LinkModules.cpp revision cfc5911b75584c89f50ece727d129827b18100ae
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/Instructions.h"
26#include "llvm/Assembly/Writer.h"
27#include "llvm/Support/Streams.h"
28#include "llvm/System/Path.h"
29#include "llvm/ADT/DenseMap.h"
30#include <sstream>
31using namespace llvm;
32
33// Error - Simple wrapper function to conditionally assign to E and return true.
34// This just makes error return conditions a little bit simpler...
35static inline bool Error(std::string *E, const std::string &Message) {
36  if (E) *E = Message;
37  return true;
38}
39
40// ToStr - Simple wrapper function to convert a type to a string.
41static std::string ToStr(const Type *Ty, const Module *M) {
42  std::ostringstream OS;
43  WriteTypeSymbolic(OS, Ty, M);
44  return OS.str();
45}
46
47//
48// Function: ResolveTypes()
49//
50// Description:
51//  Attempt to link the two specified types together.
52//
53// Inputs:
54//  DestTy - The type to which we wish to resolve.
55//  SrcTy  - The original type which we want to resolve.
56//
57// Outputs:
58//  DestST - The symbol table in which the new type should be placed.
59//
60// Return value:
61//  true  - There is an error and the types cannot yet be linked.
62//  false - No errors.
63//
64static bool ResolveTypes(const Type *DestTy, const Type *SrcTy) {
65  if (DestTy == SrcTy) return false;       // If already equal, noop
66  assert(DestTy && SrcTy && "Can't handle null types");
67
68  if (const OpaqueType *OT = dyn_cast<OpaqueType>(DestTy)) {
69    // Type _is_ in module, just opaque...
70    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(SrcTy);
71  } else if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
72    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
73  } else {
74    return true;  // Cannot link types... not-equal and neither is opaque.
75  }
76  return false;
77}
78
79/// LinkerTypeMap - This implements a map of types that is stable
80/// even if types are resolved/refined to other types.  This is not a general
81/// purpose map, it is specific to the linker's use.
82namespace {
83class LinkerTypeMap : public AbstractTypeUser {
84  typedef DenseMap<const Type*, PATypeHolder> TheMapTy;
85  TheMapTy TheMap;
86
87  LinkerTypeMap(const LinkerTypeMap&); // DO NOT IMPLEMENT
88  void operator=(const LinkerTypeMap&); // DO NOT IMPLEMENT
89public:
90  LinkerTypeMap() {}
91  ~LinkerTypeMap() {
92    for (DenseMap<const Type*, PATypeHolder>::iterator I = TheMap.begin(),
93         E = TheMap.end(); I != E; ++I)
94      I->first->removeAbstractTypeUser(this);
95  }
96
97  /// lookup - Return the value for the specified type or null if it doesn't
98  /// exist.
99  const Type *lookup(const Type *Ty) const {
100    TheMapTy::const_iterator I = TheMap.find(Ty);
101    if (I != TheMap.end()) return I->second;
102    return 0;
103  }
104
105  /// erase - Remove the specified type, returning true if it was in the set.
106  bool erase(const Type *Ty) {
107    if (!TheMap.erase(Ty))
108      return false;
109    if (Ty->isAbstract())
110      Ty->removeAbstractTypeUser(this);
111    return true;
112  }
113
114  /// insert - This returns true if the pointer was new to the set, false if it
115  /// was already in the set.
116  bool insert(const Type *Src, const Type *Dst) {
117    if (!TheMap.insert(std::make_pair(Src, PATypeHolder(Dst))))
118      return false;  // Already in map.
119    if (Src->isAbstract())
120      Src->addAbstractTypeUser(this);
121    return true;
122  }
123
124protected:
125  /// refineAbstractType - The callback method invoked when an abstract type is
126  /// resolved to another type.  An object must override this method to update
127  /// its internal state to reference NewType instead of OldType.
128  ///
129  virtual void refineAbstractType(const DerivedType *OldTy,
130                                  const Type *NewTy) {
131    TheMapTy::iterator I = TheMap.find(OldTy);
132    const Type *DstTy = I->second;
133
134    TheMap.erase(I);
135    if (OldTy->isAbstract())
136      OldTy->removeAbstractTypeUser(this);
137
138    // Don't reinsert into the map if the key is concrete now.
139    if (NewTy->isAbstract())
140      insert(NewTy, DstTy);
141  }
142
143  /// The other case which AbstractTypeUsers must be aware of is when a type
144  /// makes the transition from being abstract (where it has clients on it's
145  /// AbstractTypeUsers list) to concrete (where it does not).  This method
146  /// notifies ATU's when this occurs for a type.
147  virtual void typeBecameConcrete(const DerivedType *AbsTy) {
148    TheMap.erase(AbsTy);
149    AbsTy->removeAbstractTypeUser(this);
150  }
151
152  // for debugging...
153  virtual void dump() const {
154    cerr << "AbstractTypeSet!\n";
155  }
156};
157}
158
159
160// RecursiveResolveTypes - This is just like ResolveTypes, except that it
161// recurses down into derived types, merging the used types if the parent types
162// are compatible.
163static bool RecursiveResolveTypesI(const Type *DstTy, const Type *SrcTy,
164                                   LinkerTypeMap &Pointers) {
165  if (DstTy == SrcTy) return false;       // If already equal, noop
166
167  // If we found our opaque type, resolve it now!
168  if (isa<OpaqueType>(DstTy) || isa<OpaqueType>(SrcTy))
169    return ResolveTypes(DstTy, SrcTy);
170
171  // Two types cannot be resolved together if they are of different primitive
172  // type.  For example, we cannot resolve an int to a float.
173  if (DstTy->getTypeID() != SrcTy->getTypeID()) return true;
174
175  // If neither type is abstract, then they really are just different types.
176  if (!DstTy->isAbstract() && !SrcTy->isAbstract())
177    return true;
178
179  // Otherwise, resolve the used type used by this derived type...
180  switch (DstTy->getTypeID()) {
181  default:
182    return true;
183  case Type::FunctionTyID: {
184    const FunctionType *DstFT = cast<FunctionType>(DstTy);
185    const FunctionType *SrcFT = cast<FunctionType>(SrcTy);
186    if (DstFT->isVarArg() != SrcFT->isVarArg() ||
187        DstFT->getNumContainedTypes() != SrcFT->getNumContainedTypes())
188      return true;
189
190    // Use TypeHolder's so recursive resolution won't break us.
191    PATypeHolder ST(SrcFT), DT(DstFT);
192    for (unsigned i = 0, e = DstFT->getNumContainedTypes(); i != e; ++i) {
193      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
194      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
195        return true;
196    }
197    return false;
198  }
199  case Type::StructTyID: {
200    const StructType *DstST = cast<StructType>(DstTy);
201    const StructType *SrcST = cast<StructType>(SrcTy);
202    if (DstST->getNumContainedTypes() != SrcST->getNumContainedTypes())
203      return true;
204
205    PATypeHolder ST(SrcST), DT(DstST);
206    for (unsigned i = 0, e = DstST->getNumContainedTypes(); i != e; ++i) {
207      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
208      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
209        return true;
210    }
211    return false;
212  }
213  case Type::ArrayTyID: {
214    const ArrayType *DAT = cast<ArrayType>(DstTy);
215    const ArrayType *SAT = cast<ArrayType>(SrcTy);
216    if (DAT->getNumElements() != SAT->getNumElements()) return true;
217    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
218                                  Pointers);
219  }
220  case Type::VectorTyID: {
221    const VectorType *DVT = cast<VectorType>(DstTy);
222    const VectorType *SVT = cast<VectorType>(SrcTy);
223    if (DVT->getNumElements() != SVT->getNumElements()) return true;
224    return RecursiveResolveTypesI(DVT->getElementType(), SVT->getElementType(),
225                                  Pointers);
226  }
227  case Type::PointerTyID: {
228    const PointerType *DstPT = cast<PointerType>(DstTy);
229    const PointerType *SrcPT = cast<PointerType>(SrcTy);
230
231    if (DstPT->getAddressSpace() != SrcPT->getAddressSpace())
232      return true;
233
234    // If this is a pointer type, check to see if we have already seen it.  If
235    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
236    // an associative container for this search, because the type pointers (keys
237    // in the container) change whenever types get resolved.
238    if (SrcPT->isAbstract())
239      if (const Type *ExistingDestTy = Pointers.lookup(SrcPT))
240        return ExistingDestTy != DstPT;
241
242    if (DstPT->isAbstract())
243      if (const Type *ExistingSrcTy = Pointers.lookup(DstPT))
244        return ExistingSrcTy != SrcPT;
245    // Otherwise, add the current pointers to the vector to stop recursion on
246    // this pair.
247    if (DstPT->isAbstract())
248      Pointers.insert(DstPT, SrcPT);
249    if (SrcPT->isAbstract())
250      Pointers.insert(SrcPT, DstPT);
251
252    return RecursiveResolveTypesI(DstPT->getElementType(),
253                                  SrcPT->getElementType(), Pointers);
254  }
255  }
256}
257
258static bool RecursiveResolveTypes(const Type *DestTy, const Type *SrcTy) {
259  LinkerTypeMap PointerTypes;
260  return RecursiveResolveTypesI(DestTy, SrcTy, PointerTypes);
261}
262
263
264// LinkTypes - Go through the symbol table of the Src module and see if any
265// types are named in the src module that are not named in the Dst module.
266// Make sure there are no type name conflicts.
267static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
268        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
269  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
270
271  // Look for a type plane for Type's...
272  TypeSymbolTable::const_iterator TI = SrcST->begin();
273  TypeSymbolTable::const_iterator TE = SrcST->end();
274  if (TI == TE) return false;  // No named types, do nothing.
275
276  // Some types cannot be resolved immediately because they depend on other
277  // types being resolved to each other first.  This contains a list of types we
278  // are waiting to recheck.
279  std::vector<std::string> DelayedTypesToResolve;
280
281  for ( ; TI != TE; ++TI ) {
282    const std::string &Name = TI->first;
283    const Type *RHS = TI->second;
284
285    // Check to see if this type name is already in the dest module.
286    Type *Entry = DestST->lookup(Name);
287
288    // If the name is just in the source module, bring it over to the dest.
289    if (Entry == 0) {
290      if (!Name.empty())
291        DestST->insert(Name, const_cast<Type*>(RHS));
292    } else if (ResolveTypes(Entry, RHS)) {
293      // They look different, save the types 'till later to resolve.
294      DelayedTypesToResolve.push_back(Name);
295    }
296  }
297
298  // Iteratively resolve types while we can...
299  while (!DelayedTypesToResolve.empty()) {
300    // Loop over all of the types, attempting to resolve them if possible...
301    unsigned OldSize = DelayedTypesToResolve.size();
302
303    // Try direct resolution by name...
304    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
305      const std::string &Name = DelayedTypesToResolve[i];
306      Type *T1 = SrcST->lookup(Name);
307      Type *T2 = DestST->lookup(Name);
308      if (!ResolveTypes(T2, T1)) {
309        // We are making progress!
310        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
311        --i;
312      }
313    }
314
315    // Did we not eliminate any types?
316    if (DelayedTypesToResolve.size() == OldSize) {
317      // Attempt to resolve subelements of types.  This allows us to merge these
318      // two types: { int* } and { opaque* }
319      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
320        const std::string &Name = DelayedTypesToResolve[i];
321        if (!RecursiveResolveTypes(SrcST->lookup(Name), DestST->lookup(Name))) {
322          // We are making progress!
323          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
324
325          // Go back to the main loop, perhaps we can resolve directly by name
326          // now...
327          break;
328        }
329      }
330
331      // If we STILL cannot resolve the types, then there is something wrong.
332      if (DelayedTypesToResolve.size() == OldSize) {
333        // Remove the symbol name from the destination.
334        DelayedTypesToResolve.pop_back();
335      }
336    }
337  }
338
339
340  return false;
341}
342
343static void PrintMap(const std::map<const Value*, Value*> &M) {
344  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
345       I != E; ++I) {
346    cerr << " Fr: " << (void*)I->first << " ";
347    I->first->dump();
348    cerr << " To: " << (void*)I->second << " ";
349    I->second->dump();
350    cerr << "\n";
351  }
352}
353
354
355// RemapOperand - Use ValueMap to convert constants from one module to another.
356static Value *RemapOperand(const Value *In,
357                           std::map<const Value*, Value*> &ValueMap) {
358  std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
359  if (I != ValueMap.end())
360    return I->second;
361
362  // Check to see if it's a constant that we are interested in transforming.
363  Value *Result = 0;
364  if (const Constant *CPV = dyn_cast<Constant>(In)) {
365    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
366        isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
367      return const_cast<Constant*>(CPV);   // Simple constants stay identical.
368
369    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
370      std::vector<Constant*> Operands(CPA->getNumOperands());
371      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
372        Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
373      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
374    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
375      std::vector<Constant*> Operands(CPS->getNumOperands());
376      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
377        Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
378      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
379    } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
380      Result = const_cast<Constant*>(CPV);
381    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
382      std::vector<Constant*> Operands(CP->getNumOperands());
383      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
384        Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
385      Result = ConstantVector::get(Operands);
386    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
387      std::vector<Constant*> Ops;
388      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
389        Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
390      Result = CE->getWithOperands(Ops);
391    } else if (isa<GlobalValue>(CPV)) {
392      assert(0 && "Unmapped global?");
393    } else {
394      assert(0 && "Unknown type of derived type constant value!");
395    }
396  } else if (isa<InlineAsm>(In)) {
397    Result = const_cast<Value*>(In);
398  }
399
400  // Cache the mapping in our local map structure
401  if (Result) {
402    ValueMap[In] = Result;
403    return Result;
404  }
405
406
407  cerr << "LinkModules ValueMap: \n";
408  PrintMap(ValueMap);
409
410  cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
411  assert(0 && "Couldn't remap value!");
412  return 0;
413}
414
415/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
416/// in the symbol table.  This is good for all clients except for us.  Go
417/// through the trouble to force this back.
418static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
419  assert(GV->getName() != Name && "Can't force rename to self");
420  ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
421
422  // If there is a conflict, rename the conflict.
423  if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
424    assert(ConflictGV->hasInternalLinkage() &&
425           "Not conflicting with a static global, should link instead!");
426    GV->takeName(ConflictGV);
427    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
428    assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
429  } else {
430    GV->setName(Name);              // Force the name back
431  }
432}
433
434/// CopyGVAttributes - copy additional attributes (those not needed to construct
435/// a GlobalValue) from the SrcGV to the DestGV.
436static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
437  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
438  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
439  DestGV->copyAttributesFrom(SrcGV);
440  DestGV->setAlignment(Alignment);
441}
442
443/// GetLinkageResult - This analyzes the two global values and determines what
444/// the result will look like in the destination module.  In particular, it
445/// computes the resultant linkage type, computes whether the global in the
446/// source should be copied over to the destination (replacing the existing
447/// one), and computes whether this linkage is an error or not. It also performs
448/// visibility checks: we cannot link together two symbols with different
449/// visibilities.
450static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
451                             GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
452                             std::string *Err) {
453  assert((!Dest || !Src->hasInternalLinkage()) &&
454         "If Src has internal linkage, Dest shouldn't be set!");
455  if (!Dest) {
456    // Linking something to nothing.
457    LinkFromSrc = true;
458    LT = Src->getLinkage();
459  } else if (Src->isDeclaration()) {
460    // If Src is external or if both Src & Dest are external..  Just link the
461    // external globals, we aren't adding anything.
462    if (Src->hasDLLImportLinkage()) {
463      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
464      if (Dest->isDeclaration()) {
465        LinkFromSrc = true;
466        LT = Src->getLinkage();
467      }
468    } else if (Dest->hasExternalWeakLinkage()) {
469      //If the Dest is weak, use the source linkage
470      LinkFromSrc = true;
471      LT = Src->getLinkage();
472    } else {
473      LinkFromSrc = false;
474      LT = Dest->getLinkage();
475    }
476  } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
477    // If Dest is external but Src is not:
478    LinkFromSrc = true;
479    LT = Src->getLinkage();
480  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
481    if (Src->getLinkage() != Dest->getLinkage())
482      return Error(Err, "Linking globals named '" + Src->getName() +
483            "': can only link appending global with another appending global!");
484    LinkFromSrc = true; // Special cased.
485    LT = Src->getLinkage();
486  } else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage() ||
487             Src->hasCommonLinkage()) {
488    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
489    // or DLL* linkage.
490    if ((Dest->hasLinkOnceLinkage() &&
491          (Src->hasWeakLinkage() || Src->hasCommonLinkage())) ||
492        Dest->hasExternalWeakLinkage()) {
493      LinkFromSrc = true;
494      LT = Src->getLinkage();
495    } else {
496      LinkFromSrc = false;
497      LT = Dest->getLinkage();
498    }
499  } else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage() ||
500             Dest->hasCommonLinkage()) {
501    // At this point we know that Src has External* or DLL* linkage.
502    if (Src->hasExternalWeakLinkage()) {
503      LinkFromSrc = false;
504      LT = Dest->getLinkage();
505    } else {
506      LinkFromSrc = true;
507      LT = GlobalValue::ExternalLinkage;
508    }
509  } else {
510    assert((Dest->hasExternalLinkage() ||
511            Dest->hasDLLImportLinkage() ||
512            Dest->hasDLLExportLinkage() ||
513            Dest->hasExternalWeakLinkage()) &&
514           (Src->hasExternalLinkage() ||
515            Src->hasDLLImportLinkage() ||
516            Src->hasDLLExportLinkage() ||
517            Src->hasExternalWeakLinkage()) &&
518           "Unexpected linkage type!");
519    return Error(Err, "Linking globals named '" + Src->getName() +
520                 "': symbol multiply defined!");
521  }
522
523  // Check visibility
524  if (Dest && Src->getVisibility() != Dest->getVisibility())
525    if (!Src->isDeclaration() && !Dest->isDeclaration())
526      return Error(Err, "Linking globals named '" + Src->getName() +
527                   "': symbols have different visibilities!");
528  return false;
529}
530
531// LinkGlobals - Loop through the global variables in the src module and merge
532// them into the dest module.
533static bool LinkGlobals(Module *Dest, const Module *Src,
534                        std::map<const Value*, Value*> &ValueMap,
535                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
536                        std::string *Err) {
537  // Loop over all of the globals in the src module, mapping them over as we go
538  for (Module::const_global_iterator I = Src->global_begin(), E = Src->global_end();
539       I != E; ++I) {
540    const GlobalVariable *SGV = I;
541    GlobalValue *DGV = 0;
542
543    // Check to see if may have to link the global with the global
544    if (SGV->hasName() && !SGV->hasInternalLinkage()) {
545      DGV = Dest->getGlobalVariable(SGV->getName());
546      if (DGV && DGV->getType() != SGV->getType())
547        // If types don't agree due to opaque types, try to resolve them.
548        RecursiveResolveTypes(SGV->getType(), DGV->getType());
549    }
550
551    // Check to see if may have to link the global with the alias
552    if (!DGV && SGV->hasName() && !SGV->hasInternalLinkage()) {
553      DGV = Dest->getNamedAlias(SGV->getName());
554      if (DGV && DGV->getType() != SGV->getType())
555        // If types don't agree due to opaque types, try to resolve them.
556        RecursiveResolveTypes(SGV->getType(), DGV->getType());
557    }
558
559    if (DGV && DGV->hasInternalLinkage())
560      DGV = 0;
561
562    assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
563            SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
564           "Global must either be external or have an initializer!");
565
566    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
567    bool LinkFromSrc = false;
568    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
569      return true;
570
571    if (!DGV) {
572      // No linking to be performed, simply create an identical version of the
573      // symbol over in the dest module... the initializer will be filled in
574      // later by LinkGlobalInits...
575      GlobalVariable *NewDGV =
576        new GlobalVariable(SGV->getType()->getElementType(),
577                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
578                           SGV->getName(), Dest, false,
579                           SGV->getType()->getAddressSpace());
580      // Propagate alignment, visibility and section info.
581      CopyGVAttributes(NewDGV, SGV);
582
583      // If the LLVM runtime renamed the global, but it is an externally visible
584      // symbol, DGV must be an existing global with internal linkage.  Rename
585      // it.
586      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
587        ForceRenaming(NewDGV, SGV->getName());
588
589      // Make sure to remember this mapping...
590      ValueMap[SGV] = NewDGV;
591
592      if (SGV->hasAppendingLinkage())
593        // Keep track that this is an appending variable...
594        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
595    } else if (DGV->hasAppendingLinkage()) {
596      // No linking is performed yet.  Just insert a new copy of the global, and
597      // keep track of the fact that it is an appending variable in the
598      // AppendingVars map.  The name is cleared out so that no linkage is
599      // performed.
600      GlobalVariable *NewDGV =
601        new GlobalVariable(SGV->getType()->getElementType(),
602                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
603                           "", Dest, false,
604                           SGV->getType()->getAddressSpace());
605
606      // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
607      NewDGV->setAlignment(DGV->getAlignment());
608      // Propagate alignment, section and visibility info.
609      CopyGVAttributes(NewDGV, SGV);
610
611      // Make sure to remember this mapping...
612      ValueMap[SGV] = NewDGV;
613
614      // Keep track that this is an appending variable...
615      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
616    } else if (GlobalAlias *DGA = dyn_cast<GlobalAlias>(DGV)) {
617      // SGV is global, but DGV is alias. The only valid mapping is when SGV is
618      // external declaration, which is effectively a no-op. Also make sure
619      // linkage calculation was correct.
620      if (SGV->isDeclaration() && !LinkFromSrc) {
621        // Make sure to remember this mapping...
622        ValueMap[SGV] = DGA;
623      } else
624        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
625                     "': symbol multiple defined");
626    } else if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
627      // Otherwise, perform the global-global mapping as instructed by
628      // GetLinkageResult.
629      if (LinkFromSrc) {
630        // Propagate alignment, section, and visibility info.
631        CopyGVAttributes(DGVar, SGV);
632
633        // If the types don't match, and if we are to link from the source, nuke
634        // DGV and create a new one of the appropriate type.
635        if (SGV->getType() != DGVar->getType()) {
636          GlobalVariable *NewDGV =
637            new GlobalVariable(SGV->getType()->getElementType(),
638                               DGVar->isConstant(), DGVar->getLinkage(),
639                               /*init*/0, DGVar->getName(), Dest, false,
640                               SGV->getType()->getAddressSpace());
641          CopyGVAttributes(NewDGV, DGVar);
642          DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV,
643                                                           DGVar->getType()));
644          // DGVar will conflict with NewDGV because they both had the same
645          // name. We must erase this now so ForceRenaming doesn't assert
646          // because DGV might not have internal linkage.
647          DGVar->eraseFromParent();
648
649          // If the symbol table renamed the global, but it is an externally
650          // visible symbol, DGV must be an existing global with internal
651          // linkage. Rename it.
652          if (NewDGV->getName() != SGV->getName() &&
653              !NewDGV->hasInternalLinkage())
654            ForceRenaming(NewDGV, SGV->getName());
655
656          DGVar = NewDGV;
657        }
658
659        // Inherit const as appropriate
660        DGVar->setConstant(SGV->isConstant());
661
662        // Set initializer to zero, so we can link the stuff later
663        DGVar->setInitializer(0);
664      } else {
665        // Special case for const propagation
666        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
667          DGVar->setConstant(true);
668      }
669
670      // Set calculated linkage
671      DGVar->setLinkage(NewLinkage);
672
673      // Make sure to remember this mapping...
674      ValueMap[SGV] = ConstantExpr::getBitCast(DGVar, SGV->getType());
675    }
676  }
677  return false;
678}
679
680static GlobalValue::LinkageTypes
681CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
682  if (SGV->hasExternalLinkage() || DGV->hasExternalLinkage())
683    return GlobalValue::ExternalLinkage;
684  else if (SGV->hasWeakLinkage() || DGV->hasWeakLinkage())
685    return GlobalValue::WeakLinkage;
686  else {
687    assert(SGV->hasInternalLinkage() && DGV->hasInternalLinkage() &&
688           "Unexpected linkage type");
689    return GlobalValue::InternalLinkage;
690  }
691}
692
693// LinkAlias - Loop through the alias in the src module and link them into the
694// dest module. We're assuming, that all functions/global variables were already
695// linked in.
696static bool LinkAlias(Module *Dest, const Module *Src,
697                      std::map<const Value*, Value*> &ValueMap,
698                      std::string *Err) {
699  // Loop over all alias in the src module
700  for (Module::const_alias_iterator I = Src->alias_begin(),
701         E = Src->alias_end(); I != E; ++I) {
702    const GlobalAlias *SGA = I;
703    const GlobalValue *SAliasee = SGA->getAliasedGlobal();
704    GlobalAlias *NewGA = NULL;
705
706    // Globals were already linked, thus we can just query ValueMap for variant
707    // of SAliasee in Dest.
708    std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
709    assert(VMI != ValueMap.end() && "Aliasee not linked");
710    GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
711    GlobalValue* DGV = NULL;
712
713    // Try to find something 'similar' to SGA in destination module.
714    if (!DGV && !SGA->hasInternalLinkage()) {
715      DGV = Dest->getNamedAlias(SGA->getName());
716
717      // If types don't agree due to opaque types, try to resolve them.
718      if (DGV && DGV->getType() != SGA->getType())
719        if (RecursiveResolveTypes(SGA->getType(), DGV->getType()))
720          return Error(Err, "Alias Collision on '" + SGA->getName()+
721                       "': aliases have different types");
722    }
723
724    if (!DGV && !SGA->hasInternalLinkage()) {
725      DGV = Dest->getGlobalVariable(SGA->getName());
726
727      // If types don't agree due to opaque types, try to resolve them.
728      if (DGV && DGV->getType() != SGA->getType())
729        if (RecursiveResolveTypes(SGA->getType(), DGV->getType()))
730          return Error(Err, "Alias Collision on '" + SGA->getName()+
731                       "': aliases have different types");
732    }
733
734    if (!DGV && !SGA->hasInternalLinkage()) {
735      DGV = Dest->getFunction(SGA->getName());
736
737      // If types don't agree due to opaque types, try to resolve them.
738      if (DGV && DGV->getType() != SGA->getType())
739        if (RecursiveResolveTypes(SGA->getType(), DGV->getType()))
740          return Error(Err, "Alias Collision on '" + SGA->getName()+
741                       "': aliases have different types");
742    }
743
744    // No linking to be performed on internal stuff.
745    if (DGV && DGV->hasInternalLinkage())
746      DGV = NULL;
747
748    if (GlobalAlias *DGA = dyn_cast_or_null<GlobalAlias>(DGV)) {
749      // Types are known to be the same, check whether aliasees equal. As
750      // globals are already linked we just need query ValueMap to find the
751      // mapping.
752      if (DAliasee == DGA->getAliasedGlobal()) {
753        // This is just two copies of the same alias. Propagate linkage, if
754        // necessary.
755        DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
756
757        NewGA = DGA;
758        // Proceed to 'common' steps
759      } else
760        return Error(Err, "Alias Collision on '"  + SGA->getName()+
761                     "': aliases have different aliasees");
762    } else if (GlobalVariable *DGVar = dyn_cast_or_null<GlobalVariable>(DGV)) {
763      // The only allowed way is to link alias with external declaration or weak
764      // symbol..
765      if (DGVar->isDeclaration() ||
766          DGVar->hasWeakLinkage() ||
767          DGVar->hasLinkOnceLinkage() ||
768          DGVar->hasCommonLinkage()) {
769        // But only if aliasee is global too...
770        if (!isa<GlobalVariable>(DAliasee))
771          return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
772                       "': aliasee is not global variable");
773
774        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
775                                SGA->getName(), DAliasee, Dest);
776        CopyGVAttributes(NewGA, SGA);
777
778        // Any uses of DGV need to change to NewGA, with cast, if needed.
779        if (SGA->getType() != DGVar->getType())
780          DGVar->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
781                                                             DGVar->getType()));
782        else
783          DGVar->replaceAllUsesWith(NewGA);
784
785        // DGVar will conflict with NewGA because they both had the same
786        // name. We must erase this now so ForceRenaming doesn't assert
787        // because DGV might not have internal linkage.
788        DGVar->eraseFromParent();
789
790        // Proceed to 'common' steps
791      } else
792        return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
793                     "': symbol multiple defined");
794    } else if (Function *DF = dyn_cast_or_null<Function>(DGV)) {
795      // The only allowed way is to link alias with external declaration or weak
796      // symbol...
797      if (DF->isDeclaration() ||
798          DF->hasWeakLinkage() ||
799          DF->hasLinkOnceLinkage() ||
800          DF->hasCommonLinkage()) {
801        // But only if aliasee is function too...
802        if (!isa<Function>(DAliasee))
803          return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
804                       "': aliasee is not function");
805
806        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
807                                SGA->getName(), DAliasee, Dest);
808        CopyGVAttributes(NewGA, SGA);
809
810        // Any uses of DF need to change to NewGA, with cast, if needed.
811        if (SGA->getType() != DF->getType())
812          DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
813                                                          DF->getType()));
814        else
815          DF->replaceAllUsesWith(NewGA);
816
817        // DF will conflict with NewGA because they both had the same
818        // name. We must erase this now so ForceRenaming doesn't assert
819        // because DF might not have internal linkage.
820        DF->eraseFromParent();
821
822        // Proceed to 'common' steps
823      } else
824        return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
825                     "': symbol multiple defined");
826    } else {
827      // No linking to be performed, simply create an identical version of the
828      // alias over in the dest module...
829
830      NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
831                              SGA->getName(), DAliasee, Dest);
832      CopyGVAttributes(NewGA, SGA);
833
834      // Proceed to 'common' steps
835    }
836
837    assert(NewGA && "No alias was created in destination module!");
838
839    // If the symbol table renamed the alias, but it is an externally visible
840    // symbol, DGA must be an global value with internal linkage. Rename it.
841    if (NewGA->getName() != SGA->getName() &&
842        !NewGA->hasInternalLinkage())
843      ForceRenaming(NewGA, SGA->getName());
844
845    // Remember this mapping so uses in the source module get remapped
846    // later by RemapOperand.
847    ValueMap[SGA] = NewGA;
848  }
849
850  return false;
851}
852
853
854// LinkGlobalInits - Update the initializers in the Dest module now that all
855// globals that may be referenced are in Dest.
856static bool LinkGlobalInits(Module *Dest, const Module *Src,
857                            std::map<const Value*, Value*> &ValueMap,
858                            std::string *Err) {
859
860  // Loop over all of the globals in the src module, mapping them over as we go
861  for (Module::const_global_iterator I = Src->global_begin(),
862       E = Src->global_end(); I != E; ++I) {
863    const GlobalVariable *SGV = I;
864
865    if (SGV->hasInitializer()) {      // Only process initialized GV's
866      // Figure out what the initializer looks like in the dest module...
867      Constant *SInit =
868        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
869
870      GlobalVariable *DGV =
871        cast<GlobalVariable>(ValueMap[SGV]->stripPointerCasts());
872      if (DGV->hasInitializer()) {
873        if (SGV->hasExternalLinkage()) {
874          if (DGV->getInitializer() != SInit)
875            return Error(Err, "Global Variable Collision on '" + SGV->getName() +
876                         "': global variables have different initializers");
877        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage() ||
878                   DGV->hasCommonLinkage()) {
879          // Nothing is required, mapped values will take the new global
880          // automatically.
881        } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage() ||
882                   SGV->hasCommonLinkage()) {
883          // Nothing is required, mapped values will take the new global
884          // automatically.
885        } else if (DGV->hasAppendingLinkage()) {
886          assert(0 && "Appending linkage unimplemented!");
887        } else {
888          assert(0 && "Unknown linkage!");
889        }
890      } else {
891        // Copy the initializer over now...
892        DGV->setInitializer(SInit);
893      }
894    }
895  }
896  return false;
897}
898
899// LinkFunctionProtos - Link the functions together between the two modules,
900// without doing function bodies... this just adds external function prototypes
901// to the Dest function...
902//
903static bool LinkFunctionProtos(Module *Dest, const Module *Src,
904                               std::map<const Value*, Value*> &ValueMap,
905                               std::string *Err) {
906  // Loop over all of the functions in the src module, mapping them over
907  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
908    const Function *SF = I;   // SrcFunction
909
910    GlobalValue *DGV = 0;
911    Value *MappedDF;
912
913    // If this function is internal or has no name, it doesn't participate in
914    // linkage.
915    if (SF->hasName() && !SF->hasInternalLinkage()) {
916      // Check to see if may have to link the function.
917      DGV = Dest->getFunction(SF->getName());
918    }
919
920    // Check to see if may have to link the function with the alias
921    if (!DGV && SF->hasName() && !SF->hasInternalLinkage()) {
922      DGV = Dest->getNamedAlias(SF->getName());
923      if (DGV && DGV->getType() != SF->getType())
924        // If types don't agree due to opaque types, try to resolve them.
925        RecursiveResolveTypes(SF->getType(), DGV->getType());
926    }
927
928    if (DGV && DGV->hasInternalLinkage())
929      DGV = 0;
930
931    // If there is no linkage to be performed, just bring over SF without
932    // modifying it.
933    if (DGV == 0) {
934      // Function does not already exist, simply insert an function signature
935      // identical to SF into the dest module.
936      Function *NewDF = Function::Create(SF->getFunctionType(),
937                                         SF->getLinkage(),
938                                         SF->getName(), Dest);
939      CopyGVAttributes(NewDF, SF);
940
941      // If the LLVM runtime renamed the function, but it is an externally
942      // visible symbol, DF must be an existing function with internal linkage.
943      // Rename it.
944      if (!NewDF->hasInternalLinkage() && NewDF->getName() != SF->getName())
945        ForceRenaming(NewDF, SF->getName());
946
947      // ... and remember this mapping...
948      ValueMap[SF] = NewDF;
949      continue;
950    } else if (GlobalAlias *DGA = dyn_cast<GlobalAlias>(DGV)) {
951      // SF is function, but DF is alias.
952      // The only valid mappings are:
953      // - SF is external declaration, which is effectively a no-op.
954      // - SF is weak, when we just need to throw SF out.
955      if (!SF->isDeclaration() &&
956          !SF->hasWeakLinkage() &&
957          !SF->hasLinkOnceLinkage() &&
958          !SF->hasCommonLinkage())
959        return Error(Err, "Function-Alias Collision on '" + SF->getName() +
960                     "': symbol multiple defined");
961
962      // Make sure to remember this mapping...
963      ValueMap[SF] = ConstantExpr::getBitCast(DGA, SF->getType());
964      continue;
965    }
966
967    Function* DF = cast<Function>(DGV);
968    // If types don't agree because of opaque, try to resolve them.
969    if (SF->getType() != DF->getType())
970      RecursiveResolveTypes(SF->getType(), DF->getType());
971
972    // Check visibility, merging if a definition overrides a prototype.
973    if (SF->getVisibility() != DF->getVisibility()) {
974      // If one is a prototype, ignore its visibility.  Prototypes are always
975      // overridden by the definition.
976      if (!SF->isDeclaration() && !DF->isDeclaration())
977        return Error(Err, "Linking functions named '" + SF->getName() +
978                     "': symbols have different visibilities!");
979
980      // Otherwise, replace the visibility of DF if DF is a prototype.
981      if (DF->isDeclaration())
982        DF->setVisibility(SF->getVisibility());
983    }
984
985    if (DF->getType() != SF->getType()) {
986      if (DF->isDeclaration() && !SF->isDeclaration()) {
987        // We have a definition of the same name but different type in the
988        // source module. Copy the prototype to the destination and replace
989        // uses of the destination's prototype with the new prototype.
990        Function *NewDF = Function::Create(SF->getFunctionType(),
991                                           SF->getLinkage(),
992                                           SF->getName(), Dest);
993        CopyGVAttributes(NewDF, SF);
994
995        // Any uses of DF need to change to NewDF, with cast
996        DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DF->getType()));
997
998        // DF will conflict with NewDF because they both had the same. We must
999        // erase this now so ForceRenaming doesn't assert because DF might
1000        // not have internal linkage.
1001        DF->eraseFromParent();
1002
1003        // If the symbol table renamed the function, but it is an externally
1004        // visible symbol, DF must be an existing function with internal
1005        // linkage.  Rename it.
1006        if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
1007          ForceRenaming(NewDF, SF->getName());
1008
1009        // Remember this mapping so uses in the source module get remapped
1010        // later by RemapOperand.
1011        ValueMap[SF] = NewDF;
1012        continue;
1013      } else {
1014        // We have two functions of the same name but different type. Any use
1015        // of the source must be mapped to the destination, with a cast.
1016        MappedDF = ConstantExpr::getBitCast(DF, SF->getType());
1017      }
1018    } else {
1019       MappedDF = DF;
1020    }
1021
1022    if (SF->isDeclaration()) {
1023      // If SF is a declaration or if both SF & DF are declarations, just link
1024      // the declarations, we aren't adding anything.
1025      if (SF->hasDLLImportLinkage()) {
1026        if (DF->isDeclaration()) {
1027          ValueMap[SF] = MappedDF;
1028          DF->setLinkage(SF->getLinkage());
1029        }
1030      } else {
1031        ValueMap[SF] = MappedDF;
1032      }
1033      continue;
1034    }
1035
1036    // If DF is external but SF is not, link the external functions, update
1037    // linkage qualifiers.
1038    if (DF->isDeclaration() && !DF->hasDLLImportLinkage()) {
1039      ValueMap.insert(std::make_pair(SF, MappedDF));
1040      DF->setLinkage(SF->getLinkage());
1041      continue;
1042    }
1043
1044    // At this point we know that DF has LinkOnce, Weak, or External* linkage.
1045    if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage() ||
1046        SF->hasCommonLinkage()) {
1047      ValueMap[SF] = MappedDF;
1048
1049      // Linkonce+Weak = Weak
1050      // *+External Weak = *
1051      if ((DF->hasLinkOnceLinkage() &&
1052              (SF->hasWeakLinkage() || SF->hasCommonLinkage())) ||
1053          DF->hasExternalWeakLinkage())
1054        DF->setLinkage(SF->getLinkage());
1055      continue;
1056    }
1057
1058    if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage() ||
1059        DF->hasCommonLinkage()) {
1060      // At this point we know that SF has LinkOnce or External* linkage.
1061      ValueMap[SF] = MappedDF;
1062
1063      // If the source function has stronger linkage than the destination,
1064      // its body and linkage should override ours.
1065      if (!SF->hasLinkOnceLinkage() && !SF->hasExternalWeakLinkage()) {
1066        // Don't inherit linkonce & external weak linkage.
1067        DF->setLinkage(SF->getLinkage());
1068        DF->deleteBody();
1069      }
1070      continue;
1071    }
1072
1073    if (SF->getLinkage() != DF->getLinkage())
1074      return Error(Err, "Functions named '" + SF->getName() +
1075                   "' have different linkage specifiers!");
1076
1077    // The function is defined identically in both modules!
1078    if (SF->hasExternalLinkage())
1079      return Error(Err, "Function '" +
1080                   ToStr(SF->getFunctionType(), Src) + "':\"" +
1081                   SF->getName() + "\" - Function is already defined!");
1082    assert(0 && "Unknown linkage configuration found!");
1083  }
1084  return false;
1085}
1086
1087// LinkFunctionBody - Copy the source function over into the dest function and
1088// fix up references to values.  At this point we know that Dest is an external
1089// function, and that Src is not.
1090static bool LinkFunctionBody(Function *Dest, Function *Src,
1091                             std::map<const Value*, Value*> &ValueMap,
1092                             std::string *Err) {
1093  assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
1094
1095  // Go through and convert function arguments over, remembering the mapping.
1096  Function::arg_iterator DI = Dest->arg_begin();
1097  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1098       I != E; ++I, ++DI) {
1099    DI->setName(I->getName());  // Copy the name information over...
1100
1101    // Add a mapping to our local map
1102    ValueMap[I] = DI;
1103  }
1104
1105  // Splice the body of the source function into the dest function.
1106  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
1107
1108  // At this point, all of the instructions and values of the function are now
1109  // copied over.  The only problem is that they are still referencing values in
1110  // the Source function as operands.  Loop through all of the operands of the
1111  // functions and patch them up to point to the local versions...
1112  //
1113  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
1114    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1115      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1116           OI != OE; ++OI)
1117        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
1118          *OI = RemapOperand(*OI, ValueMap);
1119
1120  // There is no need to map the arguments anymore.
1121  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1122       I != E; ++I)
1123    ValueMap.erase(I);
1124
1125  return false;
1126}
1127
1128
1129// LinkFunctionBodies - Link in the function bodies that are defined in the
1130// source module into the DestModule.  This consists basically of copying the
1131// function over and fixing up references to values.
1132static bool LinkFunctionBodies(Module *Dest, Module *Src,
1133                               std::map<const Value*, Value*> &ValueMap,
1134                               std::string *Err) {
1135
1136  // Loop over all of the functions in the src module, mapping them over as we
1137  // go
1138  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
1139    if (!SF->isDeclaration()) {               // No body if function is external
1140      Function *DF = dyn_cast<Function>(ValueMap[SF]); // Destination function
1141
1142      // DF not external SF external?
1143      if (DF && DF->isDeclaration())
1144        // Only provide the function body if there isn't one already.
1145        if (LinkFunctionBody(DF, SF, ValueMap, Err))
1146          return true;
1147    }
1148  }
1149  return false;
1150}
1151
1152// LinkAppendingVars - If there were any appending global variables, link them
1153// together now.  Return true on error.
1154static bool LinkAppendingVars(Module *M,
1155                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
1156                              std::string *ErrorMsg) {
1157  if (AppendingVars.empty()) return false; // Nothing to do.
1158
1159  // Loop over the multimap of appending vars, processing any variables with the
1160  // same name, forming a new appending global variable with both of the
1161  // initializers merged together, then rewrite references to the old variables
1162  // and delete them.
1163  std::vector<Constant*> Inits;
1164  while (AppendingVars.size() > 1) {
1165    // Get the first two elements in the map...
1166    std::multimap<std::string,
1167      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
1168
1169    // If the first two elements are for different names, there is no pair...
1170    // Otherwise there is a pair, so link them together...
1171    if (First->first == Second->first) {
1172      GlobalVariable *G1 = First->second, *G2 = Second->second;
1173      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
1174      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
1175
1176      // Check to see that they two arrays agree on type...
1177      if (T1->getElementType() != T2->getElementType())
1178        return Error(ErrorMsg,
1179         "Appending variables with different element types need to be linked!");
1180      if (G1->isConstant() != G2->isConstant())
1181        return Error(ErrorMsg,
1182                     "Appending variables linked with different const'ness!");
1183
1184      if (G1->getAlignment() != G2->getAlignment())
1185        return Error(ErrorMsg,
1186         "Appending variables with different alignment need to be linked!");
1187
1188      if (G1->getVisibility() != G2->getVisibility())
1189        return Error(ErrorMsg,
1190         "Appending variables with different visibility need to be linked!");
1191
1192      if (G1->getSection() != G2->getSection())
1193        return Error(ErrorMsg,
1194         "Appending variables with different section name need to be linked!");
1195
1196      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
1197      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
1198
1199      G1->setName("");   // Clear G1's name in case of a conflict!
1200
1201      // Create the new global variable...
1202      GlobalVariable *NG =
1203        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
1204                           /*init*/0, First->first, M, G1->isThreadLocal(),
1205                           G1->getType()->getAddressSpace());
1206
1207      // Propagate alignment, visibility and section info.
1208      CopyGVAttributes(NG, G1);
1209
1210      // Merge the initializer...
1211      Inits.reserve(NewSize);
1212      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1213        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1214          Inits.push_back(I->getOperand(i));
1215      } else {
1216        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1217        Constant *CV = Constant::getNullValue(T1->getElementType());
1218        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1219          Inits.push_back(CV);
1220      }
1221      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1222        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1223          Inits.push_back(I->getOperand(i));
1224      } else {
1225        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1226        Constant *CV = Constant::getNullValue(T2->getElementType());
1227        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1228          Inits.push_back(CV);
1229      }
1230      NG->setInitializer(ConstantArray::get(NewType, Inits));
1231      Inits.clear();
1232
1233      // Replace any uses of the two global variables with uses of the new
1234      // global...
1235
1236      // FIXME: This should rewrite simple/straight-forward uses such as
1237      // getelementptr instructions to not use the Cast!
1238      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G1->getType()));
1239      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G2->getType()));
1240
1241      // Remove the two globals from the module now...
1242      M->getGlobalList().erase(G1);
1243      M->getGlobalList().erase(G2);
1244
1245      // Put the new global into the AppendingVars map so that we can handle
1246      // linking of more than two vars...
1247      Second->second = NG;
1248    }
1249    AppendingVars.erase(First);
1250  }
1251
1252  return false;
1253}
1254
1255static bool ResolveAliases(Module *Dest) {
1256  for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1257       I != E; ++I)
1258    if (const GlobalValue *GV = I->resolveAliasedGlobal())
1259      if (!GV->isDeclaration())
1260        I->replaceAllUsesWith(const_cast<GlobalValue*>(GV));
1261
1262  return false;
1263}
1264
1265// LinkModules - This function links two modules together, with the resulting
1266// left module modified to be the composite of the two input modules.  If an
1267// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1268// the problem.  Upon failure, the Dest module could be in a modified state, and
1269// shouldn't be relied on to be consistent.
1270bool
1271Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1272  assert(Dest != 0 && "Invalid Destination module");
1273  assert(Src  != 0 && "Invalid Source Module");
1274
1275  if (Dest->getDataLayout().empty()) {
1276    if (!Src->getDataLayout().empty()) {
1277      Dest->setDataLayout(Src->getDataLayout());
1278    } else {
1279      std::string DataLayout;
1280
1281      if (Dest->getEndianness() == Module::AnyEndianness) {
1282        if (Src->getEndianness() == Module::BigEndian)
1283          DataLayout.append("E");
1284        else if (Src->getEndianness() == Module::LittleEndian)
1285          DataLayout.append("e");
1286      }
1287
1288      if (Dest->getPointerSize() == Module::AnyPointerSize) {
1289        if (Src->getPointerSize() == Module::Pointer64)
1290          DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1291        else if (Src->getPointerSize() == Module::Pointer32)
1292          DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1293      }
1294      Dest->setDataLayout(DataLayout);
1295    }
1296  }
1297
1298  // Copy the target triple from the source to dest if the dest's is empty.
1299  if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1300    Dest->setTargetTriple(Src->getTargetTriple());
1301
1302  if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1303      Src->getDataLayout() != Dest->getDataLayout())
1304    cerr << "WARNING: Linking two modules of different data layouts!\n";
1305  if (!Src->getTargetTriple().empty() &&
1306      Dest->getTargetTriple() != Src->getTargetTriple())
1307    cerr << "WARNING: Linking two modules of different target triples!\n";
1308
1309  // Append the module inline asm string.
1310  if (!Src->getModuleInlineAsm().empty()) {
1311    if (Dest->getModuleInlineAsm().empty())
1312      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1313    else
1314      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1315                               Src->getModuleInlineAsm());
1316  }
1317
1318  // Update the destination module's dependent libraries list with the libraries
1319  // from the source module. There's no opportunity for duplicates here as the
1320  // Module ensures that duplicate insertions are discarded.
1321  for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1322       SI != SE; ++SI)
1323    Dest->addLibrary(*SI);
1324
1325  // LinkTypes - Go through the symbol table of the Src module and see if any
1326  // types are named in the src module that are not named in the Dst module.
1327  // Make sure there are no type name conflicts.
1328  if (LinkTypes(Dest, Src, ErrorMsg))
1329    return true;
1330
1331  // ValueMap - Mapping of values from what they used to be in Src, to what they
1332  // are now in Dest.
1333  std::map<const Value*, Value*> ValueMap;
1334
1335  // AppendingVars - Keep track of global variables in the destination module
1336  // with appending linkage.  After the module is linked together, they are
1337  // appended and the module is rewritten.
1338  std::multimap<std::string, GlobalVariable *> AppendingVars;
1339  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1340       I != E; ++I) {
1341    // Add all of the appending globals already in the Dest module to
1342    // AppendingVars.
1343    if (I->hasAppendingLinkage())
1344      AppendingVars.insert(std::make_pair(I->getName(), I));
1345  }
1346
1347  // Insert all of the globals in src into the Dest module... without linking
1348  // initializers (which could refer to functions not yet mapped over).
1349  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1350    return true;
1351
1352  // Link the functions together between the two modules, without doing function
1353  // bodies... this just adds external function prototypes to the Dest
1354  // function...  We do this so that when we begin processing function bodies,
1355  // all of the global values that may be referenced are available in our
1356  // ValueMap.
1357  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1358    return true;
1359
1360  // If there were any alias, link them now. We really need to do this now,
1361  // because all of the aliases that may be referenced need to be available in
1362  // ValueMap
1363  if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1364
1365  // Update the initializers in the Dest module now that all globals that may
1366  // be referenced are in Dest.
1367  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1368
1369  // Link in the function bodies that are defined in the source module into the
1370  // DestModule.  This consists basically of copying the function over and
1371  // fixing up references to values.
1372  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1373
1374  // If there were any appending global variables, link them together now.
1375  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1376
1377  // Resolve all uses of aliases with aliasees
1378  if (ResolveAliases(Dest)) return true;
1379
1380  // If the source library's module id is in the dependent library list of the
1381  // destination library, remove it since that module is now linked in.
1382  sys::Path modId;
1383  modId.set(Src->getModuleIdentifier());
1384  if (!modId.isEmpty())
1385    Dest->removeLibrary(modId.getBasename());
1386
1387  return false;
1388}
1389
1390// vim: sw=2
1391