LinkModules.cpp revision aad2deb17c3e624cae4ebc1ed51fc5264fa1c0b8
1//===- Linker.cpp - Module Linker Implementation --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Support/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/SymbolTable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Assembly/Writer.h"
26#include <iostream>
27using namespace llvm;
28
29// Error - Simple wrapper function to conditionally assign to E and return true.
30// This just makes error return conditions a little bit simpler...
31//
32static inline bool Error(std::string *E, const std::string &Message) {
33  if (E) *E = Message;
34  return true;
35}
36
37//
38// Function: ResolveTypes()
39//
40// Description:
41//  Attempt to link the two specified types together.
42//
43// Inputs:
44//  DestTy - The type to which we wish to resolve.
45//  SrcTy  - The original type which we want to resolve.
46//  Name   - The name of the type.
47//
48// Outputs:
49//  DestST - The symbol table in which the new type should be placed.
50//
51// Return value:
52//  true  - There is an error and the types cannot yet be linked.
53//  false - No errors.
54//
55static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
56                         SymbolTable *DestST, const std::string &Name) {
57  if (DestTy == SrcTy) return false;       // If already equal, noop
58
59  // Does the type already exist in the module?
60  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
61    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
62      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
63    } else {
64      return true;  // Cannot link types... neither is opaque and not-equal
65    }
66  } else {                       // Type not in dest module.  Add it now.
67    if (DestTy)                  // Type _is_ in module, just opaque...
68      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
69                           ->refineAbstractTypeTo(SrcTy);
70    else if (!Name.empty())
71      DestST->insert(Name, const_cast<Type*>(SrcTy));
72  }
73  return false;
74}
75
76static const FunctionType *getFT(const PATypeHolder &TH) {
77  return cast<FunctionType>(TH.get());
78}
79static const StructType *getST(const PATypeHolder &TH) {
80  return cast<StructType>(TH.get());
81}
82
83// RecursiveResolveTypes - This is just like ResolveTypes, except that it
84// recurses down into derived types, merging the used types if the parent types
85// are compatible.
86//
87static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
88                                   const PATypeHolder &SrcTy,
89                                   SymbolTable *DestST, const std::string &Name,
90                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
91  const Type *SrcTyT = SrcTy.get();
92  const Type *DestTyT = DestTy.get();
93  if (DestTyT == SrcTyT) return false;       // If already equal, noop
94
95  // If we found our opaque type, resolve it now!
96  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
97    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
98
99  // Two types cannot be resolved together if they are of different primitive
100  // type.  For example, we cannot resolve an int to a float.
101  if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
102
103  // Otherwise, resolve the used type used by this derived type...
104  switch (DestTyT->getTypeID()) {
105  case Type::FunctionTyID: {
106    if (cast<FunctionType>(DestTyT)->isVarArg() !=
107        cast<FunctionType>(SrcTyT)->isVarArg() ||
108        cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
109        cast<FunctionType>(SrcTyT)->getNumContainedTypes())
110      return true;
111    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
112      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
113                                 getFT(SrcTy)->getContainedType(i), DestST, "",
114                                 Pointers))
115        return true;
116    return false;
117  }
118  case Type::StructTyID: {
119    if (getST(DestTy)->getNumContainedTypes() !=
120        getST(SrcTy)->getNumContainedTypes()) return 1;
121    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
122      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
123                                 getST(SrcTy)->getContainedType(i), DestST, "",
124                                 Pointers))
125        return true;
126    return false;
127  }
128  case Type::ArrayTyID: {
129    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
130    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
131    if (DAT->getNumElements() != SAT->getNumElements()) return true;
132    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
133                                  DestST, "", Pointers);
134  }
135  case Type::PointerTyID: {
136    // If this is a pointer type, check to see if we have already seen it.  If
137    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
138    // an associative container for this search, because the type pointers (keys
139    // in the container) change whenever types get resolved...
140    //
141    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
142      if (Pointers[i].first == DestTy)
143        return Pointers[i].second != SrcTy;
144
145    // Otherwise, add the current pointers to the vector to stop recursion on
146    // this pair.
147    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
148    bool Result =
149      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
150                             cast<PointerType>(SrcTy.get())->getElementType(),
151                             DestST, "", Pointers);
152    Pointers.pop_back();
153    return Result;
154  }
155  default: assert(0 && "Unexpected type!"); return true;
156  }
157}
158
159static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
160                                  const PATypeHolder &SrcTy,
161                                  SymbolTable *DestST, const std::string &Name){
162  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
163  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
164}
165
166
167// LinkTypes - Go through the symbol table of the Src module and see if any
168// types are named in the src module that are not named in the Dst module.
169// Make sure there are no type name conflicts.
170//
171static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
172  SymbolTable       *DestST = &Dest->getSymbolTable();
173  const SymbolTable *SrcST  = &Src->getSymbolTable();
174
175  // Look for a type plane for Type's...
176  SymbolTable::type_const_iterator TI = SrcST->type_begin();
177  SymbolTable::type_const_iterator TE = SrcST->type_end();
178  if (TI == TE) return false;  // No named types, do nothing.
179
180  // Some types cannot be resolved immediately because they depend on other
181  // types being resolved to each other first.  This contains a list of types we
182  // are waiting to recheck.
183  std::vector<std::string> DelayedTypesToResolve;
184
185  for ( ; TI != TE; ++TI ) {
186    const std::string &Name = TI->first;
187    const Type *RHS = TI->second;
188
189    // Check to see if this type name is already in the dest module...
190    Type *Entry = DestST->lookupType(Name);
191
192    if (ResolveTypes(Entry, RHS, DestST, Name)) {
193      // They look different, save the types 'till later to resolve.
194      DelayedTypesToResolve.push_back(Name);
195    }
196  }
197
198  // Iteratively resolve types while we can...
199  while (!DelayedTypesToResolve.empty()) {
200    // Loop over all of the types, attempting to resolve them if possible...
201    unsigned OldSize = DelayedTypesToResolve.size();
202
203    // Try direct resolution by name...
204    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
205      const std::string &Name = DelayedTypesToResolve[i];
206      Type *T1 = SrcST->lookupType(Name);
207      Type *T2 = DestST->lookupType(Name);
208      if (!ResolveTypes(T2, T1, DestST, Name)) {
209        // We are making progress!
210        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
211        --i;
212      }
213    }
214
215    // Did we not eliminate any types?
216    if (DelayedTypesToResolve.size() == OldSize) {
217      // Attempt to resolve subelements of types.  This allows us to merge these
218      // two types: { int* } and { opaque* }
219      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
220        const std::string &Name = DelayedTypesToResolve[i];
221        PATypeHolder T1(SrcST->lookupType(Name));
222        PATypeHolder T2(DestST->lookupType(Name));
223
224        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
225          // We are making progress!
226          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
227
228          // Go back to the main loop, perhaps we can resolve directly by name
229          // now...
230          break;
231        }
232      }
233
234      // If we STILL cannot resolve the types, then there is something wrong.
235      // Report the warning and delete one of the names.
236      if (DelayedTypesToResolve.size() == OldSize) {
237        const std::string &Name = DelayedTypesToResolve.back();
238
239        const Type *T1 = SrcST->lookupType(Name);
240        const Type *T2 = DestST->lookupType(Name);
241        std::cerr << "WARNING: Type conflict between types named '" << Name
242                  <<  "'.\n    Src='";
243        WriteTypeSymbolic(std::cerr, T1, Src);
244        std::cerr << "'.\n   Dest='";
245        WriteTypeSymbolic(std::cerr, T2, Dest);
246        std::cerr << "'\n";
247
248        // Remove the symbol name from the destination.
249        DelayedTypesToResolve.pop_back();
250      }
251    }
252  }
253
254
255  return false;
256}
257
258static void PrintMap(const std::map<const Value*, Value*> &M) {
259  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
260       I != E; ++I) {
261    std::cerr << " Fr: " << (void*)I->first << " ";
262    I->first->dump();
263    std::cerr << " To: " << (void*)I->second << " ";
264    I->second->dump();
265    std::cerr << "\n";
266  }
267}
268
269
270// RemapOperand - Use LocalMap and GlobalMap to convert references from one
271// module to another.  This is somewhat sophisticated in that it can
272// automatically handle constant references correctly as well...
273//
274static Value *RemapOperand(const Value *In,
275                           std::map<const Value*, Value*> &LocalMap,
276                           std::map<const Value*, Value*> *GlobalMap) {
277  std::map<const Value*,Value*>::const_iterator I = LocalMap.find(In);
278  if (I != LocalMap.end()) return I->second;
279
280  if (GlobalMap) {
281    I = GlobalMap->find(In);
282    if (I != GlobalMap->end()) return I->second;
283  }
284
285  // Check to see if it's a constant that we are interesting in transforming...
286  if (const Constant *CPV = dyn_cast<Constant>(In)) {
287    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
288        isa<ConstantAggregateZero>(CPV))
289      return const_cast<Constant*>(CPV);   // Simple constants stay identical...
290
291    Constant *Result = 0;
292
293    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
294      std::vector<Constant*> Operands(CPA->getNumOperands());
295      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
296        Operands[i] =
297          cast<Constant>(RemapOperand(CPA->getOperand(i), LocalMap, GlobalMap));
298      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
299    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
300      std::vector<Constant*> Operands(CPS->getNumOperands());
301      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
302        Operands[i] =
303          cast<Constant>(RemapOperand(CPS->getOperand(i), LocalMap, GlobalMap));
304      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
305    } else if (isa<ConstantPointerNull>(CPV)) {
306      Result = const_cast<Constant*>(CPV);
307    } else if (isa<GlobalValue>(CPV)) {
308      Result = cast<Constant>(RemapOperand(CPV, LocalMap, GlobalMap));
309    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
310      if (CE->getOpcode() == Instruction::GetElementPtr) {
311        Value *Ptr = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
312        std::vector<Constant*> Indices;
313        Indices.reserve(CE->getNumOperands()-1);
314        for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
315          Indices.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),
316                                                        LocalMap, GlobalMap)));
317
318        Result = ConstantExpr::getGetElementPtr(cast<Constant>(Ptr), Indices);
319      } else if (CE->getNumOperands() == 1) {
320        // Cast instruction
321        assert(CE->getOpcode() == Instruction::Cast);
322        Value *V = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
323        Result = ConstantExpr::getCast(cast<Constant>(V), CE->getType());
324      } else if (CE->getNumOperands() == 3) {
325        // Select instruction
326        assert(CE->getOpcode() == Instruction::Select);
327        Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
328        Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
329        Value *V3 = RemapOperand(CE->getOperand(2), LocalMap, GlobalMap);
330        Result = ConstantExpr::getSelect(cast<Constant>(V1), cast<Constant>(V2),
331                                         cast<Constant>(V3));
332      } else if (CE->getNumOperands() == 2) {
333        // Binary operator...
334        Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
335        Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
336
337        Result = ConstantExpr::get(CE->getOpcode(), cast<Constant>(V1),
338                                   cast<Constant>(V2));
339      } else {
340        assert(0 && "Unknown constant expr type!");
341      }
342
343    } else {
344      assert(0 && "Unknown type of derived type constant value!");
345    }
346
347    // Cache the mapping in our local map structure...
348    if (GlobalMap)
349      GlobalMap->insert(std::make_pair(In, Result));
350    else
351      LocalMap.insert(std::make_pair(In, Result));
352    return Result;
353  }
354
355  std::cerr << "XXX LocalMap: \n";
356  PrintMap(LocalMap);
357
358  if (GlobalMap) {
359    std::cerr << "XXX GlobalMap: \n";
360    PrintMap(*GlobalMap);
361  }
362
363  std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
364  assert(0 && "Couldn't remap value!");
365  return 0;
366}
367
368/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
369/// in the symbol table.  This is good for all clients except for us.  Go
370/// through the trouble to force this back.
371static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
372  assert(GV->getName() != Name && "Can't force rename to self");
373  SymbolTable &ST = GV->getParent()->getSymbolTable();
374
375  // If there is a conflict, rename the conflict.
376  Value *ConflictVal = ST.lookup(GV->getType(), Name);
377  assert(ConflictVal&&"Why do we have to force rename if there is no conflic?");
378  GlobalValue *ConflictGV = cast<GlobalValue>(ConflictVal);
379  assert(ConflictGV->hasInternalLinkage() &&
380         "Not conflicting with a static global, should link instead!");
381
382  ConflictGV->setName("");          // Eliminate the conflict
383  GV->setName(Name);                // Force the name back
384  ConflictGV->setName(Name);        // This will cause ConflictGV to get renamed
385  assert(GV->getName() == Name && ConflictGV->getName() != Name &&
386         "ForceRenaming didn't work");
387}
388
389
390// LinkGlobals - Loop through the global variables in the src module and merge
391// them into the dest module.
392//
393static bool LinkGlobals(Module *Dest, const Module *Src,
394                        std::map<const Value*, Value*> &ValueMap,
395                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
396                        std::map<std::string, GlobalValue*> &GlobalsByName,
397                        std::string *Err) {
398  // We will need a module level symbol table if the src module has a module
399  // level symbol table...
400  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
401
402  // Loop over all of the globals in the src module, mapping them over as we go
403  //
404  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
405    const GlobalVariable *SGV = I;
406    GlobalVariable *DGV = 0;
407    // Check to see if may have to link the global.
408    if (SGV->hasName() && !SGV->hasInternalLinkage())
409      if (!(DGV = Dest->getGlobalVariable(SGV->getName(),
410                                          SGV->getType()->getElementType()))) {
411        std::map<std::string, GlobalValue*>::iterator EGV =
412          GlobalsByName.find(SGV->getName());
413        if (EGV != GlobalsByName.end())
414          DGV = dyn_cast<GlobalVariable>(EGV->second);
415        if (DGV && RecursiveResolveTypes(SGV->getType(), DGV->getType(), ST, ""))
416          DGV = 0;  // FIXME: gross.
417      }
418
419    assert(SGV->hasInitializer() || SGV->hasExternalLinkage() &&
420           "Global must either be external or have an initializer!");
421
422    bool SGExtern = SGV->isExternal();
423    bool DGExtern = DGV ? DGV->isExternal() : false;
424
425    if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) {
426      // No linking to be performed, simply create an identical version of the
427      // symbol over in the dest module... the initializer will be filled in
428      // later by LinkGlobalInits...
429      //
430      GlobalVariable *NewDGV =
431        new GlobalVariable(SGV->getType()->getElementType(),
432                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
433                           SGV->getName(), Dest);
434
435      // If the LLVM runtime renamed the global, but it is an externally visible
436      // symbol, DGV must be an existing global with internal linkage.  Rename
437      // it.
438      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
439        ForceRenaming(NewDGV, SGV->getName());
440
441      // Make sure to remember this mapping...
442      ValueMap.insert(std::make_pair(SGV, NewDGV));
443      if (SGV->hasAppendingLinkage())
444        // Keep track that this is an appending variable...
445        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
446
447    } else if (SGV->isExternal()) {
448      // If SGV is external or if both SGV & DGV are external..  Just link the
449      // external globals, we aren't adding anything.
450      ValueMap.insert(std::make_pair(SGV, DGV));
451
452    } else if (DGV->isExternal()) {   // If DGV is external but SGV is not...
453      ValueMap.insert(std::make_pair(SGV, DGV));
454      DGV->setLinkage(SGV->getLinkage());    // Inherit linkage!
455    } else if (SGV->hasWeakLinkage() || SGV->hasLinkOnceLinkage()) {
456      // At this point we know that DGV has LinkOnce, Appending, Weak, or
457      // External linkage.  If DGV is Appending, this is an error.
458      if (DGV->hasAppendingLinkage())
459        return Error(Err, "Linking globals named '" + SGV->getName() +
460                     " ' with 'weak' and 'appending' linkage is not allowed!");
461
462      if (SGV->isConstant() != DGV->isConstant())
463        return Error(Err, "Global Variable Collision on '" +
464                     SGV->getType()->getDescription() + " %" + SGV->getName() +
465                     "' - Global variables differ in const'ness");
466
467      // Otherwise, just perform the link.
468      ValueMap.insert(std::make_pair(SGV, DGV));
469
470      // Linkonce+Weak = Weak
471      if (DGV->hasLinkOnceLinkage() && SGV->hasWeakLinkage())
472        DGV->setLinkage(SGV->getLinkage());
473
474    } else if (DGV->hasWeakLinkage() || DGV->hasLinkOnceLinkage()) {
475      // At this point we know that SGV has LinkOnce, Appending, or External
476      // linkage.  If SGV is Appending, this is an error.
477      if (SGV->hasAppendingLinkage())
478        return Error(Err, "Linking globals named '" + SGV->getName() +
479                     " ' with 'weak' and 'appending' linkage is not allowed!");
480
481      if (SGV->isConstant() != DGV->isConstant())
482        return Error(Err, "Global Variable Collision on '" +
483                     SGV->getType()->getDescription() + " %" + SGV->getName() +
484                     "' - Global variables differ in const'ness");
485
486      if (!SGV->hasLinkOnceLinkage())
487        DGV->setLinkage(SGV->getLinkage());    // Inherit linkage!
488      ValueMap.insert(std::make_pair(SGV, DGV));
489
490    } else if (SGV->getLinkage() != DGV->getLinkage()) {
491      return Error(Err, "Global variables named '" + SGV->getName() +
492                   "' have different linkage specifiers!");
493    } else if (SGV->hasExternalLinkage()) {
494      // Allow linking two exactly identical external global variables...
495      if (SGV->isConstant() != DGV->isConstant())
496        return Error(Err, "Global Variable Collision on '" +
497                     SGV->getType()->getDescription() + " %" + SGV->getName() +
498                     "' - Global variables differ in const'ness");
499
500      if (SGV->getInitializer() != DGV->getInitializer())
501        return Error(Err, "Global Variable Collision on '" +
502                     SGV->getType()->getDescription() + " %" + SGV->getName() +
503                    "' - External linkage globals have different initializers");
504
505      ValueMap.insert(std::make_pair(SGV, DGV));
506    } else if (SGV->hasAppendingLinkage()) {
507      // No linking is performed yet.  Just insert a new copy of the global, and
508      // keep track of the fact that it is an appending variable in the
509      // AppendingVars map.  The name is cleared out so that no linkage is
510      // performed.
511      GlobalVariable *NewDGV =
512        new GlobalVariable(SGV->getType()->getElementType(),
513                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
514                           "", Dest);
515
516      // Make sure to remember this mapping...
517      ValueMap.insert(std::make_pair(SGV, NewDGV));
518
519      // Keep track that this is an appending variable...
520      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
521    } else {
522      assert(0 && "Unknown linkage!");
523    }
524  }
525  return false;
526}
527
528
529// LinkGlobalInits - Update the initializers in the Dest module now that all
530// globals that may be referenced are in Dest.
531//
532static bool LinkGlobalInits(Module *Dest, const Module *Src,
533                            std::map<const Value*, Value*> &ValueMap,
534                            std::string *Err) {
535
536  // Loop over all of the globals in the src module, mapping them over as we go
537  //
538  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
539    const GlobalVariable *SGV = I;
540
541    if (SGV->hasInitializer()) {      // Only process initialized GV's
542      // Figure out what the initializer looks like in the dest module...
543      Constant *SInit =
544        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap, 0));
545
546      GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
547      if (DGV->hasInitializer()) {
548        if (SGV->hasExternalLinkage()) {
549          if (DGV->getInitializer() != SInit)
550            return Error(Err, "Global Variable Collision on '" +
551                         SGV->getType()->getDescription() +"':%"+SGV->getName()+
552                         " - Global variables have different initializers");
553        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
554          // Nothing is required, mapped values will take the new global
555          // automatically.
556        } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
557          // Nothing is required, mapped values will take the new global
558          // automatically.
559        } else if (DGV->hasAppendingLinkage()) {
560          assert(0 && "Appending linkage unimplemented!");
561        } else {
562          assert(0 && "Unknown linkage!");
563        }
564      } else {
565        // Copy the initializer over now...
566        DGV->setInitializer(SInit);
567      }
568    }
569  }
570  return false;
571}
572
573// LinkFunctionProtos - Link the functions together between the two modules,
574// without doing function bodies... this just adds external function prototypes
575// to the Dest function...
576//
577static bool LinkFunctionProtos(Module *Dest, const Module *Src,
578                               std::map<const Value*, Value*> &ValueMap,
579                             std::map<std::string, GlobalValue*> &GlobalsByName,
580                               std::string *Err) {
581  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
582
583  // Loop over all of the functions in the src module, mapping them over as we
584  // go
585  //
586  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
587    const Function *SF = I;   // SrcFunction
588    Function *DF = 0;
589    if (SF->hasName() && !SF->hasInternalLinkage()) {
590      // Check to see if may have to link the function.
591      if (!(DF = Dest->getFunction(SF->getName(), SF->getFunctionType()))) {
592        std::map<std::string, GlobalValue*>::iterator EF =
593          GlobalsByName.find(SF->getName());
594        if (EF != GlobalsByName.end())
595          DF = dyn_cast<Function>(EF->second);
596        if (DF && RecursiveResolveTypes(SF->getType(), DF->getType(), ST, ""))
597          DF = 0;  // FIXME: gross.
598      }
599    }
600
601    if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
602      // Function does not already exist, simply insert an function signature
603      // identical to SF into the dest module...
604      Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
605                                     SF->getName(), Dest);
606
607      // If the LLVM runtime renamed the function, but it is an externally
608      // visible symbol, DF must be an existing function with internal linkage.
609      // Rename it.
610      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
611        ForceRenaming(NewDF, SF->getName());
612
613      // ... and remember this mapping...
614      ValueMap.insert(std::make_pair(SF, NewDF));
615    } else if (SF->isExternal()) {
616      // If SF is external or if both SF & DF are external..  Just link the
617      // external functions, we aren't adding anything.
618      ValueMap.insert(std::make_pair(SF, DF));
619    } else if (DF->isExternal()) {   // If DF is external but SF is not...
620      // Link the external functions, update linkage qualifiers
621      ValueMap.insert(std::make_pair(SF, DF));
622      DF->setLinkage(SF->getLinkage());
623
624    } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
625      // At this point we know that DF has LinkOnce, Weak, or External linkage.
626      ValueMap.insert(std::make_pair(SF, DF));
627
628      // Linkonce+Weak = Weak
629      if (DF->hasLinkOnceLinkage() && SF->hasWeakLinkage())
630        DF->setLinkage(SF->getLinkage());
631
632    } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
633      // At this point we know that SF has LinkOnce or External linkage.
634      ValueMap.insert(std::make_pair(SF, DF));
635      if (!SF->hasLinkOnceLinkage())   // Don't inherit linkonce linkage
636        DF->setLinkage(SF->getLinkage());
637
638    } else if (SF->getLinkage() != DF->getLinkage()) {
639      return Error(Err, "Functions named '" + SF->getName() +
640                   "' have different linkage specifiers!");
641    } else if (SF->hasExternalLinkage()) {
642      // The function is defined in both modules!!
643      return Error(Err, "Function '" +
644                   SF->getFunctionType()->getDescription() + "':\"" +
645                   SF->getName() + "\" - Function is already defined!");
646    } else {
647      assert(0 && "Unknown linkage configuration found!");
648    }
649  }
650  return false;
651}
652
653// LinkFunctionBody - Copy the source function over into the dest function and
654// fix up references to values.  At this point we know that Dest is an external
655// function, and that Src is not.
656//
657static bool LinkFunctionBody(Function *Dest, const Function *Src,
658                             std::map<const Value*, Value*> &GlobalMap,
659                             std::string *Err) {
660  assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
661  std::map<const Value*, Value*> LocalMap;   // Map for function local values
662
663  // Go through and convert function arguments over...
664  Function::aiterator DI = Dest->abegin();
665  for (Function::const_aiterator I = Src->abegin(), E = Src->aend();
666       I != E; ++I, ++DI) {
667    DI->setName(I->getName());  // Copy the name information over...
668
669    // Add a mapping to our local map
670    LocalMap.insert(std::make_pair(I, DI));
671  }
672
673  // Loop over all of the basic blocks, copying the instructions over...
674  //
675  for (Function::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
676    // Create new basic block and add to mapping and the Dest function...
677    BasicBlock *DBB = new BasicBlock(I->getName(), Dest);
678    LocalMap.insert(std::make_pair(I, DBB));
679
680    // Loop over all of the instructions in the src basic block, copying them
681    // over.  Note that this is broken in a strict sense because the cloned
682    // instructions will still be referencing values in the Src module, not
683    // the remapped values.  In our case, however, we will not get caught and
684    // so we can delay patching the values up until later...
685    //
686    for (BasicBlock::const_iterator II = I->begin(), IE = I->end();
687         II != IE; ++II) {
688      Instruction *DI = II->clone();
689      DI->setName(II->getName());
690      DBB->getInstList().push_back(DI);
691      LocalMap.insert(std::make_pair(II, DI));
692    }
693  }
694
695  // At this point, all of the instructions and values of the function are now
696  // copied over.  The only problem is that they are still referencing values in
697  // the Source function as operands.  Loop through all of the operands of the
698  // functions and patch them up to point to the local versions...
699  //
700  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
701    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
702      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
703           OI != OE; ++OI)
704        *OI = RemapOperand(*OI, LocalMap, &GlobalMap);
705
706  return false;
707}
708
709
710// LinkFunctionBodies - Link in the function bodies that are defined in the
711// source module into the DestModule.  This consists basically of copying the
712// function over and fixing up references to values.
713//
714static bool LinkFunctionBodies(Module *Dest, const Module *Src,
715                               std::map<const Value*, Value*> &ValueMap,
716                               std::string *Err) {
717
718  // Loop over all of the functions in the src module, mapping them over as we
719  // go
720  //
721  for (Module::const_iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF){
722    if (!SF->isExternal()) {                  // No body if function is external
723      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
724
725      // DF not external SF external?
726      if (DF->isExternal()) {
727        // Only provide the function body if there isn't one already.
728        if (LinkFunctionBody(DF, SF, ValueMap, Err))
729          return true;
730      }
731    }
732  }
733  return false;
734}
735
736// LinkAppendingVars - If there were any appending global variables, link them
737// together now.  Return true on error.
738//
739static bool LinkAppendingVars(Module *M,
740                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
741                              std::string *ErrorMsg) {
742  if (AppendingVars.empty()) return false; // Nothing to do.
743
744  // Loop over the multimap of appending vars, processing any variables with the
745  // same name, forming a new appending global variable with both of the
746  // initializers merged together, then rewrite references to the old variables
747  // and delete them.
748  //
749  std::vector<Constant*> Inits;
750  while (AppendingVars.size() > 1) {
751    // Get the first two elements in the map...
752    std::multimap<std::string,
753      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
754
755    // If the first two elements are for different names, there is no pair...
756    // Otherwise there is a pair, so link them together...
757    if (First->first == Second->first) {
758      GlobalVariable *G1 = First->second, *G2 = Second->second;
759      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
760      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
761
762      // Check to see that they two arrays agree on type...
763      if (T1->getElementType() != T2->getElementType())
764        return Error(ErrorMsg,
765         "Appending variables with different element types need to be linked!");
766      if (G1->isConstant() != G2->isConstant())
767        return Error(ErrorMsg,
768                     "Appending variables linked with different const'ness!");
769
770      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
771      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
772
773      // Create the new global variable...
774      GlobalVariable *NG =
775        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
776                           /*init*/0, First->first, M);
777
778      // Merge the initializer...
779      Inits.reserve(NewSize);
780      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
781        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
782          Inits.push_back(I->getOperand(i));
783      } else {
784        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
785        Constant *CV = Constant::getNullValue(T1->getElementType());
786        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
787          Inits.push_back(CV);
788      }
789      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
790        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
791          Inits.push_back(I->getOperand(i));
792      } else {
793        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
794        Constant *CV = Constant::getNullValue(T2->getElementType());
795        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
796          Inits.push_back(CV);
797      }
798      NG->setInitializer(ConstantArray::get(NewType, Inits));
799      Inits.clear();
800
801      // Replace any uses of the two global variables with uses of the new
802      // global...
803
804      // FIXME: This should rewrite simple/straight-forward uses such as
805      // getelementptr instructions to not use the Cast!
806      G1->replaceAllUsesWith(ConstantExpr::getCast(NG, G1->getType()));
807      G2->replaceAllUsesWith(ConstantExpr::getCast(NG, G2->getType()));
808
809      // Remove the two globals from the module now...
810      M->getGlobalList().erase(G1);
811      M->getGlobalList().erase(G2);
812
813      // Put the new global into the AppendingVars map so that we can handle
814      // linking of more than two vars...
815      Second->second = NG;
816    }
817    AppendingVars.erase(First);
818  }
819
820  return false;
821}
822
823
824// LinkModules - This function links two modules together, with the resulting
825// left module modified to be the composite of the two input modules.  If an
826// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
827// the problem.  Upon failure, the Dest module could be in a modified state, and
828// shouldn't be relied on to be consistent.
829//
830bool llvm::LinkModules(Module *Dest, const Module *Src, std::string *ErrorMsg) {
831  if (Dest->getEndianness() == Module::AnyEndianness)
832    Dest->setEndianness(Src->getEndianness());
833  if (Dest->getPointerSize() == Module::AnyPointerSize)
834    Dest->setPointerSize(Src->getPointerSize());
835
836  if (Src->getEndianness() != Module::AnyEndianness &&
837      Dest->getEndianness() != Src->getEndianness())
838    std::cerr << "WARNING: Linking two modules of different endianness!\n";
839  if (Src->getPointerSize() != Module::AnyPointerSize &&
840      Dest->getPointerSize() != Src->getPointerSize())
841    std::cerr << "WARNING: Linking two modules of different pointer size!\n";
842
843  // LinkTypes - Go through the symbol table of the Src module and see if any
844  // types are named in the src module that are not named in the Dst module.
845  // Make sure there are no type name conflicts.
846  //
847  if (LinkTypes(Dest, Src, ErrorMsg)) return true;
848
849  // ValueMap - Mapping of values from what they used to be in Src, to what they
850  // are now in Dest.
851  //
852  std::map<const Value*, Value*> ValueMap;
853
854  // AppendingVars - Keep track of global variables in the destination module
855  // with appending linkage.  After the module is linked together, they are
856  // appended and the module is rewritten.
857  //
858  std::multimap<std::string, GlobalVariable *> AppendingVars;
859
860  // GlobalsByName - The LLVM SymbolTable class fights our best efforts at
861  // linking by separating globals by type.  Until PR411 is fixed, we replicate
862  // it's functionality here.
863  std::map<std::string, GlobalValue*> GlobalsByName;
864
865  for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I) {
866    // Add all of the appending globals already in the Dest module to
867    // AppendingVars.
868    if (I->hasAppendingLinkage())
869      AppendingVars.insert(std::make_pair(I->getName(), I));
870
871    // Keep track of all globals by name.
872    if (!I->hasInternalLinkage() && I->hasName())
873      GlobalsByName[I->getName()] = I;
874  }
875
876  // Keep track of all globals by name.
877  for (Module::iterator I = Dest->begin(), E = Dest->end(); I != E; ++I)
878    if (!I->hasInternalLinkage() && I->hasName())
879      GlobalsByName[I->getName()] = I;
880
881  // Insert all of the globals in src into the Dest module... without linking
882  // initializers (which could refer to functions not yet mapped over).
883  //
884  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, GlobalsByName, ErrorMsg))
885    return true;
886
887  // Link the functions together between the two modules, without doing function
888  // bodies... this just adds external function prototypes to the Dest
889  // function...  We do this so that when we begin processing function bodies,
890  // all of the global values that may be referenced are available in our
891  // ValueMap.
892  //
893  if (LinkFunctionProtos(Dest, Src, ValueMap, GlobalsByName, ErrorMsg))
894    return true;
895
896  // Update the initializers in the Dest module now that all globals that may
897  // be referenced are in Dest.
898  //
899  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
900
901  // Link in the function bodies that are defined in the source module into the
902  // DestModule.  This consists basically of copying the function over and
903  // fixing up references to values.
904  //
905  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
906
907  // If there were any appending global variables, link them together now.
908  //
909  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
910
911  return false;
912}
913
914// vim: sw=2
915