LinkModules.cpp revision a7235ea7245028a0723e8ab7fd011386b3900777
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Module.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/ValueSymbolTable.h"
26#include "llvm/Instructions.h"
27#include "llvm/Assembly/Writer.h"
28#include "llvm/Support/Streams.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/System/Path.h"
31#include "llvm/ADT/DenseMap.h"
32#include <sstream>
33using namespace llvm;
34
35// Error - Simple wrapper function to conditionally assign to E and return true.
36// This just makes error return conditions a little bit simpler...
37static inline bool Error(std::string *E, const Twine &Message) {
38  if (E) *E = Message.str();
39  return true;
40}
41
42// Function: ResolveTypes()
43//
44// Description:
45//  Attempt to link the two specified types together.
46//
47// Inputs:
48//  DestTy - The type to which we wish to resolve.
49//  SrcTy  - The original type which we want to resolve.
50//
51// Outputs:
52//  DestST - The symbol table in which the new type should be placed.
53//
54// Return value:
55//  true  - There is an error and the types cannot yet be linked.
56//  false - No errors.
57//
58static bool ResolveTypes(const Type *DestTy, const Type *SrcTy) {
59  if (DestTy == SrcTy) return false;       // If already equal, noop
60  assert(DestTy && SrcTy && "Can't handle null types");
61
62  if (const OpaqueType *OT = dyn_cast<OpaqueType>(DestTy)) {
63    // Type _is_ in module, just opaque...
64    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(SrcTy);
65  } else if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
66    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
67  } else {
68    return true;  // Cannot link types... not-equal and neither is opaque.
69  }
70  return false;
71}
72
73/// LinkerTypeMap - This implements a map of types that is stable
74/// even if types are resolved/refined to other types.  This is not a general
75/// purpose map, it is specific to the linker's use.
76namespace {
77class LinkerTypeMap : public AbstractTypeUser {
78  typedef DenseMap<const Type*, PATypeHolder> TheMapTy;
79  TheMapTy TheMap;
80
81  LinkerTypeMap(const LinkerTypeMap&); // DO NOT IMPLEMENT
82  void operator=(const LinkerTypeMap&); // DO NOT IMPLEMENT
83public:
84  LinkerTypeMap() {}
85  ~LinkerTypeMap() {
86    for (DenseMap<const Type*, PATypeHolder>::iterator I = TheMap.begin(),
87         E = TheMap.end(); I != E; ++I)
88      I->first->removeAbstractTypeUser(this);
89  }
90
91  /// lookup - Return the value for the specified type or null if it doesn't
92  /// exist.
93  const Type *lookup(const Type *Ty) const {
94    TheMapTy::const_iterator I = TheMap.find(Ty);
95    if (I != TheMap.end()) return I->second;
96    return 0;
97  }
98
99  /// erase - Remove the specified type, returning true if it was in the set.
100  bool erase(const Type *Ty) {
101    if (!TheMap.erase(Ty))
102      return false;
103    if (Ty->isAbstract())
104      Ty->removeAbstractTypeUser(this);
105    return true;
106  }
107
108  /// insert - This returns true if the pointer was new to the set, false if it
109  /// was already in the set.
110  bool insert(const Type *Src, const Type *Dst) {
111    if (!TheMap.insert(std::make_pair(Src, PATypeHolder(Dst))).second)
112      return false;  // Already in map.
113    if (Src->isAbstract())
114      Src->addAbstractTypeUser(this);
115    return true;
116  }
117
118protected:
119  /// refineAbstractType - The callback method invoked when an abstract type is
120  /// resolved to another type.  An object must override this method to update
121  /// its internal state to reference NewType instead of OldType.
122  ///
123  virtual void refineAbstractType(const DerivedType *OldTy,
124                                  const Type *NewTy) {
125    TheMapTy::iterator I = TheMap.find(OldTy);
126    const Type *DstTy = I->second;
127
128    TheMap.erase(I);
129    if (OldTy->isAbstract())
130      OldTy->removeAbstractTypeUser(this);
131
132    // Don't reinsert into the map if the key is concrete now.
133    if (NewTy->isAbstract())
134      insert(NewTy, DstTy);
135  }
136
137  /// The other case which AbstractTypeUsers must be aware of is when a type
138  /// makes the transition from being abstract (where it has clients on it's
139  /// AbstractTypeUsers list) to concrete (where it does not).  This method
140  /// notifies ATU's when this occurs for a type.
141  virtual void typeBecameConcrete(const DerivedType *AbsTy) {
142    TheMap.erase(AbsTy);
143    AbsTy->removeAbstractTypeUser(this);
144  }
145
146  // for debugging...
147  virtual void dump() const {
148    cerr << "AbstractTypeSet!\n";
149  }
150};
151}
152
153
154// RecursiveResolveTypes - This is just like ResolveTypes, except that it
155// recurses down into derived types, merging the used types if the parent types
156// are compatible.
157static bool RecursiveResolveTypesI(const Type *DstTy, const Type *SrcTy,
158                                   LinkerTypeMap &Pointers) {
159  if (DstTy == SrcTy) return false;       // If already equal, noop
160
161  // If we found our opaque type, resolve it now!
162  if (isa<OpaqueType>(DstTy) || isa<OpaqueType>(SrcTy))
163    return ResolveTypes(DstTy, SrcTy);
164
165  // Two types cannot be resolved together if they are of different primitive
166  // type.  For example, we cannot resolve an int to a float.
167  if (DstTy->getTypeID() != SrcTy->getTypeID()) return true;
168
169  // If neither type is abstract, then they really are just different types.
170  if (!DstTy->isAbstract() && !SrcTy->isAbstract())
171    return true;
172
173  // Otherwise, resolve the used type used by this derived type...
174  switch (DstTy->getTypeID()) {
175  default:
176    return true;
177  case Type::FunctionTyID: {
178    const FunctionType *DstFT = cast<FunctionType>(DstTy);
179    const FunctionType *SrcFT = cast<FunctionType>(SrcTy);
180    if (DstFT->isVarArg() != SrcFT->isVarArg() ||
181        DstFT->getNumContainedTypes() != SrcFT->getNumContainedTypes())
182      return true;
183
184    // Use TypeHolder's so recursive resolution won't break us.
185    PATypeHolder ST(SrcFT), DT(DstFT);
186    for (unsigned i = 0, e = DstFT->getNumContainedTypes(); i != e; ++i) {
187      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
188      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
189        return true;
190    }
191    return false;
192  }
193  case Type::StructTyID: {
194    const StructType *DstST = cast<StructType>(DstTy);
195    const StructType *SrcST = cast<StructType>(SrcTy);
196    if (DstST->getNumContainedTypes() != SrcST->getNumContainedTypes())
197      return true;
198
199    PATypeHolder ST(SrcST), DT(DstST);
200    for (unsigned i = 0, e = DstST->getNumContainedTypes(); i != e; ++i) {
201      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
202      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
203        return true;
204    }
205    return false;
206  }
207  case Type::ArrayTyID: {
208    const ArrayType *DAT = cast<ArrayType>(DstTy);
209    const ArrayType *SAT = cast<ArrayType>(SrcTy);
210    if (DAT->getNumElements() != SAT->getNumElements()) return true;
211    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
212                                  Pointers);
213  }
214  case Type::VectorTyID: {
215    const VectorType *DVT = cast<VectorType>(DstTy);
216    const VectorType *SVT = cast<VectorType>(SrcTy);
217    if (DVT->getNumElements() != SVT->getNumElements()) return true;
218    return RecursiveResolveTypesI(DVT->getElementType(), SVT->getElementType(),
219                                  Pointers);
220  }
221  case Type::PointerTyID: {
222    const PointerType *DstPT = cast<PointerType>(DstTy);
223    const PointerType *SrcPT = cast<PointerType>(SrcTy);
224
225    if (DstPT->getAddressSpace() != SrcPT->getAddressSpace())
226      return true;
227
228    // If this is a pointer type, check to see if we have already seen it.  If
229    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
230    // an associative container for this search, because the type pointers (keys
231    // in the container) change whenever types get resolved.
232    if (SrcPT->isAbstract())
233      if (const Type *ExistingDestTy = Pointers.lookup(SrcPT))
234        return ExistingDestTy != DstPT;
235
236    if (DstPT->isAbstract())
237      if (const Type *ExistingSrcTy = Pointers.lookup(DstPT))
238        return ExistingSrcTy != SrcPT;
239    // Otherwise, add the current pointers to the vector to stop recursion on
240    // this pair.
241    if (DstPT->isAbstract())
242      Pointers.insert(DstPT, SrcPT);
243    if (SrcPT->isAbstract())
244      Pointers.insert(SrcPT, DstPT);
245
246    return RecursiveResolveTypesI(DstPT->getElementType(),
247                                  SrcPT->getElementType(), Pointers);
248  }
249  }
250}
251
252static bool RecursiveResolveTypes(const Type *DestTy, const Type *SrcTy) {
253  LinkerTypeMap PointerTypes;
254  return RecursiveResolveTypesI(DestTy, SrcTy, PointerTypes);
255}
256
257
258// LinkTypes - Go through the symbol table of the Src module and see if any
259// types are named in the src module that are not named in the Dst module.
260// Make sure there are no type name conflicts.
261static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
262        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
263  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
264
265  // Look for a type plane for Type's...
266  TypeSymbolTable::const_iterator TI = SrcST->begin();
267  TypeSymbolTable::const_iterator TE = SrcST->end();
268  if (TI == TE) return false;  // No named types, do nothing.
269
270  // Some types cannot be resolved immediately because they depend on other
271  // types being resolved to each other first.  This contains a list of types we
272  // are waiting to recheck.
273  std::vector<std::string> DelayedTypesToResolve;
274
275  for ( ; TI != TE; ++TI ) {
276    const std::string &Name = TI->first;
277    const Type *RHS = TI->second;
278
279    // Check to see if this type name is already in the dest module.
280    Type *Entry = DestST->lookup(Name);
281
282    // If the name is just in the source module, bring it over to the dest.
283    if (Entry == 0) {
284      if (!Name.empty())
285        DestST->insert(Name, const_cast<Type*>(RHS));
286    } else if (ResolveTypes(Entry, RHS)) {
287      // They look different, save the types 'till later to resolve.
288      DelayedTypesToResolve.push_back(Name);
289    }
290  }
291
292  // Iteratively resolve types while we can...
293  while (!DelayedTypesToResolve.empty()) {
294    // Loop over all of the types, attempting to resolve them if possible...
295    unsigned OldSize = DelayedTypesToResolve.size();
296
297    // Try direct resolution by name...
298    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
299      const std::string &Name = DelayedTypesToResolve[i];
300      Type *T1 = SrcST->lookup(Name);
301      Type *T2 = DestST->lookup(Name);
302      if (!ResolveTypes(T2, T1)) {
303        // We are making progress!
304        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
305        --i;
306      }
307    }
308
309    // Did we not eliminate any types?
310    if (DelayedTypesToResolve.size() == OldSize) {
311      // Attempt to resolve subelements of types.  This allows us to merge these
312      // two types: { int* } and { opaque* }
313      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
314        const std::string &Name = DelayedTypesToResolve[i];
315        if (!RecursiveResolveTypes(SrcST->lookup(Name), DestST->lookup(Name))) {
316          // We are making progress!
317          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
318
319          // Go back to the main loop, perhaps we can resolve directly by name
320          // now...
321          break;
322        }
323      }
324
325      // If we STILL cannot resolve the types, then there is something wrong.
326      if (DelayedTypesToResolve.size() == OldSize) {
327        // Remove the symbol name from the destination.
328        DelayedTypesToResolve.pop_back();
329      }
330    }
331  }
332
333
334  return false;
335}
336
337#ifndef NDEBUG
338static void PrintMap(const std::map<const Value*, Value*> &M) {
339  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
340       I != E; ++I) {
341    cerr << " Fr: " << (void*)I->first << " ";
342    I->first->dump();
343    cerr << " To: " << (void*)I->second << " ";
344    I->second->dump();
345    cerr << "\n";
346  }
347}
348#endif
349
350
351// RemapOperand - Use ValueMap to convert constants from one module to another.
352static Value *RemapOperand(const Value *In,
353                           std::map<const Value*, Value*> &ValueMap,
354                           LLVMContext &Context) {
355  std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
356  if (I != ValueMap.end())
357    return I->second;
358
359  // Check to see if it's a constant that we are interested in transforming.
360  Value *Result = 0;
361  if (const Constant *CPV = dyn_cast<Constant>(In)) {
362    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
363        isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
364      return const_cast<Constant*>(CPV);   // Simple constants stay identical.
365
366    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
367      std::vector<Constant*> Operands(CPA->getNumOperands());
368      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
369        Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap,
370                                                 Context));
371      Result =
372          ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
373    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
374      std::vector<Constant*> Operands(CPS->getNumOperands());
375      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
376        Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap,
377                                                 Context));
378      Result =
379         ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
380    } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
381      Result = const_cast<Constant*>(CPV);
382    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
383      std::vector<Constant*> Operands(CP->getNumOperands());
384      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
385        Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap,
386                                     Context));
387      Result = ConstantVector::get(Operands);
388    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
389      std::vector<Constant*> Ops;
390      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
391        Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap,
392                                     Context)));
393      Result = CE->getWithOperands(Ops);
394    } else {
395      assert(!isa<GlobalValue>(CPV) && "Unmapped global?");
396      llvm_unreachable("Unknown type of derived type constant value!");
397    }
398  } else if (isa<InlineAsm>(In)) {
399    Result = const_cast<Value*>(In);
400  }
401
402  // Cache the mapping in our local map structure
403  if (Result) {
404    ValueMap[In] = Result;
405    return Result;
406  }
407
408#ifndef NDEBUG
409  cerr << "LinkModules ValueMap: \n";
410  PrintMap(ValueMap);
411
412  cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
413  llvm_unreachable("Couldn't remap value!");
414#endif
415  return 0;
416}
417
418/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
419/// in the symbol table.  This is good for all clients except for us.  Go
420/// through the trouble to force this back.
421static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
422  assert(GV->getName() != Name && "Can't force rename to self");
423  ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
424
425  // If there is a conflict, rename the conflict.
426  if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
427    assert(ConflictGV->hasLocalLinkage() &&
428           "Not conflicting with a static global, should link instead!");
429    GV->takeName(ConflictGV);
430    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
431    assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
432  } else {
433    GV->setName(Name);              // Force the name back
434  }
435}
436
437/// CopyGVAttributes - copy additional attributes (those not needed to construct
438/// a GlobalValue) from the SrcGV to the DestGV.
439static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
440  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
441  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
442  DestGV->copyAttributesFrom(SrcGV);
443  DestGV->setAlignment(Alignment);
444}
445
446/// GetLinkageResult - This analyzes the two global values and determines what
447/// the result will look like in the destination module.  In particular, it
448/// computes the resultant linkage type, computes whether the global in the
449/// source should be copied over to the destination (replacing the existing
450/// one), and computes whether this linkage is an error or not. It also performs
451/// visibility checks: we cannot link together two symbols with different
452/// visibilities.
453static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
454                             GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
455                             std::string *Err) {
456  assert((!Dest || !Src->hasLocalLinkage()) &&
457         "If Src has internal linkage, Dest shouldn't be set!");
458  if (!Dest) {
459    // Linking something to nothing.
460    LinkFromSrc = true;
461    LT = Src->getLinkage();
462  } else if (Src->isDeclaration()) {
463    // If Src is external or if both Src & Dest are external..  Just link the
464    // external globals, we aren't adding anything.
465    if (Src->hasDLLImportLinkage()) {
466      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
467      if (Dest->isDeclaration()) {
468        LinkFromSrc = true;
469        LT = Src->getLinkage();
470      }
471    } else if (Dest->hasExternalWeakLinkage()) {
472      // If the Dest is weak, use the source linkage.
473      LinkFromSrc = true;
474      LT = Src->getLinkage();
475    } else {
476      LinkFromSrc = false;
477      LT = Dest->getLinkage();
478    }
479  } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
480    // If Dest is external but Src is not:
481    LinkFromSrc = true;
482    LT = Src->getLinkage();
483  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
484    if (Src->getLinkage() != Dest->getLinkage())
485      return Error(Err, "Linking globals named '" + Src->getName() +
486            "': can only link appending global with another appending global!");
487    LinkFromSrc = true; // Special cased.
488    LT = Src->getLinkage();
489  } else if (Src->isWeakForLinker()) {
490    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
491    // or DLL* linkage.
492    if (Dest->hasExternalWeakLinkage() ||
493        Dest->hasAvailableExternallyLinkage() ||
494        (Dest->hasLinkOnceLinkage() &&
495         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
496      LinkFromSrc = true;
497      LT = Src->getLinkage();
498    } else {
499      LinkFromSrc = false;
500      LT = Dest->getLinkage();
501    }
502  } else if (Dest->isWeakForLinker()) {
503    // At this point we know that Src has External* or DLL* linkage.
504    if (Src->hasExternalWeakLinkage()) {
505      LinkFromSrc = false;
506      LT = Dest->getLinkage();
507    } else {
508      LinkFromSrc = true;
509      LT = GlobalValue::ExternalLinkage;
510    }
511  } else {
512    assert((Dest->hasExternalLinkage() ||
513            Dest->hasDLLImportLinkage() ||
514            Dest->hasDLLExportLinkage() ||
515            Dest->hasExternalWeakLinkage()) &&
516           (Src->hasExternalLinkage() ||
517            Src->hasDLLImportLinkage() ||
518            Src->hasDLLExportLinkage() ||
519            Src->hasExternalWeakLinkage()) &&
520           "Unexpected linkage type!");
521    return Error(Err, "Linking globals named '" + Src->getName() +
522                 "': symbol multiply defined!");
523  }
524
525  // Check visibility
526  if (Dest && Src->getVisibility() != Dest->getVisibility())
527    if (!Src->isDeclaration() && !Dest->isDeclaration())
528      return Error(Err, "Linking globals named '" + Src->getName() +
529                   "': symbols have different visibilities!");
530  return false;
531}
532
533// LinkGlobals - Loop through the global variables in the src module and merge
534// them into the dest module.
535static bool LinkGlobals(Module *Dest, const Module *Src,
536                        std::map<const Value*, Value*> &ValueMap,
537                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
538                        std::string *Err) {
539  ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
540
541  // Loop over all of the globals in the src module, mapping them over as we go
542  for (Module::const_global_iterator I = Src->global_begin(),
543       E = Src->global_end(); I != E; ++I) {
544    const GlobalVariable *SGV = I;
545    GlobalValue *DGV = 0;
546
547    // Check to see if may have to link the global with the global, alias or
548    // function.
549    if (SGV->hasName() && !SGV->hasLocalLinkage())
550      DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SGV->getName()));
551
552    // If we found a global with the same name in the dest module, but it has
553    // internal linkage, we are really not doing any linkage here.
554    if (DGV && DGV->hasLocalLinkage())
555      DGV = 0;
556
557    // If types don't agree due to opaque types, try to resolve them.
558    if (DGV && DGV->getType() != SGV->getType())
559      RecursiveResolveTypes(SGV->getType(), DGV->getType());
560
561    assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
562            SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
563           "Global must either be external or have an initializer!");
564
565    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
566    bool LinkFromSrc = false;
567    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
568      return true;
569
570    if (DGV == 0) {
571      // No linking to be performed, simply create an identical version of the
572      // symbol over in the dest module... the initializer will be filled in
573      // later by LinkGlobalInits.
574      GlobalVariable *NewDGV =
575        new GlobalVariable(*Dest, SGV->getType()->getElementType(),
576                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
577                           SGV->getName(), 0, false,
578                           SGV->getType()->getAddressSpace());
579      // Propagate alignment, visibility and section info.
580      CopyGVAttributes(NewDGV, SGV);
581
582      // If the LLVM runtime renamed the global, but it is an externally visible
583      // symbol, DGV must be an existing global with internal linkage.  Rename
584      // it.
585      if (!NewDGV->hasLocalLinkage() && NewDGV->getName() != SGV->getName())
586        ForceRenaming(NewDGV, SGV->getName());
587
588      // Make sure to remember this mapping.
589      ValueMap[SGV] = NewDGV;
590
591      // Keep track that this is an appending variable.
592      if (SGV->hasAppendingLinkage())
593        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
594      continue;
595    }
596
597    // If the visibilities of the symbols disagree and the destination is a
598    // prototype, take the visibility of its input.
599    if (DGV->isDeclaration())
600      DGV->setVisibility(SGV->getVisibility());
601
602    if (DGV->hasAppendingLinkage()) {
603      // No linking is performed yet.  Just insert a new copy of the global, and
604      // keep track of the fact that it is an appending variable in the
605      // AppendingVars map.  The name is cleared out so that no linkage is
606      // performed.
607      GlobalVariable *NewDGV =
608        new GlobalVariable(*Dest, SGV->getType()->getElementType(),
609                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
610                           "", 0, false,
611                           SGV->getType()->getAddressSpace());
612
613      // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
614      NewDGV->setAlignment(DGV->getAlignment());
615      // Propagate alignment, section and visibility info.
616      CopyGVAttributes(NewDGV, SGV);
617
618      // Make sure to remember this mapping...
619      ValueMap[SGV] = NewDGV;
620
621      // Keep track that this is an appending variable...
622      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
623      continue;
624    }
625
626    if (LinkFromSrc) {
627      if (isa<GlobalAlias>(DGV))
628        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
629                     "': symbol multiple defined");
630
631      // If the types don't match, and if we are to link from the source, nuke
632      // DGV and create a new one of the appropriate type.  Note that the thing
633      // we are replacing may be a function (if a prototype, weak, etc) or a
634      // global variable.
635      GlobalVariable *NewDGV =
636        new GlobalVariable(*Dest, SGV->getType()->getElementType(),
637                           SGV->isConstant(), NewLinkage, /*init*/0,
638                           DGV->getName(), 0, false,
639                           SGV->getType()->getAddressSpace());
640
641      // Propagate alignment, section, and visibility info.
642      CopyGVAttributes(NewDGV, SGV);
643      DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV,
644                                                              DGV->getType()));
645
646      // DGV will conflict with NewDGV because they both had the same
647      // name. We must erase this now so ForceRenaming doesn't assert
648      // because DGV might not have internal linkage.
649      if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
650        Var->eraseFromParent();
651      else
652        cast<Function>(DGV)->eraseFromParent();
653      DGV = NewDGV;
654
655      // If the symbol table renamed the global, but it is an externally visible
656      // symbol, DGV must be an existing global with internal linkage.  Rename.
657      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasLocalLinkage())
658        ForceRenaming(NewDGV, SGV->getName());
659
660      // Inherit const as appropriate.
661      NewDGV->setConstant(SGV->isConstant());
662
663      // Make sure to remember this mapping.
664      ValueMap[SGV] = NewDGV;
665      continue;
666    }
667
668    // Not "link from source", keep the one in the DestModule and remap the
669    // input onto it.
670
671    // Special case for const propagation.
672    if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
673      if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
674        DGVar->setConstant(true);
675
676    // SGV is global, but DGV is alias.
677    if (isa<GlobalAlias>(DGV)) {
678      // The only valid mappings are:
679      // - SGV is external declaration, which is effectively a no-op.
680      // - SGV is weak, when we just need to throw SGV out.
681      if (!SGV->isDeclaration() && !SGV->isWeakForLinker())
682        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
683                     "': symbol multiple defined");
684    }
685
686    // Set calculated linkage
687    DGV->setLinkage(NewLinkage);
688
689    // Make sure to remember this mapping...
690    ValueMap[SGV] = ConstantExpr::getBitCast(DGV, SGV->getType());
691  }
692  return false;
693}
694
695static GlobalValue::LinkageTypes
696CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
697  GlobalValue::LinkageTypes SL = SGV->getLinkage();
698  GlobalValue::LinkageTypes DL = DGV->getLinkage();
699  if (SL == GlobalValue::ExternalLinkage || DL == GlobalValue::ExternalLinkage)
700    return GlobalValue::ExternalLinkage;
701  else if (SL == GlobalValue::WeakAnyLinkage ||
702           DL == GlobalValue::WeakAnyLinkage)
703    return GlobalValue::WeakAnyLinkage;
704  else if (SL == GlobalValue::WeakODRLinkage ||
705           DL == GlobalValue::WeakODRLinkage)
706    return GlobalValue::WeakODRLinkage;
707  else if (SL == GlobalValue::InternalLinkage &&
708           DL == GlobalValue::InternalLinkage)
709    return GlobalValue::InternalLinkage;
710  else if (SL == GlobalValue::LinkerPrivateLinkage &&
711           DL == GlobalValue::LinkerPrivateLinkage)
712    return GlobalValue::LinkerPrivateLinkage;
713  else {
714    assert (SL == GlobalValue::PrivateLinkage &&
715            DL == GlobalValue::PrivateLinkage && "Unexpected linkage type");
716    return GlobalValue::PrivateLinkage;
717  }
718}
719
720// LinkAlias - Loop through the alias in the src module and link them into the
721// dest module. We're assuming, that all functions/global variables were already
722// linked in.
723static bool LinkAlias(Module *Dest, const Module *Src,
724                      std::map<const Value*, Value*> &ValueMap,
725                      std::string *Err) {
726  // Loop over all alias in the src module
727  for (Module::const_alias_iterator I = Src->alias_begin(),
728         E = Src->alias_end(); I != E; ++I) {
729    const GlobalAlias *SGA = I;
730    const GlobalValue *SAliasee = SGA->getAliasedGlobal();
731    GlobalAlias *NewGA = NULL;
732
733    // Globals were already linked, thus we can just query ValueMap for variant
734    // of SAliasee in Dest.
735    std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
736    assert(VMI != ValueMap.end() && "Aliasee not linked");
737    GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
738    GlobalValue* DGV = NULL;
739
740    // Try to find something 'similar' to SGA in destination module.
741    if (!DGV && !SGA->hasLocalLinkage()) {
742      DGV = Dest->getNamedAlias(SGA->getName());
743
744      // If types don't agree due to opaque types, try to resolve them.
745      if (DGV && DGV->getType() != SGA->getType())
746        RecursiveResolveTypes(SGA->getType(), DGV->getType());
747    }
748
749    if (!DGV && !SGA->hasLocalLinkage()) {
750      DGV = Dest->getGlobalVariable(SGA->getName());
751
752      // If types don't agree due to opaque types, try to resolve them.
753      if (DGV && DGV->getType() != SGA->getType())
754        RecursiveResolveTypes(SGA->getType(), DGV->getType());
755    }
756
757    if (!DGV && !SGA->hasLocalLinkage()) {
758      DGV = Dest->getFunction(SGA->getName());
759
760      // If types don't agree due to opaque types, try to resolve them.
761      if (DGV && DGV->getType() != SGA->getType())
762        RecursiveResolveTypes(SGA->getType(), DGV->getType());
763    }
764
765    // No linking to be performed on internal stuff.
766    if (DGV && DGV->hasLocalLinkage())
767      DGV = NULL;
768
769    if (GlobalAlias *DGA = dyn_cast_or_null<GlobalAlias>(DGV)) {
770      // Types are known to be the same, check whether aliasees equal. As
771      // globals are already linked we just need query ValueMap to find the
772      // mapping.
773      if (DAliasee == DGA->getAliasedGlobal()) {
774        // This is just two copies of the same alias. Propagate linkage, if
775        // necessary.
776        DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
777
778        NewGA = DGA;
779        // Proceed to 'common' steps
780      } else
781        return Error(Err, "Alias Collision on '"  + SGA->getName()+
782                     "': aliases have different aliasees");
783    } else if (GlobalVariable *DGVar = dyn_cast_or_null<GlobalVariable>(DGV)) {
784      // The only allowed way is to link alias with external declaration or weak
785      // symbol..
786      if (DGVar->isDeclaration() || DGVar->isWeakForLinker()) {
787        // But only if aliasee is global too...
788        if (!isa<GlobalVariable>(DAliasee))
789          return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
790                       "': aliasee is not global variable");
791
792        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
793                                SGA->getName(), DAliasee, Dest);
794        CopyGVAttributes(NewGA, SGA);
795
796        // Any uses of DGV need to change to NewGA, with cast, if needed.
797        if (SGA->getType() != DGVar->getType())
798          DGVar->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
799                                                             DGVar->getType()));
800        else
801          DGVar->replaceAllUsesWith(NewGA);
802
803        // DGVar will conflict with NewGA because they both had the same
804        // name. We must erase this now so ForceRenaming doesn't assert
805        // because DGV might not have internal linkage.
806        DGVar->eraseFromParent();
807
808        // Proceed to 'common' steps
809      } else
810        return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
811                     "': symbol multiple defined");
812    } else if (Function *DF = dyn_cast_or_null<Function>(DGV)) {
813      // The only allowed way is to link alias with external declaration or weak
814      // symbol...
815      if (DF->isDeclaration() || DF->isWeakForLinker()) {
816        // But only if aliasee is function too...
817        if (!isa<Function>(DAliasee))
818          return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
819                       "': aliasee is not function");
820
821        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
822                                SGA->getName(), DAliasee, Dest);
823        CopyGVAttributes(NewGA, SGA);
824
825        // Any uses of DF need to change to NewGA, with cast, if needed.
826        if (SGA->getType() != DF->getType())
827          DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
828                                                          DF->getType()));
829        else
830          DF->replaceAllUsesWith(NewGA);
831
832        // DF will conflict with NewGA because they both had the same
833        // name. We must erase this now so ForceRenaming doesn't assert
834        // because DF might not have internal linkage.
835        DF->eraseFromParent();
836
837        // Proceed to 'common' steps
838      } else
839        return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
840                     "': symbol multiple defined");
841    } else {
842      // No linking to be performed, simply create an identical version of the
843      // alias over in the dest module...
844
845      NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
846                              SGA->getName(), DAliasee, Dest);
847      CopyGVAttributes(NewGA, SGA);
848
849      // Proceed to 'common' steps
850    }
851
852    assert(NewGA && "No alias was created in destination module!");
853
854    // If the symbol table renamed the alias, but it is an externally visible
855    // symbol, DGA must be an global value with internal linkage. Rename it.
856    if (NewGA->getName() != SGA->getName() &&
857        !NewGA->hasLocalLinkage())
858      ForceRenaming(NewGA, SGA->getName());
859
860    // Remember this mapping so uses in the source module get remapped
861    // later by RemapOperand.
862    ValueMap[SGA] = NewGA;
863  }
864
865  return false;
866}
867
868
869// LinkGlobalInits - Update the initializers in the Dest module now that all
870// globals that may be referenced are in Dest.
871static bool LinkGlobalInits(Module *Dest, const Module *Src,
872                            std::map<const Value*, Value*> &ValueMap,
873                            std::string *Err) {
874  // Loop over all of the globals in the src module, mapping them over as we go
875  for (Module::const_global_iterator I = Src->global_begin(),
876       E = Src->global_end(); I != E; ++I) {
877    const GlobalVariable *SGV = I;
878
879    if (SGV->hasInitializer()) {      // Only process initialized GV's
880      // Figure out what the initializer looks like in the dest module...
881      Constant *SInit =
882        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap,
883                       Dest->getContext()));
884      // Grab destination global variable or alias.
885      GlobalValue *DGV = cast<GlobalValue>(ValueMap[SGV]->stripPointerCasts());
886
887      // If dest if global variable, check that initializers match.
888      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
889        if (DGVar->hasInitializer()) {
890          if (SGV->hasExternalLinkage()) {
891            if (DGVar->getInitializer() != SInit)
892              return Error(Err, "Global Variable Collision on '" +
893                           SGV->getName() +
894                           "': global variables have different initializers");
895          } else if (DGVar->isWeakForLinker()) {
896            // Nothing is required, mapped values will take the new global
897            // automatically.
898          } else if (SGV->isWeakForLinker()) {
899            // Nothing is required, mapped values will take the new global
900            // automatically.
901          } else if (DGVar->hasAppendingLinkage()) {
902            llvm_unreachable("Appending linkage unimplemented!");
903          } else {
904            llvm_unreachable("Unknown linkage!");
905          }
906        } else {
907          // Copy the initializer over now...
908          DGVar->setInitializer(SInit);
909        }
910      } else {
911        // Destination is alias, the only valid situation is when source is
912        // weak. Also, note, that we already checked linkage in LinkGlobals(),
913        // thus we assert here.
914        // FIXME: Should we weaken this assumption, 'dereference' alias and
915        // check for initializer of aliasee?
916        assert(SGV->isWeakForLinker());
917      }
918    }
919  }
920  return false;
921}
922
923// LinkFunctionProtos - Link the functions together between the two modules,
924// without doing function bodies... this just adds external function prototypes
925// to the Dest function...
926//
927static bool LinkFunctionProtos(Module *Dest, const Module *Src,
928                               std::map<const Value*, Value*> &ValueMap,
929                               std::string *Err) {
930  ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
931
932  // Loop over all of the functions in the src module, mapping them over
933  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
934    const Function *SF = I;   // SrcFunction
935    GlobalValue *DGV = 0;
936
937    // Check to see if may have to link the function with the global, alias or
938    // function.
939    if (SF->hasName() && !SF->hasLocalLinkage())
940      DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SF->getName()));
941
942    // If we found a global with the same name in the dest module, but it has
943    // internal linkage, we are really not doing any linkage here.
944    if (DGV && DGV->hasLocalLinkage())
945      DGV = 0;
946
947    // If types don't agree due to opaque types, try to resolve them.
948    if (DGV && DGV->getType() != SF->getType())
949      RecursiveResolveTypes(SF->getType(), DGV->getType());
950
951    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
952    bool LinkFromSrc = false;
953    if (GetLinkageResult(DGV, SF, NewLinkage, LinkFromSrc, Err))
954      return true;
955
956    // If there is no linkage to be performed, just bring over SF without
957    // modifying it.
958    if (DGV == 0) {
959      // Function does not already exist, simply insert an function signature
960      // identical to SF into the dest module.
961      Function *NewDF = Function::Create(SF->getFunctionType(),
962                                         SF->getLinkage(),
963                                         SF->getName(), Dest);
964      CopyGVAttributes(NewDF, SF);
965
966      // If the LLVM runtime renamed the function, but it is an externally
967      // visible symbol, DF must be an existing function with internal linkage.
968      // Rename it.
969      if (!NewDF->hasLocalLinkage() && NewDF->getName() != SF->getName())
970        ForceRenaming(NewDF, SF->getName());
971
972      // ... and remember this mapping...
973      ValueMap[SF] = NewDF;
974      continue;
975    }
976
977    // If the visibilities of the symbols disagree and the destination is a
978    // prototype, take the visibility of its input.
979    if (DGV->isDeclaration())
980      DGV->setVisibility(SF->getVisibility());
981
982    if (LinkFromSrc) {
983      if (isa<GlobalAlias>(DGV))
984        return Error(Err, "Function-Alias Collision on '" + SF->getName() +
985                     "': symbol multiple defined");
986
987      // We have a definition of the same name but different type in the
988      // source module. Copy the prototype to the destination and replace
989      // uses of the destination's prototype with the new prototype.
990      Function *NewDF = Function::Create(SF->getFunctionType(), NewLinkage,
991                                         SF->getName(), Dest);
992      CopyGVAttributes(NewDF, SF);
993
994      // Any uses of DF need to change to NewDF, with cast
995      DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF,
996                                                              DGV->getType()));
997
998      // DF will conflict with NewDF because they both had the same. We must
999      // erase this now so ForceRenaming doesn't assert because DF might
1000      // not have internal linkage.
1001      if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
1002        Var->eraseFromParent();
1003      else
1004        cast<Function>(DGV)->eraseFromParent();
1005
1006      // If the symbol table renamed the function, but it is an externally
1007      // visible symbol, DF must be an existing function with internal
1008      // linkage.  Rename it.
1009      if (NewDF->getName() != SF->getName() && !NewDF->hasLocalLinkage())
1010        ForceRenaming(NewDF, SF->getName());
1011
1012      // Remember this mapping so uses in the source module get remapped
1013      // later by RemapOperand.
1014      ValueMap[SF] = NewDF;
1015      continue;
1016    }
1017
1018    // Not "link from source", keep the one in the DestModule and remap the
1019    // input onto it.
1020
1021    if (isa<GlobalAlias>(DGV)) {
1022      // The only valid mappings are:
1023      // - SF is external declaration, which is effectively a no-op.
1024      // - SF is weak, when we just need to throw SF out.
1025      if (!SF->isDeclaration() && !SF->isWeakForLinker())
1026        return Error(Err, "Function-Alias Collision on '" + SF->getName() +
1027                     "': symbol multiple defined");
1028    }
1029
1030    // Set calculated linkage
1031    DGV->setLinkage(NewLinkage);
1032
1033    // Make sure to remember this mapping.
1034    ValueMap[SF] = ConstantExpr::getBitCast(DGV, SF->getType());
1035  }
1036  return false;
1037}
1038
1039// LinkFunctionBody - Copy the source function over into the dest function and
1040// fix up references to values.  At this point we know that Dest is an external
1041// function, and that Src is not.
1042static bool LinkFunctionBody(Function *Dest, Function *Src,
1043                             std::map<const Value*, Value*> &ValueMap,
1044                             std::string *Err) {
1045  assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
1046
1047  // Go through and convert function arguments over, remembering the mapping.
1048  Function::arg_iterator DI = Dest->arg_begin();
1049  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1050       I != E; ++I, ++DI) {
1051    DI->setName(I->getName());  // Copy the name information over...
1052
1053    // Add a mapping to our local map
1054    ValueMap[I] = DI;
1055  }
1056
1057  // Splice the body of the source function into the dest function.
1058  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
1059
1060  // At this point, all of the instructions and values of the function are now
1061  // copied over.  The only problem is that they are still referencing values in
1062  // the Source function as operands.  Loop through all of the operands of the
1063  // functions and patch them up to point to the local versions...
1064  //
1065  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
1066    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1067      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1068           OI != OE; ++OI)
1069        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
1070          *OI = RemapOperand(*OI, ValueMap, Dest->getContext());
1071
1072  // There is no need to map the arguments anymore.
1073  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1074       I != E; ++I)
1075    ValueMap.erase(I);
1076
1077  return false;
1078}
1079
1080
1081// LinkFunctionBodies - Link in the function bodies that are defined in the
1082// source module into the DestModule.  This consists basically of copying the
1083// function over and fixing up references to values.
1084static bool LinkFunctionBodies(Module *Dest, Module *Src,
1085                               std::map<const Value*, Value*> &ValueMap,
1086                               std::string *Err) {
1087
1088  // Loop over all of the functions in the src module, mapping them over as we
1089  // go
1090  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
1091    if (!SF->isDeclaration()) {               // No body if function is external
1092      Function *DF = dyn_cast<Function>(ValueMap[SF]); // Destination function
1093
1094      // DF not external SF external?
1095      if (DF && DF->isDeclaration())
1096        // Only provide the function body if there isn't one already.
1097        if (LinkFunctionBody(DF, SF, ValueMap, Err))
1098          return true;
1099    }
1100  }
1101  return false;
1102}
1103
1104// LinkAppendingVars - If there were any appending global variables, link them
1105// together now.  Return true on error.
1106static bool LinkAppendingVars(Module *M,
1107                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
1108                              std::string *ErrorMsg) {
1109  if (AppendingVars.empty()) return false; // Nothing to do.
1110
1111  // Loop over the multimap of appending vars, processing any variables with the
1112  // same name, forming a new appending global variable with both of the
1113  // initializers merged together, then rewrite references to the old variables
1114  // and delete them.
1115  std::vector<Constant*> Inits;
1116  while (AppendingVars.size() > 1) {
1117    // Get the first two elements in the map...
1118    std::multimap<std::string,
1119      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
1120
1121    // If the first two elements are for different names, there is no pair...
1122    // Otherwise there is a pair, so link them together...
1123    if (First->first == Second->first) {
1124      GlobalVariable *G1 = First->second, *G2 = Second->second;
1125      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
1126      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
1127
1128      // Check to see that they two arrays agree on type...
1129      if (T1->getElementType() != T2->getElementType())
1130        return Error(ErrorMsg,
1131         "Appending variables with different element types need to be linked!");
1132      if (G1->isConstant() != G2->isConstant())
1133        return Error(ErrorMsg,
1134                     "Appending variables linked with different const'ness!");
1135
1136      if (G1->getAlignment() != G2->getAlignment())
1137        return Error(ErrorMsg,
1138         "Appending variables with different alignment need to be linked!");
1139
1140      if (G1->getVisibility() != G2->getVisibility())
1141        return Error(ErrorMsg,
1142         "Appending variables with different visibility need to be linked!");
1143
1144      if (G1->getSection() != G2->getSection())
1145        return Error(ErrorMsg,
1146         "Appending variables with different section name need to be linked!");
1147
1148      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
1149      ArrayType *NewType = ArrayType::get(T1->getElementType(),
1150                                                         NewSize);
1151
1152      G1->setName("");   // Clear G1's name in case of a conflict!
1153
1154      // Create the new global variable...
1155      GlobalVariable *NG =
1156        new GlobalVariable(*M, NewType, G1->isConstant(), G1->getLinkage(),
1157                           /*init*/0, First->first, 0, G1->isThreadLocal(),
1158                           G1->getType()->getAddressSpace());
1159
1160      // Propagate alignment, visibility and section info.
1161      CopyGVAttributes(NG, G1);
1162
1163      // Merge the initializer...
1164      Inits.reserve(NewSize);
1165      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1166        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1167          Inits.push_back(I->getOperand(i));
1168      } else {
1169        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1170        Constant *CV = Constant::getNullValue(T1->getElementType());
1171        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1172          Inits.push_back(CV);
1173      }
1174      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1175        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1176          Inits.push_back(I->getOperand(i));
1177      } else {
1178        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1179        Constant *CV = Constant::getNullValue(T2->getElementType());
1180        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1181          Inits.push_back(CV);
1182      }
1183      NG->setInitializer(ConstantArray::get(NewType, Inits));
1184      Inits.clear();
1185
1186      // Replace any uses of the two global variables with uses of the new
1187      // global...
1188
1189      // FIXME: This should rewrite simple/straight-forward uses such as
1190      // getelementptr instructions to not use the Cast!
1191      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
1192                             G1->getType()));
1193      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
1194                             G2->getType()));
1195
1196      // Remove the two globals from the module now...
1197      M->getGlobalList().erase(G1);
1198      M->getGlobalList().erase(G2);
1199
1200      // Put the new global into the AppendingVars map so that we can handle
1201      // linking of more than two vars...
1202      Second->second = NG;
1203    }
1204    AppendingVars.erase(First);
1205  }
1206
1207  return false;
1208}
1209
1210static bool ResolveAliases(Module *Dest) {
1211  for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1212       I != E; ++I)
1213    if (const GlobalValue *GV = I->resolveAliasedGlobal())
1214      if (GV != I && !GV->isDeclaration())
1215        I->replaceAllUsesWith(const_cast<GlobalValue*>(GV));
1216
1217  return false;
1218}
1219
1220// LinkModules - This function links two modules together, with the resulting
1221// left module modified to be the composite of the two input modules.  If an
1222// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1223// the problem.  Upon failure, the Dest module could be in a modified state, and
1224// shouldn't be relied on to be consistent.
1225bool
1226Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1227  assert(Dest != 0 && "Invalid Destination module");
1228  assert(Src  != 0 && "Invalid Source Module");
1229
1230  if (Dest->getDataLayout().empty()) {
1231    if (!Src->getDataLayout().empty()) {
1232      Dest->setDataLayout(Src->getDataLayout());
1233    } else {
1234      std::string DataLayout;
1235
1236      if (Dest->getEndianness() == Module::AnyEndianness) {
1237        if (Src->getEndianness() == Module::BigEndian)
1238          DataLayout.append("E");
1239        else if (Src->getEndianness() == Module::LittleEndian)
1240          DataLayout.append("e");
1241      }
1242
1243      if (Dest->getPointerSize() == Module::AnyPointerSize) {
1244        if (Src->getPointerSize() == Module::Pointer64)
1245          DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1246        else if (Src->getPointerSize() == Module::Pointer32)
1247          DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1248      }
1249      Dest->setDataLayout(DataLayout);
1250    }
1251  }
1252
1253  // Copy the target triple from the source to dest if the dest's is empty.
1254  if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1255    Dest->setTargetTriple(Src->getTargetTriple());
1256
1257  if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1258      Src->getDataLayout() != Dest->getDataLayout())
1259    cerr << "WARNING: Linking two modules of different data layouts!\n";
1260  if (!Src->getTargetTriple().empty() &&
1261      Dest->getTargetTriple() != Src->getTargetTriple())
1262    cerr << "WARNING: Linking two modules of different target triples!\n";
1263
1264  // Append the module inline asm string.
1265  if (!Src->getModuleInlineAsm().empty()) {
1266    if (Dest->getModuleInlineAsm().empty())
1267      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1268    else
1269      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1270                               Src->getModuleInlineAsm());
1271  }
1272
1273  // Update the destination module's dependent libraries list with the libraries
1274  // from the source module. There's no opportunity for duplicates here as the
1275  // Module ensures that duplicate insertions are discarded.
1276  for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1277       SI != SE; ++SI)
1278    Dest->addLibrary(*SI);
1279
1280  // LinkTypes - Go through the symbol table of the Src module and see if any
1281  // types are named in the src module that are not named in the Dst module.
1282  // Make sure there are no type name conflicts.
1283  if (LinkTypes(Dest, Src, ErrorMsg))
1284    return true;
1285
1286  // ValueMap - Mapping of values from what they used to be in Src, to what they
1287  // are now in Dest.
1288  std::map<const Value*, Value*> ValueMap;
1289
1290  // AppendingVars - Keep track of global variables in the destination module
1291  // with appending linkage.  After the module is linked together, they are
1292  // appended and the module is rewritten.
1293  std::multimap<std::string, GlobalVariable *> AppendingVars;
1294  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1295       I != E; ++I) {
1296    // Add all of the appending globals already in the Dest module to
1297    // AppendingVars.
1298    if (I->hasAppendingLinkage())
1299      AppendingVars.insert(std::make_pair(I->getName(), I));
1300  }
1301
1302  // Insert all of the globals in src into the Dest module... without linking
1303  // initializers (which could refer to functions not yet mapped over).
1304  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1305    return true;
1306
1307  // Link the functions together between the two modules, without doing function
1308  // bodies... this just adds external function prototypes to the Dest
1309  // function...  We do this so that when we begin processing function bodies,
1310  // all of the global values that may be referenced are available in our
1311  // ValueMap.
1312  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1313    return true;
1314
1315  // If there were any alias, link them now. We really need to do this now,
1316  // because all of the aliases that may be referenced need to be available in
1317  // ValueMap
1318  if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1319
1320  // Update the initializers in the Dest module now that all globals that may
1321  // be referenced are in Dest.
1322  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1323
1324  // Link in the function bodies that are defined in the source module into the
1325  // DestModule.  This consists basically of copying the function over and
1326  // fixing up references to values.
1327  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1328
1329  // If there were any appending global variables, link them together now.
1330  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1331
1332  // Resolve all uses of aliases with aliasees
1333  if (ResolveAliases(Dest)) return true;
1334
1335  // If the source library's module id is in the dependent library list of the
1336  // destination library, remove it since that module is now linked in.
1337  sys::Path modId;
1338  modId.set(Src->getModuleIdentifier());
1339  if (!modId.isEmpty())
1340    Dest->removeLibrary(modId.getBasename());
1341
1342  return false;
1343}
1344
1345// vim: sw=2
1346