LinkModules.cpp revision b576c94c15af9a440f69d9d03c2afead7971118c
1//===- Linker.cpp - Module Linker Implementation --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Utils/Linker.h"
20#include "llvm/Module.h"
21#include "llvm/SymbolTable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/iOther.h"
24#include "llvm/Constants.h"
25
26// Error - Simple wrapper function to conditionally assign to E and return true.
27// This just makes error return conditions a little bit simpler...
28//
29static inline bool Error(std::string *E, const std::string &Message) {
30  if (E) *E = Message;
31  return true;
32}
33
34// ResolveTypes - Attempt to link the two specified types together.  Return true
35// if there is an error and they cannot yet be linked.
36//
37static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
38                         SymbolTable *DestST, const std::string &Name) {
39  if (DestTy == SrcTy) return false;       // If already equal, noop
40
41  // Does the type already exist in the module?
42  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
43    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
44      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
45    } else {
46      return true;  // Cannot link types... neither is opaque and not-equal
47    }
48  } else {                       // Type not in dest module.  Add it now.
49    if (DestTy)                  // Type _is_ in module, just opaque...
50      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
51                           ->refineAbstractTypeTo(SrcTy);
52    else if (!Name.empty())
53      DestST->insert(Name, const_cast<Type*>(SrcTy));
54  }
55  return false;
56}
57
58static const FunctionType *getFT(const PATypeHolder &TH) {
59  return cast<FunctionType>(TH.get());
60}
61static const StructType *getST(const PATypeHolder &TH) {
62  return cast<StructType>(TH.get());
63}
64
65// RecursiveResolveTypes - This is just like ResolveTypes, except that it
66// recurses down into derived types, merging the used types if the parent types
67// are compatible.
68//
69static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
70                                   const PATypeHolder &SrcTy,
71                                   SymbolTable *DestST, const std::string &Name,
72                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
73  const Type *SrcTyT = SrcTy.get();
74  const Type *DestTyT = DestTy.get();
75  if (DestTyT == SrcTyT) return false;       // If already equal, noop
76
77  // If we found our opaque type, resolve it now!
78  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
79    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
80
81  // Two types cannot be resolved together if they are of different primitive
82  // type.  For example, we cannot resolve an int to a float.
83  if (DestTyT->getPrimitiveID() != SrcTyT->getPrimitiveID()) return true;
84
85  // Otherwise, resolve the used type used by this derived type...
86  switch (DestTyT->getPrimitiveID()) {
87  case Type::FunctionTyID: {
88    if (cast<FunctionType>(DestTyT)->isVarArg() !=
89        cast<FunctionType>(SrcTyT)->isVarArg() ||
90        cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
91        cast<FunctionType>(SrcTyT)->getNumContainedTypes())
92      return true;
93    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
94      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
95                                 getFT(SrcTy)->getContainedType(i), DestST, "",
96                                 Pointers))
97        return true;
98    return false;
99  }
100  case Type::StructTyID: {
101    if (getST(DestTy)->getNumContainedTypes() !=
102        getST(SrcTy)->getNumContainedTypes()) return 1;
103    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
104      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
105                                 getST(SrcTy)->getContainedType(i), DestST, "",
106                                 Pointers))
107        return true;
108    return false;
109  }
110  case Type::ArrayTyID: {
111    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
112    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
113    if (DAT->getNumElements() != SAT->getNumElements()) return true;
114    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
115                                  DestST, "", Pointers);
116  }
117  case Type::PointerTyID: {
118    // If this is a pointer type, check to see if we have already seen it.  If
119    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
120    // an associative container for this search, because the type pointers (keys
121    // in the container) change whenever types get resolved...
122    //
123    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
124      if (Pointers[i].first == DestTy)
125        return Pointers[i].second != SrcTy;
126
127    // Otherwise, add the current pointers to the vector to stop recursion on
128    // this pair.
129    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
130    bool Result =
131      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
132                             cast<PointerType>(SrcTy.get())->getElementType(),
133                             DestST, "", Pointers);
134    Pointers.pop_back();
135    return Result;
136  }
137  default: assert(0 && "Unexpected type!"); return true;
138  }
139}
140
141static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
142                                  const PATypeHolder &SrcTy,
143                                  SymbolTable *DestST, const std::string &Name){
144  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
145  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
146}
147
148
149// LinkTypes - Go through the symbol table of the Src module and see if any
150// types are named in the src module that are not named in the Dst module.
151// Make sure there are no type name conflicts.
152//
153static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
154  SymbolTable       *DestST = &Dest->getSymbolTable();
155  const SymbolTable *SrcST  = &Src->getSymbolTable();
156
157  // Look for a type plane for Type's...
158  SymbolTable::const_iterator PI = SrcST->find(Type::TypeTy);
159  if (PI == SrcST->end()) return false;  // No named types, do nothing.
160
161  // Some types cannot be resolved immediately because they depend on other
162  // types being resolved to each other first.  This contains a list of types we
163  // are waiting to recheck.
164  std::vector<std::string> DelayedTypesToResolve;
165
166  const SymbolTable::VarMap &VM = PI->second;
167  for (SymbolTable::type_const_iterator I = VM.begin(), E = VM.end();
168       I != E; ++I) {
169    const std::string &Name = I->first;
170    Type *RHS = cast<Type>(I->second);
171
172    // Check to see if this type name is already in the dest module...
173    Type *Entry = cast_or_null<Type>(DestST->lookup(Type::TypeTy, Name));
174
175    if (ResolveTypes(Entry, RHS, DestST, Name)) {
176      // They look different, save the types 'till later to resolve.
177      DelayedTypesToResolve.push_back(Name);
178    }
179  }
180
181  // Iteratively resolve types while we can...
182  while (!DelayedTypesToResolve.empty()) {
183    // Loop over all of the types, attempting to resolve them if possible...
184    unsigned OldSize = DelayedTypesToResolve.size();
185
186    // Try direct resolution by name...
187    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
188      const std::string &Name = DelayedTypesToResolve[i];
189      Type *T1 = cast<Type>(VM.find(Name)->second);
190      Type *T2 = cast<Type>(DestST->lookup(Type::TypeTy, Name));
191      if (!ResolveTypes(T2, T1, DestST, Name)) {
192        // We are making progress!
193        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
194        --i;
195      }
196    }
197
198    // Did we not eliminate any types?
199    if (DelayedTypesToResolve.size() == OldSize) {
200      // Attempt to resolve subelements of types.  This allows us to merge these
201      // two types: { int* } and { opaque* }
202      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
203        const std::string &Name = DelayedTypesToResolve[i];
204        PATypeHolder T1(cast<Type>(VM.find(Name)->second));
205        PATypeHolder T2(cast<Type>(DestST->lookup(Type::TypeTy, Name)));
206
207        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
208          // We are making progress!
209          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
210
211          // Go back to the main loop, perhaps we can resolve directly by name
212          // now...
213          break;
214        }
215      }
216
217      // If we STILL cannot resolve the types, then there is something wrong.
218      // Report the error.
219      if (DelayedTypesToResolve.size() == OldSize) {
220        // Build up an error message of all of the mismatched types.
221        std::string ErrorMessage;
222        for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
223          const std::string &Name = DelayedTypesToResolve[i];
224          const Type *T1 = cast<Type>(VM.find(Name)->second);
225          const Type *T2 = cast<Type>(DestST->lookup(Type::TypeTy, Name));
226          ErrorMessage += "  Type named '" + Name +
227                          "' conflicts.\n    Src='" + T1->getDescription() +
228                          "'.\n   Dest='" + T2->getDescription() + "'\n";
229        }
230        return Error(Err, "Type conflict between types in modules:\n" +
231                     ErrorMessage);
232      }
233    }
234  }
235
236
237  return false;
238}
239
240static void PrintMap(const std::map<const Value*, Value*> &M) {
241  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
242       I != E; ++I) {
243    std::cerr << " Fr: " << (void*)I->first << " ";
244    I->first->dump();
245    std::cerr << " To: " << (void*)I->second << " ";
246    I->second->dump();
247    std::cerr << "\n";
248  }
249}
250
251
252// RemapOperand - Use LocalMap and GlobalMap to convert references from one
253// module to another.  This is somewhat sophisticated in that it can
254// automatically handle constant references correctly as well...
255//
256static Value *RemapOperand(const Value *In,
257                           std::map<const Value*, Value*> &LocalMap,
258                           std::map<const Value*, Value*> *GlobalMap) {
259  std::map<const Value*,Value*>::const_iterator I = LocalMap.find(In);
260  if (I != LocalMap.end()) return I->second;
261
262  if (GlobalMap) {
263    I = GlobalMap->find(In);
264    if (I != GlobalMap->end()) return I->second;
265  }
266
267  // Check to see if it's a constant that we are interesting in transforming...
268  if (const Constant *CPV = dyn_cast<Constant>(In)) {
269    if (!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV))
270      return const_cast<Constant*>(CPV);   // Simple constants stay identical...
271
272    Constant *Result = 0;
273
274    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
275      const std::vector<Use> &Ops = CPA->getValues();
276      std::vector<Constant*> Operands(Ops.size());
277      for (unsigned i = 0, e = Ops.size(); i != e; ++i)
278        Operands[i] =
279          cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
280      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
281    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
282      const std::vector<Use> &Ops = CPS->getValues();
283      std::vector<Constant*> Operands(Ops.size());
284      for (unsigned i = 0; i < Ops.size(); ++i)
285        Operands[i] =
286          cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
287      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
288    } else if (isa<ConstantPointerNull>(CPV)) {
289      Result = const_cast<Constant*>(CPV);
290    } else if (const ConstantPointerRef *CPR =
291                      dyn_cast<ConstantPointerRef>(CPV)) {
292      Value *V = RemapOperand(CPR->getValue(), LocalMap, GlobalMap);
293      Result = ConstantPointerRef::get(cast<GlobalValue>(V));
294    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
295      if (CE->getOpcode() == Instruction::GetElementPtr) {
296        Value *Ptr = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
297        std::vector<Constant*> Indices;
298        Indices.reserve(CE->getNumOperands()-1);
299        for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
300          Indices.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),
301                                                        LocalMap, GlobalMap)));
302
303        Result = ConstantExpr::getGetElementPtr(cast<Constant>(Ptr), Indices);
304      } else if (CE->getNumOperands() == 1) {
305        // Cast instruction
306        assert(CE->getOpcode() == Instruction::Cast);
307        Value *V = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
308        Result = ConstantExpr::getCast(cast<Constant>(V), CE->getType());
309      } else if (CE->getNumOperands() == 2) {
310        // Binary operator...
311        Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
312        Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
313
314        Result = ConstantExpr::get(CE->getOpcode(), cast<Constant>(V1),
315                                   cast<Constant>(V2));
316      } else {
317        assert(0 && "Unknown constant expr type!");
318      }
319
320    } else {
321      assert(0 && "Unknown type of derived type constant value!");
322    }
323
324    // Cache the mapping in our local map structure...
325    if (GlobalMap)
326      GlobalMap->insert(std::make_pair(In, Result));
327    else
328      LocalMap.insert(std::make_pair(In, Result));
329    return Result;
330  }
331
332  std::cerr << "XXX LocalMap: \n";
333  PrintMap(LocalMap);
334
335  if (GlobalMap) {
336    std::cerr << "XXX GlobalMap: \n";
337    PrintMap(*GlobalMap);
338  }
339
340  std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
341  assert(0 && "Couldn't remap value!");
342  return 0;
343}
344
345/// FindGlobalNamed - Look in the specified symbol table for a global with the
346/// specified name and type.  If an exactly matching global does not exist, see
347/// if there is a global which is "type compatible" with the specified
348/// name/type.  This allows us to resolve things like '%x = global int*' with
349/// '%x = global opaque*'.
350///
351static GlobalValue *FindGlobalNamed(const std::string &Name, const Type *Ty,
352                                    SymbolTable *ST) {
353  // See if an exact match exists in the symbol table...
354  if (Value *V = ST->lookup(Ty, Name)) return cast<GlobalValue>(V);
355
356  // It doesn't exist exactly, scan through all of the type planes in the symbol
357  // table, checking each of them for a type-compatible version.
358  //
359  for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I)
360    if (I->first != Type::TypeTy) {
361      SymbolTable::VarMap &VM = I->second;
362      // Does this type plane contain an entry with the specified name?
363      SymbolTable::type_iterator TI = VM.find(Name);
364      if (TI != VM.end()) {
365        // Determine whether we can fold the two types together, resolving them.
366        // If so, we can use this value.
367        if (!RecursiveResolveTypes(Ty, I->first, ST, ""))
368          return cast<GlobalValue>(TI->second);
369      }
370    }
371  return 0;  // Otherwise, nothing could be found.
372}
373
374
375// LinkGlobals - Loop through the global variables in the src module and merge
376// them into the dest module.
377//
378static bool LinkGlobals(Module *Dest, const Module *Src,
379                        std::map<const Value*, Value*> &ValueMap,
380                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
381                        std::string *Err) {
382  // We will need a module level symbol table if the src module has a module
383  // level symbol table...
384  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
385
386  // Loop over all of the globals in the src module, mapping them over as we go
387  //
388  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
389    const GlobalVariable *SGV = I;
390    GlobalVariable *DGV = 0;
391    if (SGV->hasName()) {
392      // A same named thing is a global variable, because the only two things
393      // that may be in a module level symbol table are Global Vars and
394      // Functions, and they both have distinct, nonoverlapping, possible types.
395      //
396      DGV = cast_or_null<GlobalVariable>(FindGlobalNamed(SGV->getName(),
397                                                         SGV->getType(), ST));
398    }
399
400    assert(SGV->hasInitializer() || SGV->hasExternalLinkage() &&
401           "Global must either be external or have an initializer!");
402
403    bool SGExtern = SGV->isExternal();
404    bool DGExtern = DGV ? DGV->isExternal() : false;
405
406    if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) {
407      // No linking to be performed, simply create an identical version of the
408      // symbol over in the dest module... the initializer will be filled in
409      // later by LinkGlobalInits...
410      //
411      GlobalVariable *NewDGV =
412        new GlobalVariable(SGV->getType()->getElementType(),
413                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
414                           SGV->getName(), Dest);
415
416      // If the LLVM runtime renamed the global, but it is an externally visible
417      // symbol, DGV must be an existing global with internal linkage.  Rename
418      // it.
419      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage()){
420        assert(DGV && DGV->getName() == SGV->getName() &&
421               DGV->hasInternalLinkage());
422        DGV->setName("");
423        NewDGV->setName(SGV->getName());  // Force the name back
424        DGV->setName(SGV->getName());     // This will cause a renaming
425        assert(NewDGV->getName() == SGV->getName() &&
426               DGV->getName() != SGV->getName());
427      }
428
429      // Make sure to remember this mapping...
430      ValueMap.insert(std::make_pair(SGV, NewDGV));
431      if (SGV->hasAppendingLinkage())
432        // Keep track that this is an appending variable...
433        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
434
435    } else if (SGV->isExternal()) {
436      // If SGV is external or if both SGV & DGV are external..  Just link the
437      // external globals, we aren't adding anything.
438      ValueMap.insert(std::make_pair(SGV, DGV));
439
440    } else if (DGV->isExternal()) {   // If DGV is external but SGV is not...
441      ValueMap.insert(std::make_pair(SGV, DGV));
442      DGV->setLinkage(SGV->getLinkage());    // Inherit linkage!
443    } else if (SGV->hasWeakLinkage()) {
444      // At this point we know that DGV has LinkOnce, Appending, Weak, or
445      // External linkage.  If DGV is Appending, this is an error.
446      if (DGV->hasAppendingLinkage())
447        return Error(Err, "Linking globals named '" + SGV->getName() +
448                     " ' with 'weak' and 'appending' linkage is not allowed!");
449      // Otherwise, just perform the link.
450      ValueMap.insert(std::make_pair(SGV, DGV));
451    } else if (DGV->hasWeakLinkage()) {
452      // At this point we know that SGV has LinkOnce, Appending, or External
453      // linkage.  If SGV is Appending, this is an error.
454      if (SGV->hasAppendingLinkage())
455        return Error(Err, "Linking globals named '" + SGV->getName() +
456                     " ' with 'weak' and 'appending' linkage is not allowed!");
457      if (!SGV->hasLinkOnceLinkage())
458        DGV->setLinkage(SGV->getLinkage());    // Inherit linkage!
459      ValueMap.insert(std::make_pair(SGV, DGV));
460
461    } else if (SGV->getLinkage() != DGV->getLinkage()) {
462      return Error(Err, "Global variables named '" + SGV->getName() +
463                   "' have different linkage specifiers!");
464    } else if (SGV->hasExternalLinkage()) {
465      // Allow linking two exactly identical external global variables...
466      if (SGV->isConstant() != DGV->isConstant() ||
467          SGV->getInitializer() != DGV->getInitializer())
468        return Error(Err, "Global Variable Collision on '" +
469                     SGV->getType()->getDescription() + " %" + SGV->getName() +
470                     "' - Global variables differ in const'ness");
471      ValueMap.insert(std::make_pair(SGV, DGV));
472    } else if (SGV->hasLinkOnceLinkage()) {
473      // If the global variable has a name, and that name is already in use in
474      // the Dest module, make sure that the name is a compatible global
475      // variable...
476      //
477      // Check to see if the two GV's have the same Const'ness...
478      if (SGV->isConstant() != DGV->isConstant())
479        return Error(Err, "Global Variable Collision on '" +
480                     SGV->getType()->getDescription() + " %" + SGV->getName() +
481                     "' - Global variables differ in const'ness");
482
483      // Okay, everything is cool, remember the mapping...
484      ValueMap.insert(std::make_pair(SGV, DGV));
485    } else if (SGV->hasAppendingLinkage()) {
486      // No linking is performed yet.  Just insert a new copy of the global, and
487      // keep track of the fact that it is an appending variable in the
488      // AppendingVars map.  The name is cleared out so that no linkage is
489      // performed.
490      GlobalVariable *NewDGV =
491        new GlobalVariable(SGV->getType()->getElementType(),
492                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
493                           "", Dest);
494
495      // Make sure to remember this mapping...
496      ValueMap.insert(std::make_pair(SGV, NewDGV));
497
498      // Keep track that this is an appending variable...
499      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
500    } else {
501      assert(0 && "Unknown linkage!");
502    }
503  }
504  return false;
505}
506
507
508// LinkGlobalInits - Update the initializers in the Dest module now that all
509// globals that may be referenced are in Dest.
510//
511static bool LinkGlobalInits(Module *Dest, const Module *Src,
512                            std::map<const Value*, Value*> &ValueMap,
513                            std::string *Err) {
514
515  // Loop over all of the globals in the src module, mapping them over as we go
516  //
517  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
518    const GlobalVariable *SGV = I;
519
520    if (SGV->hasInitializer()) {      // Only process initialized GV's
521      // Figure out what the initializer looks like in the dest module...
522      Constant *SInit =
523        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap, 0));
524
525      GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
526      if (DGV->hasInitializer()) {
527        assert(SGV->getLinkage() == DGV->getLinkage());
528        if (SGV->hasExternalLinkage()) {
529          if (DGV->getInitializer() != SInit)
530            return Error(Err, "Global Variable Collision on '" +
531                         SGV->getType()->getDescription() +"':%"+SGV->getName()+
532                         " - Global variables have different initializers");
533        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
534          // Nothing is required, mapped values will take the new global
535          // automatically.
536        } else if (DGV->hasAppendingLinkage()) {
537          assert(0 && "Appending linkage unimplemented!");
538        } else {
539          assert(0 && "Unknown linkage!");
540        }
541      } else {
542        // Copy the initializer over now...
543        DGV->setInitializer(SInit);
544      }
545    }
546  }
547  return false;
548}
549
550// LinkFunctionProtos - Link the functions together between the two modules,
551// without doing function bodies... this just adds external function prototypes
552// to the Dest function...
553//
554static bool LinkFunctionProtos(Module *Dest, const Module *Src,
555                               std::map<const Value*, Value*> &ValueMap,
556                               std::string *Err) {
557  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
558
559  // Loop over all of the functions in the src module, mapping them over as we
560  // go
561  //
562  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
563    const Function *SF = I;   // SrcFunction
564    Function *DF = 0;
565    if (SF->hasName())
566      // The same named thing is a Function, because the only two things
567      // that may be in a module level symbol table are Global Vars and
568      // Functions, and they both have distinct, nonoverlapping, possible types.
569      //
570      DF = cast_or_null<Function>(FindGlobalNamed(SF->getName(), SF->getType(),
571                                                  ST));
572
573    if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
574      // Function does not already exist, simply insert an function signature
575      // identical to SF into the dest module...
576      Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
577                                     SF->getName(), Dest);
578
579      // If the LLVM runtime renamed the function, but it is an externally
580      // visible symbol, DF must be an existing function with internal linkage.
581      // Rename it.
582      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) {
583        assert(DF && DF->getName() == SF->getName() &&DF->hasInternalLinkage());
584        DF->setName("");
585        NewDF->setName(SF->getName());  // Force the name back
586        DF->setName(SF->getName());     // This will cause a renaming
587        assert(NewDF->getName() == SF->getName() &&
588               DF->getName() != SF->getName());
589      }
590
591      // ... and remember this mapping...
592      ValueMap.insert(std::make_pair(SF, NewDF));
593    } else if (SF->isExternal()) {
594      // If SF is external or if both SF & DF are external..  Just link the
595      // external functions, we aren't adding anything.
596      ValueMap.insert(std::make_pair(SF, DF));
597    } else if (DF->isExternal()) {   // If DF is external but SF is not...
598      // Link the external functions, update linkage qualifiers
599      ValueMap.insert(std::make_pair(SF, DF));
600      DF->setLinkage(SF->getLinkage());
601
602    } else if (SF->hasWeakLinkage()) {
603      // At this point we know that DF has LinkOnce, Weak, or External linkage.
604      ValueMap.insert(std::make_pair(SF, DF));
605
606    } else if (DF->hasWeakLinkage()) {
607      // At this point we know that SF has LinkOnce or External linkage.
608      ValueMap.insert(std::make_pair(SF, DF));
609      if (!SF->hasLinkOnceLinkage())   // Don't inherit linkonce linkage
610        DF->setLinkage(SF->getLinkage());
611
612    } else if (SF->getLinkage() != DF->getLinkage()) {
613      return Error(Err, "Functions named '" + SF->getName() +
614                   "' have different linkage specifiers!");
615    } else if (SF->hasExternalLinkage()) {
616      // The function is defined in both modules!!
617      return Error(Err, "Function '" +
618                   SF->getFunctionType()->getDescription() + "':\"" +
619                   SF->getName() + "\" - Function is already defined!");
620    } else if (SF->hasLinkOnceLinkage()) {
621      // Completely ignore the source function.
622      ValueMap.insert(std::make_pair(SF, DF));
623    } else {
624      assert(0 && "Unknown linkage configuration found!");
625    }
626  }
627  return false;
628}
629
630// LinkFunctionBody - Copy the source function over into the dest function and
631// fix up references to values.  At this point we know that Dest is an external
632// function, and that Src is not.
633//
634static bool LinkFunctionBody(Function *Dest, const Function *Src,
635                             std::map<const Value*, Value*> &GlobalMap,
636                             std::string *Err) {
637  assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
638  std::map<const Value*, Value*> LocalMap;   // Map for function local values
639
640  // Go through and convert function arguments over...
641  Function::aiterator DI = Dest->abegin();
642  for (Function::const_aiterator I = Src->abegin(), E = Src->aend();
643       I != E; ++I, ++DI) {
644    DI->setName(I->getName());  // Copy the name information over...
645
646    // Add a mapping to our local map
647    LocalMap.insert(std::make_pair(I, DI));
648  }
649
650  // Loop over all of the basic blocks, copying the instructions over...
651  //
652  for (Function::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
653    // Create new basic block and add to mapping and the Dest function...
654    BasicBlock *DBB = new BasicBlock(I->getName(), Dest);
655    LocalMap.insert(std::make_pair(I, DBB));
656
657    // Loop over all of the instructions in the src basic block, copying them
658    // over.  Note that this is broken in a strict sense because the cloned
659    // instructions will still be referencing values in the Src module, not
660    // the remapped values.  In our case, however, we will not get caught and
661    // so we can delay patching the values up until later...
662    //
663    for (BasicBlock::const_iterator II = I->begin(), IE = I->end();
664         II != IE; ++II) {
665      Instruction *DI = II->clone();
666      DI->setName(II->getName());
667      DBB->getInstList().push_back(DI);
668      LocalMap.insert(std::make_pair(II, DI));
669    }
670  }
671
672  // At this point, all of the instructions and values of the function are now
673  // copied over.  The only problem is that they are still referencing values in
674  // the Source function as operands.  Loop through all of the operands of the
675  // functions and patch them up to point to the local versions...
676  //
677  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
678    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
679      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
680           OI != OE; ++OI)
681        *OI = RemapOperand(*OI, LocalMap, &GlobalMap);
682
683  return false;
684}
685
686
687// LinkFunctionBodies - Link in the function bodies that are defined in the
688// source module into the DestModule.  This consists basically of copying the
689// function over and fixing up references to values.
690//
691static bool LinkFunctionBodies(Module *Dest, const Module *Src,
692                               std::map<const Value*, Value*> &ValueMap,
693                               std::string *Err) {
694
695  // Loop over all of the functions in the src module, mapping them over as we
696  // go
697  //
698  for (Module::const_iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF){
699    if (!SF->isExternal()) {                  // No body if function is external
700      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
701
702      // DF not external SF external?
703      if (!DF->isExternal()) {
704        if (DF->hasLinkOnceLinkage()) continue; // No relinkage for link-once!
705        if (SF->hasWeakLinkage()) continue;
706        return Error(Err, "Function '" + SF->getName() +
707                     "' body multiply defined!");
708      }
709
710      if (LinkFunctionBody(DF, SF, ValueMap, Err)) return true;
711    }
712  }
713  return false;
714}
715
716// LinkAppendingVars - If there were any appending global variables, link them
717// together now.  Return true on error.
718//
719static bool LinkAppendingVars(Module *M,
720                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
721                              std::string *ErrorMsg) {
722  if (AppendingVars.empty()) return false; // Nothing to do.
723
724  // Loop over the multimap of appending vars, processing any variables with the
725  // same name, forming a new appending global variable with both of the
726  // initializers merged together, then rewrite references to the old variables
727  // and delete them.
728  //
729  std::vector<Constant*> Inits;
730  while (AppendingVars.size() > 1) {
731    // Get the first two elements in the map...
732    std::multimap<std::string,
733      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
734
735    // If the first two elements are for different names, there is no pair...
736    // Otherwise there is a pair, so link them together...
737    if (First->first == Second->first) {
738      GlobalVariable *G1 = First->second, *G2 = Second->second;
739      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
740      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
741
742      // Check to see that they two arrays agree on type...
743      if (T1->getElementType() != T2->getElementType())
744        return Error(ErrorMsg,
745         "Appending variables with different element types need to be linked!");
746      if (G1->isConstant() != G2->isConstant())
747        return Error(ErrorMsg,
748                     "Appending variables linked with different const'ness!");
749
750      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
751      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
752
753      // Create the new global variable...
754      GlobalVariable *NG =
755        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
756                           /*init*/0, First->first, M);
757
758      // Merge the initializer...
759      Inits.reserve(NewSize);
760      ConstantArray *I = cast<ConstantArray>(G1->getInitializer());
761      for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
762        Inits.push_back(cast<Constant>(I->getValues()[i]));
763      I = cast<ConstantArray>(G2->getInitializer());
764      for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
765        Inits.push_back(cast<Constant>(I->getValues()[i]));
766      NG->setInitializer(ConstantArray::get(NewType, Inits));
767      Inits.clear();
768
769      // Replace any uses of the two global variables with uses of the new
770      // global...
771
772      // FIXME: This should rewrite simple/straight-forward uses such as
773      // getelementptr instructions to not use the Cast!
774      ConstantPointerRef *NGCP = ConstantPointerRef::get(NG);
775      G1->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G1->getType()));
776      G2->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G2->getType()));
777
778      // Remove the two globals from the module now...
779      M->getGlobalList().erase(G1);
780      M->getGlobalList().erase(G2);
781
782      // Put the new global into the AppendingVars map so that we can handle
783      // linking of more than two vars...
784      Second->second = NG;
785    }
786    AppendingVars.erase(First);
787  }
788
789  return false;
790}
791
792
793// LinkModules - This function links two modules together, with the resulting
794// left module modified to be the composite of the two input modules.  If an
795// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
796// the problem.  Upon failure, the Dest module could be in a modified state, and
797// shouldn't be relied on to be consistent.
798//
799bool LinkModules(Module *Dest, const Module *Src, std::string *ErrorMsg) {
800  if (Dest->getEndianness() == Module::AnyEndianness)
801    Dest->setEndianness(Src->getEndianness());
802  if (Dest->getPointerSize() == Module::AnyPointerSize)
803    Dest->setPointerSize(Src->getPointerSize());
804
805  if (Src->getEndianness() != Module::AnyEndianness &&
806      Dest->getEndianness() != Src->getEndianness())
807    std::cerr << "WARNING: Linking two modules of different endianness!\n";
808  if (Src->getPointerSize() != Module::AnyPointerSize &&
809      Dest->getPointerSize() != Src->getPointerSize())
810    std::cerr << "WARNING: Linking two modules of different pointer size!\n";
811
812  // LinkTypes - Go through the symbol table of the Src module and see if any
813  // types are named in the src module that are not named in the Dst module.
814  // Make sure there are no type name conflicts.
815  //
816  if (LinkTypes(Dest, Src, ErrorMsg)) return true;
817
818  // ValueMap - Mapping of values from what they used to be in Src, to what they
819  // are now in Dest.
820  //
821  std::map<const Value*, Value*> ValueMap;
822
823  // AppendingVars - Keep track of global variables in the destination module
824  // with appending linkage.  After the module is linked together, they are
825  // appended and the module is rewritten.
826  //
827  std::multimap<std::string, GlobalVariable *> AppendingVars;
828
829  // Add all of the appending globals already in the Dest module to
830  // AppendingVars.
831  for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I)
832    if (I->hasAppendingLinkage())
833      AppendingVars.insert(std::make_pair(I->getName(), I));
834
835  // Insert all of the globals in src into the Dest module... without linking
836  // initializers (which could refer to functions not yet mapped over).
837  //
838  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg)) return true;
839
840  // Link the functions together between the two modules, without doing function
841  // bodies... this just adds external function prototypes to the Dest
842  // function...  We do this so that when we begin processing function bodies,
843  // all of the global values that may be referenced are available in our
844  // ValueMap.
845  //
846  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg)) return true;
847
848  // Update the initializers in the Dest module now that all globals that may
849  // be referenced are in Dest.
850  //
851  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
852
853  // Link in the function bodies that are defined in the source module into the
854  // DestModule.  This consists basically of copying the function over and
855  // fixing up references to values.
856  //
857  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
858
859  // If there were any appending global variables, link them together now.
860  //
861  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
862
863  return false;
864}
865
866