LinkModules.cpp revision c68d127b2c5a233c5e3f9dd59ca4ab335419d9dd
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Linker.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Instructions.h"
18#include "llvm/Module.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/Support/raw_ostream.h"
24#include "llvm/Support/Path.h"
25#include "llvm/Transforms/Utils/Cloning.h"
26#include "llvm/Transforms/Utils/ValueMapper.h"
27using namespace llvm;
28
29//===----------------------------------------------------------------------===//
30// TypeMap implementation.
31//===----------------------------------------------------------------------===//
32
33namespace {
34class TypeMapTy : public ValueMapTypeRemapper {
35  /// MappedTypes - This is a mapping from a source type to a destination type
36  /// to use.
37  DenseMap<Type*, Type*> MappedTypes;
38
39  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
40  /// we speculatively add types to MappedTypes, but keep track of them here in
41  /// case we need to roll back.
42  SmallVector<Type*, 16> SpeculativeTypes;
43
44  /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
45  /// source module that are mapped to an opaque struct in the destination
46  /// module.
47  SmallVector<StructType*, 16> SrcDefinitionsToResolve;
48
49  /// DstResolvedOpaqueTypes - This is the set of opaque types in the
50  /// destination modules who are getting a body from the source module.
51  SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
52public:
53
54  /// addTypeMapping - Indicate that the specified type in the destination
55  /// module is conceptually equivalent to the specified type in the source
56  /// module.
57  void addTypeMapping(Type *DstTy, Type *SrcTy);
58
59  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
60  /// module from a type definition in the source module.
61  void linkDefinedTypeBodies();
62
63  /// get - Return the mapped type to use for the specified input type from the
64  /// source module.
65  Type *get(Type *SrcTy);
66
67  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
68
69private:
70  Type *getImpl(Type *T);
71  /// remapType - Implement the ValueMapTypeRemapper interface.
72  Type *remapType(Type *SrcTy) {
73    return get(SrcTy);
74  }
75
76  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
77};
78}
79
80void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
81  Type *&Entry = MappedTypes[SrcTy];
82  if (Entry) return;
83
84  if (DstTy == SrcTy) {
85    Entry = DstTy;
86    return;
87  }
88
89  // Check to see if these types are recursively isomorphic and establish a
90  // mapping between them if so.
91  if (!areTypesIsomorphic(DstTy, SrcTy)) {
92    // Oops, they aren't isomorphic.  Just discard this request by rolling out
93    // any speculative mappings we've established.
94    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
95      MappedTypes.erase(SpeculativeTypes[i]);
96  }
97  SpeculativeTypes.clear();
98}
99
100/// areTypesIsomorphic - Recursively walk this pair of types, returning true
101/// if they are isomorphic, false if they are not.
102bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
103  // Two types with differing kinds are clearly not isomorphic.
104  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
105
106  // If we have an entry in the MappedTypes table, then we have our answer.
107  Type *&Entry = MappedTypes[SrcTy];
108  if (Entry)
109    return Entry == DstTy;
110
111  // Two identical types are clearly isomorphic.  Remember this
112  // non-speculatively.
113  if (DstTy == SrcTy) {
114    Entry = DstTy;
115    return true;
116  }
117
118  // Okay, we have two types with identical kinds that we haven't seen before.
119
120  // If this is an opaque struct type, special case it.
121  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
122    // Mapping an opaque type to any struct, just keep the dest struct.
123    if (SSTy->isOpaque()) {
124      Entry = DstTy;
125      SpeculativeTypes.push_back(SrcTy);
126      return true;
127    }
128
129    // Mapping a non-opaque source type to an opaque dest.  If this is the first
130    // type that we're mapping onto this destination type then we succeed.  Keep
131    // the dest, but fill it in later.  This doesn't need to be speculative.  If
132    // this is the second (different) type that we're trying to map onto the
133    // same opaque type then we fail.
134    if (cast<StructType>(DstTy)->isOpaque()) {
135      // We can only map one source type onto the opaque destination type.
136      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
137        return false;
138      SrcDefinitionsToResolve.push_back(SSTy);
139      Entry = DstTy;
140      return true;
141    }
142  }
143
144  // If the number of subtypes disagree between the two types, then we fail.
145  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
146    return false;
147
148  // Fail if any of the extra properties (e.g. array size) of the type disagree.
149  if (isa<IntegerType>(DstTy))
150    return false;  // bitwidth disagrees.
151  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
152    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
153      return false;
154
155  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
156    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
157      return false;
158  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
159    StructType *SSTy = cast<StructType>(SrcTy);
160    if (DSTy->isLiteral() != SSTy->isLiteral() ||
161        DSTy->isPacked() != SSTy->isPacked())
162      return false;
163  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
164    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
165      return false;
166  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
167    if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
168      return false;
169  }
170
171  // Otherwise, we speculate that these two types will line up and recursively
172  // check the subelements.
173  Entry = DstTy;
174  SpeculativeTypes.push_back(SrcTy);
175
176  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
177    if (!areTypesIsomorphic(DstTy->getContainedType(i),
178                            SrcTy->getContainedType(i)))
179      return false;
180
181  // If everything seems to have lined up, then everything is great.
182  return true;
183}
184
185/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
186/// module from a type definition in the source module.
187void TypeMapTy::linkDefinedTypeBodies() {
188  SmallVector<Type*, 16> Elements;
189  SmallString<16> TmpName;
190
191  // Note that processing entries in this loop (calling 'get') can add new
192  // entries to the SrcDefinitionsToResolve vector.
193  while (!SrcDefinitionsToResolve.empty()) {
194    StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
195    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
196
197    // TypeMap is a many-to-one mapping, if there were multiple types that
198    // provide a body for DstSTy then previous iterations of this loop may have
199    // already handled it.  Just ignore this case.
200    if (!DstSTy->isOpaque()) continue;
201    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
202
203    // Map the body of the source type over to a new body for the dest type.
204    Elements.resize(SrcSTy->getNumElements());
205    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
206      Elements[i] = getImpl(SrcSTy->getElementType(i));
207
208    DstSTy->setBody(Elements, SrcSTy->isPacked());
209
210    // If DstSTy has no name or has a longer name than STy, then viciously steal
211    // STy's name.
212    if (!SrcSTy->hasName()) continue;
213    StringRef SrcName = SrcSTy->getName();
214
215    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
216      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
217      SrcSTy->setName("");
218      DstSTy->setName(TmpName.str());
219      TmpName.clear();
220    }
221  }
222
223  DstResolvedOpaqueTypes.clear();
224}
225
226
227/// get - Return the mapped type to use for the specified input type from the
228/// source module.
229Type *TypeMapTy::get(Type *Ty) {
230  Type *Result = getImpl(Ty);
231
232  // If this caused a reference to any struct type, resolve it before returning.
233  if (!SrcDefinitionsToResolve.empty())
234    linkDefinedTypeBodies();
235  return Result;
236}
237
238/// getImpl - This is the recursive version of get().
239Type *TypeMapTy::getImpl(Type *Ty) {
240  // If we already have an entry for this type, return it.
241  Type **Entry = &MappedTypes[Ty];
242  if (*Entry) return *Entry;
243
244  // If this is not a named struct type, then just map all of the elements and
245  // then rebuild the type from inside out.
246  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
247    // If there are no element types to map, then the type is itself.  This is
248    // true for the anonymous {} struct, things like 'float', integers, etc.
249    if (Ty->getNumContainedTypes() == 0)
250      return *Entry = Ty;
251
252    // Remap all of the elements, keeping track of whether any of them change.
253    bool AnyChange = false;
254    SmallVector<Type*, 4> ElementTypes;
255    ElementTypes.resize(Ty->getNumContainedTypes());
256    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
257      ElementTypes[i] = getImpl(Ty->getContainedType(i));
258      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
259    }
260
261    // If we found our type while recursively processing stuff, just use it.
262    Entry = &MappedTypes[Ty];
263    if (*Entry) return *Entry;
264
265    // If all of the element types mapped directly over, then the type is usable
266    // as-is.
267    if (!AnyChange)
268      return *Entry = Ty;
269
270    // Otherwise, rebuild a modified type.
271    switch (Ty->getTypeID()) {
272    default: llvm_unreachable("unknown derived type to remap");
273    case Type::ArrayTyID:
274      return *Entry = ArrayType::get(ElementTypes[0],
275                                     cast<ArrayType>(Ty)->getNumElements());
276    case Type::VectorTyID:
277      return *Entry = VectorType::get(ElementTypes[0],
278                                      cast<VectorType>(Ty)->getNumElements());
279    case Type::PointerTyID:
280      return *Entry = PointerType::get(ElementTypes[0],
281                                      cast<PointerType>(Ty)->getAddressSpace());
282    case Type::FunctionTyID:
283      return *Entry = FunctionType::get(ElementTypes[0],
284                                        makeArrayRef(ElementTypes).slice(1),
285                                        cast<FunctionType>(Ty)->isVarArg());
286    case Type::StructTyID:
287      // Note that this is only reached for anonymous structs.
288      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
289                                      cast<StructType>(Ty)->isPacked());
290    }
291  }
292
293  // Otherwise, this is an unmapped named struct.  If the struct can be directly
294  // mapped over, just use it as-is.  This happens in a case when the linked-in
295  // module has something like:
296  //   %T = type {%T*, i32}
297  //   @GV = global %T* null
298  // where T does not exist at all in the destination module.
299  //
300  // The other case we watch for is when the type is not in the destination
301  // module, but that it has to be rebuilt because it refers to something that
302  // is already mapped.  For example, if the destination module has:
303  //  %A = type { i32 }
304  // and the source module has something like
305  //  %A' = type { i32 }
306  //  %B = type { %A'* }
307  //  @GV = global %B* null
308  // then we want to create a new type: "%B = type { %A*}" and have it take the
309  // pristine "%B" name from the source module.
310  //
311  // To determine which case this is, we have to recursively walk the type graph
312  // speculating that we'll be able to reuse it unmodified.  Only if this is
313  // safe would we map the entire thing over.  Because this is an optimization,
314  // and is not required for the prettiness of the linked module, we just skip
315  // it and always rebuild a type here.
316  StructType *STy = cast<StructType>(Ty);
317
318  // If the type is opaque, we can just use it directly.
319  if (STy->isOpaque())
320    return *Entry = STy;
321
322  // Otherwise we create a new type and resolve its body later.  This will be
323  // resolved by the top level of get().
324  SrcDefinitionsToResolve.push_back(STy);
325  StructType *DTy = StructType::create(STy->getContext());
326  DstResolvedOpaqueTypes.insert(DTy);
327  return *Entry = DTy;
328}
329
330
331
332//===----------------------------------------------------------------------===//
333// ModuleLinker implementation.
334//===----------------------------------------------------------------------===//
335
336namespace {
337  /// ModuleLinker - This is an implementation class for the LinkModules
338  /// function, which is the entrypoint for this file.
339  class ModuleLinker {
340    Module *DstM, *SrcM;
341
342    TypeMapTy TypeMap;
343
344    /// ValueMap - Mapping of values from what they used to be in Src, to what
345    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
346    /// some overhead due to the use of Value handles which the Linker doesn't
347    /// actually need, but this allows us to reuse the ValueMapper code.
348    ValueToValueMapTy ValueMap;
349
350    struct AppendingVarInfo {
351      GlobalVariable *NewGV;  // New aggregate global in dest module.
352      Constant *DstInit;      // Old initializer from dest module.
353      Constant *SrcInit;      // Old initializer from src module.
354    };
355
356    std::vector<AppendingVarInfo> AppendingVars;
357
358    unsigned Mode; // Mode to treat source module.
359
360    // Set of items not to link in from source.
361    SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
362
363    // Vector of functions to lazily link in.
364    std::vector<Function*> LazilyLinkFunctions;
365
366  public:
367    std::string ErrorMsg;
368
369    ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
370      : DstM(dstM), SrcM(srcM), Mode(mode) { }
371
372    bool run();
373
374  private:
375    /// emitError - Helper method for setting a message and returning an error
376    /// code.
377    bool emitError(const Twine &Message) {
378      ErrorMsg = Message.str();
379      return true;
380    }
381
382    /// getLinkageResult - This analyzes the two global values and determines
383    /// what the result will look like in the destination module.
384    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
385                          GlobalValue::LinkageTypes &LT,
386                          GlobalValue::VisibilityTypes &Vis,
387                          bool &LinkFromSrc);
388
389    /// getLinkedToGlobal - Given a global in the source module, return the
390    /// global in the destination module that is being linked to, if any.
391    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
392      // If the source has no name it can't link.  If it has local linkage,
393      // there is no name match-up going on.
394      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
395        return 0;
396
397      // Otherwise see if we have a match in the destination module's symtab.
398      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
399      if (DGV == 0) return 0;
400
401      // If we found a global with the same name in the dest module, but it has
402      // internal linkage, we are really not doing any linkage here.
403      if (DGV->hasLocalLinkage())
404        return 0;
405
406      // Otherwise, we do in fact link to the destination global.
407      return DGV;
408    }
409
410    void computeTypeMapping();
411    bool categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
412                                   DenseMap<MDString*, MDNode*> &ErrorNode,
413                                   DenseMap<MDString*, MDNode*> &WarningNode,
414                                   DenseMap<MDString*, MDNode*> &OverrideNode,
415                                   DenseMap<MDString*,
416                                   SmallSetVector<MDNode*, 8> > &RequireNodes,
417                                   SmallSetVector<MDString*, 16> &SeenIDs);
418
419    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
420    bool linkGlobalProto(GlobalVariable *SrcGV);
421    bool linkFunctionProto(Function *SrcF);
422    bool linkAliasProto(GlobalAlias *SrcA);
423    bool linkModuleFlagsMetadata();
424
425    void linkAppendingVarInit(const AppendingVarInfo &AVI);
426    void linkGlobalInits();
427    void linkFunctionBody(Function *Dst, Function *Src);
428    void linkAliasBodies();
429    void linkNamedMDNodes();
430  };
431}
432
433
434
435/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
436/// in the symbol table.  This is good for all clients except for us.  Go
437/// through the trouble to force this back.
438static void forceRenaming(GlobalValue *GV, StringRef Name) {
439  // If the global doesn't force its name or if it already has the right name,
440  // there is nothing for us to do.
441  if (GV->hasLocalLinkage() || GV->getName() == Name)
442    return;
443
444  Module *M = GV->getParent();
445
446  // If there is a conflict, rename the conflict.
447  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
448    GV->takeName(ConflictGV);
449    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
450    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
451  } else {
452    GV->setName(Name);              // Force the name back
453  }
454}
455
456/// CopyGVAttributes - copy additional attributes (those not needed to construct
457/// a GlobalValue) from the SrcGV to the DestGV.
458static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
459  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
460  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
461  DestGV->copyAttributesFrom(SrcGV);
462  DestGV->setAlignment(Alignment);
463
464  forceRenaming(DestGV, SrcGV->getName());
465}
466
467static bool isLessConstraining(GlobalValue::VisibilityTypes a,
468                               GlobalValue::VisibilityTypes b) {
469  if (a == GlobalValue::HiddenVisibility)
470    return false;
471  if (b == GlobalValue::HiddenVisibility)
472    return true;
473  if (a == GlobalValue::ProtectedVisibility)
474    return false;
475  if (b == GlobalValue::ProtectedVisibility)
476    return true;
477  return false;
478}
479
480/// getLinkageResult - This analyzes the two global values and determines what
481/// the result will look like in the destination module.  In particular, it
482/// computes the resultant linkage type and visibility, computes whether the
483/// global in the source should be copied over to the destination (replacing
484/// the existing one), and computes whether this linkage is an error or not.
485bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
486                                    GlobalValue::LinkageTypes &LT,
487                                    GlobalValue::VisibilityTypes &Vis,
488                                    bool &LinkFromSrc) {
489  assert(Dest && "Must have two globals being queried");
490  assert(!Src->hasLocalLinkage() &&
491         "If Src has internal linkage, Dest shouldn't be set!");
492
493  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
494  bool DestIsDeclaration = Dest->isDeclaration();
495
496  if (SrcIsDeclaration) {
497    // If Src is external or if both Src & Dest are external..  Just link the
498    // external globals, we aren't adding anything.
499    if (Src->hasDLLImportLinkage()) {
500      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
501      if (DestIsDeclaration) {
502        LinkFromSrc = true;
503        LT = Src->getLinkage();
504      }
505    } else if (Dest->hasExternalWeakLinkage()) {
506      // If the Dest is weak, use the source linkage.
507      LinkFromSrc = true;
508      LT = Src->getLinkage();
509    } else {
510      LinkFromSrc = false;
511      LT = Dest->getLinkage();
512    }
513  } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
514    // If Dest is external but Src is not:
515    LinkFromSrc = true;
516    LT = Src->getLinkage();
517  } else if (Src->isWeakForLinker()) {
518    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
519    // or DLL* linkage.
520    if (Dest->hasExternalWeakLinkage() ||
521        Dest->hasAvailableExternallyLinkage() ||
522        (Dest->hasLinkOnceLinkage() &&
523         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
524      LinkFromSrc = true;
525      LT = Src->getLinkage();
526    } else {
527      LinkFromSrc = false;
528      LT = Dest->getLinkage();
529    }
530  } else if (Dest->isWeakForLinker()) {
531    // At this point we know that Src has External* or DLL* linkage.
532    if (Src->hasExternalWeakLinkage()) {
533      LinkFromSrc = false;
534      LT = Dest->getLinkage();
535    } else {
536      LinkFromSrc = true;
537      LT = GlobalValue::ExternalLinkage;
538    }
539  } else {
540    assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
541            Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
542           (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
543            Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
544           "Unexpected linkage type!");
545    return emitError("Linking globals named '" + Src->getName() +
546                 "': symbol multiply defined!");
547  }
548
549  // Compute the visibility. We follow the rules in the System V Application
550  // Binary Interface.
551  Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
552    Dest->getVisibility() : Src->getVisibility();
553  return false;
554}
555
556/// computeTypeMapping - Loop over all of the linked values to compute type
557/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
558/// we have two struct types 'Foo' but one got renamed when the module was
559/// loaded into the same LLVMContext.
560void ModuleLinker::computeTypeMapping() {
561  // Incorporate globals.
562  for (Module::global_iterator I = SrcM->global_begin(),
563       E = SrcM->global_end(); I != E; ++I) {
564    GlobalValue *DGV = getLinkedToGlobal(I);
565    if (DGV == 0) continue;
566
567    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
568      TypeMap.addTypeMapping(DGV->getType(), I->getType());
569      continue;
570    }
571
572    // Unify the element type of appending arrays.
573    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
574    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
575    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
576  }
577
578  // Incorporate functions.
579  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
580    if (GlobalValue *DGV = getLinkedToGlobal(I))
581      TypeMap.addTypeMapping(DGV->getType(), I->getType());
582  }
583
584#if 0
585  // FIXME: This doesn't play well with LTO. We cannot compile LLVM with this
586  //        enabled. <rdar://problem/10913281>.
587
588  // Incorporate types by name, scanning all the types in the source module.
589  // At this point, the destination module may have a type "%foo = { i32 }" for
590  // example.  When the source module got loaded into the same LLVMContext, if
591  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
592  // Though it isn't required for correctness, attempt to link these up to clean
593  // up the IR.
594  std::vector<StructType*> SrcStructTypes;
595  SrcM->findUsedStructTypes(SrcStructTypes);
596
597  SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
598                                                 SrcStructTypes.end());
599
600  for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
601    StructType *ST = SrcStructTypes[i];
602    if (!ST->hasName()) continue;
603
604    // Check to see if there is a dot in the name followed by a digit.
605    size_t DotPos = ST->getName().rfind('.');
606    if (DotPos == 0 || DotPos == StringRef::npos ||
607        ST->getName().back() == '.' || !isdigit(ST->getName()[DotPos+1]))
608      continue;
609
610    // Check to see if the destination module has a struct with the prefix name.
611    if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
612      // Don't use it if this actually came from the source module.  They're in
613      // the same LLVMContext after all.
614      if (!SrcStructTypesSet.count(DST))
615        TypeMap.addTypeMapping(DST, ST);
616  }
617#endif
618
619  // Don't bother incorporating aliases, they aren't generally typed well.
620
621  // Now that we have discovered all of the type equivalences, get a body for
622  // any 'opaque' types in the dest module that are now resolved.
623  TypeMap.linkDefinedTypeBodies();
624}
625
626/// linkAppendingVarProto - If there were any appending global variables, link
627/// them together now.  Return true on error.
628bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
629                                         GlobalVariable *SrcGV) {
630
631  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
632    return emitError("Linking globals named '" + SrcGV->getName() +
633           "': can only link appending global with another appending global!");
634
635  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
636  ArrayType *SrcTy =
637    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
638  Type *EltTy = DstTy->getElementType();
639
640  // Check to see that they two arrays agree on type.
641  if (EltTy != SrcTy->getElementType())
642    return emitError("Appending variables with different element types!");
643  if (DstGV->isConstant() != SrcGV->isConstant())
644    return emitError("Appending variables linked with different const'ness!");
645
646  if (DstGV->getAlignment() != SrcGV->getAlignment())
647    return emitError(
648             "Appending variables with different alignment need to be linked!");
649
650  if (DstGV->getVisibility() != SrcGV->getVisibility())
651    return emitError(
652            "Appending variables with different visibility need to be linked!");
653
654  if (DstGV->getSection() != SrcGV->getSection())
655    return emitError(
656          "Appending variables with different section name need to be linked!");
657
658  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
659  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
660
661  // Create the new global variable.
662  GlobalVariable *NG =
663    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
664                       DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
665                       DstGV->isThreadLocal(),
666                       DstGV->getType()->getAddressSpace());
667
668  // Propagate alignment, visibility and section info.
669  CopyGVAttributes(NG, DstGV);
670
671  AppendingVarInfo AVI;
672  AVI.NewGV = NG;
673  AVI.DstInit = DstGV->getInitializer();
674  AVI.SrcInit = SrcGV->getInitializer();
675  AppendingVars.push_back(AVI);
676
677  // Replace any uses of the two global variables with uses of the new
678  // global.
679  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
680
681  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
682  DstGV->eraseFromParent();
683
684  // Track the source variable so we don't try to link it.
685  DoNotLinkFromSource.insert(SrcGV);
686
687  return false;
688}
689
690/// linkGlobalProto - Loop through the global variables in the src module and
691/// merge them into the dest module.
692bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
693  GlobalValue *DGV = getLinkedToGlobal(SGV);
694  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
695
696  if (DGV) {
697    // Concatenation of appending linkage variables is magic and handled later.
698    if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
699      return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
700
701    // Determine whether linkage of these two globals follows the source
702    // module's definition or the destination module's definition.
703    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
704    GlobalValue::VisibilityTypes NV;
705    bool LinkFromSrc = false;
706    if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
707      return true;
708    NewVisibility = NV;
709
710    // If we're not linking from the source, then keep the definition that we
711    // have.
712    if (!LinkFromSrc) {
713      // Special case for const propagation.
714      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
715        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
716          DGVar->setConstant(true);
717
718      // Set calculated linkage and visibility.
719      DGV->setLinkage(NewLinkage);
720      DGV->setVisibility(*NewVisibility);
721
722      // Make sure to remember this mapping.
723      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
724
725      // Track the source global so that we don't attempt to copy it over when
726      // processing global initializers.
727      DoNotLinkFromSource.insert(SGV);
728
729      return false;
730    }
731  }
732
733  // No linking to be performed or linking from the source: simply create an
734  // identical version of the symbol over in the dest module... the
735  // initializer will be filled in later by LinkGlobalInits.
736  GlobalVariable *NewDGV =
737    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
738                       SGV->isConstant(), SGV->getLinkage(), /*init*/0,
739                       SGV->getName(), /*insertbefore*/0,
740                       SGV->isThreadLocal(),
741                       SGV->getType()->getAddressSpace());
742  // Propagate alignment, visibility and section info.
743  CopyGVAttributes(NewDGV, SGV);
744  if (NewVisibility)
745    NewDGV->setVisibility(*NewVisibility);
746
747  if (DGV) {
748    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
749    DGV->eraseFromParent();
750  }
751
752  // Make sure to remember this mapping.
753  ValueMap[SGV] = NewDGV;
754  return false;
755}
756
757/// linkFunctionProto - Link the function in the source module into the
758/// destination module if needed, setting up mapping information.
759bool ModuleLinker::linkFunctionProto(Function *SF) {
760  GlobalValue *DGV = getLinkedToGlobal(SF);
761  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
762
763  if (DGV) {
764    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
765    bool LinkFromSrc = false;
766    GlobalValue::VisibilityTypes NV;
767    if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
768      return true;
769    NewVisibility = NV;
770
771    if (!LinkFromSrc) {
772      // Set calculated linkage
773      DGV->setLinkage(NewLinkage);
774      DGV->setVisibility(*NewVisibility);
775
776      // Make sure to remember this mapping.
777      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
778
779      // Track the function from the source module so we don't attempt to remap
780      // it.
781      DoNotLinkFromSource.insert(SF);
782
783      return false;
784    }
785  }
786
787  // If there is no linkage to be performed or we are linking from the source,
788  // bring SF over.
789  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
790                                     SF->getLinkage(), SF->getName(), DstM);
791  CopyGVAttributes(NewDF, SF);
792  if (NewVisibility)
793    NewDF->setVisibility(*NewVisibility);
794
795  if (DGV) {
796    // Any uses of DF need to change to NewDF, with cast.
797    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
798    DGV->eraseFromParent();
799  } else {
800    // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
801    if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
802        SF->hasAvailableExternallyLinkage()) {
803      DoNotLinkFromSource.insert(SF);
804      LazilyLinkFunctions.push_back(SF);
805    }
806  }
807
808  ValueMap[SF] = NewDF;
809  return false;
810}
811
812/// LinkAliasProto - Set up prototypes for any aliases that come over from the
813/// source module.
814bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
815  GlobalValue *DGV = getLinkedToGlobal(SGA);
816  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
817
818  if (DGV) {
819    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
820    GlobalValue::VisibilityTypes NV;
821    bool LinkFromSrc = false;
822    if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
823      return true;
824    NewVisibility = NV;
825
826    if (!LinkFromSrc) {
827      // Set calculated linkage.
828      DGV->setLinkage(NewLinkage);
829      DGV->setVisibility(*NewVisibility);
830
831      // Make sure to remember this mapping.
832      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
833
834      // Track the alias from the source module so we don't attempt to remap it.
835      DoNotLinkFromSource.insert(SGA);
836
837      return false;
838    }
839  }
840
841  // If there is no linkage to be performed or we're linking from the source,
842  // bring over SGA.
843  GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
844                                       SGA->getLinkage(), SGA->getName(),
845                                       /*aliasee*/0, DstM);
846  CopyGVAttributes(NewDA, SGA);
847  if (NewVisibility)
848    NewDA->setVisibility(*NewVisibility);
849
850  if (DGV) {
851    // Any uses of DGV need to change to NewDA, with cast.
852    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
853    DGV->eraseFromParent();
854  }
855
856  ValueMap[SGA] = NewDA;
857  return false;
858}
859
860static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
861  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
862
863  for (unsigned i = 0; i != NumElements; ++i)
864    Dest.push_back(C->getAggregateElement(i));
865}
866
867void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
868  // Merge the initializer.
869  SmallVector<Constant*, 16> Elements;
870  getArrayElements(AVI.DstInit, Elements);
871
872  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
873  getArrayElements(SrcInit, Elements);
874
875  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
876  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
877}
878
879
880// linkGlobalInits - Update the initializers in the Dest module now that all
881// globals that may be referenced are in Dest.
882void ModuleLinker::linkGlobalInits() {
883  // Loop over all of the globals in the src module, mapping them over as we go
884  for (Module::const_global_iterator I = SrcM->global_begin(),
885       E = SrcM->global_end(); I != E; ++I) {
886
887    // Only process initialized GV's or ones not already in dest.
888    if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
889
890    // Grab destination global variable.
891    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
892    // Figure out what the initializer looks like in the dest module.
893    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
894                                 RF_None, &TypeMap));
895  }
896}
897
898// linkFunctionBody - Copy the source function over into the dest function and
899// fix up references to values.  At this point we know that Dest is an external
900// function, and that Src is not.
901void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
902  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
903
904  // Go through and convert function arguments over, remembering the mapping.
905  Function::arg_iterator DI = Dst->arg_begin();
906  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
907       I != E; ++I, ++DI) {
908    DI->setName(I->getName());  // Copy the name over.
909
910    // Add a mapping to our mapping.
911    ValueMap[I] = DI;
912  }
913
914  if (Mode == Linker::DestroySource) {
915    // Splice the body of the source function into the dest function.
916    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
917
918    // At this point, all of the instructions and values of the function are now
919    // copied over.  The only problem is that they are still referencing values in
920    // the Source function as operands.  Loop through all of the operands of the
921    // functions and patch them up to point to the local versions.
922    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
923      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
924        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
925
926  } else {
927    // Clone the body of the function into the dest function.
928    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
929    CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
930  }
931
932  // There is no need to map the arguments anymore.
933  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
934       I != E; ++I)
935    ValueMap.erase(I);
936
937}
938
939
940void ModuleLinker::linkAliasBodies() {
941  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
942       I != E; ++I) {
943    if (DoNotLinkFromSource.count(I))
944      continue;
945    if (Constant *Aliasee = I->getAliasee()) {
946      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
947      DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
948    }
949  }
950}
951
952/// linkNamedMDNodes - Insert all of the named mdnodes in Src into the Dest
953/// module.
954void ModuleLinker::linkNamedMDNodes() {
955  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
956  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
957       E = SrcM->named_metadata_end(); I != E; ++I) {
958    // Don't link module flags here. Do them separately.
959    if (&*I == SrcModFlags) continue;
960    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
961    // Add Src elements into Dest node.
962    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
963      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
964                                   RF_None, &TypeMap));
965  }
966}
967
968/// categorizeModuleFlagNodes -
969bool ModuleLinker::
970categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
971                          DenseMap<MDString*, MDNode*> &ErrorNode,
972                          DenseMap<MDString*, MDNode*> &WarningNode,
973                          DenseMap<MDString*, MDNode*> &OverrideNode,
974                          DenseMap<MDString*,
975                            SmallSetVector<MDNode*, 8> > &RequireNodes,
976                          SmallSetVector<MDString*, 16> &SeenIDs) {
977  bool HasErr = false;
978
979  for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) {
980    MDNode *Op = ModFlags->getOperand(I);
981    assert(Op->getNumOperands() == 3 && "Invalid module flag metadata!");
982    assert(isa<ConstantInt>(Op->getOperand(0)) &&
983           "Module flag's first operand must be an integer!");
984    assert(isa<MDString>(Op->getOperand(1)) &&
985           "Module flag's second operand must be an MDString!");
986
987    ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
988    MDString *ID = cast<MDString>(Op->getOperand(1));
989    Value *Val = Op->getOperand(2);
990    switch (Behavior->getZExtValue()) {
991    default:
992      assert(false && "Invalid behavior in module flag metadata!");
993      break;
994    case Module::Error: {
995      MDNode *&ErrNode = ErrorNode[ID];
996      if (!ErrNode) ErrNode = Op;
997      if (ErrNode->getOperand(2) != Val)
998        HasErr = emitError("linking module flags '" + ID->getString() +
999                           "': IDs have conflicting values");
1000      break;
1001    }
1002    case Module::Warning: {
1003      MDNode *&WarnNode = WarningNode[ID];
1004      if (!WarnNode) WarnNode = Op;
1005      if (WarnNode->getOperand(2) != Val)
1006        errs() << "WARNING: linking module flags '" << ID->getString()
1007               << "': IDs have conflicting values";
1008      break;
1009    }
1010    case Module::Require:  RequireNodes[ID].insert(Op);     break;
1011    case Module::Override: {
1012      MDNode *&OvrNode = OverrideNode[ID];
1013      if (!OvrNode) OvrNode = Op;
1014      if (OvrNode->getOperand(2) != Val)
1015        HasErr = emitError("linking module flags '" + ID->getString() +
1016                           "': IDs have conflicting override values");
1017      break;
1018    }
1019    }
1020
1021    SeenIDs.insert(ID);
1022  }
1023
1024  return HasErr;
1025}
1026
1027/// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
1028/// module.
1029bool ModuleLinker::linkModuleFlagsMetadata() {
1030  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1031  if (!SrcModFlags) return false;
1032
1033  NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1034
1035  // If the destination module doesn't have module flags yet, then just copy
1036  // over the source module's flags.
1037  if (DstModFlags->getNumOperands() == 0) {
1038    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1039      DstModFlags->addOperand(SrcModFlags->getOperand(I));
1040
1041    return false;
1042  }
1043
1044  bool HasErr = false;
1045
1046  // Otherwise, we have to merge them based on their behaviors. First,
1047  // categorize all of the nodes in the modules' module flags. If an error or
1048  // warning occurs, then emit the appropriate message(s).
1049  DenseMap<MDString*, MDNode*> ErrorNode;
1050  DenseMap<MDString*, MDNode*> WarningNode;
1051  DenseMap<MDString*, MDNode*> OverrideNode;
1052  DenseMap<MDString*, SmallSetVector<MDNode*, 8> > RequireNodes;
1053  SmallSetVector<MDString*, 16> SeenIDs;
1054
1055  HasErr |= categorizeModuleFlagNodes(SrcModFlags, ErrorNode, WarningNode,
1056                                      OverrideNode, RequireNodes, SeenIDs);
1057  HasErr |= categorizeModuleFlagNodes(DstModFlags, ErrorNode, WarningNode,
1058                                      OverrideNode, RequireNodes, SeenIDs);
1059
1060  // Check that there isn't both an error and warning node for a flag.
1061  for (SmallSetVector<MDString*, 16>::iterator
1062         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1063    MDString *ID = *I;
1064    if (ErrorNode[ID] && WarningNode[ID])
1065      HasErr = emitError("linking module flags '" + ID->getString() +
1066                         "': IDs have conflicting behaviors");
1067  }
1068
1069  // Early exit if we had an error.
1070  if (HasErr) return true;
1071
1072  // Get the destination's module flags ready for new operands.
1073  DstModFlags->dropAllReferences();
1074
1075  // Add all of the module flags to the destination module.
1076  DenseMap<MDString*, SmallVector<MDNode*, 4> > AddedNodes;
1077  for (SmallSetVector<MDString*, 16>::iterator
1078         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1079    MDString *ID = *I;
1080    if (OverrideNode[ID]) {
1081      DstModFlags->addOperand(OverrideNode[ID]);
1082      AddedNodes[ID].push_back(OverrideNode[ID]);
1083    } else if (ErrorNode[ID]) {
1084      DstModFlags->addOperand(ErrorNode[ID]);
1085      AddedNodes[ID].push_back(ErrorNode[ID]);
1086    } else if (WarningNode[ID]) {
1087      DstModFlags->addOperand(WarningNode[ID]);
1088      AddedNodes[ID].push_back(WarningNode[ID]);
1089    }
1090
1091    for (SmallSetVector<MDNode*, 8>::iterator
1092           II = RequireNodes[ID].begin(), IE = RequireNodes[ID].end();
1093         II != IE; ++II)
1094      DstModFlags->addOperand(*II);
1095  }
1096
1097  // Now check that all of the requirements have been satisfied.
1098  for (SmallSetVector<MDString*, 16>::iterator
1099         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1100    MDString *ID = *I;
1101    SmallSetVector<MDNode*, 8> &Set = RequireNodes[ID];
1102
1103    for (SmallSetVector<MDNode*, 8>::iterator
1104           II = Set.begin(), IE = Set.end(); II != IE; ++II) {
1105      MDNode *Node = *II;
1106      assert(isa<MDNode>(Node->getOperand(2)) &&
1107             "Module flag's third operand must be an MDNode!");
1108      MDNode *Val = cast<MDNode>(Node->getOperand(2));
1109
1110      MDString *ReqID = cast<MDString>(Val->getOperand(0));
1111      Value *ReqVal = Val->getOperand(1);
1112
1113      bool HasValue = false;
1114      for (SmallVectorImpl<MDNode*>::iterator
1115             RI = AddedNodes[ReqID].begin(), RE = AddedNodes[ReqID].end();
1116           RI != RE; ++RI) {
1117        MDNode *ReqNode = *RI;
1118        if (ReqNode->getOperand(2) == ReqVal) {
1119          HasValue = true;
1120          break;
1121        }
1122      }
1123
1124      if (!HasValue)
1125        HasErr = emitError("linking module flags '" + ReqID->getString() +
1126                           "': does not have the required value");
1127    }
1128  }
1129
1130  return HasErr;
1131}
1132
1133bool ModuleLinker::run() {
1134  assert(DstM && "Null destination module");
1135  assert(SrcM && "Null source module");
1136
1137  // Inherit the target data from the source module if the destination module
1138  // doesn't have one already.
1139  if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
1140    DstM->setDataLayout(SrcM->getDataLayout());
1141
1142  // Copy the target triple from the source to dest if the dest's is empty.
1143  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1144    DstM->setTargetTriple(SrcM->getTargetTriple());
1145
1146  if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
1147      SrcM->getDataLayout() != DstM->getDataLayout())
1148    errs() << "WARNING: Linking two modules of different data layouts!\n";
1149  if (!SrcM->getTargetTriple().empty() &&
1150      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1151    errs() << "WARNING: Linking two modules of different target triples: ";
1152    if (!SrcM->getModuleIdentifier().empty())
1153      errs() << SrcM->getModuleIdentifier() << ": ";
1154    errs() << "'" << SrcM->getTargetTriple() << "' and '"
1155           << DstM->getTargetTriple() << "'\n";
1156  }
1157
1158  // Append the module inline asm string.
1159  if (!SrcM->getModuleInlineAsm().empty()) {
1160    if (DstM->getModuleInlineAsm().empty())
1161      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1162    else
1163      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1164                               SrcM->getModuleInlineAsm());
1165  }
1166
1167  // Update the destination module's dependent libraries list with the libraries
1168  // from the source module. There's no opportunity for duplicates here as the
1169  // Module ensures that duplicate insertions are discarded.
1170  for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
1171       SI != SE; ++SI)
1172    DstM->addLibrary(*SI);
1173
1174  // If the source library's module id is in the dependent library list of the
1175  // destination library, remove it since that module is now linked in.
1176  StringRef ModuleId = SrcM->getModuleIdentifier();
1177  if (!ModuleId.empty())
1178    DstM->removeLibrary(sys::path::stem(ModuleId));
1179
1180  // Loop over all of the linked values to compute type mappings.
1181  computeTypeMapping();
1182
1183  // Insert all of the globals in src into the DstM module... without linking
1184  // initializers (which could refer to functions not yet mapped over).
1185  for (Module::global_iterator I = SrcM->global_begin(),
1186       E = SrcM->global_end(); I != E; ++I)
1187    if (linkGlobalProto(I))
1188      return true;
1189
1190  // Link the functions together between the two modules, without doing function
1191  // bodies... this just adds external function prototypes to the DstM
1192  // function...  We do this so that when we begin processing function bodies,
1193  // all of the global values that may be referenced are available in our
1194  // ValueMap.
1195  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1196    if (linkFunctionProto(I))
1197      return true;
1198
1199  // If there were any aliases, link them now.
1200  for (Module::alias_iterator I = SrcM->alias_begin(),
1201       E = SrcM->alias_end(); I != E; ++I)
1202    if (linkAliasProto(I))
1203      return true;
1204
1205  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1206    linkAppendingVarInit(AppendingVars[i]);
1207
1208  // Update the initializers in the DstM module now that all globals that may
1209  // be referenced are in DstM.
1210  linkGlobalInits();
1211
1212  // Link in the function bodies that are defined in the source module into
1213  // DstM.
1214  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1215    // Skip if not linking from source.
1216    if (DoNotLinkFromSource.count(SF)) continue;
1217
1218    // Skip if no body (function is external) or materialize.
1219    if (SF->isDeclaration()) {
1220      if (!SF->isMaterializable())
1221        continue;
1222      if (SF->Materialize(&ErrorMsg))
1223        return true;
1224    }
1225
1226    linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
1227  }
1228
1229  // Resolve all uses of aliases with aliasees.
1230  linkAliasBodies();
1231
1232  // Remap all of the named MDNodes in Src into the DstM module. We do this
1233  // after linking GlobalValues so that MDNodes that reference GlobalValues
1234  // are properly remapped.
1235  linkNamedMDNodes();
1236
1237  // Merge the module flags into the DstM module.
1238  if (linkModuleFlagsMetadata())
1239    return true;
1240
1241  // Process vector of lazily linked in functions.
1242  bool LinkedInAnyFunctions;
1243  do {
1244    LinkedInAnyFunctions = false;
1245
1246    for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1247        E = LazilyLinkFunctions.end(); I != E; ++I) {
1248      if (!*I)
1249        continue;
1250
1251      Function *SF = *I;
1252      Function *DF = cast<Function>(ValueMap[SF]);
1253
1254      if (!DF->use_empty()) {
1255
1256        // Materialize if necessary.
1257        if (SF->isDeclaration()) {
1258          if (!SF->isMaterializable())
1259            continue;
1260          if (SF->Materialize(&ErrorMsg))
1261            return true;
1262        }
1263
1264        // Link in function body.
1265        linkFunctionBody(DF, SF);
1266
1267        // "Remove" from vector by setting the element to 0.
1268        *I = 0;
1269
1270        // Set flag to indicate we may have more functions to lazily link in
1271        // since we linked in a function.
1272        LinkedInAnyFunctions = true;
1273      }
1274    }
1275  } while (LinkedInAnyFunctions);
1276
1277  // Remove any prototypes of functions that were not actually linked in.
1278  for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1279      E = LazilyLinkFunctions.end(); I != E; ++I) {
1280    if (!*I)
1281      continue;
1282
1283    Function *SF = *I;
1284    Function *DF = cast<Function>(ValueMap[SF]);
1285    if (DF->use_empty())
1286      DF->eraseFromParent();
1287  }
1288
1289  // Now that all of the types from the source are used, resolve any structs
1290  // copied over to the dest that didn't exist there.
1291  TypeMap.linkDefinedTypeBodies();
1292
1293  return false;
1294}
1295
1296//===----------------------------------------------------------------------===//
1297// LinkModules entrypoint.
1298//===----------------------------------------------------------------------===//
1299
1300// LinkModules - This function links two modules together, with the resulting
1301// left module modified to be the composite of the two input modules.  If an
1302// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1303// the problem.  Upon failure, the Dest module could be in a modified state, and
1304// shouldn't be relied on to be consistent.
1305bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1306                         std::string *ErrorMsg) {
1307  ModuleLinker TheLinker(Dest, Src, Mode);
1308  if (TheLinker.run()) {
1309    if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
1310    return true;
1311  }
1312
1313  return false;
1314}
1315