LinkModules.cpp revision 9f876cd88bcf8204ec52dfb03a474a154ad60617
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Module.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/ValueSymbolTable.h"
26#include "llvm/Instructions.h"
27#include "llvm/Assembly/Writer.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/System/Path.h"
31#include "llvm/ADT/DenseMap.h"
32#include <sstream>
33using namespace llvm;
34
35// Error - Simple wrapper function to conditionally assign to E and return true.
36// This just makes error return conditions a little bit simpler...
37static inline bool Error(std::string *E, const Twine &Message) {
38  if (E) *E = Message.str();
39  return true;
40}
41
42// Function: ResolveTypes()
43//
44// Description:
45//  Attempt to link the two specified types together.
46//
47// Inputs:
48//  DestTy - The type to which we wish to resolve.
49//  SrcTy  - The original type which we want to resolve.
50//
51// Outputs:
52//  DestST - The symbol table in which the new type should be placed.
53//
54// Return value:
55//  true  - There is an error and the types cannot yet be linked.
56//  false - No errors.
57//
58static bool ResolveTypes(const Type *DestTy, const Type *SrcTy) {
59  if (DestTy == SrcTy) return false;       // If already equal, noop
60  assert(DestTy && SrcTy && "Can't handle null types");
61
62  if (const OpaqueType *OT = dyn_cast<OpaqueType>(DestTy)) {
63    // Type _is_ in module, just opaque...
64    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(SrcTy);
65  } else if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
66    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
67  } else {
68    return true;  // Cannot link types... not-equal and neither is opaque.
69  }
70  return false;
71}
72
73/// LinkerTypeMap - This implements a map of types that is stable
74/// even if types are resolved/refined to other types.  This is not a general
75/// purpose map, it is specific to the linker's use.
76namespace {
77class LinkerTypeMap : public AbstractTypeUser {
78  typedef DenseMap<const Type*, PATypeHolder> TheMapTy;
79  TheMapTy TheMap;
80
81  LinkerTypeMap(const LinkerTypeMap&); // DO NOT IMPLEMENT
82  void operator=(const LinkerTypeMap&); // DO NOT IMPLEMENT
83public:
84  LinkerTypeMap() {}
85  ~LinkerTypeMap() {
86    for (DenseMap<const Type*, PATypeHolder>::iterator I = TheMap.begin(),
87         E = TheMap.end(); I != E; ++I)
88      I->first->removeAbstractTypeUser(this);
89  }
90
91  /// lookup - Return the value for the specified type or null if it doesn't
92  /// exist.
93  const Type *lookup(const Type *Ty) const {
94    TheMapTy::const_iterator I = TheMap.find(Ty);
95    if (I != TheMap.end()) return I->second;
96    return 0;
97  }
98
99  /// erase - Remove the specified type, returning true if it was in the set.
100  bool erase(const Type *Ty) {
101    if (!TheMap.erase(Ty))
102      return false;
103    if (Ty->isAbstract())
104      Ty->removeAbstractTypeUser(this);
105    return true;
106  }
107
108  /// insert - This returns true if the pointer was new to the set, false if it
109  /// was already in the set.
110  bool insert(const Type *Src, const Type *Dst) {
111    if (!TheMap.insert(std::make_pair(Src, PATypeHolder(Dst))).second)
112      return false;  // Already in map.
113    if (Src->isAbstract())
114      Src->addAbstractTypeUser(this);
115    return true;
116  }
117
118protected:
119  /// refineAbstractType - The callback method invoked when an abstract type is
120  /// resolved to another type.  An object must override this method to update
121  /// its internal state to reference NewType instead of OldType.
122  ///
123  virtual void refineAbstractType(const DerivedType *OldTy,
124                                  const Type *NewTy) {
125    TheMapTy::iterator I = TheMap.find(OldTy);
126    const Type *DstTy = I->second;
127
128    TheMap.erase(I);
129    if (OldTy->isAbstract())
130      OldTy->removeAbstractTypeUser(this);
131
132    // Don't reinsert into the map if the key is concrete now.
133    if (NewTy->isAbstract())
134      insert(NewTy, DstTy);
135  }
136
137  /// The other case which AbstractTypeUsers must be aware of is when a type
138  /// makes the transition from being abstract (where it has clients on it's
139  /// AbstractTypeUsers list) to concrete (where it does not).  This method
140  /// notifies ATU's when this occurs for a type.
141  virtual void typeBecameConcrete(const DerivedType *AbsTy) {
142    TheMap.erase(AbsTy);
143    AbsTy->removeAbstractTypeUser(this);
144  }
145
146  // for debugging...
147  virtual void dump() const {
148    errs() << "AbstractTypeSet!\n";
149  }
150};
151}
152
153
154// RecursiveResolveTypes - This is just like ResolveTypes, except that it
155// recurses down into derived types, merging the used types if the parent types
156// are compatible.
157static bool RecursiveResolveTypesI(const Type *DstTy, const Type *SrcTy,
158                                   LinkerTypeMap &Pointers) {
159  if (DstTy == SrcTy) return false;       // If already equal, noop
160
161  // If we found our opaque type, resolve it now!
162  if (isa<OpaqueType>(DstTy) || isa<OpaqueType>(SrcTy))
163    return ResolveTypes(DstTy, SrcTy);
164
165  // Two types cannot be resolved together if they are of different primitive
166  // type.  For example, we cannot resolve an int to a float.
167  if (DstTy->getTypeID() != SrcTy->getTypeID()) return true;
168
169  // If neither type is abstract, then they really are just different types.
170  if (!DstTy->isAbstract() && !SrcTy->isAbstract())
171    return true;
172
173  // Otherwise, resolve the used type used by this derived type...
174  switch (DstTy->getTypeID()) {
175  default:
176    return true;
177  case Type::FunctionTyID: {
178    const FunctionType *DstFT = cast<FunctionType>(DstTy);
179    const FunctionType *SrcFT = cast<FunctionType>(SrcTy);
180    if (DstFT->isVarArg() != SrcFT->isVarArg() ||
181        DstFT->getNumContainedTypes() != SrcFT->getNumContainedTypes())
182      return true;
183
184    // Use TypeHolder's so recursive resolution won't break us.
185    PATypeHolder ST(SrcFT), DT(DstFT);
186    for (unsigned i = 0, e = DstFT->getNumContainedTypes(); i != e; ++i) {
187      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
188      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
189        return true;
190    }
191    return false;
192  }
193  case Type::StructTyID: {
194    const StructType *DstST = cast<StructType>(DstTy);
195    const StructType *SrcST = cast<StructType>(SrcTy);
196    if (DstST->getNumContainedTypes() != SrcST->getNumContainedTypes())
197      return true;
198
199    PATypeHolder ST(SrcST), DT(DstST);
200    for (unsigned i = 0, e = DstST->getNumContainedTypes(); i != e; ++i) {
201      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
202      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
203        return true;
204    }
205    return false;
206  }
207  case Type::ArrayTyID: {
208    const ArrayType *DAT = cast<ArrayType>(DstTy);
209    const ArrayType *SAT = cast<ArrayType>(SrcTy);
210    if (DAT->getNumElements() != SAT->getNumElements()) return true;
211    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
212                                  Pointers);
213  }
214  case Type::VectorTyID: {
215    const VectorType *DVT = cast<VectorType>(DstTy);
216    const VectorType *SVT = cast<VectorType>(SrcTy);
217    if (DVT->getNumElements() != SVT->getNumElements()) return true;
218    return RecursiveResolveTypesI(DVT->getElementType(), SVT->getElementType(),
219                                  Pointers);
220  }
221  case Type::PointerTyID: {
222    const PointerType *DstPT = cast<PointerType>(DstTy);
223    const PointerType *SrcPT = cast<PointerType>(SrcTy);
224
225    if (DstPT->getAddressSpace() != SrcPT->getAddressSpace())
226      return true;
227
228    // If this is a pointer type, check to see if we have already seen it.  If
229    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
230    // an associative container for this search, because the type pointers (keys
231    // in the container) change whenever types get resolved.
232    if (SrcPT->isAbstract())
233      if (const Type *ExistingDestTy = Pointers.lookup(SrcPT))
234        return ExistingDestTy != DstPT;
235
236    if (DstPT->isAbstract())
237      if (const Type *ExistingSrcTy = Pointers.lookup(DstPT))
238        return ExistingSrcTy != SrcPT;
239    // Otherwise, add the current pointers to the vector to stop recursion on
240    // this pair.
241    if (DstPT->isAbstract())
242      Pointers.insert(DstPT, SrcPT);
243    if (SrcPT->isAbstract())
244      Pointers.insert(SrcPT, DstPT);
245
246    return RecursiveResolveTypesI(DstPT->getElementType(),
247                                  SrcPT->getElementType(), Pointers);
248  }
249  }
250}
251
252static bool RecursiveResolveTypes(const Type *DestTy, const Type *SrcTy) {
253  LinkerTypeMap PointerTypes;
254  return RecursiveResolveTypesI(DestTy, SrcTy, PointerTypes);
255}
256
257
258// LinkTypes - Go through the symbol table of the Src module and see if any
259// types are named in the src module that are not named in the Dst module.
260// Make sure there are no type name conflicts.
261static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
262        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
263  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
264
265  // Look for a type plane for Type's...
266  TypeSymbolTable::const_iterator TI = SrcST->begin();
267  TypeSymbolTable::const_iterator TE = SrcST->end();
268  if (TI == TE) return false;  // No named types, do nothing.
269
270  // Some types cannot be resolved immediately because they depend on other
271  // types being resolved to each other first.  This contains a list of types we
272  // are waiting to recheck.
273  std::vector<std::string> DelayedTypesToResolve;
274
275  for ( ; TI != TE; ++TI ) {
276    const std::string &Name = TI->first;
277    const Type *RHS = TI->second;
278
279    // Check to see if this type name is already in the dest module.
280    Type *Entry = DestST->lookup(Name);
281
282    // If the name is just in the source module, bring it over to the dest.
283    if (Entry == 0) {
284      if (!Name.empty())
285        DestST->insert(Name, const_cast<Type*>(RHS));
286    } else if (ResolveTypes(Entry, RHS)) {
287      // They look different, save the types 'till later to resolve.
288      DelayedTypesToResolve.push_back(Name);
289    }
290  }
291
292  // Iteratively resolve types while we can...
293  while (!DelayedTypesToResolve.empty()) {
294    // Loop over all of the types, attempting to resolve them if possible...
295    unsigned OldSize = DelayedTypesToResolve.size();
296
297    // Try direct resolution by name...
298    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
299      const std::string &Name = DelayedTypesToResolve[i];
300      Type *T1 = SrcST->lookup(Name);
301      Type *T2 = DestST->lookup(Name);
302      if (!ResolveTypes(T2, T1)) {
303        // We are making progress!
304        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
305        --i;
306      }
307    }
308
309    // Did we not eliminate any types?
310    if (DelayedTypesToResolve.size() == OldSize) {
311      // Attempt to resolve subelements of types.  This allows us to merge these
312      // two types: { int* } and { opaque* }
313      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
314        const std::string &Name = DelayedTypesToResolve[i];
315        if (!RecursiveResolveTypes(SrcST->lookup(Name), DestST->lookup(Name))) {
316          // We are making progress!
317          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
318
319          // Go back to the main loop, perhaps we can resolve directly by name
320          // now...
321          break;
322        }
323      }
324
325      // If we STILL cannot resolve the types, then there is something wrong.
326      if (DelayedTypesToResolve.size() == OldSize) {
327        // Remove the symbol name from the destination.
328        DelayedTypesToResolve.pop_back();
329      }
330    }
331  }
332
333
334  return false;
335}
336
337#ifndef NDEBUG
338static void PrintMap(const std::map<const Value*, Value*> &M) {
339  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
340       I != E; ++I) {
341    errs() << " Fr: " << (void*)I->first << " ";
342    I->first->dump();
343    errs() << " To: " << (void*)I->second << " ";
344    I->second->dump();
345    errs() << "\n";
346  }
347}
348#endif
349
350
351// RemapOperand - Use ValueMap to convert constants from one module to another.
352static Value *RemapOperand(const Value *In,
353                           std::map<const Value*, Value*> &ValueMap,
354                           LLVMContext &Context) {
355  std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
356  if (I != ValueMap.end())
357    return I->second;
358
359  // Check to see if it's a constant that we are interested in transforming.
360  Value *Result = 0;
361  if (const Constant *CPV = dyn_cast<Constant>(In)) {
362    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
363        isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
364      return const_cast<Constant*>(CPV);   // Simple constants stay identical.
365
366    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
367      std::vector<Constant*> Operands(CPA->getNumOperands());
368      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
369        Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap,
370                                                 Context));
371      Result =
372          ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
373    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
374      std::vector<Constant*> Operands(CPS->getNumOperands());
375      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
376        Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap,
377                                                 Context));
378      Result =
379         ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
380    } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
381      Result = const_cast<Constant*>(CPV);
382    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
383      std::vector<Constant*> Operands(CP->getNumOperands());
384      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
385        Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap,
386                                     Context));
387      Result = ConstantVector::get(Operands);
388    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
389      std::vector<Constant*> Ops;
390      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
391        Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap,
392                                     Context)));
393      Result = CE->getWithOperands(Ops);
394    } else {
395      assert(!isa<GlobalValue>(CPV) && "Unmapped global?");
396      llvm_unreachable("Unknown type of derived type constant value!");
397    }
398  } else if (isa<MetadataBase>(In)) {
399    Result = const_cast<Value*>(In);
400  } else if (isa<InlineAsm>(In)) {
401    Result = const_cast<Value*>(In);
402  }
403
404  // Cache the mapping in our local map structure
405  if (Result) {
406    ValueMap[In] = Result;
407    return Result;
408  }
409
410#ifndef NDEBUG
411  errs() << "LinkModules ValueMap: \n";
412  PrintMap(ValueMap);
413
414  errs() << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
415  llvm_unreachable("Couldn't remap value!");
416#endif
417  return 0;
418}
419
420/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
421/// in the symbol table.  This is good for all clients except for us.  Go
422/// through the trouble to force this back.
423static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
424  assert(GV->getName() != Name && "Can't force rename to self");
425  ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
426
427  // If there is a conflict, rename the conflict.
428  if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
429    assert(ConflictGV->hasLocalLinkage() &&
430           "Not conflicting with a static global, should link instead!");
431    GV->takeName(ConflictGV);
432    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
433    assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
434  } else {
435    GV->setName(Name);              // Force the name back
436  }
437}
438
439/// CopyGVAttributes - copy additional attributes (those not needed to construct
440/// a GlobalValue) from the SrcGV to the DestGV.
441static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
442  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
443  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
444  DestGV->copyAttributesFrom(SrcGV);
445  DestGV->setAlignment(Alignment);
446}
447
448/// GetLinkageResult - This analyzes the two global values and determines what
449/// the result will look like in the destination module.  In particular, it
450/// computes the resultant linkage type, computes whether the global in the
451/// source should be copied over to the destination (replacing the existing
452/// one), and computes whether this linkage is an error or not. It also performs
453/// visibility checks: we cannot link together two symbols with different
454/// visibilities.
455static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
456                             GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
457                             std::string *Err) {
458  assert((!Dest || !Src->hasLocalLinkage()) &&
459         "If Src has internal linkage, Dest shouldn't be set!");
460  if (!Dest) {
461    // Linking something to nothing.
462    LinkFromSrc = true;
463    LT = Src->getLinkage();
464  } else if (Src->isDeclaration()) {
465    // If Src is external or if both Src & Dest are external..  Just link the
466    // external globals, we aren't adding anything.
467    if (Src->hasDLLImportLinkage()) {
468      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
469      if (Dest->isDeclaration()) {
470        LinkFromSrc = true;
471        LT = Src->getLinkage();
472      }
473    } else if (Dest->hasExternalWeakLinkage()) {
474      // If the Dest is weak, use the source linkage.
475      LinkFromSrc = true;
476      LT = Src->getLinkage();
477    } else {
478      LinkFromSrc = false;
479      LT = Dest->getLinkage();
480    }
481  } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
482    // If Dest is external but Src is not:
483    LinkFromSrc = true;
484    LT = Src->getLinkage();
485  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
486    if (Src->getLinkage() != Dest->getLinkage())
487      return Error(Err, "Linking globals named '" + Src->getName() +
488            "': can only link appending global with another appending global!");
489    LinkFromSrc = true; // Special cased.
490    LT = Src->getLinkage();
491  } else if (Src->isWeakForLinker()) {
492    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
493    // or DLL* linkage.
494    if (Dest->hasExternalWeakLinkage() ||
495        Dest->hasAvailableExternallyLinkage() ||
496        (Dest->hasLinkOnceLinkage() &&
497         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
498      LinkFromSrc = true;
499      LT = Src->getLinkage();
500    } else {
501      LinkFromSrc = false;
502      LT = Dest->getLinkage();
503    }
504  } else if (Dest->isWeakForLinker()) {
505    // At this point we know that Src has External* or DLL* linkage.
506    if (Src->hasExternalWeakLinkage()) {
507      LinkFromSrc = false;
508      LT = Dest->getLinkage();
509    } else {
510      LinkFromSrc = true;
511      LT = GlobalValue::ExternalLinkage;
512    }
513  } else {
514    assert((Dest->hasExternalLinkage() ||
515            Dest->hasDLLImportLinkage() ||
516            Dest->hasDLLExportLinkage() ||
517            Dest->hasExternalWeakLinkage()) &&
518           (Src->hasExternalLinkage() ||
519            Src->hasDLLImportLinkage() ||
520            Src->hasDLLExportLinkage() ||
521            Src->hasExternalWeakLinkage()) &&
522           "Unexpected linkage type!");
523    return Error(Err, "Linking globals named '" + Src->getName() +
524                 "': symbol multiply defined!");
525  }
526
527  // Check visibility
528  if (Dest && Src->getVisibility() != Dest->getVisibility())
529    if (!Src->isDeclaration() && !Dest->isDeclaration())
530      return Error(Err, "Linking globals named '" + Src->getName() +
531                   "': symbols have different visibilities!");
532  return false;
533}
534
535// Insert all of the named mdnoes in Src into the Dest module.
536static void LinkNamedMDNodes(Module *Dest, Module *Src) {
537  for (Module::const_named_metadata_iterator I = Src->named_metadata_begin(),
538         E = Src->named_metadata_end(); I != E; ++I) {
539    const NamedMDNode *SrcNMD = I;
540    NamedMDNode *DestNMD = Dest->getNamedMetadata(SrcNMD->getName());
541    if (!DestNMD)
542      NamedMDNode::Create(SrcNMD, Dest);
543    else {
544      // Add Src elements into Dest node.
545      for (unsigned i = 0, e = SrcNMD->getNumElements(); i != e; ++i)
546        DestNMD->addElement(SrcNMD->getElement(i));
547    }
548  }
549}
550
551// LinkGlobals - Loop through the global variables in the src module and merge
552// them into the dest module.
553static bool LinkGlobals(Module *Dest, const Module *Src,
554                        std::map<const Value*, Value*> &ValueMap,
555                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
556                        std::string *Err) {
557  ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
558
559  // Loop over all of the globals in the src module, mapping them over as we go
560  for (Module::const_global_iterator I = Src->global_begin(),
561       E = Src->global_end(); I != E; ++I) {
562    const GlobalVariable *SGV = I;
563    GlobalValue *DGV = 0;
564
565    // Check to see if may have to link the global with the global, alias or
566    // function.
567    if (SGV->hasName() && !SGV->hasLocalLinkage())
568      DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SGV->getName()));
569
570    // If we found a global with the same name in the dest module, but it has
571    // internal linkage, we are really not doing any linkage here.
572    if (DGV && DGV->hasLocalLinkage())
573      DGV = 0;
574
575    // If types don't agree due to opaque types, try to resolve them.
576    if (DGV && DGV->getType() != SGV->getType())
577      RecursiveResolveTypes(SGV->getType(), DGV->getType());
578
579    assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
580            SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
581           "Global must either be external or have an initializer!");
582
583    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
584    bool LinkFromSrc = false;
585    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
586      return true;
587
588    if (DGV == 0) {
589      // No linking to be performed, simply create an identical version of the
590      // symbol over in the dest module... the initializer will be filled in
591      // later by LinkGlobalInits.
592      GlobalVariable *NewDGV =
593        new GlobalVariable(*Dest, SGV->getType()->getElementType(),
594                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
595                           SGV->getName(), 0, false,
596                           SGV->getType()->getAddressSpace());
597      // Propagate alignment, visibility and section info.
598      CopyGVAttributes(NewDGV, SGV);
599
600      // If the LLVM runtime renamed the global, but it is an externally visible
601      // symbol, DGV must be an existing global with internal linkage.  Rename
602      // it.
603      if (!NewDGV->hasLocalLinkage() && NewDGV->getName() != SGV->getName())
604        ForceRenaming(NewDGV, SGV->getName());
605
606      // Make sure to remember this mapping.
607      ValueMap[SGV] = NewDGV;
608
609      // Keep track that this is an appending variable.
610      if (SGV->hasAppendingLinkage())
611        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
612      continue;
613    }
614
615    // If the visibilities of the symbols disagree and the destination is a
616    // prototype, take the visibility of its input.
617    if (DGV->isDeclaration())
618      DGV->setVisibility(SGV->getVisibility());
619
620    if (DGV->hasAppendingLinkage()) {
621      // No linking is performed yet.  Just insert a new copy of the global, and
622      // keep track of the fact that it is an appending variable in the
623      // AppendingVars map.  The name is cleared out so that no linkage is
624      // performed.
625      GlobalVariable *NewDGV =
626        new GlobalVariable(*Dest, SGV->getType()->getElementType(),
627                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
628                           "", 0, false,
629                           SGV->getType()->getAddressSpace());
630
631      // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
632      NewDGV->setAlignment(DGV->getAlignment());
633      // Propagate alignment, section and visibility info.
634      CopyGVAttributes(NewDGV, SGV);
635
636      // Make sure to remember this mapping...
637      ValueMap[SGV] = NewDGV;
638
639      // Keep track that this is an appending variable...
640      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
641      continue;
642    }
643
644    if (LinkFromSrc) {
645      if (isa<GlobalAlias>(DGV))
646        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
647                     "': symbol multiple defined");
648
649      // If the types don't match, and if we are to link from the source, nuke
650      // DGV and create a new one of the appropriate type.  Note that the thing
651      // we are replacing may be a function (if a prototype, weak, etc) or a
652      // global variable.
653      GlobalVariable *NewDGV =
654        new GlobalVariable(*Dest, SGV->getType()->getElementType(),
655                           SGV->isConstant(), NewLinkage, /*init*/0,
656                           DGV->getName(), 0, false,
657                           SGV->getType()->getAddressSpace());
658
659      // Propagate alignment, section, and visibility info.
660      CopyGVAttributes(NewDGV, SGV);
661      DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV,
662                                                              DGV->getType()));
663
664      // DGV will conflict with NewDGV because they both had the same
665      // name. We must erase this now so ForceRenaming doesn't assert
666      // because DGV might not have internal linkage.
667      if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
668        Var->eraseFromParent();
669      else
670        cast<Function>(DGV)->eraseFromParent();
671      DGV = NewDGV;
672
673      // If the symbol table renamed the global, but it is an externally visible
674      // symbol, DGV must be an existing global with internal linkage.  Rename.
675      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasLocalLinkage())
676        ForceRenaming(NewDGV, SGV->getName());
677
678      // Inherit const as appropriate.
679      NewDGV->setConstant(SGV->isConstant());
680
681      // Make sure to remember this mapping.
682      ValueMap[SGV] = NewDGV;
683      continue;
684    }
685
686    // Not "link from source", keep the one in the DestModule and remap the
687    // input onto it.
688
689    // Special case for const propagation.
690    if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
691      if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
692        DGVar->setConstant(true);
693
694    // SGV is global, but DGV is alias.
695    if (isa<GlobalAlias>(DGV)) {
696      // The only valid mappings are:
697      // - SGV is external declaration, which is effectively a no-op.
698      // - SGV is weak, when we just need to throw SGV out.
699      if (!SGV->isDeclaration() && !SGV->isWeakForLinker())
700        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
701                     "': symbol multiple defined");
702    }
703
704    // Set calculated linkage
705    DGV->setLinkage(NewLinkage);
706
707    // Make sure to remember this mapping...
708    ValueMap[SGV] = ConstantExpr::getBitCast(DGV, SGV->getType());
709  }
710  return false;
711}
712
713static GlobalValue::LinkageTypes
714CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
715  GlobalValue::LinkageTypes SL = SGV->getLinkage();
716  GlobalValue::LinkageTypes DL = DGV->getLinkage();
717  if (SL == GlobalValue::ExternalLinkage || DL == GlobalValue::ExternalLinkage)
718    return GlobalValue::ExternalLinkage;
719  else if (SL == GlobalValue::WeakAnyLinkage ||
720           DL == GlobalValue::WeakAnyLinkage)
721    return GlobalValue::WeakAnyLinkage;
722  else if (SL == GlobalValue::WeakODRLinkage ||
723           DL == GlobalValue::WeakODRLinkage)
724    return GlobalValue::WeakODRLinkage;
725  else if (SL == GlobalValue::InternalLinkage &&
726           DL == GlobalValue::InternalLinkage)
727    return GlobalValue::InternalLinkage;
728  else if (SL == GlobalValue::LinkerPrivateLinkage &&
729           DL == GlobalValue::LinkerPrivateLinkage)
730    return GlobalValue::LinkerPrivateLinkage;
731  else {
732    assert (SL == GlobalValue::PrivateLinkage &&
733            DL == GlobalValue::PrivateLinkage && "Unexpected linkage type");
734    return GlobalValue::PrivateLinkage;
735  }
736}
737
738// LinkAlias - Loop through the alias in the src module and link them into the
739// dest module. We're assuming, that all functions/global variables were already
740// linked in.
741static bool LinkAlias(Module *Dest, const Module *Src,
742                      std::map<const Value*, Value*> &ValueMap,
743                      std::string *Err) {
744  // Loop over all alias in the src module
745  for (Module::const_alias_iterator I = Src->alias_begin(),
746         E = Src->alias_end(); I != E; ++I) {
747    const GlobalAlias *SGA = I;
748    const GlobalValue *SAliasee = SGA->getAliasedGlobal();
749    GlobalAlias *NewGA = NULL;
750
751    // Globals were already linked, thus we can just query ValueMap for variant
752    // of SAliasee in Dest.
753    std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
754    assert(VMI != ValueMap.end() && "Aliasee not linked");
755    GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
756    GlobalValue* DGV = NULL;
757
758    // Try to find something 'similar' to SGA in destination module.
759    if (!DGV && !SGA->hasLocalLinkage()) {
760      DGV = Dest->getNamedAlias(SGA->getName());
761
762      // If types don't agree due to opaque types, try to resolve them.
763      if (DGV && DGV->getType() != SGA->getType())
764        RecursiveResolveTypes(SGA->getType(), DGV->getType());
765    }
766
767    if (!DGV && !SGA->hasLocalLinkage()) {
768      DGV = Dest->getGlobalVariable(SGA->getName());
769
770      // If types don't agree due to opaque types, try to resolve them.
771      if (DGV && DGV->getType() != SGA->getType())
772        RecursiveResolveTypes(SGA->getType(), DGV->getType());
773    }
774
775    if (!DGV && !SGA->hasLocalLinkage()) {
776      DGV = Dest->getFunction(SGA->getName());
777
778      // If types don't agree due to opaque types, try to resolve them.
779      if (DGV && DGV->getType() != SGA->getType())
780        RecursiveResolveTypes(SGA->getType(), DGV->getType());
781    }
782
783    // No linking to be performed on internal stuff.
784    if (DGV && DGV->hasLocalLinkage())
785      DGV = NULL;
786
787    if (GlobalAlias *DGA = dyn_cast_or_null<GlobalAlias>(DGV)) {
788      // Types are known to be the same, check whether aliasees equal. As
789      // globals are already linked we just need query ValueMap to find the
790      // mapping.
791      if (DAliasee == DGA->getAliasedGlobal()) {
792        // This is just two copies of the same alias. Propagate linkage, if
793        // necessary.
794        DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
795
796        NewGA = DGA;
797        // Proceed to 'common' steps
798      } else
799        return Error(Err, "Alias Collision on '"  + SGA->getName()+
800                     "': aliases have different aliasees");
801    } else if (GlobalVariable *DGVar = dyn_cast_or_null<GlobalVariable>(DGV)) {
802      // The only allowed way is to link alias with external declaration or weak
803      // symbol..
804      if (DGVar->isDeclaration() || DGVar->isWeakForLinker()) {
805        // But only if aliasee is global too...
806        if (!isa<GlobalVariable>(DAliasee))
807          return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
808                       "': aliasee is not global variable");
809
810        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
811                                SGA->getName(), DAliasee, Dest);
812        CopyGVAttributes(NewGA, SGA);
813
814        // Any uses of DGV need to change to NewGA, with cast, if needed.
815        if (SGA->getType() != DGVar->getType())
816          DGVar->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
817                                                             DGVar->getType()));
818        else
819          DGVar->replaceAllUsesWith(NewGA);
820
821        // DGVar will conflict with NewGA because they both had the same
822        // name. We must erase this now so ForceRenaming doesn't assert
823        // because DGV might not have internal linkage.
824        DGVar->eraseFromParent();
825
826        // Proceed to 'common' steps
827      } else
828        return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
829                     "': symbol multiple defined");
830    } else if (Function *DF = dyn_cast_or_null<Function>(DGV)) {
831      // The only allowed way is to link alias with external declaration or weak
832      // symbol...
833      if (DF->isDeclaration() || DF->isWeakForLinker()) {
834        // But only if aliasee is function too...
835        if (!isa<Function>(DAliasee))
836          return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
837                       "': aliasee is not function");
838
839        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
840                                SGA->getName(), DAliasee, Dest);
841        CopyGVAttributes(NewGA, SGA);
842
843        // Any uses of DF need to change to NewGA, with cast, if needed.
844        if (SGA->getType() != DF->getType())
845          DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
846                                                          DF->getType()));
847        else
848          DF->replaceAllUsesWith(NewGA);
849
850        // DF will conflict with NewGA because they both had the same
851        // name. We must erase this now so ForceRenaming doesn't assert
852        // because DF might not have internal linkage.
853        DF->eraseFromParent();
854
855        // Proceed to 'common' steps
856      } else
857        return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
858                     "': symbol multiple defined");
859    } else {
860      // No linking to be performed, simply create an identical version of the
861      // alias over in the dest module...
862
863      NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
864                              SGA->getName(), DAliasee, Dest);
865      CopyGVAttributes(NewGA, SGA);
866
867      // Proceed to 'common' steps
868    }
869
870    assert(NewGA && "No alias was created in destination module!");
871
872    // If the symbol table renamed the alias, but it is an externally visible
873    // symbol, DGA must be an global value with internal linkage. Rename it.
874    if (NewGA->getName() != SGA->getName() &&
875        !NewGA->hasLocalLinkage())
876      ForceRenaming(NewGA, SGA->getName());
877
878    // Remember this mapping so uses in the source module get remapped
879    // later by RemapOperand.
880    ValueMap[SGA] = NewGA;
881  }
882
883  return false;
884}
885
886
887// LinkGlobalInits - Update the initializers in the Dest module now that all
888// globals that may be referenced are in Dest.
889static bool LinkGlobalInits(Module *Dest, const Module *Src,
890                            std::map<const Value*, Value*> &ValueMap,
891                            std::string *Err) {
892  // Loop over all of the globals in the src module, mapping them over as we go
893  for (Module::const_global_iterator I = Src->global_begin(),
894       E = Src->global_end(); I != E; ++I) {
895    const GlobalVariable *SGV = I;
896
897    if (SGV->hasInitializer()) {      // Only process initialized GV's
898      // Figure out what the initializer looks like in the dest module...
899      Constant *SInit =
900        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap,
901                       Dest->getContext()));
902      // Grab destination global variable or alias.
903      GlobalValue *DGV = cast<GlobalValue>(ValueMap[SGV]->stripPointerCasts());
904
905      // If dest if global variable, check that initializers match.
906      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
907        if (DGVar->hasInitializer()) {
908          if (SGV->hasExternalLinkage()) {
909            if (DGVar->getInitializer() != SInit)
910              return Error(Err, "Global Variable Collision on '" +
911                           SGV->getName() +
912                           "': global variables have different initializers");
913          } else if (DGVar->isWeakForLinker()) {
914            // Nothing is required, mapped values will take the new global
915            // automatically.
916          } else if (SGV->isWeakForLinker()) {
917            // Nothing is required, mapped values will take the new global
918            // automatically.
919          } else if (DGVar->hasAppendingLinkage()) {
920            llvm_unreachable("Appending linkage unimplemented!");
921          } else {
922            llvm_unreachable("Unknown linkage!");
923          }
924        } else {
925          // Copy the initializer over now...
926          DGVar->setInitializer(SInit);
927        }
928      } else {
929        // Destination is alias, the only valid situation is when source is
930        // weak. Also, note, that we already checked linkage in LinkGlobals(),
931        // thus we assert here.
932        // FIXME: Should we weaken this assumption, 'dereference' alias and
933        // check for initializer of aliasee?
934        assert(SGV->isWeakForLinker());
935      }
936    }
937  }
938  return false;
939}
940
941// LinkFunctionProtos - Link the functions together between the two modules,
942// without doing function bodies... this just adds external function prototypes
943// to the Dest function...
944//
945static bool LinkFunctionProtos(Module *Dest, const Module *Src,
946                               std::map<const Value*, Value*> &ValueMap,
947                               std::string *Err) {
948  ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
949
950  // Loop over all of the functions in the src module, mapping them over
951  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
952    const Function *SF = I;   // SrcFunction
953    GlobalValue *DGV = 0;
954
955    // Check to see if may have to link the function with the global, alias or
956    // function.
957    if (SF->hasName() && !SF->hasLocalLinkage())
958      DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SF->getName()));
959
960    // If we found a global with the same name in the dest module, but it has
961    // internal linkage, we are really not doing any linkage here.
962    if (DGV && DGV->hasLocalLinkage())
963      DGV = 0;
964
965    // If types don't agree due to opaque types, try to resolve them.
966    if (DGV && DGV->getType() != SF->getType())
967      RecursiveResolveTypes(SF->getType(), DGV->getType());
968
969    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
970    bool LinkFromSrc = false;
971    if (GetLinkageResult(DGV, SF, NewLinkage, LinkFromSrc, Err))
972      return true;
973
974    // If there is no linkage to be performed, just bring over SF without
975    // modifying it.
976    if (DGV == 0) {
977      // Function does not already exist, simply insert an function signature
978      // identical to SF into the dest module.
979      Function *NewDF = Function::Create(SF->getFunctionType(),
980                                         SF->getLinkage(),
981                                         SF->getName(), Dest);
982      CopyGVAttributes(NewDF, SF);
983
984      // If the LLVM runtime renamed the function, but it is an externally
985      // visible symbol, DF must be an existing function with internal linkage.
986      // Rename it.
987      if (!NewDF->hasLocalLinkage() && NewDF->getName() != SF->getName())
988        ForceRenaming(NewDF, SF->getName());
989
990      // ... and remember this mapping...
991      ValueMap[SF] = NewDF;
992      continue;
993    }
994
995    // If the visibilities of the symbols disagree and the destination is a
996    // prototype, take the visibility of its input.
997    if (DGV->isDeclaration())
998      DGV->setVisibility(SF->getVisibility());
999
1000    if (LinkFromSrc) {
1001      if (isa<GlobalAlias>(DGV))
1002        return Error(Err, "Function-Alias Collision on '" + SF->getName() +
1003                     "': symbol multiple defined");
1004
1005      // We have a definition of the same name but different type in the
1006      // source module. Copy the prototype to the destination and replace
1007      // uses of the destination's prototype with the new prototype.
1008      Function *NewDF = Function::Create(SF->getFunctionType(), NewLinkage,
1009                                         SF->getName(), Dest);
1010      CopyGVAttributes(NewDF, SF);
1011
1012      // Any uses of DF need to change to NewDF, with cast
1013      DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF,
1014                                                              DGV->getType()));
1015
1016      // DF will conflict with NewDF because they both had the same. We must
1017      // erase this now so ForceRenaming doesn't assert because DF might
1018      // not have internal linkage.
1019      if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
1020        Var->eraseFromParent();
1021      else
1022        cast<Function>(DGV)->eraseFromParent();
1023
1024      // If the symbol table renamed the function, but it is an externally
1025      // visible symbol, DF must be an existing function with internal
1026      // linkage.  Rename it.
1027      if (NewDF->getName() != SF->getName() && !NewDF->hasLocalLinkage())
1028        ForceRenaming(NewDF, SF->getName());
1029
1030      // Remember this mapping so uses in the source module get remapped
1031      // later by RemapOperand.
1032      ValueMap[SF] = NewDF;
1033      continue;
1034    }
1035
1036    // Not "link from source", keep the one in the DestModule and remap the
1037    // input onto it.
1038
1039    if (isa<GlobalAlias>(DGV)) {
1040      // The only valid mappings are:
1041      // - SF is external declaration, which is effectively a no-op.
1042      // - SF is weak, when we just need to throw SF out.
1043      if (!SF->isDeclaration() && !SF->isWeakForLinker())
1044        return Error(Err, "Function-Alias Collision on '" + SF->getName() +
1045                     "': symbol multiple defined");
1046    }
1047
1048    // Set calculated linkage
1049    DGV->setLinkage(NewLinkage);
1050
1051    // Make sure to remember this mapping.
1052    ValueMap[SF] = ConstantExpr::getBitCast(DGV, SF->getType());
1053  }
1054  return false;
1055}
1056
1057// LinkFunctionBody - Copy the source function over into the dest function and
1058// fix up references to values.  At this point we know that Dest is an external
1059// function, and that Src is not.
1060static bool LinkFunctionBody(Function *Dest, Function *Src,
1061                             std::map<const Value*, Value*> &ValueMap,
1062                             std::string *Err) {
1063  assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
1064
1065  // Go through and convert function arguments over, remembering the mapping.
1066  Function::arg_iterator DI = Dest->arg_begin();
1067  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1068       I != E; ++I, ++DI) {
1069    DI->setName(I->getName());  // Copy the name information over...
1070
1071    // Add a mapping to our local map
1072    ValueMap[I] = DI;
1073  }
1074
1075  // Splice the body of the source function into the dest function.
1076  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
1077
1078  // At this point, all of the instructions and values of the function are now
1079  // copied over.  The only problem is that they are still referencing values in
1080  // the Source function as operands.  Loop through all of the operands of the
1081  // functions and patch them up to point to the local versions...
1082  //
1083  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
1084    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1085      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1086           OI != OE; ++OI)
1087        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
1088          *OI = RemapOperand(*OI, ValueMap, Dest->getContext());
1089
1090  // There is no need to map the arguments anymore.
1091  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1092       I != E; ++I)
1093    ValueMap.erase(I);
1094
1095  return false;
1096}
1097
1098
1099// LinkFunctionBodies - Link in the function bodies that are defined in the
1100// source module into the DestModule.  This consists basically of copying the
1101// function over and fixing up references to values.
1102static bool LinkFunctionBodies(Module *Dest, Module *Src,
1103                               std::map<const Value*, Value*> &ValueMap,
1104                               std::string *Err) {
1105
1106  // Loop over all of the functions in the src module, mapping them over as we
1107  // go
1108  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
1109    if (!SF->isDeclaration()) {               // No body if function is external
1110      Function *DF = dyn_cast<Function>(ValueMap[SF]); // Destination function
1111
1112      // DF not external SF external?
1113      if (DF && DF->isDeclaration())
1114        // Only provide the function body if there isn't one already.
1115        if (LinkFunctionBody(DF, SF, ValueMap, Err))
1116          return true;
1117    }
1118  }
1119  return false;
1120}
1121
1122// LinkAppendingVars - If there were any appending global variables, link them
1123// together now.  Return true on error.
1124static bool LinkAppendingVars(Module *M,
1125                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
1126                              std::string *ErrorMsg) {
1127  if (AppendingVars.empty()) return false; // Nothing to do.
1128
1129  // Loop over the multimap of appending vars, processing any variables with the
1130  // same name, forming a new appending global variable with both of the
1131  // initializers merged together, then rewrite references to the old variables
1132  // and delete them.
1133  std::vector<Constant*> Inits;
1134  while (AppendingVars.size() > 1) {
1135    // Get the first two elements in the map...
1136    std::multimap<std::string,
1137      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
1138
1139    // If the first two elements are for different names, there is no pair...
1140    // Otherwise there is a pair, so link them together...
1141    if (First->first == Second->first) {
1142      GlobalVariable *G1 = First->second, *G2 = Second->second;
1143      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
1144      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
1145
1146      // Check to see that they two arrays agree on type...
1147      if (T1->getElementType() != T2->getElementType())
1148        return Error(ErrorMsg,
1149         "Appending variables with different element types need to be linked!");
1150      if (G1->isConstant() != G2->isConstant())
1151        return Error(ErrorMsg,
1152                     "Appending variables linked with different const'ness!");
1153
1154      if (G1->getAlignment() != G2->getAlignment())
1155        return Error(ErrorMsg,
1156         "Appending variables with different alignment need to be linked!");
1157
1158      if (G1->getVisibility() != G2->getVisibility())
1159        return Error(ErrorMsg,
1160         "Appending variables with different visibility need to be linked!");
1161
1162      if (G1->getSection() != G2->getSection())
1163        return Error(ErrorMsg,
1164         "Appending variables with different section name need to be linked!");
1165
1166      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
1167      ArrayType *NewType = ArrayType::get(T1->getElementType(),
1168                                                         NewSize);
1169
1170      G1->setName("");   // Clear G1's name in case of a conflict!
1171
1172      // Create the new global variable...
1173      GlobalVariable *NG =
1174        new GlobalVariable(*M, NewType, G1->isConstant(), G1->getLinkage(),
1175                           /*init*/0, First->first, 0, G1->isThreadLocal(),
1176                           G1->getType()->getAddressSpace());
1177
1178      // Propagate alignment, visibility and section info.
1179      CopyGVAttributes(NG, G1);
1180
1181      // Merge the initializer...
1182      Inits.reserve(NewSize);
1183      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1184        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1185          Inits.push_back(I->getOperand(i));
1186      } else {
1187        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1188        Constant *CV = Constant::getNullValue(T1->getElementType());
1189        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1190          Inits.push_back(CV);
1191      }
1192      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1193        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1194          Inits.push_back(I->getOperand(i));
1195      } else {
1196        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1197        Constant *CV = Constant::getNullValue(T2->getElementType());
1198        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1199          Inits.push_back(CV);
1200      }
1201      NG->setInitializer(ConstantArray::get(NewType, Inits));
1202      Inits.clear();
1203
1204      // Replace any uses of the two global variables with uses of the new
1205      // global...
1206
1207      // FIXME: This should rewrite simple/straight-forward uses such as
1208      // getelementptr instructions to not use the Cast!
1209      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
1210                             G1->getType()));
1211      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
1212                             G2->getType()));
1213
1214      // Remove the two globals from the module now...
1215      M->getGlobalList().erase(G1);
1216      M->getGlobalList().erase(G2);
1217
1218      // Put the new global into the AppendingVars map so that we can handle
1219      // linking of more than two vars...
1220      Second->second = NG;
1221    }
1222    AppendingVars.erase(First);
1223  }
1224
1225  return false;
1226}
1227
1228static bool ResolveAliases(Module *Dest) {
1229  for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1230       I != E; ++I)
1231    if (const GlobalValue *GV = I->resolveAliasedGlobal())
1232      if (GV != I && !GV->isDeclaration())
1233        I->replaceAllUsesWith(const_cast<GlobalValue*>(GV));
1234
1235  return false;
1236}
1237
1238// LinkModules - This function links two modules together, with the resulting
1239// left module modified to be the composite of the two input modules.  If an
1240// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1241// the problem.  Upon failure, the Dest module could be in a modified state, and
1242// shouldn't be relied on to be consistent.
1243bool
1244Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1245  assert(Dest != 0 && "Invalid Destination module");
1246  assert(Src  != 0 && "Invalid Source Module");
1247
1248  if (Dest->getDataLayout().empty()) {
1249    if (!Src->getDataLayout().empty()) {
1250      Dest->setDataLayout(Src->getDataLayout());
1251    } else {
1252      std::string DataLayout;
1253
1254      if (Dest->getEndianness() == Module::AnyEndianness) {
1255        if (Src->getEndianness() == Module::BigEndian)
1256          DataLayout.append("E");
1257        else if (Src->getEndianness() == Module::LittleEndian)
1258          DataLayout.append("e");
1259      }
1260
1261      if (Dest->getPointerSize() == Module::AnyPointerSize) {
1262        if (Src->getPointerSize() == Module::Pointer64)
1263          DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1264        else if (Src->getPointerSize() == Module::Pointer32)
1265          DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1266      }
1267      Dest->setDataLayout(DataLayout);
1268    }
1269  }
1270
1271  // Copy the target triple from the source to dest if the dest's is empty.
1272  if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1273    Dest->setTargetTriple(Src->getTargetTriple());
1274
1275  if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1276      Src->getDataLayout() != Dest->getDataLayout())
1277    errs() << "WARNING: Linking two modules of different data layouts!\n";
1278  if (!Src->getTargetTriple().empty() &&
1279      Dest->getTargetTriple() != Src->getTargetTriple())
1280    errs() << "WARNING: Linking two modules of different target triples!\n";
1281
1282  // Append the module inline asm string.
1283  if (!Src->getModuleInlineAsm().empty()) {
1284    if (Dest->getModuleInlineAsm().empty())
1285      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1286    else
1287      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1288                               Src->getModuleInlineAsm());
1289  }
1290
1291  // Update the destination module's dependent libraries list with the libraries
1292  // from the source module. There's no opportunity for duplicates here as the
1293  // Module ensures that duplicate insertions are discarded.
1294  for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1295       SI != SE; ++SI)
1296    Dest->addLibrary(*SI);
1297
1298  // LinkTypes - Go through the symbol table of the Src module and see if any
1299  // types are named in the src module that are not named in the Dst module.
1300  // Make sure there are no type name conflicts.
1301  if (LinkTypes(Dest, Src, ErrorMsg))
1302    return true;
1303
1304  // ValueMap - Mapping of values from what they used to be in Src, to what they
1305  // are now in Dest.
1306  std::map<const Value*, Value*> ValueMap;
1307
1308  // AppendingVars - Keep track of global variables in the destination module
1309  // with appending linkage.  After the module is linked together, they are
1310  // appended and the module is rewritten.
1311  std::multimap<std::string, GlobalVariable *> AppendingVars;
1312  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1313       I != E; ++I) {
1314    // Add all of the appending globals already in the Dest module to
1315    // AppendingVars.
1316    if (I->hasAppendingLinkage())
1317      AppendingVars.insert(std::make_pair(I->getName(), I));
1318  }
1319
1320  // Insert all of the named mdnoes in Src into the Dest module.
1321  LinkNamedMDNodes(Dest, Src);
1322
1323  // Insert all of the globals in src into the Dest module... without linking
1324  // initializers (which could refer to functions not yet mapped over).
1325  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1326    return true;
1327
1328  // Link the functions together between the two modules, without doing function
1329  // bodies... this just adds external function prototypes to the Dest
1330  // function...  We do this so that when we begin processing function bodies,
1331  // all of the global values that may be referenced are available in our
1332  // ValueMap.
1333  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1334    return true;
1335
1336  // If there were any alias, link them now. We really need to do this now,
1337  // because all of the aliases that may be referenced need to be available in
1338  // ValueMap
1339  if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1340
1341  // Update the initializers in the Dest module now that all globals that may
1342  // be referenced are in Dest.
1343  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1344
1345  // Link in the function bodies that are defined in the source module into the
1346  // DestModule.  This consists basically of copying the function over and
1347  // fixing up references to values.
1348  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1349
1350  // If there were any appending global variables, link them together now.
1351  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1352
1353  // Resolve all uses of aliases with aliasees
1354  if (ResolveAliases(Dest)) return true;
1355
1356  // If the source library's module id is in the dependent library list of the
1357  // destination library, remove it since that module is now linked in.
1358  sys::Path modId;
1359  modId.set(Src->getModuleIdentifier());
1360  if (!modId.isEmpty())
1361    Dest->removeLibrary(modId.getBasename());
1362
1363  return false;
1364}
1365
1366// vim: sw=2
1367