LinkModules.cpp revision c003628a612d3687fb77088a5894314210a65385
1//===- Linker.cpp - Module Linker Implementation --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Support/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/SymbolTable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Assembly/Writer.h"
26#include <iostream>
27
28using namespace llvm;
29
30// Error - Simple wrapper function to conditionally assign to E and return true.
31// This just makes error return conditions a little bit simpler...
32//
33static inline bool Error(std::string *E, const std::string &Message) {
34  if (E) *E = Message;
35  return true;
36}
37
38//
39// Function: ResolveTypes()
40//
41// Description:
42//  Attempt to link the two specified types together.
43//
44// Inputs:
45//  DestTy - The type to which we wish to resolve.
46//  SrcTy  - The original type which we want to resolve.
47//  Name   - The name of the type.
48//
49// Outputs:
50//  DestST - The symbol table in which the new type should be placed.
51//
52// Return value:
53//  true  - There is an error and the types cannot yet be linked.
54//  false - No errors.
55//
56static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
57                         SymbolTable *DestST, const std::string &Name) {
58  if (DestTy == SrcTy) return false;       // If already equal, noop
59
60  // Does the type already exist in the module?
61  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
62    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
63      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
64    } else {
65      return true;  // Cannot link types... neither is opaque and not-equal
66    }
67  } else {                       // Type not in dest module.  Add it now.
68    if (DestTy)                  // Type _is_ in module, just opaque...
69      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
70                           ->refineAbstractTypeTo(SrcTy);
71    else if (!Name.empty())
72      DestST->insert(Name, const_cast<Type*>(SrcTy));
73  }
74  return false;
75}
76
77static const FunctionType *getFT(const PATypeHolder &TH) {
78  return cast<FunctionType>(TH.get());
79}
80static const StructType *getST(const PATypeHolder &TH) {
81  return cast<StructType>(TH.get());
82}
83
84// RecursiveResolveTypes - This is just like ResolveTypes, except that it
85// recurses down into derived types, merging the used types if the parent types
86// are compatible.
87//
88static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
89                                   const PATypeHolder &SrcTy,
90                                   SymbolTable *DestST, const std::string &Name,
91                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
92  const Type *SrcTyT = SrcTy.get();
93  const Type *DestTyT = DestTy.get();
94  if (DestTyT == SrcTyT) return false;       // If already equal, noop
95
96  // If we found our opaque type, resolve it now!
97  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
98    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
99
100  // Two types cannot be resolved together if they are of different primitive
101  // type.  For example, we cannot resolve an int to a float.
102  if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
103
104  // Otherwise, resolve the used type used by this derived type...
105  switch (DestTyT->getTypeID()) {
106  case Type::FunctionTyID: {
107    if (cast<FunctionType>(DestTyT)->isVarArg() !=
108        cast<FunctionType>(SrcTyT)->isVarArg() ||
109        cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
110        cast<FunctionType>(SrcTyT)->getNumContainedTypes())
111      return true;
112    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
113      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
114                                 getFT(SrcTy)->getContainedType(i), DestST, "",
115                                 Pointers))
116        return true;
117    return false;
118  }
119  case Type::StructTyID: {
120    if (getST(DestTy)->getNumContainedTypes() !=
121        getST(SrcTy)->getNumContainedTypes()) return 1;
122    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
123      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
124                                 getST(SrcTy)->getContainedType(i), DestST, "",
125                                 Pointers))
126        return true;
127    return false;
128  }
129  case Type::ArrayTyID: {
130    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
131    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
132    if (DAT->getNumElements() != SAT->getNumElements()) return true;
133    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
134                                  DestST, "", Pointers);
135  }
136  case Type::PointerTyID: {
137    // If this is a pointer type, check to see if we have already seen it.  If
138    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
139    // an associative container for this search, because the type pointers (keys
140    // in the container) change whenever types get resolved...
141    //
142    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
143      if (Pointers[i].first == DestTy)
144        return Pointers[i].second != SrcTy;
145
146    // Otherwise, add the current pointers to the vector to stop recursion on
147    // this pair.
148    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
149    bool Result =
150      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
151                             cast<PointerType>(SrcTy.get())->getElementType(),
152                             DestST, "", Pointers);
153    Pointers.pop_back();
154    return Result;
155  }
156  default: assert(0 && "Unexpected type!"); return true;
157  }
158}
159
160static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
161                                  const PATypeHolder &SrcTy,
162                                  SymbolTable *DestST, const std::string &Name){
163  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
164  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
165}
166
167
168// LinkTypes - Go through the symbol table of the Src module and see if any
169// types are named in the src module that are not named in the Dst module.
170// Make sure there are no type name conflicts.
171//
172static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
173  SymbolTable       *DestST = &Dest->getSymbolTable();
174  const SymbolTable *SrcST  = &Src->getSymbolTable();
175
176  // Look for a type plane for Type's...
177  SymbolTable::type_const_iterator TI = SrcST->type_begin();
178  SymbolTable::type_const_iterator TE = SrcST->type_end();
179  if (TI == TE) return false;  // No named types, do nothing.
180
181  // Some types cannot be resolved immediately because they depend on other
182  // types being resolved to each other first.  This contains a list of types we
183  // are waiting to recheck.
184  std::vector<std::string> DelayedTypesToResolve;
185
186  for ( ; TI != TE; ++TI ) {
187    const std::string &Name = TI->first;
188    const Type *RHS = TI->second;
189
190    // Check to see if this type name is already in the dest module...
191    Type *Entry = DestST->lookupType(Name);
192
193    if (ResolveTypes(Entry, RHS, DestST, Name)) {
194      // They look different, save the types 'till later to resolve.
195      DelayedTypesToResolve.push_back(Name);
196    }
197  }
198
199  // Iteratively resolve types while we can...
200  while (!DelayedTypesToResolve.empty()) {
201    // Loop over all of the types, attempting to resolve them if possible...
202    unsigned OldSize = DelayedTypesToResolve.size();
203
204    // Try direct resolution by name...
205    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
206      const std::string &Name = DelayedTypesToResolve[i];
207      Type *T1 = SrcST->lookupType(Name);
208      Type *T2 = DestST->lookupType(Name);
209      if (!ResolveTypes(T2, T1, DestST, Name)) {
210        // We are making progress!
211        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
212        --i;
213      }
214    }
215
216    // Did we not eliminate any types?
217    if (DelayedTypesToResolve.size() == OldSize) {
218      // Attempt to resolve subelements of types.  This allows us to merge these
219      // two types: { int* } and { opaque* }
220      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
221        const std::string &Name = DelayedTypesToResolve[i];
222        PATypeHolder T1(SrcST->lookupType(Name));
223        PATypeHolder T2(DestST->lookupType(Name));
224
225        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
226          // We are making progress!
227          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
228
229          // Go back to the main loop, perhaps we can resolve directly by name
230          // now...
231          break;
232        }
233      }
234
235      // If we STILL cannot resolve the types, then there is something wrong.
236      // Report the warning and delete one of the names.
237      if (DelayedTypesToResolve.size() == OldSize) {
238        const std::string &Name = DelayedTypesToResolve.back();
239
240        const Type *T1 = SrcST->lookupType(Name);
241        const Type *T2 = DestST->lookupType(Name);
242        std::cerr << "WARNING: Type conflict between types named '" << Name
243                  <<  "'.\n    Src='";
244        WriteTypeSymbolic(std::cerr, T1, Src);
245        std::cerr << "'.\n   Dest='";
246        WriteTypeSymbolic(std::cerr, T2, Dest);
247        std::cerr << "'\n";
248
249        // Remove the symbol name from the destination.
250        DelayedTypesToResolve.pop_back();
251      }
252    }
253  }
254
255
256  return false;
257}
258
259static void PrintMap(const std::map<const Value*, Value*> &M) {
260  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
261       I != E; ++I) {
262    std::cerr << " Fr: " << (void*)I->first << " ";
263    I->first->dump();
264    std::cerr << " To: " << (void*)I->second << " ";
265    I->second->dump();
266    std::cerr << "\n";
267  }
268}
269
270
271// RemapOperand - Use LocalMap and GlobalMap to convert references from one
272// module to another.  This is somewhat sophisticated in that it can
273// automatically handle constant references correctly as well...
274//
275static Value *RemapOperand(const Value *In,
276                           std::map<const Value*, Value*> &LocalMap,
277                           std::map<const Value*, Value*> *GlobalMap) {
278  std::map<const Value*,Value*>::const_iterator I = LocalMap.find(In);
279  if (I != LocalMap.end()) return I->second;
280
281  if (GlobalMap) {
282    I = GlobalMap->find(In);
283    if (I != GlobalMap->end()) return I->second;
284  }
285
286  // Check to see if it's a constant that we are interesting in transforming...
287  if (const Constant *CPV = dyn_cast<Constant>(In)) {
288    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
289        isa<ConstantAggregateZero>(CPV))
290      return const_cast<Constant*>(CPV);   // Simple constants stay identical...
291
292    Constant *Result = 0;
293
294    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
295      const std::vector<Use> &Ops = CPA->getValues();
296      std::vector<Constant*> Operands(Ops.size());
297      for (unsigned i = 0, e = Ops.size(); i != e; ++i)
298        Operands[i] =
299          cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
300      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
301    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
302      const std::vector<Use> &Ops = CPS->getValues();
303      std::vector<Constant*> Operands(Ops.size());
304      for (unsigned i = 0; i < Ops.size(); ++i)
305        Operands[i] =
306          cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
307      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
308    } else if (isa<ConstantPointerNull>(CPV)) {
309      Result = const_cast<Constant*>(CPV);
310    } else if (isa<GlobalValue>(CPV)) {
311      Result = cast<Constant>(RemapOperand(CPV, LocalMap, GlobalMap));
312    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
313      if (CE->getOpcode() == Instruction::GetElementPtr) {
314        Value *Ptr = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
315        std::vector<Constant*> Indices;
316        Indices.reserve(CE->getNumOperands()-1);
317        for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
318          Indices.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),
319                                                        LocalMap, GlobalMap)));
320
321        Result = ConstantExpr::getGetElementPtr(cast<Constant>(Ptr), Indices);
322      } else if (CE->getNumOperands() == 1) {
323        // Cast instruction
324        assert(CE->getOpcode() == Instruction::Cast);
325        Value *V = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
326        Result = ConstantExpr::getCast(cast<Constant>(V), CE->getType());
327      } else if (CE->getNumOperands() == 3) {
328        // Select instruction
329        assert(CE->getOpcode() == Instruction::Select);
330        Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
331        Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
332        Value *V3 = RemapOperand(CE->getOperand(2), LocalMap, GlobalMap);
333        Result = ConstantExpr::getSelect(cast<Constant>(V1), cast<Constant>(V2),
334                                         cast<Constant>(V3));
335      } else if (CE->getNumOperands() == 2) {
336        // Binary operator...
337        Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
338        Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
339
340        Result = ConstantExpr::get(CE->getOpcode(), cast<Constant>(V1),
341                                   cast<Constant>(V2));
342      } else {
343        assert(0 && "Unknown constant expr type!");
344      }
345
346    } else {
347      assert(0 && "Unknown type of derived type constant value!");
348    }
349
350    // Cache the mapping in our local map structure...
351    if (GlobalMap)
352      GlobalMap->insert(std::make_pair(In, Result));
353    else
354      LocalMap.insert(std::make_pair(In, Result));
355    return Result;
356  }
357
358  std::cerr << "XXX LocalMap: \n";
359  PrintMap(LocalMap);
360
361  if (GlobalMap) {
362    std::cerr << "XXX GlobalMap: \n";
363    PrintMap(*GlobalMap);
364  }
365
366  std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
367  assert(0 && "Couldn't remap value!");
368  return 0;
369}
370
371/// FindGlobalNamed - Look in the specified symbol table for a global with the
372/// specified name and type.  If an exactly matching global does not exist, see
373/// if there is a global which is "type compatible" with the specified
374/// name/type.  This allows us to resolve things like '%x = global int*' with
375/// '%x = global opaque*'.
376///
377static GlobalValue *FindGlobalNamed(const std::string &Name, const Type *Ty,
378                                    SymbolTable *ST) {
379  // See if an exact match exists in the symbol table...
380  if (Value *V = ST->lookup(Ty, Name)) return cast<GlobalValue>(V);
381
382  // It doesn't exist exactly, scan through all of the type planes in the symbol
383  // table, checking each of them for a type-compatible version.
384  //
385  for (SymbolTable::plane_iterator PI = ST->plane_begin(), PE = ST->plane_end();
386       PI != PE; ++PI) {
387    // Does this type plane contain an entry with the specified name?
388    SymbolTable::ValueMap &VM = PI->second;
389    SymbolTable::value_iterator VI = VM.find(Name);
390
391    if (VI != VM.end()) {
392      // Ensure that this type if placed correctly into the symbol table.
393      GlobalValue *ValPtr = cast<GlobalValue>(VI->second);
394      assert(ValPtr->getType() == PI->first && "Type conflict!");
395
396      // Determine whether we can fold the two types together, resolving them.
397      // If so, we can use this value.
398      if (!ValPtr->hasInternalLinkage() &&
399          !RecursiveResolveTypes(Ty, PI->first, ST, ""))
400        return ValPtr;
401    }
402  }
403  return 0;  // Otherwise, nothing could be found.
404}
405
406/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
407/// in the symbol table.  This is good for all clients except for us.  Go
408/// through the trouble to force this back.
409static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
410  assert(GV->getName() != Name && "Can't force rename to self");
411  SymbolTable &ST = GV->getParent()->getSymbolTable();
412
413  // If there is a conflict, rename the conflict.
414  Value *ConflictVal = ST.lookup(GV->getType(), Name);
415  assert(ConflictVal&&"Why do we have to force rename if there is no conflic?");
416  GlobalValue *ConflictGV = cast<GlobalValue>(ConflictVal);
417  assert(ConflictGV->hasInternalLinkage() &&
418         "Not conflicting with a static global, should link instead!");
419
420  ConflictGV->setName("");          // Eliminate the conflict
421  GV->setName(Name);                // Force the name back
422  ConflictGV->setName(Name);        // This will cause ConflictGV to get renamed
423  assert(GV->getName() == Name() && ConflictGV->getName() != Name &&
424         "ForceRenaming didn't work");
425}
426
427
428// LinkGlobals - Loop through the global variables in the src module and merge
429// them into the dest module.
430//
431static bool LinkGlobals(Module *Dest, const Module *Src,
432                        std::map<const Value*, Value*> &ValueMap,
433                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
434                        std::string *Err) {
435  // We will need a module level symbol table if the src module has a module
436  // level symbol table...
437  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
438
439  // Loop over all of the globals in the src module, mapping them over as we go
440  //
441  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
442    const GlobalVariable *SGV = I;
443    GlobalVariable *DGV = 0;
444    if (SGV->hasName() && !SGV->hasInternalLinkage()) {
445      // A same named thing is a global variable, because the only two things
446      // that may be in a module level symbol table are Global Vars and
447      // Functions, and they both have distinct, nonoverlapping, possible types.
448      //
449      DGV = cast_or_null<GlobalVariable>(FindGlobalNamed(SGV->getName(),
450                                                         SGV->getType(), ST));
451    }
452
453    assert(SGV->hasInitializer() || SGV->hasExternalLinkage() &&
454           "Global must either be external or have an initializer!");
455
456    bool SGExtern = SGV->isExternal();
457    bool DGExtern = DGV ? DGV->isExternal() : false;
458
459    if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) {
460      // No linking to be performed, simply create an identical version of the
461      // symbol over in the dest module... the initializer will be filled in
462      // later by LinkGlobalInits...
463      //
464      GlobalVariable *NewDGV =
465        new GlobalVariable(SGV->getType()->getElementType(),
466                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
467                           SGV->getName(), Dest);
468
469      // If the LLVM runtime renamed the global, but it is an externally visible
470      // symbol, DGV must be an existing global with internal linkage.  Rename
471      // it.
472      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
473        ForceRenaming(NewDGV, SGV->getName());
474
475      // Make sure to remember this mapping...
476      ValueMap.insert(std::make_pair(SGV, NewDGV));
477      if (SGV->hasAppendingLinkage())
478        // Keep track that this is an appending variable...
479        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
480
481    } else if (SGV->isExternal()) {
482      // If SGV is external or if both SGV & DGV are external..  Just link the
483      // external globals, we aren't adding anything.
484      ValueMap.insert(std::make_pair(SGV, DGV));
485
486    } else if (DGV->isExternal()) {   // If DGV is external but SGV is not...
487      ValueMap.insert(std::make_pair(SGV, DGV));
488      DGV->setLinkage(SGV->getLinkage());    // Inherit linkage!
489    } else if (SGV->hasWeakLinkage() || SGV->hasLinkOnceLinkage()) {
490      // At this point we know that DGV has LinkOnce, Appending, Weak, or
491      // External linkage.  If DGV is Appending, this is an error.
492      if (DGV->hasAppendingLinkage())
493        return Error(Err, "Linking globals named '" + SGV->getName() +
494                     " ' with 'weak' and 'appending' linkage is not allowed!");
495
496      if (SGV->isConstant() != DGV->isConstant())
497        return Error(Err, "Global Variable Collision on '" +
498                     SGV->getType()->getDescription() + " %" + SGV->getName() +
499                     "' - Global variables differ in const'ness");
500
501      // Otherwise, just perform the link.
502      ValueMap.insert(std::make_pair(SGV, DGV));
503
504      // Linkonce+Weak = Weak
505      if (DGV->hasLinkOnceLinkage() && SGV->hasWeakLinkage())
506        DGV->setLinkage(SGV->getLinkage());
507
508    } else if (DGV->hasWeakLinkage() || DGV->hasLinkOnceLinkage()) {
509      // At this point we know that SGV has LinkOnce, Appending, or External
510      // linkage.  If SGV is Appending, this is an error.
511      if (SGV->hasAppendingLinkage())
512        return Error(Err, "Linking globals named '" + SGV->getName() +
513                     " ' with 'weak' and 'appending' linkage is not allowed!");
514
515      if (SGV->isConstant() != DGV->isConstant())
516        return Error(Err, "Global Variable Collision on '" +
517                     SGV->getType()->getDescription() + " %" + SGV->getName() +
518                     "' - Global variables differ in const'ness");
519
520      if (!SGV->hasLinkOnceLinkage())
521        DGV->setLinkage(SGV->getLinkage());    // Inherit linkage!
522      ValueMap.insert(std::make_pair(SGV, DGV));
523
524    } else if (SGV->getLinkage() != DGV->getLinkage()) {
525      return Error(Err, "Global variables named '" + SGV->getName() +
526                   "' have different linkage specifiers!");
527    } else if (SGV->hasExternalLinkage()) {
528      // Allow linking two exactly identical external global variables...
529      if (SGV->isConstant() != DGV->isConstant())
530        return Error(Err, "Global Variable Collision on '" +
531                     SGV->getType()->getDescription() + " %" + SGV->getName() +
532                     "' - Global variables differ in const'ness");
533
534      if (SGV->getInitializer() != DGV->getInitializer())
535        return Error(Err, "Global Variable Collision on '" +
536                     SGV->getType()->getDescription() + " %" + SGV->getName() +
537                    "' - External linkage globals have different initializers");
538
539      ValueMap.insert(std::make_pair(SGV, DGV));
540    } else if (SGV->hasAppendingLinkage()) {
541      // No linking is performed yet.  Just insert a new copy of the global, and
542      // keep track of the fact that it is an appending variable in the
543      // AppendingVars map.  The name is cleared out so that no linkage is
544      // performed.
545      GlobalVariable *NewDGV =
546        new GlobalVariable(SGV->getType()->getElementType(),
547                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
548                           "", Dest);
549
550      // Make sure to remember this mapping...
551      ValueMap.insert(std::make_pair(SGV, NewDGV));
552
553      // Keep track that this is an appending variable...
554      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
555    } else {
556      assert(0 && "Unknown linkage!");
557    }
558  }
559  return false;
560}
561
562
563// LinkGlobalInits - Update the initializers in the Dest module now that all
564// globals that may be referenced are in Dest.
565//
566static bool LinkGlobalInits(Module *Dest, const Module *Src,
567                            std::map<const Value*, Value*> &ValueMap,
568                            std::string *Err) {
569
570  // Loop over all of the globals in the src module, mapping them over as we go
571  //
572  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
573    const GlobalVariable *SGV = I;
574
575    if (SGV->hasInitializer()) {      // Only process initialized GV's
576      // Figure out what the initializer looks like in the dest module...
577      Constant *SInit =
578        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap, 0));
579
580      GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
581      if (DGV->hasInitializer()) {
582        if (SGV->hasExternalLinkage()) {
583          if (DGV->getInitializer() != SInit)
584            return Error(Err, "Global Variable Collision on '" +
585                         SGV->getType()->getDescription() +"':%"+SGV->getName()+
586                         " - Global variables have different initializers");
587        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
588          // Nothing is required, mapped values will take the new global
589          // automatically.
590        } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
591          // Nothing is required, mapped values will take the new global
592          // automatically.
593        } else if (DGV->hasAppendingLinkage()) {
594          assert(0 && "Appending linkage unimplemented!");
595        } else {
596          assert(0 && "Unknown linkage!");
597        }
598      } else {
599        // Copy the initializer over now...
600        DGV->setInitializer(SInit);
601      }
602    }
603  }
604  return false;
605}
606
607// LinkFunctionProtos - Link the functions together between the two modules,
608// without doing function bodies... this just adds external function prototypes
609// to the Dest function...
610//
611static bool LinkFunctionProtos(Module *Dest, const Module *Src,
612                               std::map<const Value*, Value*> &ValueMap,
613                               std::string *Err) {
614  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
615
616  // Loop over all of the functions in the src module, mapping them over as we
617  // go
618  //
619  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
620    const Function *SF = I;   // SrcFunction
621    Function *DF = 0;
622    if (SF->hasName() && !SF->hasInternalLinkage())
623      // The same named thing is a Function, because the only two things
624      // that may be in a module level symbol table are Global Vars and
625      // Functions, and they both have distinct, nonoverlapping, possible types.
626      //
627      DF = cast_or_null<Function>(FindGlobalNamed(SF->getName(), SF->getType(),
628                                                  ST));
629
630    if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
631      // Function does not already exist, simply insert an function signature
632      // identical to SF into the dest module...
633      Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
634                                     SF->getName(), Dest);
635
636      // If the LLVM runtime renamed the function, but it is an externally
637      // visible symbol, DF must be an existing function with internal linkage.
638      // Rename it.
639      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
640        ForceRenaming(DF, SF->getName());
641
642      // ... and remember this mapping...
643      ValueMap.insert(std::make_pair(SF, NewDF));
644    } else if (SF->isExternal()) {
645      // If SF is external or if both SF & DF are external..  Just link the
646      // external functions, we aren't adding anything.
647      ValueMap.insert(std::make_pair(SF, DF));
648    } else if (DF->isExternal()) {   // If DF is external but SF is not...
649      // Link the external functions, update linkage qualifiers
650      ValueMap.insert(std::make_pair(SF, DF));
651      DF->setLinkage(SF->getLinkage());
652
653    } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
654      // At this point we know that DF has LinkOnce, Weak, or External linkage.
655      ValueMap.insert(std::make_pair(SF, DF));
656
657      // Linkonce+Weak = Weak
658      if (DF->hasLinkOnceLinkage() && SF->hasWeakLinkage())
659        DF->setLinkage(SF->getLinkage());
660
661    } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
662      // At this point we know that SF has LinkOnce or External linkage.
663      ValueMap.insert(std::make_pair(SF, DF));
664      if (!SF->hasLinkOnceLinkage())   // Don't inherit linkonce linkage
665        DF->setLinkage(SF->getLinkage());
666
667    } else if (SF->getLinkage() != DF->getLinkage()) {
668      return Error(Err, "Functions named '" + SF->getName() +
669                   "' have different linkage specifiers!");
670    } else if (SF->hasExternalLinkage()) {
671      // The function is defined in both modules!!
672      return Error(Err, "Function '" +
673                   SF->getFunctionType()->getDescription() + "':\"" +
674                   SF->getName() + "\" - Function is already defined!");
675    } else {
676      assert(0 && "Unknown linkage configuration found!");
677    }
678  }
679  return false;
680}
681
682// LinkFunctionBody - Copy the source function over into the dest function and
683// fix up references to values.  At this point we know that Dest is an external
684// function, and that Src is not.
685//
686static bool LinkFunctionBody(Function *Dest, const Function *Src,
687                             std::map<const Value*, Value*> &GlobalMap,
688                             std::string *Err) {
689  assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
690  std::map<const Value*, Value*> LocalMap;   // Map for function local values
691
692  // Go through and convert function arguments over...
693  Function::aiterator DI = Dest->abegin();
694  for (Function::const_aiterator I = Src->abegin(), E = Src->aend();
695       I != E; ++I, ++DI) {
696    DI->setName(I->getName());  // Copy the name information over...
697
698    // Add a mapping to our local map
699    LocalMap.insert(std::make_pair(I, DI));
700  }
701
702  // Loop over all of the basic blocks, copying the instructions over...
703  //
704  for (Function::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
705    // Create new basic block and add to mapping and the Dest function...
706    BasicBlock *DBB = new BasicBlock(I->getName(), Dest);
707    LocalMap.insert(std::make_pair(I, DBB));
708
709    // Loop over all of the instructions in the src basic block, copying them
710    // over.  Note that this is broken in a strict sense because the cloned
711    // instructions will still be referencing values in the Src module, not
712    // the remapped values.  In our case, however, we will not get caught and
713    // so we can delay patching the values up until later...
714    //
715    for (BasicBlock::const_iterator II = I->begin(), IE = I->end();
716         II != IE; ++II) {
717      Instruction *DI = II->clone();
718      DI->setName(II->getName());
719      DBB->getInstList().push_back(DI);
720      LocalMap.insert(std::make_pair(II, DI));
721    }
722  }
723
724  // At this point, all of the instructions and values of the function are now
725  // copied over.  The only problem is that they are still referencing values in
726  // the Source function as operands.  Loop through all of the operands of the
727  // functions and patch them up to point to the local versions...
728  //
729  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
730    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
731      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
732           OI != OE; ++OI)
733        *OI = RemapOperand(*OI, LocalMap, &GlobalMap);
734
735  return false;
736}
737
738
739// LinkFunctionBodies - Link in the function bodies that are defined in the
740// source module into the DestModule.  This consists basically of copying the
741// function over and fixing up references to values.
742//
743static bool LinkFunctionBodies(Module *Dest, const Module *Src,
744                               std::map<const Value*, Value*> &ValueMap,
745                               std::string *Err) {
746
747  // Loop over all of the functions in the src module, mapping them over as we
748  // go
749  //
750  for (Module::const_iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF){
751    if (!SF->isExternal()) {                  // No body if function is external
752      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
753
754      // DF not external SF external?
755      if (DF->isExternal()) {
756        // Only provide the function body if there isn't one already.
757        if (LinkFunctionBody(DF, SF, ValueMap, Err))
758          return true;
759      }
760    }
761  }
762  return false;
763}
764
765// LinkAppendingVars - If there were any appending global variables, link them
766// together now.  Return true on error.
767//
768static bool LinkAppendingVars(Module *M,
769                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
770                              std::string *ErrorMsg) {
771  if (AppendingVars.empty()) return false; // Nothing to do.
772
773  // Loop over the multimap of appending vars, processing any variables with the
774  // same name, forming a new appending global variable with both of the
775  // initializers merged together, then rewrite references to the old variables
776  // and delete them.
777  //
778  std::vector<Constant*> Inits;
779  while (AppendingVars.size() > 1) {
780    // Get the first two elements in the map...
781    std::multimap<std::string,
782      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
783
784    // If the first two elements are for different names, there is no pair...
785    // Otherwise there is a pair, so link them together...
786    if (First->first == Second->first) {
787      GlobalVariable *G1 = First->second, *G2 = Second->second;
788      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
789      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
790
791      // Check to see that they two arrays agree on type...
792      if (T1->getElementType() != T2->getElementType())
793        return Error(ErrorMsg,
794         "Appending variables with different element types need to be linked!");
795      if (G1->isConstant() != G2->isConstant())
796        return Error(ErrorMsg,
797                     "Appending variables linked with different const'ness!");
798
799      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
800      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
801
802      // Create the new global variable...
803      GlobalVariable *NG =
804        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
805                           /*init*/0, First->first, M);
806
807      // Merge the initializer...
808      Inits.reserve(NewSize);
809      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
810        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
811          Inits.push_back(cast<Constant>(I->getValues()[i]));
812      } else {
813        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
814        Constant *CV = Constant::getNullValue(T1->getElementType());
815        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
816          Inits.push_back(CV);
817      }
818      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
819        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
820          Inits.push_back(cast<Constant>(I->getValues()[i]));
821      } else {
822        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
823        Constant *CV = Constant::getNullValue(T2->getElementType());
824        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
825          Inits.push_back(CV);
826      }
827      NG->setInitializer(ConstantArray::get(NewType, Inits));
828      Inits.clear();
829
830      // Replace any uses of the two global variables with uses of the new
831      // global...
832
833      // FIXME: This should rewrite simple/straight-forward uses such as
834      // getelementptr instructions to not use the Cast!
835      G1->replaceAllUsesWith(ConstantExpr::getCast(NG, G1->getType()));
836      G2->replaceAllUsesWith(ConstantExpr::getCast(NG, G2->getType()));
837
838      // Remove the two globals from the module now...
839      M->getGlobalList().erase(G1);
840      M->getGlobalList().erase(G2);
841
842      // Put the new global into the AppendingVars map so that we can handle
843      // linking of more than two vars...
844      Second->second = NG;
845    }
846    AppendingVars.erase(First);
847  }
848
849  return false;
850}
851
852
853// LinkModules - This function links two modules together, with the resulting
854// left module modified to be the composite of the two input modules.  If an
855// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
856// the problem.  Upon failure, the Dest module could be in a modified state, and
857// shouldn't be relied on to be consistent.
858//
859bool llvm::LinkModules(Module *Dest, const Module *Src, std::string *ErrorMsg) {
860  if (Dest->getEndianness() == Module::AnyEndianness)
861    Dest->setEndianness(Src->getEndianness());
862  if (Dest->getPointerSize() == Module::AnyPointerSize)
863    Dest->setPointerSize(Src->getPointerSize());
864
865  if (Src->getEndianness() != Module::AnyEndianness &&
866      Dest->getEndianness() != Src->getEndianness())
867    std::cerr << "WARNING: Linking two modules of different endianness!\n";
868  if (Src->getPointerSize() != Module::AnyPointerSize &&
869      Dest->getPointerSize() != Src->getPointerSize())
870    std::cerr << "WARNING: Linking two modules of different pointer size!\n";
871
872  // LinkTypes - Go through the symbol table of the Src module and see if any
873  // types are named in the src module that are not named in the Dst module.
874  // Make sure there are no type name conflicts.
875  //
876  if (LinkTypes(Dest, Src, ErrorMsg)) return true;
877
878  // ValueMap - Mapping of values from what they used to be in Src, to what they
879  // are now in Dest.
880  //
881  std::map<const Value*, Value*> ValueMap;
882
883  // AppendingVars - Keep track of global variables in the destination module
884  // with appending linkage.  After the module is linked together, they are
885  // appended and the module is rewritten.
886  //
887  std::multimap<std::string, GlobalVariable *> AppendingVars;
888
889  // Add all of the appending globals already in the Dest module to
890  // AppendingVars.
891  for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I)
892    if (I->hasAppendingLinkage())
893      AppendingVars.insert(std::make_pair(I->getName(), I));
894
895  // Insert all of the globals in src into the Dest module... without linking
896  // initializers (which could refer to functions not yet mapped over).
897  //
898  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg)) return true;
899
900  // Link the functions together between the two modules, without doing function
901  // bodies... this just adds external function prototypes to the Dest
902  // function...  We do this so that when we begin processing function bodies,
903  // all of the global values that may be referenced are available in our
904  // ValueMap.
905  //
906  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg)) return true;
907
908  // Update the initializers in the Dest module now that all globals that may
909  // be referenced are in Dest.
910  //
911  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
912
913  // Link in the function bodies that are defined in the source module into the
914  // DestModule.  This consists basically of copying the function over and
915  // fixing up references to values.
916  //
917  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
918
919  // If there were any appending global variables, link them together now.
920  //
921  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
922
923  return false;
924}
925
926// vim: sw=2
927