LinkModules.cpp revision d039156e80bd44d1ba5c4195b3857fa6b8c66312
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/Instructions.h"
26#include "llvm/Assembly/Writer.h"
27#include "llvm/Support/Streams.h"
28#include "llvm/System/Path.h"
29#include <sstream>
30using namespace llvm;
31
32// Error - Simple wrapper function to conditionally assign to E and return true.
33// This just makes error return conditions a little bit simpler...
34static inline bool Error(std::string *E, const std::string &Message) {
35  if (E) *E = Message;
36  return true;
37}
38
39// ToStr - Simple wrapper function to convert a type to a string.
40static std::string ToStr(const Type *Ty, const Module *M) {
41  std::ostringstream OS;
42  WriteTypeSymbolic(OS, Ty, M);
43  return OS.str();
44}
45
46//
47// Function: ResolveTypes()
48//
49// Description:
50//  Attempt to link the two specified types together.
51//
52// Inputs:
53//  DestTy - The type to which we wish to resolve.
54//  SrcTy  - The original type which we want to resolve.
55//  Name   - The name of the type.
56//
57// Outputs:
58//  DestST - The symbol table in which the new type should be placed.
59//
60// Return value:
61//  true  - There is an error and the types cannot yet be linked.
62//  false - No errors.
63//
64static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
65                         TypeSymbolTable *DestST, const std::string &Name) {
66  if (DestTy == SrcTy) return false;       // If already equal, noop
67
68  // Does the type already exist in the module?
69  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
70    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
71      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
72    } else {
73      return true;  // Cannot link types... neither is opaque and not-equal
74    }
75  } else {                       // Type not in dest module.  Add it now.
76    if (DestTy)                  // Type _is_ in module, just opaque...
77      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
78                           ->refineAbstractTypeTo(SrcTy);
79    else if (!Name.empty())
80      DestST->insert(Name, const_cast<Type*>(SrcTy));
81  }
82  return false;
83}
84
85static const FunctionType *getFT(const PATypeHolder &TH) {
86  return cast<FunctionType>(TH.get());
87}
88static const StructType *getST(const PATypeHolder &TH) {
89  return cast<StructType>(TH.get());
90}
91
92// RecursiveResolveTypes - This is just like ResolveTypes, except that it
93// recurses down into derived types, merging the used types if the parent types
94// are compatible.
95static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
96                                   const PATypeHolder &SrcTy,
97                                   TypeSymbolTable *DestST,
98                                   const std::string &Name,
99                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
100  const Type *SrcTyT = SrcTy.get();
101  const Type *DestTyT = DestTy.get();
102  if (DestTyT == SrcTyT) return false;       // If already equal, noop
103
104  // If we found our opaque type, resolve it now!
105  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
106    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
107
108  // Two types cannot be resolved together if they are of different primitive
109  // type.  For example, we cannot resolve an int to a float.
110  if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
111
112  // Otherwise, resolve the used type used by this derived type...
113  switch (DestTyT->getTypeID()) {
114  case Type::IntegerTyID: {
115    if (cast<IntegerType>(DestTyT)->getBitWidth() !=
116        cast<IntegerType>(SrcTyT)->getBitWidth())
117      return true;
118    return false;
119  }
120  case Type::FunctionTyID: {
121    if (cast<FunctionType>(DestTyT)->isVarArg() !=
122        cast<FunctionType>(SrcTyT)->isVarArg() ||
123        cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
124        cast<FunctionType>(SrcTyT)->getNumContainedTypes())
125      return true;
126    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
127      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
128                                 getFT(SrcTy)->getContainedType(i), DestST, "",
129                                 Pointers))
130        return true;
131    return false;
132  }
133  case Type::StructTyID: {
134    if (getST(DestTy)->getNumContainedTypes() !=
135        getST(SrcTy)->getNumContainedTypes()) return 1;
136    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
137      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
138                                 getST(SrcTy)->getContainedType(i), DestST, "",
139                                 Pointers))
140        return true;
141    return false;
142  }
143  case Type::ArrayTyID: {
144    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
145    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
146    if (DAT->getNumElements() != SAT->getNumElements()) return true;
147    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
148                                  DestST, "", Pointers);
149  }
150  case Type::PointerTyID: {
151    // If this is a pointer type, check to see if we have already seen it.  If
152    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
153    // an associative container for this search, because the type pointers (keys
154    // in the container) change whenever types get resolved...
155    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
156      if (Pointers[i].first == DestTy)
157        return Pointers[i].second != SrcTy;
158
159    // Otherwise, add the current pointers to the vector to stop recursion on
160    // this pair.
161    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
162    bool Result =
163      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
164                             cast<PointerType>(SrcTy.get())->getElementType(),
165                             DestST, "", Pointers);
166    Pointers.pop_back();
167    return Result;
168  }
169  default: assert(0 && "Unexpected type!"); return true;
170  }
171}
172
173static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
174                                  const PATypeHolder &SrcTy,
175                                  TypeSymbolTable *DestST,
176                                  const std::string &Name){
177  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
178  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
179}
180
181
182// LinkTypes - Go through the symbol table of the Src module and see if any
183// types are named in the src module that are not named in the Dst module.
184// Make sure there are no type name conflicts.
185static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
186        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
187  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
188
189  // Look for a type plane for Type's...
190  TypeSymbolTable::const_iterator TI = SrcST->begin();
191  TypeSymbolTable::const_iterator TE = SrcST->end();
192  if (TI == TE) return false;  // No named types, do nothing.
193
194  // Some types cannot be resolved immediately because they depend on other
195  // types being resolved to each other first.  This contains a list of types we
196  // are waiting to recheck.
197  std::vector<std::string> DelayedTypesToResolve;
198
199  for ( ; TI != TE; ++TI ) {
200    const std::string &Name = TI->first;
201    const Type *RHS = TI->second;
202
203    // Check to see if this type name is already in the dest module...
204    Type *Entry = DestST->lookup(Name);
205
206    if (ResolveTypes(Entry, RHS, DestST, Name)) {
207      // They look different, save the types 'till later to resolve.
208      DelayedTypesToResolve.push_back(Name);
209    }
210  }
211
212  // Iteratively resolve types while we can...
213  while (!DelayedTypesToResolve.empty()) {
214    // Loop over all of the types, attempting to resolve them if possible...
215    unsigned OldSize = DelayedTypesToResolve.size();
216
217    // Try direct resolution by name...
218    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
219      const std::string &Name = DelayedTypesToResolve[i];
220      Type *T1 = SrcST->lookup(Name);
221      Type *T2 = DestST->lookup(Name);
222      if (!ResolveTypes(T2, T1, DestST, Name)) {
223        // We are making progress!
224        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
225        --i;
226      }
227    }
228
229    // Did we not eliminate any types?
230    if (DelayedTypesToResolve.size() == OldSize) {
231      // Attempt to resolve subelements of types.  This allows us to merge these
232      // two types: { int* } and { opaque* }
233      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
234        const std::string &Name = DelayedTypesToResolve[i];
235        PATypeHolder T1(SrcST->lookup(Name));
236        PATypeHolder T2(DestST->lookup(Name));
237
238        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
239          // We are making progress!
240          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
241
242          // Go back to the main loop, perhaps we can resolve directly by name
243          // now...
244          break;
245        }
246      }
247
248      // If we STILL cannot resolve the types, then there is something wrong.
249      if (DelayedTypesToResolve.size() == OldSize) {
250        // Remove the symbol name from the destination.
251        DelayedTypesToResolve.pop_back();
252      }
253    }
254  }
255
256
257  return false;
258}
259
260static void PrintMap(const std::map<const Value*, Value*> &M) {
261  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
262       I != E; ++I) {
263    cerr << " Fr: " << (void*)I->first << " ";
264    I->first->dump();
265    cerr << " To: " << (void*)I->second << " ";
266    I->second->dump();
267    cerr << "\n";
268  }
269}
270
271
272// RemapOperand - Use ValueMap to convert constants from one module to another.
273static Value *RemapOperand(const Value *In,
274                           std::map<const Value*, Value*> &ValueMap) {
275  std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
276  if (I != ValueMap.end())
277    return I->second;
278
279  // Check to see if it's a constant that we are interested in transforming.
280  Value *Result = 0;
281  if (const Constant *CPV = dyn_cast<Constant>(In)) {
282    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
283        isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
284      return const_cast<Constant*>(CPV);   // Simple constants stay identical.
285
286    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
287      std::vector<Constant*> Operands(CPA->getNumOperands());
288      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
289        Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
290      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
291    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
292      std::vector<Constant*> Operands(CPS->getNumOperands());
293      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
294        Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
295      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
296    } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
297      Result = const_cast<Constant*>(CPV);
298    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
299      std::vector<Constant*> Operands(CP->getNumOperands());
300      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
301        Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
302      Result = ConstantVector::get(Operands);
303    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
304      std::vector<Constant*> Ops;
305      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
306        Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
307      Result = CE->getWithOperands(Ops);
308    } else if (isa<GlobalValue>(CPV)) {
309      assert(0 && "Unmapped global?");
310    } else {
311      assert(0 && "Unknown type of derived type constant value!");
312    }
313  } else if (isa<InlineAsm>(In)) {
314    Result = const_cast<Value*>(In);
315  }
316
317  // Cache the mapping in our local map structure
318  if (Result) {
319    ValueMap.insert(std::make_pair(In, Result));
320    return Result;
321  }
322
323
324  cerr << "LinkModules ValueMap: \n";
325  PrintMap(ValueMap);
326
327  cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
328  assert(0 && "Couldn't remap value!");
329  return 0;
330}
331
332/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
333/// in the symbol table.  This is good for all clients except for us.  Go
334/// through the trouble to force this back.
335static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
336  assert(GV->getName() != Name && "Can't force rename to self");
337  ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
338
339  // If there is a conflict, rename the conflict.
340  if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
341    assert(ConflictGV->hasInternalLinkage() &&
342           "Not conflicting with a static global, should link instead!");
343    GV->takeName(ConflictGV);
344    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
345    assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
346  } else {
347    GV->setName(Name);              // Force the name back
348  }
349}
350
351/// CopyGVAttributes - copy additional attributes (those not needed to construct
352/// a GlobalValue) from the SrcGV to the DestGV.
353static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
354  // Propagate alignment, visibility and section info.
355  DestGV->setAlignment(std::max(DestGV->getAlignment(), SrcGV->getAlignment()));
356  DestGV->setSection(SrcGV->getSection());
357  DestGV->setVisibility(SrcGV->getVisibility());
358  if (const Function *SrcF = dyn_cast<Function>(SrcGV)) {
359    Function *DestF = cast<Function>(DestGV);
360    DestF->setCallingConv(SrcF->getCallingConv());
361    DestF->setParamAttrs(SrcF->getParamAttrs());
362    if (SrcF->hasCollector())
363      DestF->setCollector(SrcF->getCollector());
364  }
365}
366
367/// GetLinkageResult - This analyzes the two global values and determines what
368/// the result will look like in the destination module.  In particular, it
369/// computes the resultant linkage type, computes whether the global in the
370/// source should be copied over to the destination (replacing the existing
371/// one), and computes whether this linkage is an error or not. It also performs
372/// visibility checks: we cannot link together two symbols with different
373/// visibilities.
374static bool GetLinkageResult(GlobalValue *Dest, GlobalValue *Src,
375                             GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
376                             std::string *Err) {
377  assert((!Dest || !Src->hasInternalLinkage()) &&
378         "If Src has internal linkage, Dest shouldn't be set!");
379  if (!Dest) {
380    // Linking something to nothing.
381    LinkFromSrc = true;
382    LT = Src->getLinkage();
383  } else if (Src->isDeclaration()) {
384    // If Src is external or if both Src & Drc are external..  Just link the
385    // external globals, we aren't adding anything.
386    if (Src->hasDLLImportLinkage()) {
387      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
388      if (Dest->isDeclaration()) {
389        LinkFromSrc = true;
390        LT = Src->getLinkage();
391      }
392    } else if (Dest->hasExternalWeakLinkage()) {
393      //If the Dest is weak, use the source linkage
394      LinkFromSrc = true;
395      LT = Src->getLinkage();
396    } else {
397      LinkFromSrc = false;
398      LT = Dest->getLinkage();
399    }
400  } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
401    // If Dest is external but Src is not:
402    LinkFromSrc = true;
403    LT = Src->getLinkage();
404  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
405    if (Src->getLinkage() != Dest->getLinkage())
406      return Error(Err, "Linking globals named '" + Src->getName() +
407            "': can only link appending global with another appending global!");
408    LinkFromSrc = true; // Special cased.
409    LT = Src->getLinkage();
410  } else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage()) {
411    // At this point we know that Dest has LinkOnce, External*, Weak, or
412    // DLL* linkage.
413    if ((Dest->hasLinkOnceLinkage() && Src->hasWeakLinkage()) ||
414        Dest->hasExternalWeakLinkage()) {
415      LinkFromSrc = true;
416      LT = Src->getLinkage();
417    } else {
418      LinkFromSrc = false;
419      LT = Dest->getLinkage();
420    }
421  } else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage()) {
422    // At this point we know that Src has External* or DLL* linkage.
423    if (Src->hasExternalWeakLinkage()) {
424      LinkFromSrc = false;
425      LT = Dest->getLinkage();
426    } else {
427      LinkFromSrc = true;
428      LT = GlobalValue::ExternalLinkage;
429    }
430  } else {
431    assert((Dest->hasExternalLinkage() ||
432            Dest->hasDLLImportLinkage() ||
433            Dest->hasDLLExportLinkage() ||
434            Dest->hasExternalWeakLinkage()) &&
435           (Src->hasExternalLinkage() ||
436            Src->hasDLLImportLinkage() ||
437            Src->hasDLLExportLinkage() ||
438            Src->hasExternalWeakLinkage()) &&
439           "Unexpected linkage type!");
440    return Error(Err, "Linking globals named '" + Src->getName() +
441                 "': symbol multiply defined!");
442  }
443
444  // Check visibility
445  if (Dest && Src->getVisibility() != Dest->getVisibility())
446    if (!Src->isDeclaration() && !Dest->isDeclaration())
447      return Error(Err, "Linking globals named '" + Src->getName() +
448                   "': symbols have different visibilities!");
449  return false;
450}
451
452// LinkGlobals - Loop through the global variables in the src module and merge
453// them into the dest module.
454static bool LinkGlobals(Module *Dest, Module *Src,
455                        std::map<const Value*, Value*> &ValueMap,
456                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
457                        std::string *Err) {
458  // Loop over all of the globals in the src module, mapping them over as we go
459  for (Module::global_iterator I = Src->global_begin(), E = Src->global_end();
460       I != E; ++I) {
461    GlobalVariable *SGV = I;
462    GlobalVariable *DGV = 0;
463    // Check to see if may have to link the global.
464    if (SGV->hasName() && !SGV->hasInternalLinkage()) {
465      DGV = Dest->getGlobalVariable(SGV->getName());
466      if (DGV && DGV->getType() != SGV->getType())
467        // If types don't agree due to opaque types, try to resolve them.
468        RecursiveResolveTypes(SGV->getType(), DGV->getType(),
469                              &Dest->getTypeSymbolTable(), "");
470    }
471
472    if (DGV && DGV->hasInternalLinkage())
473      DGV = 0;
474
475    assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
476            SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
477           "Global must either be external or have an initializer!");
478
479    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
480    bool LinkFromSrc = false;
481    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
482      return true;
483
484    if (!DGV) {
485      // No linking to be performed, simply create an identical version of the
486      // symbol over in the dest module... the initializer will be filled in
487      // later by LinkGlobalInits...
488      GlobalVariable *NewDGV =
489        new GlobalVariable(SGV->getType()->getElementType(),
490                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
491                           SGV->getName(), Dest, SGV->isThreadLocal());
492      // Propagate alignment, visibility and section info.
493      CopyGVAttributes(NewDGV, SGV);
494
495      // If the LLVM runtime renamed the global, but it is an externally visible
496      // symbol, DGV must be an existing global with internal linkage.  Rename
497      // it.
498      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
499        ForceRenaming(NewDGV, SGV->getName());
500
501      // Make sure to remember this mapping...
502      ValueMap.insert(std::make_pair(SGV, NewDGV));
503      if (SGV->hasAppendingLinkage())
504        // Keep track that this is an appending variable...
505        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
506    } else if (DGV->hasAppendingLinkage()) {
507      // No linking is performed yet.  Just insert a new copy of the global, and
508      // keep track of the fact that it is an appending variable in the
509      // AppendingVars map.  The name is cleared out so that no linkage is
510      // performed.
511      GlobalVariable *NewDGV =
512        new GlobalVariable(SGV->getType()->getElementType(),
513                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
514                           "", Dest, SGV->isThreadLocal());
515
516      // Propagate alignment, section and visibility  info.
517      NewDGV->setAlignment(DGV->getAlignment());
518      CopyGVAttributes(NewDGV, SGV);
519
520      // Make sure to remember this mapping...
521      ValueMap.insert(std::make_pair(SGV, NewDGV));
522
523      // Keep track that this is an appending variable...
524      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
525    } else {
526      // Propagate alignment, section, and visibility info.
527      CopyGVAttributes(DGV, SGV);
528
529      // Otherwise, perform the mapping as instructed by GetLinkageResult.  If
530      // the types don't match, and if we are to link from the source, nuke DGV
531      // and create a new one of the appropriate type.
532      if (SGV->getType() != DGV->getType() && LinkFromSrc) {
533        GlobalVariable *NewDGV =
534          new GlobalVariable(SGV->getType()->getElementType(),
535                             DGV->isConstant(), DGV->getLinkage());
536        NewDGV->setThreadLocal(DGV->isThreadLocal());
537        CopyGVAttributes(NewDGV, DGV);
538        Dest->getGlobalList().insert(DGV, NewDGV);
539        DGV->replaceAllUsesWith(
540            ConstantExpr::getBitCast(NewDGV, DGV->getType()));
541        DGV->eraseFromParent();
542        NewDGV->setName(SGV->getName());
543        DGV = NewDGV;
544      }
545
546      DGV->setLinkage(NewLinkage);
547
548      if (LinkFromSrc) {
549        // Inherit const as appropriate
550        DGV->setConstant(SGV->isConstant());
551        DGV->setInitializer(0);
552      } else {
553        if (SGV->isConstant() && !DGV->isConstant()) {
554          if (DGV->isDeclaration())
555            DGV->setConstant(true);
556        }
557        SGV->setLinkage(GlobalValue::ExternalLinkage);
558        SGV->setInitializer(0);
559      }
560
561      ValueMap.insert(
562        std::make_pair(SGV, ConstantExpr::getBitCast(DGV, SGV->getType())));
563    }
564  }
565  return false;
566}
567
568static GlobalValue::LinkageTypes
569CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
570  if (SGV->hasExternalLinkage() || DGV->hasExternalLinkage())
571    return GlobalValue::ExternalLinkage;
572  else if (SGV->hasWeakLinkage() || DGV->hasWeakLinkage())
573    return GlobalValue::WeakLinkage;
574  else {
575    assert(SGV->hasInternalLinkage() && DGV->hasInternalLinkage() &&
576           "Unexpected linkage type");
577    return GlobalValue::InternalLinkage;
578  }
579}
580
581// LinkAlias - Loop through the alias in the src module and link them into the
582// dest module. We're assuming, that all functions/global variables were already
583// linked in.
584static bool LinkAlias(Module *Dest, const Module *Src,
585                      std::map<const Value*, Value*> &ValueMap,
586                      std::string *Err) {
587  // Loop over all alias in the src module
588  for (Module::const_alias_iterator I = Src->alias_begin(),
589         E = Src->alias_end(); I != E; ++I) {
590    const GlobalAlias *SGA = I;
591    const GlobalValue *SAliasee = SGA->getAliasedGlobal();
592    GlobalAlias *NewGA = NULL;
593
594    // Globals were already linked, thus we can just query ValueMap for variant
595    // of SAliasee in Dest
596    std::map<const Value*,Value*>::const_iterator I = ValueMap.find(SAliasee);
597    assert(I != ValueMap.end() && "Aliasee not linked");
598    GlobalValue* DAliasee = cast<GlobalValue>(I->second);
599
600    // Try to find something 'similar' to SGA in destination module.
601    if (GlobalAlias *DGA = Dest->getNamedAlias(SGA->getName())) {
602      // If types don't agree due to opaque types, try to resolve them.
603      if (RecursiveResolveTypes(SGA->getType(), DGA->getType(),
604                                &Dest->getTypeSymbolTable(), ""))
605        return Error(Err, "Alias Collision on '" +
606                         ToStr(SGA->getType(), Src) +"':%"+SGA->getName()+
607                     " - aliases have different types");
608
609      // Now types are known to be the same, check whether aliasees equal. As
610      // globals are already linked we just need query ValueMap to find the
611      // mapping.
612      if (DAliasee == DGA->getAliasedGlobal()) {
613        // This is just two copies of the same alias. Propagate linkage, if
614        // necessary.
615        DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
616
617        NewGA = DGA;
618        // Proceed to 'common' steps
619      } else
620        return Error(Err, "Alias Collision on '" +
621                     ToStr(SGA->getType(), Src) +"':%"+SGA->getName()+
622                     " - aliases have different aliasees");
623    } else if (GlobalVariable *DGV = Dest->getGlobalVariable(SGA->getName())) {
624      RecursiveResolveTypes(SGA->getType(), DGV->getType(),
625                            &Dest->getTypeSymbolTable(), "");
626      // The only allowed way is to link alias with external declaration.
627      if (DGV->isDeclaration()) {
628        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
629                                SGA->getName(), DAliasee, Dest);
630        CopyGVAttributes(NewGA, SGA);
631
632        // Any uses of DGV need to change to NewGA, with cast, if needed.
633        if (SGA->getType() != DGV->getType())
634          DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
635                                                           DGV->getType()));
636        else
637          DGV->replaceAllUsesWith(NewGA);
638
639        // DGV will conflict with NewGA because they both had the same
640        // name. We must erase this now so ForceRenaming doesn't assert
641        // because DGV might not have internal linkage.
642        DGV->eraseFromParent();
643
644        // Proceed to 'common' steps
645      } else
646        return Error(Err, "Alias Collision on '" +
647                     ToStr(SGA->getType(), Src) +"':%"+SGA->getName()+
648                     " - symbol multiple defined");
649    } else if (Function *DF = Dest->getFunction(SGA->getName())) {
650      RecursiveResolveTypes(SGA->getType(), DF->getType(),
651                            &Dest->getTypeSymbolTable(), "");
652      assert(0 && "FIXME");
653    } else {
654      // Nothing similar found, just copy alias into destination module.
655
656      NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
657                              SGA->getName(), DAliasee, Dest);
658      CopyGVAttributes(NewGA, SGA);
659
660      // Proceed to 'common' steps
661    }
662
663    assert(NewGA && "No alias was created in destination module!");
664
665    // If the symbol table renamed the function, but it is an externally
666    // visible symbol, DGV must be an existing function with internal
667    // linkage. Rename it.
668    if (NewGA->getName() != SGA->getName() &&
669        !NewGA->hasInternalLinkage())
670      ForceRenaming(NewGA, SGA->getName());
671
672    // Remember this mapping so uses in the source module get remapped
673    // later by RemapOperand.
674    ValueMap.insert(std::make_pair(SGA, NewGA));
675  }
676
677  return false;
678}
679
680
681// LinkGlobalInits - Update the initializers in the Dest module now that all
682// globals that may be referenced are in Dest.
683static bool LinkGlobalInits(Module *Dest, const Module *Src,
684                            std::map<const Value*, Value*> &ValueMap,
685                            std::string *Err) {
686
687  // Loop over all of the globals in the src module, mapping them over as we go
688  for (Module::const_global_iterator I = Src->global_begin(),
689       E = Src->global_end(); I != E; ++I) {
690    const GlobalVariable *SGV = I;
691
692    if (SGV->hasInitializer()) {      // Only process initialized GV's
693      // Figure out what the initializer looks like in the dest module...
694      Constant *SInit =
695        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
696
697      GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
698      if (DGV->hasInitializer()) {
699        if (SGV->hasExternalLinkage()) {
700          if (DGV->getInitializer() != SInit)
701            return Error(Err, "Global Variable Collision on '" +
702                         ToStr(SGV->getType(), Src) +"':%"+SGV->getName()+
703                         " - Global variables have different initializers");
704        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
705          // Nothing is required, mapped values will take the new global
706          // automatically.
707        } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
708          // Nothing is required, mapped values will take the new global
709          // automatically.
710        } else if (DGV->hasAppendingLinkage()) {
711          assert(0 && "Appending linkage unimplemented!");
712        } else {
713          assert(0 && "Unknown linkage!");
714        }
715      } else {
716        // Copy the initializer over now...
717        DGV->setInitializer(SInit);
718      }
719    }
720  }
721  return false;
722}
723
724// LinkFunctionProtos - Link the functions together between the two modules,
725// without doing function bodies... this just adds external function prototypes
726// to the Dest function...
727//
728static bool LinkFunctionProtos(Module *Dest, const Module *Src,
729                               std::map<const Value*, Value*> &ValueMap,
730                               std::string *Err) {
731  // Loop over all of the functions in the src module, mapping them over
732  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
733    const Function *SF = I;   // SrcFunction
734    Function *DF = 0;
735    if (SF->hasName() && !SF->hasInternalLinkage()) {
736      // Check to see if may have to link the function.
737      DF = Dest->getFunction(SF->getName());
738      if (DF && SF->getType() != DF->getType())
739        // If types don't agree because of opaque, try to resolve them
740        RecursiveResolveTypes(SF->getType(), DF->getType(),
741                              &Dest->getTypeSymbolTable(), "");
742    }
743
744    // Check visibility
745    if (DF && !DF->hasInternalLinkage() &&
746        SF->getVisibility() != DF->getVisibility()) {
747      // If one is a prototype, ignore its visibility.  Prototypes are always
748      // overridden by the definition.
749      if (!SF->isDeclaration() && !DF->isDeclaration())
750        return Error(Err, "Linking functions named '" + SF->getName() +
751                     "': symbols have different visibilities!");
752    }
753
754    if (DF && DF->hasInternalLinkage())
755      DF = NULL;
756
757    if (DF && DF->getType() != SF->getType()) {
758      if (DF->isDeclaration() && !SF->isDeclaration()) {
759        // We have a definition of the same name but different type in the
760        // source module. Copy the prototype to the destination and replace
761        // uses of the destination's prototype with the new prototype.
762        Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
763                                       SF->getName(), Dest);
764        CopyGVAttributes(NewDF, SF);
765
766        // Any uses of DF need to change to NewDF, with cast
767        DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DF->getType()));
768
769        // DF will conflict with NewDF because they both had the same. We must
770        // erase this now so ForceRenaming doesn't assert because DF might
771        // not have internal linkage.
772        DF->eraseFromParent();
773
774        // If the symbol table renamed the function, but it is an externally
775        // visible symbol, DF must be an existing function with internal
776        // linkage.  Rename it.
777        if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
778          ForceRenaming(NewDF, SF->getName());
779
780        // Remember this mapping so uses in the source module get remapped
781        // later by RemapOperand.
782        ValueMap[SF] = NewDF;
783      } else if (SF->isDeclaration()) {
784        // We have two functions of the same name but different type and the
785        // source is a declaration while the destination is not. Any use of
786        // the source must be mapped to the destination, with a cast.
787        ValueMap[SF] = ConstantExpr::getBitCast(DF, SF->getType());
788      } else {
789        // We have two functions of the same name but different types and they
790        // are both definitions. This is an error.
791        return Error(Err, "Function '" + DF->getName() + "' defined as both '" +
792                     ToStr(SF->getFunctionType(), Src) + "' and '" +
793                     ToStr(DF->getFunctionType(), Dest) + "'");
794      }
795    } else if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
796      // Function does not already exist, simply insert an function signature
797      // identical to SF into the dest module.
798      Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
799                                     SF->getName(), Dest);
800      CopyGVAttributes(NewDF, SF);
801
802      // If the LLVM runtime renamed the function, but it is an externally
803      // visible symbol, DF must be an existing function with internal linkage.
804      // Rename it.
805      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
806        ForceRenaming(NewDF, SF->getName());
807
808      // ... and remember this mapping...
809      ValueMap.insert(std::make_pair(SF, NewDF));
810    } else if (SF->isDeclaration()) {
811      // If SF is a declaration or if both SF & DF are declarations, just link
812      // the declarations, we aren't adding anything.
813      if (SF->hasDLLImportLinkage()) {
814        if (DF->isDeclaration()) {
815          ValueMap.insert(std::make_pair(SF, DF));
816          DF->setLinkage(SF->getLinkage());
817        }
818      } else {
819        ValueMap.insert(std::make_pair(SF, DF));
820      }
821    } else if (DF->isDeclaration() && !DF->hasDLLImportLinkage()) {
822      // If DF is external but SF is not...
823      // Link the external functions, update linkage qualifiers
824      ValueMap.insert(std::make_pair(SF, DF));
825      DF->setLinkage(SF->getLinkage());
826      // Visibility of prototype is overridden by vis of definition.
827      DF->setVisibility(SF->getVisibility());
828    } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
829      // At this point we know that DF has LinkOnce, Weak, or External* linkage.
830      ValueMap.insert(std::make_pair(SF, DF));
831
832      // Linkonce+Weak = Weak
833      // *+External Weak = *
834      if ((DF->hasLinkOnceLinkage() && SF->hasWeakLinkage()) ||
835          DF->hasExternalWeakLinkage())
836        DF->setLinkage(SF->getLinkage());
837    } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
838      // At this point we know that SF has LinkOnce or External* linkage.
839      ValueMap.insert(std::make_pair(SF, DF));
840      if (!SF->hasLinkOnceLinkage() && !SF->hasExternalWeakLinkage())
841        // Don't inherit linkonce & external weak linkage
842        DF->setLinkage(SF->getLinkage());
843    } else if (SF->getLinkage() != DF->getLinkage()) {
844        return Error(Err, "Functions named '" + SF->getName() +
845                     "' have different linkage specifiers!");
846    } else if (SF->hasExternalLinkage()) {
847      // The function is defined identically in both modules!!
848      return Error(Err, "Function '" +
849                   ToStr(SF->getFunctionType(), Src) + "':\"" +
850                   SF->getName() + "\" - Function is already defined!");
851    } else {
852      assert(0 && "Unknown linkage configuration found!");
853    }
854  }
855  return false;
856}
857
858// LinkFunctionBody - Copy the source function over into the dest function and
859// fix up references to values.  At this point we know that Dest is an external
860// function, and that Src is not.
861static bool LinkFunctionBody(Function *Dest, Function *Src,
862                             std::map<const Value*, Value*> &ValueMap,
863                             std::string *Err) {
864  assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
865
866  // Go through and convert function arguments over, remembering the mapping.
867  Function::arg_iterator DI = Dest->arg_begin();
868  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
869       I != E; ++I, ++DI) {
870    DI->setName(I->getName());  // Copy the name information over...
871
872    // Add a mapping to our local map
873    ValueMap.insert(std::make_pair(I, DI));
874  }
875
876  // Splice the body of the source function into the dest function.
877  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
878
879  // At this point, all of the instructions and values of the function are now
880  // copied over.  The only problem is that they are still referencing values in
881  // the Source function as operands.  Loop through all of the operands of the
882  // functions and patch them up to point to the local versions...
883  //
884  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
885    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
886      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
887           OI != OE; ++OI)
888        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
889          *OI = RemapOperand(*OI, ValueMap);
890
891  // There is no need to map the arguments anymore.
892  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
893       I != E; ++I)
894    ValueMap.erase(I);
895
896  return false;
897}
898
899
900// LinkFunctionBodies - Link in the function bodies that are defined in the
901// source module into the DestModule.  This consists basically of copying the
902// function over and fixing up references to values.
903static bool LinkFunctionBodies(Module *Dest, Module *Src,
904                               std::map<const Value*, Value*> &ValueMap,
905                               std::string *Err) {
906
907  // Loop over all of the functions in the src module, mapping them over as we
908  // go
909  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
910    if (!SF->isDeclaration()) {               // No body if function is external
911      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
912
913      // DF not external SF external?
914      if (DF->isDeclaration())
915        // Only provide the function body if there isn't one already.
916        if (LinkFunctionBody(DF, SF, ValueMap, Err))
917          return true;
918    }
919  }
920  return false;
921}
922
923// LinkAppendingVars - If there were any appending global variables, link them
924// together now.  Return true on error.
925static bool LinkAppendingVars(Module *M,
926                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
927                              std::string *ErrorMsg) {
928  if (AppendingVars.empty()) return false; // Nothing to do.
929
930  // Loop over the multimap of appending vars, processing any variables with the
931  // same name, forming a new appending global variable with both of the
932  // initializers merged together, then rewrite references to the old variables
933  // and delete them.
934  std::vector<Constant*> Inits;
935  while (AppendingVars.size() > 1) {
936    // Get the first two elements in the map...
937    std::multimap<std::string,
938      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
939
940    // If the first two elements are for different names, there is no pair...
941    // Otherwise there is a pair, so link them together...
942    if (First->first == Second->first) {
943      GlobalVariable *G1 = First->second, *G2 = Second->second;
944      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
945      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
946
947      // Check to see that they two arrays agree on type...
948      if (T1->getElementType() != T2->getElementType())
949        return Error(ErrorMsg,
950         "Appending variables with different element types need to be linked!");
951      if (G1->isConstant() != G2->isConstant())
952        return Error(ErrorMsg,
953                     "Appending variables linked with different const'ness!");
954
955      if (G1->getAlignment() != G2->getAlignment())
956        return Error(ErrorMsg,
957         "Appending variables with different alignment need to be linked!");
958
959      if (G1->getVisibility() != G2->getVisibility())
960        return Error(ErrorMsg,
961         "Appending variables with different visibility need to be linked!");
962
963      if (G1->getSection() != G2->getSection())
964        return Error(ErrorMsg,
965         "Appending variables with different section name need to be linked!");
966
967      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
968      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
969
970      G1->setName("");   // Clear G1's name in case of a conflict!
971
972      // Create the new global variable...
973      GlobalVariable *NG =
974        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
975                           /*init*/0, First->first, M, G1->isThreadLocal());
976
977      // Propagate alignment, visibility and section info.
978      CopyGVAttributes(NG, G1);
979
980      // Merge the initializer...
981      Inits.reserve(NewSize);
982      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
983        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
984          Inits.push_back(I->getOperand(i));
985      } else {
986        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
987        Constant *CV = Constant::getNullValue(T1->getElementType());
988        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
989          Inits.push_back(CV);
990      }
991      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
992        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
993          Inits.push_back(I->getOperand(i));
994      } else {
995        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
996        Constant *CV = Constant::getNullValue(T2->getElementType());
997        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
998          Inits.push_back(CV);
999      }
1000      NG->setInitializer(ConstantArray::get(NewType, Inits));
1001      Inits.clear();
1002
1003      // Replace any uses of the two global variables with uses of the new
1004      // global...
1005
1006      // FIXME: This should rewrite simple/straight-forward uses such as
1007      // getelementptr instructions to not use the Cast!
1008      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G1->getType()));
1009      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G2->getType()));
1010
1011      // Remove the two globals from the module now...
1012      M->getGlobalList().erase(G1);
1013      M->getGlobalList().erase(G2);
1014
1015      // Put the new global into the AppendingVars map so that we can handle
1016      // linking of more than two vars...
1017      Second->second = NG;
1018    }
1019    AppendingVars.erase(First);
1020  }
1021
1022  return false;
1023}
1024
1025
1026// LinkModules - This function links two modules together, with the resulting
1027// left module modified to be the composite of the two input modules.  If an
1028// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1029// the problem.  Upon failure, the Dest module could be in a modified state, and
1030// shouldn't be relied on to be consistent.
1031bool
1032Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1033  assert(Dest != 0 && "Invalid Destination module");
1034  assert(Src  != 0 && "Invalid Source Module");
1035
1036  if (Dest->getDataLayout().empty()) {
1037    if (!Src->getDataLayout().empty()) {
1038      Dest->setDataLayout(Src->getDataLayout());
1039    } else {
1040      std::string DataLayout;
1041
1042      if (Dest->getEndianness() == Module::AnyEndianness) {
1043        if (Src->getEndianness() == Module::BigEndian)
1044          DataLayout.append("E");
1045        else if (Src->getEndianness() == Module::LittleEndian)
1046          DataLayout.append("e");
1047      }
1048
1049      if (Dest->getPointerSize() == Module::AnyPointerSize) {
1050        if (Src->getPointerSize() == Module::Pointer64)
1051          DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1052        else if (Src->getPointerSize() == Module::Pointer32)
1053          DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1054      }
1055      Dest->setDataLayout(DataLayout);
1056    }
1057  }
1058
1059  // Copy the target triple from the source to dest if the dest's is empty.
1060  if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1061    Dest->setTargetTriple(Src->getTargetTriple());
1062
1063  if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1064      Src->getDataLayout() != Dest->getDataLayout())
1065    cerr << "WARNING: Linking two modules of different data layouts!\n";
1066  if (!Src->getTargetTriple().empty() &&
1067      Dest->getTargetTriple() != Src->getTargetTriple())
1068    cerr << "WARNING: Linking two modules of different target triples!\n";
1069
1070  // Append the module inline asm string.
1071  if (!Src->getModuleInlineAsm().empty()) {
1072    if (Dest->getModuleInlineAsm().empty())
1073      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1074    else
1075      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1076                               Src->getModuleInlineAsm());
1077  }
1078
1079  // Update the destination module's dependent libraries list with the libraries
1080  // from the source module. There's no opportunity for duplicates here as the
1081  // Module ensures that duplicate insertions are discarded.
1082  for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1083       SI != SE; ++SI)
1084    Dest->addLibrary(*SI);
1085
1086  // LinkTypes - Go through the symbol table of the Src module and see if any
1087  // types are named in the src module that are not named in the Dst module.
1088  // Make sure there are no type name conflicts.
1089  if (LinkTypes(Dest, Src, ErrorMsg))
1090    return true;
1091
1092  // ValueMap - Mapping of values from what they used to be in Src, to what they
1093  // are now in Dest.
1094  std::map<const Value*, Value*> ValueMap;
1095
1096  // AppendingVars - Keep track of global variables in the destination module
1097  // with appending linkage.  After the module is linked together, they are
1098  // appended and the module is rewritten.
1099  std::multimap<std::string, GlobalVariable *> AppendingVars;
1100  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1101       I != E; ++I) {
1102    // Add all of the appending globals already in the Dest module to
1103    // AppendingVars.
1104    if (I->hasAppendingLinkage())
1105      AppendingVars.insert(std::make_pair(I->getName(), I));
1106  }
1107
1108  // Insert all of the globals in src into the Dest module... without linking
1109  // initializers (which could refer to functions not yet mapped over).
1110  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1111    return true;
1112
1113  // Link the functions together between the two modules, without doing function
1114  // bodies... this just adds external function prototypes to the Dest
1115  // function...  We do this so that when we begin processing function bodies,
1116  // all of the global values that may be referenced are available in our
1117  // ValueMap.
1118  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1119    return true;
1120
1121  // If there were any alias, link them now. We really need to do this now,
1122  // because all of the aliases that may be referenced need to be available in
1123  // ValueMap
1124  if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1125
1126  // Update the initializers in the Dest module now that all globals that may
1127  // be referenced are in Dest.
1128  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1129
1130  // Link in the function bodies that are defined in the source module into the
1131  // DestModule.  This consists basically of copying the function over and
1132  // fixing up references to values.
1133  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1134
1135  // If there were any appending global variables, link them together now.
1136  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1137
1138  // If the source library's module id is in the dependent library list of the
1139  // destination library, remove it since that module is now linked in.
1140  sys::Path modId;
1141  modId.set(Src->getModuleIdentifier());
1142  if (!modId.isEmpty())
1143    Dest->removeLibrary(modId.getBasename());
1144
1145  return false;
1146}
1147
1148// vim: sw=2
1149