LinkModules.cpp revision cd7193fbce32e8ed3a63e8b76672cdf9956891ca
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Linker.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Instructions.h"
18#include "llvm/Module.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/Path.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Transforms/Utils/Cloning.h"
27#include "llvm/Transforms/Utils/ValueMapper.h"
28#include <cctype>
29using namespace llvm;
30
31//===----------------------------------------------------------------------===//
32// TypeMap implementation.
33//===----------------------------------------------------------------------===//
34
35namespace {
36class TypeMapTy : public ValueMapTypeRemapper {
37  /// MappedTypes - This is a mapping from a source type to a destination type
38  /// to use.
39  DenseMap<Type*, Type*> MappedTypes;
40
41  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
42  /// we speculatively add types to MappedTypes, but keep track of them here in
43  /// case we need to roll back.
44  SmallVector<Type*, 16> SpeculativeTypes;
45
46  /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
47  /// source module that are mapped to an opaque struct in the destination
48  /// module.
49  SmallVector<StructType*, 16> SrcDefinitionsToResolve;
50
51  /// DstResolvedOpaqueTypes - This is the set of opaque types in the
52  /// destination modules who are getting a body from the source module.
53  SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
54public:
55
56  /// addTypeMapping - Indicate that the specified type in the destination
57  /// module is conceptually equivalent to the specified type in the source
58  /// module.
59  void addTypeMapping(Type *DstTy, Type *SrcTy);
60
61  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
62  /// module from a type definition in the source module.
63  void linkDefinedTypeBodies();
64
65  /// get - Return the mapped type to use for the specified input type from the
66  /// source module.
67  Type *get(Type *SrcTy);
68
69  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
70
71#ifndef NDEBUG
72  /// dump - Dump out the type map for debugging purposes.
73  void dump() const {
74    for (DenseMap<Type*, Type*>::const_iterator
75           I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
76      dbgs() << "TypeMap: ";
77      I->first->dump();
78      dbgs() << " => ";
79      I->second->dump();
80      dbgs() << '\n';
81    }
82  }
83#endif
84
85private:
86  Type *getImpl(Type *T);
87  /// remapType - Implement the ValueMapTypeRemapper interface.
88  Type *remapType(Type *SrcTy) {
89    return get(SrcTy);
90  }
91
92  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
93};
94}
95
96void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
97  Type *&Entry = MappedTypes[SrcTy];
98  if (Entry) return;
99
100  if (DstTy == SrcTy) {
101    Entry = DstTy;
102    return;
103  }
104
105  // Check to see if these types are recursively isomorphic and establish a
106  // mapping between them if so.
107  if (!areTypesIsomorphic(DstTy, SrcTy)) {
108    // Oops, they aren't isomorphic.  Just discard this request by rolling out
109    // any speculative mappings we've established.
110    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
111      MappedTypes.erase(SpeculativeTypes[i]);
112  }
113  SpeculativeTypes.clear();
114}
115
116/// areTypesIsomorphic - Recursively walk this pair of types, returning true
117/// if they are isomorphic, false if they are not.
118bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
119  // Two types with differing kinds are clearly not isomorphic.
120  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
121
122  // If we have an entry in the MappedTypes table, then we have our answer.
123  Type *&Entry = MappedTypes[SrcTy];
124  if (Entry)
125    return Entry == DstTy;
126
127  // Two identical types are clearly isomorphic.  Remember this
128  // non-speculatively.
129  if (DstTy == SrcTy) {
130    Entry = DstTy;
131    return true;
132  }
133
134  // Okay, we have two types with identical kinds that we haven't seen before.
135
136  // If this is an opaque struct type, special case it.
137  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
138    // Mapping an opaque type to any struct, just keep the dest struct.
139    if (SSTy->isOpaque()) {
140      Entry = DstTy;
141      SpeculativeTypes.push_back(SrcTy);
142      return true;
143    }
144
145    // Mapping a non-opaque source type to an opaque dest.  If this is the first
146    // type that we're mapping onto this destination type then we succeed.  Keep
147    // the dest, but fill it in later.  This doesn't need to be speculative.  If
148    // this is the second (different) type that we're trying to map onto the
149    // same opaque type then we fail.
150    if (cast<StructType>(DstTy)->isOpaque()) {
151      // We can only map one source type onto the opaque destination type.
152      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
153        return false;
154      SrcDefinitionsToResolve.push_back(SSTy);
155      Entry = DstTy;
156      return true;
157    }
158  }
159
160  // If the number of subtypes disagree between the two types, then we fail.
161  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
162    return false;
163
164  // Fail if any of the extra properties (e.g. array size) of the type disagree.
165  if (isa<IntegerType>(DstTy))
166    return false;  // bitwidth disagrees.
167  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
168    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
169      return false;
170
171  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
172    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
173      return false;
174  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
175    StructType *SSTy = cast<StructType>(SrcTy);
176    if (DSTy->isLiteral() != SSTy->isLiteral() ||
177        DSTy->isPacked() != SSTy->isPacked())
178      return false;
179  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
180    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
181      return false;
182  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
183    if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
184      return false;
185  }
186
187  // Otherwise, we speculate that these two types will line up and recursively
188  // check the subelements.
189  Entry = DstTy;
190  SpeculativeTypes.push_back(SrcTy);
191
192  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
193    if (!areTypesIsomorphic(DstTy->getContainedType(i),
194                            SrcTy->getContainedType(i)))
195      return false;
196
197  // If everything seems to have lined up, then everything is great.
198  return true;
199}
200
201/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
202/// module from a type definition in the source module.
203void TypeMapTy::linkDefinedTypeBodies() {
204  SmallVector<Type*, 16> Elements;
205  SmallString<16> TmpName;
206
207  // Note that processing entries in this loop (calling 'get') can add new
208  // entries to the SrcDefinitionsToResolve vector.
209  while (!SrcDefinitionsToResolve.empty()) {
210    StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
211    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
212
213    // TypeMap is a many-to-one mapping, if there were multiple types that
214    // provide a body for DstSTy then previous iterations of this loop may have
215    // already handled it.  Just ignore this case.
216    if (!DstSTy->isOpaque()) continue;
217    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
218
219    // Map the body of the source type over to a new body for the dest type.
220    Elements.resize(SrcSTy->getNumElements());
221    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
222      Elements[i] = getImpl(SrcSTy->getElementType(i));
223
224    DstSTy->setBody(Elements, SrcSTy->isPacked());
225
226    // If DstSTy has no name or has a longer name than STy, then viciously steal
227    // STy's name.
228    if (!SrcSTy->hasName()) continue;
229    StringRef SrcName = SrcSTy->getName();
230
231    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
232      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
233      SrcSTy->setName("");
234      DstSTy->setName(TmpName.str());
235      TmpName.clear();
236    }
237  }
238
239  DstResolvedOpaqueTypes.clear();
240}
241
242
243/// get - Return the mapped type to use for the specified input type from the
244/// source module.
245Type *TypeMapTy::get(Type *Ty) {
246  Type *Result = getImpl(Ty);
247
248  // If this caused a reference to any struct type, resolve it before returning.
249  if (!SrcDefinitionsToResolve.empty())
250    linkDefinedTypeBodies();
251  return Result;
252}
253
254/// getImpl - This is the recursive version of get().
255Type *TypeMapTy::getImpl(Type *Ty) {
256  // If we already have an entry for this type, return it.
257  Type **Entry = &MappedTypes[Ty];
258  if (*Entry) return *Entry;
259
260  // If this is not a named struct type, then just map all of the elements and
261  // then rebuild the type from inside out.
262  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
263    // If there are no element types to map, then the type is itself.  This is
264    // true for the anonymous {} struct, things like 'float', integers, etc.
265    if (Ty->getNumContainedTypes() == 0)
266      return *Entry = Ty;
267
268    // Remap all of the elements, keeping track of whether any of them change.
269    bool AnyChange = false;
270    SmallVector<Type*, 4> ElementTypes;
271    ElementTypes.resize(Ty->getNumContainedTypes());
272    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
273      ElementTypes[i] = getImpl(Ty->getContainedType(i));
274      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
275    }
276
277    // If we found our type while recursively processing stuff, just use it.
278    Entry = &MappedTypes[Ty];
279    if (*Entry) return *Entry;
280
281    // If all of the element types mapped directly over, then the type is usable
282    // as-is.
283    if (!AnyChange)
284      return *Entry = Ty;
285
286    // Otherwise, rebuild a modified type.
287    switch (Ty->getTypeID()) {
288    default: llvm_unreachable("unknown derived type to remap");
289    case Type::ArrayTyID:
290      return *Entry = ArrayType::get(ElementTypes[0],
291                                     cast<ArrayType>(Ty)->getNumElements());
292    case Type::VectorTyID:
293      return *Entry = VectorType::get(ElementTypes[0],
294                                      cast<VectorType>(Ty)->getNumElements());
295    case Type::PointerTyID:
296      return *Entry = PointerType::get(ElementTypes[0],
297                                      cast<PointerType>(Ty)->getAddressSpace());
298    case Type::FunctionTyID:
299      return *Entry = FunctionType::get(ElementTypes[0],
300                                        makeArrayRef(ElementTypes).slice(1),
301                                        cast<FunctionType>(Ty)->isVarArg());
302    case Type::StructTyID:
303      // Note that this is only reached for anonymous structs.
304      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
305                                      cast<StructType>(Ty)->isPacked());
306    }
307  }
308
309  // Otherwise, this is an unmapped named struct.  If the struct can be directly
310  // mapped over, just use it as-is.  This happens in a case when the linked-in
311  // module has something like:
312  //   %T = type {%T*, i32}
313  //   @GV = global %T* null
314  // where T does not exist at all in the destination module.
315  //
316  // The other case we watch for is when the type is not in the destination
317  // module, but that it has to be rebuilt because it refers to something that
318  // is already mapped.  For example, if the destination module has:
319  //  %A = type { i32 }
320  // and the source module has something like
321  //  %A' = type { i32 }
322  //  %B = type { %A'* }
323  //  @GV = global %B* null
324  // then we want to create a new type: "%B = type { %A*}" and have it take the
325  // pristine "%B" name from the source module.
326  //
327  // To determine which case this is, we have to recursively walk the type graph
328  // speculating that we'll be able to reuse it unmodified.  Only if this is
329  // safe would we map the entire thing over.  Because this is an optimization,
330  // and is not required for the prettiness of the linked module, we just skip
331  // it and always rebuild a type here.
332  StructType *STy = cast<StructType>(Ty);
333
334  // If the type is opaque, we can just use it directly.
335  if (STy->isOpaque())
336    return *Entry = STy;
337
338  // Otherwise we create a new type and resolve its body later.  This will be
339  // resolved by the top level of get().
340  SrcDefinitionsToResolve.push_back(STy);
341  StructType *DTy = StructType::create(STy->getContext());
342  DstResolvedOpaqueTypes.insert(DTy);
343  return *Entry = DTy;
344}
345
346
347
348//===----------------------------------------------------------------------===//
349// ModuleLinker implementation.
350//===----------------------------------------------------------------------===//
351
352namespace {
353  /// ModuleLinker - This is an implementation class for the LinkModules
354  /// function, which is the entrypoint for this file.
355  class ModuleLinker {
356    Module *DstM, *SrcM;
357
358    TypeMapTy TypeMap;
359
360    /// ValueMap - Mapping of values from what they used to be in Src, to what
361    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
362    /// some overhead due to the use of Value handles which the Linker doesn't
363    /// actually need, but this allows us to reuse the ValueMapper code.
364    ValueToValueMapTy ValueMap;
365
366    struct AppendingVarInfo {
367      GlobalVariable *NewGV;  // New aggregate global in dest module.
368      Constant *DstInit;      // Old initializer from dest module.
369      Constant *SrcInit;      // Old initializer from src module.
370    };
371
372    std::vector<AppendingVarInfo> AppendingVars;
373
374    unsigned Mode; // Mode to treat source module.
375
376    // Set of items not to link in from source.
377    SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
378
379    // Vector of functions to lazily link in.
380    std::vector<Function*> LazilyLinkFunctions;
381
382  public:
383    std::string ErrorMsg;
384
385    ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
386      : DstM(dstM), SrcM(srcM), Mode(mode) { }
387
388    bool run();
389
390  private:
391    /// emitError - Helper method for setting a message and returning an error
392    /// code.
393    bool emitError(const Twine &Message) {
394      ErrorMsg = Message.str();
395      return true;
396    }
397
398    /// getLinkageResult - This analyzes the two global values and determines
399    /// what the result will look like in the destination module.
400    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
401                          GlobalValue::LinkageTypes &LT,
402                          GlobalValue::VisibilityTypes &Vis,
403                          bool &LinkFromSrc);
404
405    /// getLinkedToGlobal - Given a global in the source module, return the
406    /// global in the destination module that is being linked to, if any.
407    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
408      // If the source has no name it can't link.  If it has local linkage,
409      // there is no name match-up going on.
410      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
411        return 0;
412
413      // Otherwise see if we have a match in the destination module's symtab.
414      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
415      if (DGV == 0) return 0;
416
417      // If we found a global with the same name in the dest module, but it has
418      // internal linkage, we are really not doing any linkage here.
419      if (DGV->hasLocalLinkage())
420        return 0;
421
422      // Otherwise, we do in fact link to the destination global.
423      return DGV;
424    }
425
426    void computeTypeMapping();
427    bool categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
428                                   DenseMap<MDString*, MDNode*> &ErrorNode,
429                                   DenseMap<MDString*, MDNode*> &WarningNode,
430                                   DenseMap<MDString*, MDNode*> &OverrideNode,
431                                   DenseMap<MDString*,
432                                   SmallSetVector<MDNode*, 8> > &RequireNodes,
433                                   SmallSetVector<MDString*, 16> &SeenIDs);
434
435    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
436    bool linkGlobalProto(GlobalVariable *SrcGV);
437    bool linkFunctionProto(Function *SrcF);
438    bool linkAliasProto(GlobalAlias *SrcA);
439    bool linkModuleFlagsMetadata();
440
441    void linkAppendingVarInit(const AppendingVarInfo &AVI);
442    void linkGlobalInits();
443    void linkFunctionBody(Function *Dst, Function *Src);
444    void linkAliasBodies();
445    void linkNamedMDNodes();
446  };
447}
448
449/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
450/// in the symbol table.  This is good for all clients except for us.  Go
451/// through the trouble to force this back.
452static void forceRenaming(GlobalValue *GV, StringRef Name) {
453  // If the global doesn't force its name or if it already has the right name,
454  // there is nothing for us to do.
455  if (GV->hasLocalLinkage() || GV->getName() == Name)
456    return;
457
458  Module *M = GV->getParent();
459
460  // If there is a conflict, rename the conflict.
461  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
462    GV->takeName(ConflictGV);
463    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
464    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
465  } else {
466    GV->setName(Name);              // Force the name back
467  }
468}
469
470/// copyGVAttributes - copy additional attributes (those not needed to construct
471/// a GlobalValue) from the SrcGV to the DestGV.
472static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
473  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
474  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
475  DestGV->copyAttributesFrom(SrcGV);
476  DestGV->setAlignment(Alignment);
477
478  forceRenaming(DestGV, SrcGV->getName());
479}
480
481static bool isLessConstraining(GlobalValue::VisibilityTypes a,
482                               GlobalValue::VisibilityTypes b) {
483  if (a == GlobalValue::HiddenVisibility)
484    return false;
485  if (b == GlobalValue::HiddenVisibility)
486    return true;
487  if (a == GlobalValue::ProtectedVisibility)
488    return false;
489  if (b == GlobalValue::ProtectedVisibility)
490    return true;
491  return false;
492}
493
494/// getLinkageResult - This analyzes the two global values and determines what
495/// the result will look like in the destination module.  In particular, it
496/// computes the resultant linkage type and visibility, computes whether the
497/// global in the source should be copied over to the destination (replacing
498/// the existing one), and computes whether this linkage is an error or not.
499bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
500                                    GlobalValue::LinkageTypes &LT,
501                                    GlobalValue::VisibilityTypes &Vis,
502                                    bool &LinkFromSrc) {
503  assert(Dest && "Must have two globals being queried");
504  assert(!Src->hasLocalLinkage() &&
505         "If Src has internal linkage, Dest shouldn't be set!");
506
507  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
508  bool DestIsDeclaration = Dest->isDeclaration();
509
510  if (SrcIsDeclaration) {
511    // If Src is external or if both Src & Dest are external..  Just link the
512    // external globals, we aren't adding anything.
513    if (Src->hasDLLImportLinkage()) {
514      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
515      if (DestIsDeclaration) {
516        LinkFromSrc = true;
517        LT = Src->getLinkage();
518      }
519    } else if (Dest->hasExternalWeakLinkage()) {
520      // If the Dest is weak, use the source linkage.
521      LinkFromSrc = true;
522      LT = Src->getLinkage();
523    } else {
524      LinkFromSrc = false;
525      LT = Dest->getLinkage();
526    }
527  } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
528    // If Dest is external but Src is not:
529    LinkFromSrc = true;
530    LT = Src->getLinkage();
531  } else if (Src->isWeakForLinker()) {
532    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
533    // or DLL* linkage.
534    if (Dest->hasExternalWeakLinkage() ||
535        Dest->hasAvailableExternallyLinkage() ||
536        (Dest->hasLinkOnceLinkage() &&
537         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
538      LinkFromSrc = true;
539      LT = Src->getLinkage();
540    } else {
541      LinkFromSrc = false;
542      LT = Dest->getLinkage();
543    }
544  } else if (Dest->isWeakForLinker()) {
545    // At this point we know that Src has External* or DLL* linkage.
546    if (Src->hasExternalWeakLinkage()) {
547      LinkFromSrc = false;
548      LT = Dest->getLinkage();
549    } else {
550      LinkFromSrc = true;
551      LT = GlobalValue::ExternalLinkage;
552    }
553  } else {
554    assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
555            Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
556           (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
557            Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
558           "Unexpected linkage type!");
559    return emitError("Linking globals named '" + Src->getName() +
560                 "': symbol multiply defined!");
561  }
562
563  // Compute the visibility. We follow the rules in the System V Application
564  // Binary Interface.
565  Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
566    Dest->getVisibility() : Src->getVisibility();
567  return false;
568}
569
570/// computeTypeMapping - Loop over all of the linked values to compute type
571/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
572/// we have two struct types 'Foo' but one got renamed when the module was
573/// loaded into the same LLVMContext.
574void ModuleLinker::computeTypeMapping() {
575  // Incorporate globals.
576  for (Module::global_iterator I = SrcM->global_begin(),
577       E = SrcM->global_end(); I != E; ++I) {
578    GlobalValue *DGV = getLinkedToGlobal(I);
579    if (DGV == 0) continue;
580
581    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
582      TypeMap.addTypeMapping(DGV->getType(), I->getType());
583      continue;
584    }
585
586    // Unify the element type of appending arrays.
587    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
588    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
589    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
590  }
591
592  // Incorporate functions.
593  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
594    if (GlobalValue *DGV = getLinkedToGlobal(I))
595      TypeMap.addTypeMapping(DGV->getType(), I->getType());
596  }
597
598  // Incorporate types by name, scanning all the types in the source module.
599  // At this point, the destination module may have a type "%foo = { i32 }" for
600  // example.  When the source module got loaded into the same LLVMContext, if
601  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
602  // Though it isn't required for correctness, attempt to link these up to clean
603  // up the IR.
604  std::vector<StructType*> SrcStructTypes;
605  SrcM->findUsedStructTypes(SrcStructTypes);
606
607  SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
608                                                 SrcStructTypes.end());
609
610  for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
611    StructType *ST = SrcStructTypes[i];
612    if (!ST->hasName()) continue;
613
614    // Check to see if there is a dot in the name followed by a digit.
615    size_t DotPos = ST->getName().rfind('.');
616    if (DotPos == 0 || DotPos == StringRef::npos ||
617        ST->getName().back() == '.' || !isdigit(ST->getName()[DotPos+1]))
618      continue;
619
620    // Check to see if the destination module has a struct with the prefix name.
621    if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
622      // Don't use it if this actually came from the source module.  They're in
623      // the same LLVMContext after all.
624      if (!SrcStructTypesSet.count(DST))
625        TypeMap.addTypeMapping(DST, ST);
626  }
627
628  // Don't bother incorporating aliases, they aren't generally typed well.
629
630  // Now that we have discovered all of the type equivalences, get a body for
631  // any 'opaque' types in the dest module that are now resolved.
632  TypeMap.linkDefinedTypeBodies();
633}
634
635/// linkAppendingVarProto - If there were any appending global variables, link
636/// them together now.  Return true on error.
637bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
638                                         GlobalVariable *SrcGV) {
639
640  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
641    return emitError("Linking globals named '" + SrcGV->getName() +
642           "': can only link appending global with another appending global!");
643
644  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
645  ArrayType *SrcTy =
646    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
647  Type *EltTy = DstTy->getElementType();
648
649  // Check to see that they two arrays agree on type.
650  if (EltTy != SrcTy->getElementType())
651    return emitError("Appending variables with different element types!");
652  if (DstGV->isConstant() != SrcGV->isConstant())
653    return emitError("Appending variables linked with different const'ness!");
654
655  if (DstGV->getAlignment() != SrcGV->getAlignment())
656    return emitError(
657             "Appending variables with different alignment need to be linked!");
658
659  if (DstGV->getVisibility() != SrcGV->getVisibility())
660    return emitError(
661            "Appending variables with different visibility need to be linked!");
662
663  if (DstGV->getSection() != SrcGV->getSection())
664    return emitError(
665          "Appending variables with different section name need to be linked!");
666
667  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
668  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
669
670  // Create the new global variable.
671  GlobalVariable *NG =
672    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
673                       DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
674                       DstGV->isThreadLocal(),
675                       DstGV->getType()->getAddressSpace());
676
677  // Propagate alignment, visibility and section info.
678  copyGVAttributes(NG, DstGV);
679
680  AppendingVarInfo AVI;
681  AVI.NewGV = NG;
682  AVI.DstInit = DstGV->getInitializer();
683  AVI.SrcInit = SrcGV->getInitializer();
684  AppendingVars.push_back(AVI);
685
686  // Replace any uses of the two global variables with uses of the new
687  // global.
688  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
689
690  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
691  DstGV->eraseFromParent();
692
693  // Track the source variable so we don't try to link it.
694  DoNotLinkFromSource.insert(SrcGV);
695
696  return false;
697}
698
699/// linkGlobalProto - Loop through the global variables in the src module and
700/// merge them into the dest module.
701bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
702  GlobalValue *DGV = getLinkedToGlobal(SGV);
703  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
704
705  if (DGV) {
706    // Concatenation of appending linkage variables is magic and handled later.
707    if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
708      return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
709
710    // Determine whether linkage of these two globals follows the source
711    // module's definition or the destination module's definition.
712    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
713    GlobalValue::VisibilityTypes NV;
714    bool LinkFromSrc = false;
715    if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
716      return true;
717    NewVisibility = NV;
718
719    // If we're not linking from the source, then keep the definition that we
720    // have.
721    if (!LinkFromSrc) {
722      // Special case for const propagation.
723      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
724        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
725          DGVar->setConstant(true);
726
727      // Set calculated linkage and visibility.
728      DGV->setLinkage(NewLinkage);
729      DGV->setVisibility(*NewVisibility);
730
731      // Make sure to remember this mapping.
732      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
733
734      // Track the source global so that we don't attempt to copy it over when
735      // processing global initializers.
736      DoNotLinkFromSource.insert(SGV);
737
738      return false;
739    }
740  }
741
742  // No linking to be performed or linking from the source: simply create an
743  // identical version of the symbol over in the dest module... the
744  // initializer will be filled in later by LinkGlobalInits.
745  GlobalVariable *NewDGV =
746    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
747                       SGV->isConstant(), SGV->getLinkage(), /*init*/0,
748                       SGV->getName(), /*insertbefore*/0,
749                       SGV->isThreadLocal(),
750                       SGV->getType()->getAddressSpace());
751  // Propagate alignment, visibility and section info.
752  copyGVAttributes(NewDGV, SGV);
753  if (NewVisibility)
754    NewDGV->setVisibility(*NewVisibility);
755
756  if (DGV) {
757    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
758    DGV->eraseFromParent();
759  }
760
761  // Make sure to remember this mapping.
762  ValueMap[SGV] = NewDGV;
763  return false;
764}
765
766/// linkFunctionProto - Link the function in the source module into the
767/// destination module if needed, setting up mapping information.
768bool ModuleLinker::linkFunctionProto(Function *SF) {
769  GlobalValue *DGV = getLinkedToGlobal(SF);
770  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
771
772  if (DGV) {
773    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
774    bool LinkFromSrc = false;
775    GlobalValue::VisibilityTypes NV;
776    if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
777      return true;
778    NewVisibility = NV;
779
780    if (!LinkFromSrc) {
781      // Set calculated linkage
782      DGV->setLinkage(NewLinkage);
783      DGV->setVisibility(*NewVisibility);
784
785      // Make sure to remember this mapping.
786      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
787
788      // Track the function from the source module so we don't attempt to remap
789      // it.
790      DoNotLinkFromSource.insert(SF);
791
792      return false;
793    }
794  }
795
796  // If there is no linkage to be performed or we are linking from the source,
797  // bring SF over.
798  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
799                                     SF->getLinkage(), SF->getName(), DstM);
800  copyGVAttributes(NewDF, SF);
801  if (NewVisibility)
802    NewDF->setVisibility(*NewVisibility);
803
804  if (DGV) {
805    // Any uses of DF need to change to NewDF, with cast.
806    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
807    DGV->eraseFromParent();
808  } else {
809    // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
810    if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
811        SF->hasAvailableExternallyLinkage()) {
812      DoNotLinkFromSource.insert(SF);
813      LazilyLinkFunctions.push_back(SF);
814    }
815  }
816
817  ValueMap[SF] = NewDF;
818  return false;
819}
820
821/// LinkAliasProto - Set up prototypes for any aliases that come over from the
822/// source module.
823bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
824  GlobalValue *DGV = getLinkedToGlobal(SGA);
825  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
826
827  if (DGV) {
828    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
829    GlobalValue::VisibilityTypes NV;
830    bool LinkFromSrc = false;
831    if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
832      return true;
833    NewVisibility = NV;
834
835    if (!LinkFromSrc) {
836      // Set calculated linkage.
837      DGV->setLinkage(NewLinkage);
838      DGV->setVisibility(*NewVisibility);
839
840      // Make sure to remember this mapping.
841      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
842
843      // Track the alias from the source module so we don't attempt to remap it.
844      DoNotLinkFromSource.insert(SGA);
845
846      return false;
847    }
848  }
849
850  // If there is no linkage to be performed or we're linking from the source,
851  // bring over SGA.
852  GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
853                                       SGA->getLinkage(), SGA->getName(),
854                                       /*aliasee*/0, DstM);
855  copyGVAttributes(NewDA, SGA);
856  if (NewVisibility)
857    NewDA->setVisibility(*NewVisibility);
858
859  if (DGV) {
860    // Any uses of DGV need to change to NewDA, with cast.
861    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
862    DGV->eraseFromParent();
863  }
864
865  ValueMap[SGA] = NewDA;
866  return false;
867}
868
869static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
870  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
871
872  for (unsigned i = 0; i != NumElements; ++i)
873    Dest.push_back(C->getAggregateElement(i));
874}
875
876void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
877  // Merge the initializer.
878  SmallVector<Constant*, 16> Elements;
879  getArrayElements(AVI.DstInit, Elements);
880
881  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
882  getArrayElements(SrcInit, Elements);
883
884  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
885  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
886}
887
888/// linkGlobalInits - Update the initializers in the Dest module now that all
889/// globals that may be referenced are in Dest.
890void ModuleLinker::linkGlobalInits() {
891  // Loop over all of the globals in the src module, mapping them over as we go
892  for (Module::const_global_iterator I = SrcM->global_begin(),
893       E = SrcM->global_end(); I != E; ++I) {
894
895    // Only process initialized GV's or ones not already in dest.
896    if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
897
898    // Grab destination global variable.
899    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
900    // Figure out what the initializer looks like in the dest module.
901    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
902                                 RF_None, &TypeMap));
903  }
904}
905
906/// linkFunctionBody - Copy the source function over into the dest function and
907/// fix up references to values.  At this point we know that Dest is an external
908/// function, and that Src is not.
909void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
910  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
911
912  // Go through and convert function arguments over, remembering the mapping.
913  Function::arg_iterator DI = Dst->arg_begin();
914  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
915       I != E; ++I, ++DI) {
916    DI->setName(I->getName());  // Copy the name over.
917
918    // Add a mapping to our mapping.
919    ValueMap[I] = DI;
920  }
921
922  if (Mode == Linker::DestroySource) {
923    // Splice the body of the source function into the dest function.
924    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
925
926    // At this point, all of the instructions and values of the function are now
927    // copied over.  The only problem is that they are still referencing values in
928    // the Source function as operands.  Loop through all of the operands of the
929    // functions and patch them up to point to the local versions.
930    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
931      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
932        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
933
934  } else {
935    // Clone the body of the function into the dest function.
936    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
937    CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
938  }
939
940  // There is no need to map the arguments anymore.
941  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
942       I != E; ++I)
943    ValueMap.erase(I);
944
945}
946
947/// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
948void ModuleLinker::linkAliasBodies() {
949  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
950       I != E; ++I) {
951    if (DoNotLinkFromSource.count(I))
952      continue;
953    if (Constant *Aliasee = I->getAliasee()) {
954      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
955      DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
956    }
957  }
958}
959
960/// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
961/// module.
962void ModuleLinker::linkNamedMDNodes() {
963  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
964  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
965       E = SrcM->named_metadata_end(); I != E; ++I) {
966    // Don't link module flags here. Do them separately.
967    if (&*I == SrcModFlags) continue;
968    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
969    // Add Src elements into Dest node.
970    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
971      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
972                                   RF_None, &TypeMap));
973  }
974}
975
976/// categorizeModuleFlagNodes - Categorize the module flags according to their
977/// type: Error, Warning, Override, and Require.
978bool ModuleLinker::
979categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
980                          DenseMap<MDString*, MDNode*> &ErrorNode,
981                          DenseMap<MDString*, MDNode*> &WarningNode,
982                          DenseMap<MDString*, MDNode*> &OverrideNode,
983                          DenseMap<MDString*,
984                            SmallSetVector<MDNode*, 8> > &RequireNodes,
985                          SmallSetVector<MDString*, 16> &SeenIDs) {
986  bool HasErr = false;
987
988  for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) {
989    MDNode *Op = ModFlags->getOperand(I);
990    assert(Op->getNumOperands() == 3 && "Invalid module flag metadata!");
991    assert(isa<ConstantInt>(Op->getOperand(0)) &&
992           "Module flag's first operand must be an integer!");
993    assert(isa<MDString>(Op->getOperand(1)) &&
994           "Module flag's second operand must be an MDString!");
995
996    ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
997    MDString *ID = cast<MDString>(Op->getOperand(1));
998    Value *Val = Op->getOperand(2);
999    switch (Behavior->getZExtValue()) {
1000    default:
1001      assert(false && "Invalid behavior in module flag metadata!");
1002      break;
1003    case Module::Error: {
1004      MDNode *&ErrNode = ErrorNode[ID];
1005      if (!ErrNode) ErrNode = Op;
1006      if (ErrNode->getOperand(2) != Val)
1007        HasErr = emitError("linking module flags '" + ID->getString() +
1008                           "': IDs have conflicting values");
1009      break;
1010    }
1011    case Module::Warning: {
1012      MDNode *&WarnNode = WarningNode[ID];
1013      if (!WarnNode) WarnNode = Op;
1014      if (WarnNode->getOperand(2) != Val)
1015        errs() << "WARNING: linking module flags '" << ID->getString()
1016               << "': IDs have conflicting values";
1017      break;
1018    }
1019    case Module::Require:  RequireNodes[ID].insert(Op);     break;
1020    case Module::Override: {
1021      MDNode *&OvrNode = OverrideNode[ID];
1022      if (!OvrNode) OvrNode = Op;
1023      if (OvrNode->getOperand(2) != Val)
1024        HasErr = emitError("linking module flags '" + ID->getString() +
1025                           "': IDs have conflicting override values");
1026      break;
1027    }
1028    }
1029
1030    SeenIDs.insert(ID);
1031  }
1032
1033  return HasErr;
1034}
1035
1036/// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
1037/// module.
1038bool ModuleLinker::linkModuleFlagsMetadata() {
1039  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1040  if (!SrcModFlags) return false;
1041
1042  NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1043
1044  // If the destination module doesn't have module flags yet, then just copy
1045  // over the source module's flags.
1046  if (DstModFlags->getNumOperands() == 0) {
1047    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1048      DstModFlags->addOperand(SrcModFlags->getOperand(I));
1049
1050    return false;
1051  }
1052
1053  bool HasErr = false;
1054
1055  // Otherwise, we have to merge them based on their behaviors. First,
1056  // categorize all of the nodes in the modules' module flags. If an error or
1057  // warning occurs, then emit the appropriate message(s).
1058  DenseMap<MDString*, MDNode*> ErrorNode;
1059  DenseMap<MDString*, MDNode*> WarningNode;
1060  DenseMap<MDString*, MDNode*> OverrideNode;
1061  DenseMap<MDString*, SmallSetVector<MDNode*, 8> > RequireNodes;
1062  SmallSetVector<MDString*, 16> SeenIDs;
1063
1064  HasErr |= categorizeModuleFlagNodes(SrcModFlags, ErrorNode, WarningNode,
1065                                      OverrideNode, RequireNodes, SeenIDs);
1066  HasErr |= categorizeModuleFlagNodes(DstModFlags, ErrorNode, WarningNode,
1067                                      OverrideNode, RequireNodes, SeenIDs);
1068
1069  // Check that there isn't both an error and warning node for a flag.
1070  for (SmallSetVector<MDString*, 16>::iterator
1071         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1072    MDString *ID = *I;
1073    if (ErrorNode[ID] && WarningNode[ID])
1074      HasErr = emitError("linking module flags '" + ID->getString() +
1075                         "': IDs have conflicting behaviors");
1076  }
1077
1078  // Early exit if we had an error.
1079  if (HasErr) return true;
1080
1081  // Get the destination's module flags ready for new operands.
1082  DstModFlags->dropAllReferences();
1083
1084  // Add all of the module flags to the destination module.
1085  DenseMap<MDString*, SmallVector<MDNode*, 4> > AddedNodes;
1086  for (SmallSetVector<MDString*, 16>::iterator
1087         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1088    MDString *ID = *I;
1089    if (OverrideNode[ID]) {
1090      DstModFlags->addOperand(OverrideNode[ID]);
1091      AddedNodes[ID].push_back(OverrideNode[ID]);
1092    } else if (ErrorNode[ID]) {
1093      DstModFlags->addOperand(ErrorNode[ID]);
1094      AddedNodes[ID].push_back(ErrorNode[ID]);
1095    } else if (WarningNode[ID]) {
1096      DstModFlags->addOperand(WarningNode[ID]);
1097      AddedNodes[ID].push_back(WarningNode[ID]);
1098    }
1099
1100    for (SmallSetVector<MDNode*, 8>::iterator
1101           II = RequireNodes[ID].begin(), IE = RequireNodes[ID].end();
1102         II != IE; ++II)
1103      DstModFlags->addOperand(*II);
1104  }
1105
1106  // Now check that all of the requirements have been satisfied.
1107  for (SmallSetVector<MDString*, 16>::iterator
1108         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1109    MDString *ID = *I;
1110    SmallSetVector<MDNode*, 8> &Set = RequireNodes[ID];
1111
1112    for (SmallSetVector<MDNode*, 8>::iterator
1113           II = Set.begin(), IE = Set.end(); II != IE; ++II) {
1114      MDNode *Node = *II;
1115      assert(isa<MDNode>(Node->getOperand(2)) &&
1116             "Module flag's third operand must be an MDNode!");
1117      MDNode *Val = cast<MDNode>(Node->getOperand(2));
1118
1119      MDString *ReqID = cast<MDString>(Val->getOperand(0));
1120      Value *ReqVal = Val->getOperand(1);
1121
1122      bool HasValue = false;
1123      for (SmallVectorImpl<MDNode*>::iterator
1124             RI = AddedNodes[ReqID].begin(), RE = AddedNodes[ReqID].end();
1125           RI != RE; ++RI) {
1126        MDNode *ReqNode = *RI;
1127        if (ReqNode->getOperand(2) == ReqVal) {
1128          HasValue = true;
1129          break;
1130        }
1131      }
1132
1133      if (!HasValue)
1134        HasErr = emitError("linking module flags '" + ReqID->getString() +
1135                           "': does not have the required value");
1136    }
1137  }
1138
1139  return HasErr;
1140}
1141
1142bool ModuleLinker::run() {
1143  assert(DstM && "Null destination module");
1144  assert(SrcM && "Null source module");
1145
1146  // Inherit the target data from the source module if the destination module
1147  // doesn't have one already.
1148  if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
1149    DstM->setDataLayout(SrcM->getDataLayout());
1150
1151  // Copy the target triple from the source to dest if the dest's is empty.
1152  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1153    DstM->setTargetTriple(SrcM->getTargetTriple());
1154
1155  if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
1156      SrcM->getDataLayout() != DstM->getDataLayout())
1157    errs() << "WARNING: Linking two modules of different data layouts!\n";
1158  if (!SrcM->getTargetTriple().empty() &&
1159      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1160    errs() << "WARNING: Linking two modules of different target triples: ";
1161    if (!SrcM->getModuleIdentifier().empty())
1162      errs() << SrcM->getModuleIdentifier() << ": ";
1163    errs() << "'" << SrcM->getTargetTriple() << "' and '"
1164           << DstM->getTargetTriple() << "'\n";
1165  }
1166
1167  // Append the module inline asm string.
1168  if (!SrcM->getModuleInlineAsm().empty()) {
1169    if (DstM->getModuleInlineAsm().empty())
1170      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1171    else
1172      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1173                               SrcM->getModuleInlineAsm());
1174  }
1175
1176  // Update the destination module's dependent libraries list with the libraries
1177  // from the source module. There's no opportunity for duplicates here as the
1178  // Module ensures that duplicate insertions are discarded.
1179  for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
1180       SI != SE; ++SI)
1181    DstM->addLibrary(*SI);
1182
1183  // If the source library's module id is in the dependent library list of the
1184  // destination library, remove it since that module is now linked in.
1185  StringRef ModuleId = SrcM->getModuleIdentifier();
1186  if (!ModuleId.empty())
1187    DstM->removeLibrary(sys::path::stem(ModuleId));
1188
1189  // Loop over all of the linked values to compute type mappings.
1190  computeTypeMapping();
1191
1192  // Insert all of the globals in src into the DstM module... without linking
1193  // initializers (which could refer to functions not yet mapped over).
1194  for (Module::global_iterator I = SrcM->global_begin(),
1195       E = SrcM->global_end(); I != E; ++I)
1196    if (linkGlobalProto(I))
1197      return true;
1198
1199  // Link the functions together between the two modules, without doing function
1200  // bodies... this just adds external function prototypes to the DstM
1201  // function...  We do this so that when we begin processing function bodies,
1202  // all of the global values that may be referenced are available in our
1203  // ValueMap.
1204  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1205    if (linkFunctionProto(I))
1206      return true;
1207
1208  // If there were any aliases, link them now.
1209  for (Module::alias_iterator I = SrcM->alias_begin(),
1210       E = SrcM->alias_end(); I != E; ++I)
1211    if (linkAliasProto(I))
1212      return true;
1213
1214  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1215    linkAppendingVarInit(AppendingVars[i]);
1216
1217  // Update the initializers in the DstM module now that all globals that may
1218  // be referenced are in DstM.
1219  linkGlobalInits();
1220
1221  // Link in the function bodies that are defined in the source module into
1222  // DstM.
1223  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1224    // Skip if not linking from source.
1225    if (DoNotLinkFromSource.count(SF)) continue;
1226
1227    // Skip if no body (function is external) or materialize.
1228    if (SF->isDeclaration()) {
1229      if (!SF->isMaterializable())
1230        continue;
1231      if (SF->Materialize(&ErrorMsg))
1232        return true;
1233    }
1234
1235    linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
1236  }
1237
1238  // Resolve all uses of aliases with aliasees.
1239  linkAliasBodies();
1240
1241  // Remap all of the named MDNodes in Src into the DstM module. We do this
1242  // after linking GlobalValues so that MDNodes that reference GlobalValues
1243  // are properly remapped.
1244  linkNamedMDNodes();
1245
1246  // Merge the module flags into the DstM module.
1247  if (linkModuleFlagsMetadata())
1248    return true;
1249
1250  // Process vector of lazily linked in functions.
1251  bool LinkedInAnyFunctions;
1252  do {
1253    LinkedInAnyFunctions = false;
1254
1255    for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1256        E = LazilyLinkFunctions.end(); I != E; ++I) {
1257      if (!*I)
1258        continue;
1259
1260      Function *SF = *I;
1261      Function *DF = cast<Function>(ValueMap[SF]);
1262
1263      if (!DF->use_empty()) {
1264
1265        // Materialize if necessary.
1266        if (SF->isDeclaration()) {
1267          if (!SF->isMaterializable())
1268            continue;
1269          if (SF->Materialize(&ErrorMsg))
1270            return true;
1271        }
1272
1273        // Link in function body.
1274        linkFunctionBody(DF, SF);
1275
1276        // "Remove" from vector by setting the element to 0.
1277        *I = 0;
1278
1279        // Set flag to indicate we may have more functions to lazily link in
1280        // since we linked in a function.
1281        LinkedInAnyFunctions = true;
1282      }
1283    }
1284  } while (LinkedInAnyFunctions);
1285
1286  // Remove any prototypes of functions that were not actually linked in.
1287  for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1288      E = LazilyLinkFunctions.end(); I != E; ++I) {
1289    if (!*I)
1290      continue;
1291
1292    Function *SF = *I;
1293    Function *DF = cast<Function>(ValueMap[SF]);
1294    if (DF->use_empty())
1295      DF->eraseFromParent();
1296  }
1297
1298  // Now that all of the types from the source are used, resolve any structs
1299  // copied over to the dest that didn't exist there.
1300  TypeMap.linkDefinedTypeBodies();
1301
1302  return false;
1303}
1304
1305//===----------------------------------------------------------------------===//
1306// LinkModules entrypoint.
1307//===----------------------------------------------------------------------===//
1308
1309/// LinkModules - This function links two modules together, with the resulting
1310/// left module modified to be the composite of the two input modules.  If an
1311/// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1312/// the problem.  Upon failure, the Dest module could be in a modified state,
1313/// and shouldn't be relied on to be consistent.
1314bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1315                         std::string *ErrorMsg) {
1316  ModuleLinker TheLinker(Dest, Src, Mode);
1317  if (TheLinker.run()) {
1318    if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
1319    return true;
1320  }
1321
1322  return false;
1323}
1324