      } else {
515        // Copy the initializer over now...
516        DGV->setInitializer(SInit);
517      }
518    }
519  }
520  return false;
521}
522
523// LinkFunctionProtos - Link the functions together between the two modules,
524// without doing function bodies... this just adds external function prototypes
525// to the Dest function...
526//
527static bool LinkFunctionProtos(Module *Dest, const Module *Src,
528                               std::map<const Value*, Value*> &ValueMap,
529                               std::string *Err) {
530  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
531
532  // Loop over all of the functions in the src module, mapping them over as we
533  // go
534  //
535  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
536    const Function *SF = I;   // SrcFunction
537    Function *DF = 0;
538    if (SF->hasName())
539      // The same named thing is a Function, because the only two things
540      // that may be in a module level symbol table are Global Vars and
541      // Functions, and they both have distinct, nonoverlapping, possible types.
542      //
543      DF = cast_or_null<Function>(FindGlobalNamed(SF->getName(), SF->getType(),
544                                                  ST));
545
546    if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
547      // Function does not already exist, simply insert an function signature
548      // identical to SF into the dest module...
549      Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
550                                     SF->getName(), Dest);
551
552      // If the LLVM runtime renamed the function, but it is an externally
553      // visible symbol, DF must be an existing function with internal linkage.
554      // Rename it.
555      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) {
556        assert(DF && DF->getName() == SF->getName() &&DF->hasInternalLinkage());
557        DF->setName("");
558        NewDF->setName(SF->getName());  // Force the name back
559        DF->setName(SF->getName());     // This will cause a renaming
560        assert(NewDF->getName() == SF->getName() &&
561               DF->getName() != SF->getName());
562      }
563
564      // ... and remember this mapping...
565      ValueMap.insert(std::make_pair(SF, NewDF));
566    } else if (SF->isExternal()) {
567      // If SF is external or if both SF & DF are external..  Just link the
568      // external functions, we aren't adding anything.
569      ValueMap.insert(std::make_pair(SF, DF));
570    } else if (DF->isExternal()) {   // If DF is external but SF is not...
571      // Link the external functions, update linkage qualifiers
572      ValueMap.insert(std::make_pair(SF, DF));
573      DF->setLinkage(SF->getLinkage());
574
575    } else if (SF->getLinkage() != DF->getLinkage()) {
576      return Error(Err, "Functions named '" + SF->getName() +
577                   "' have different linkage specifiers!");
578    } else if (SF->hasExternalLinkage()) {
579      // The function is defined in both modules!!
580      return Error(Err, "Function '" +
581                   SF->getFunctionType()->getDescription() + "':\"" +
582                   SF->getName() + "\" - Function is already defined!");
583    } else if (SF->hasLinkOnceLinkage()) {
584      // Completely ignore the source function.
585      ValueMap.insert(std::make_pair(SF, DF));
586    } else {
587      assert(0 && "Unknown linkage configuration found!");
588    }
589  }
590  return false;
591}
592
593// LinkFunctionBody - Copy the source function over into the dest function and
594// fix up references to values.  At this point we know that Dest is an external
595// function, and that Src is not.
596//
597static bool LinkFunctionBody(Function *Dest, const Function *Src,
598                             std::map<const Value*, Value*> &GlobalMap,
599                             std::string *Err) {
600  assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
601  std::map<const Value*, Value*> LocalMap;   // Map for function local values
602
603  // Go through and convert function arguments over...
604  Function::aiterator DI = Dest->abegin();
605  for (Function::const_aiterator I = Src->abegin(), E = Src->aend();
606       I != E; ++I, ++DI) {
607    DI->setName(I->getName());  // Copy the name information over...
608
609    // Add a mapping to our local map
610    LocalMap.insert(std::make_pair(I, DI));
611  }
612
613  // Loop over all of the basic blocks, copying the instructions over...
614  //
615  for (Function::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
616    // Create new basic block and add to mapping and the Dest function...
617    BasicBlock *DBB = new BasicBlock(I->getName(), Dest);
618    LocalMap.insert(std::make_pair(I, DBB));
619
620    // Loop over all of the instructions in the src basic block, copying them
621    // over.  Note that this is broken in a strict sense because the cloned
622    // instructions will still be referencing values in the Src module, not
623    // the remapped values.  In our case, however, we will not get caught and
624    // so we can delay patching the values up until later...
625    //
626    for (BasicBlock::const_iterator II = I->begin(), IE = I->end();
627         II != IE; ++II) {
628      Instruction *DI = II->clone();
629      DI->setName(II->getName());
630      DBB->getInstList().push_back(DI);
631      LocalMap.insert(std::make_pair(II, DI));
632    }
633  }
634
635  // At this point, all of the instructions and values of the function are now
636  // copied over.  The only problem is that they are still referencing values in
637  // the Source function as operands.  Loop through all of the operands of the
638  // functions and patch them up to point to the local versions...
639  //
640  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
641    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
642      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
643           OI != OE; ++OI)
644        *OI = RemapOperand(*OI, LocalMap, &GlobalMap);
645
646  return false;
647}
648
649
650// LinkFunctionBodies - Link in the function bodies that are defined in the
651// source module into the DestModule.  This consists basically of copying the
652// function over and fixing up references to values.
653//
654static bool LinkFunctionBodies(Module *Dest, const Module *Src,
655                               std::map<const Value*, Value*> &ValueMap,
656                               std::string *Err) {
657
658  // Loop over all of the functions in the src module, mapping them over as we
659  // go
660  //
661  for (Module::const_iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF){
662    if (!SF->isExternal()) {                  // No body if function is external
663      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
664
665      // DF not external SF external?
666      if (!DF->isExternal()) {
667        if (DF->hasLinkOnceLinkage()) continue; // No relinkage for link-once!
668        if (Err)
669          *Err = "Function '" + (SF->hasName() ? SF->getName() :std::string(""))
670               + "' body multiply defined!";
671        return true;
672      }
673
674      if (LinkFunctionBody(DF, SF, ValueMap, Err)) return true;
675    }
676  }
677  return false;
678}
679
680// LinkAppendingVars - If there were any appending global variables, link them
681// together now.  Return true on error.
682//
683static bool LinkAppendingVars(Module *M,
684                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
685                              std::string *ErrorMsg) {
686  if (AppendingVars.empty()) return false; // Nothing to do.
687
688  // Loop over the multimap of appending vars, processing any variables with the
689  // same name, forming a new appending global variable with both of the
690  // initializers merged together, then rewrite references to the old variables
691  // and delete them.
692  //
693  std::vector<Constant*> Inits;
694  while (AppendingVars.size() > 1) {
695    // Get the first two elements in the map...
696    std::multimap<std::string,
697      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
698
699    // If the first two elements are for different names, there is no pair...
700    // Otherwise there is a pair, so link them together...
701    if (First->first == Second->first) {
702      GlobalVariable *G1 = First->second, *G2 = Second->second;
703      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
704      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
705
706      // Check to see that they two arrays agree on type...
707      if (T1->getElementType() != T2->getElementType())
708        return Error(ErrorMsg,
709         "Appending variables with different element types need to be linked!");
710      if (G1->isConstant() != G2->isConstant())
711        return Error(ErrorMsg,
712                     "Appending variables linked with different const'ness!");
713
714      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
715      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
716
717      // Create the new global variable...
718      GlobalVariable *NG =
719        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
720                           /*init*/0, First->first, M);
721
722      // Merge the initializer...
723      Inits.reserve(NewSize);
724      ConstantArray *I = cast<ConstantArray>(G1->getInitializer());
725      for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
726        Inits.push_back(cast<Constant>(I->getValues()[i]));
727      I = cast<ConstantArray>(G2->getInitializer());
728      for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
729        Inits.push_back(cast<Constant>(I->getValues()[i]));
730      NG->setInitializer(ConstantArray::get(NewType, Inits));
731      Inits.clear();
732
733      // Replace any uses of the two global variables with uses of the new
734      // global...
735
736      // FIXME: This should rewrite simple/straight-forward uses such as
737      // getelementptr instructions to not use the Cast!
738      ConstantPointerRef *NGCP = ConstantPointerRef::get(NG);
739      G1->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G1->getType()));
740      G2->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G2->getType()));
741
742      // Remove the two globals from the module now...
743      M->getGlobalList().erase(G1);
744      M->getGlobalList().erase(G2);
745
746      // Put the new global into the AppendingVars map so that we can handle
747      // linking of more than two vars...
748      Second->second = NG;
749    }
750    AppendingVars.erase(First);
751  }
752
753  return false;
754}
755
756
757// LinkModules - This function links two modules together, with the resulting
758// left module modified to be the composite of the two input modules.  If an
759// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
760// the problem.  Upon failure, the Dest module could be in a modified state, and
761// shouldn't be relied on to be consistent.
762//
763bool LinkModules(Module *Dest, const Module *Src, std::string *ErrorMsg) {
764  if (Dest->getEndianness() == Module::AnyEndianness)
765    Dest->setEndianness(Src->getEndianness());
766  if (Dest->getPointerSize() == Module::AnyPointerSize)
767    Dest->setPointerSize(Src->getPointerSize());
768
769  if (Src->getEndianness() != Module::AnyEndianness &&
770      Dest->getEndianness() != Src->getEndianness())
771    std::cerr << "WARNING: Linking two modules of different endianness!\n";
772  if (Src->getPointerSize() != Module::AnyPointerSize &&
773      Dest->getPointerSize() != Src->getPointerSize())
774    std::cerr << "WARNING: Linking two modules of different pointer size!\n";
775
776  // LinkTypes - Go through the symbol table of the Src module and see if any
777  // types are named in the src module that are not named in the Dst module.
778  // Make sure there are no type name conflicts.
779  //
780  if (LinkTypes(Dest, Src, ErrorMsg)) return true;
781
782  // ValueMap - Mapping of values from what they used to be in Src, to what they
783  // are now in Dest.
784  //
785  std::map<const Value*, Value*> ValueMap;
786
787  // AppendingVars - Keep track of global variables in the destination module
788  // with appending linkage.  After the module is linked together, they are
789  // appended and the module is rewritten.
790  //
791  std::multimap<std::string, GlobalVariable *> AppendingVars;
792
793  // Add all of the appending globals already in the Dest module to
794  // AppendingVars.
795  for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I)
796    if (I->hasAppendingLinkage())
797      AppendingVars.insert(std::make_pair(I->getName(), I));
798
799  // Insert all of the globals in src into the Dest module... without linking
800  // initializers (which could refer to functions not yet mapped over).
801  //
802  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg)) return true;
803
804  // Link the functions together between the two modules, without doing function
805  // bodies... this just adds external function prototypes to the Dest
806  // function...  We do this so that when we begin processing function bodies,
807  // all of the global values that may be referenced are available in our
808  // ValueMap.
809  //
810  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg)) return true;
811
812  // Update the initializers in the Dest module now that all globals that may
813  // be referenced are in Dest.
814  //
815  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
816
817  // Link in the function bodies that are defined in the source module into the
818  // DestModule.  This consists basically of copying the function over and
819  // fixing up references to values.
820  //
821  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
822
823  // If there were any appending global variables, link them together now.
824  //
825  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
826
827  return false;
828}
829
830