LinkModules.cpp revision d40cdd29d09900bf2749cb8f7cc5a69a1e612ac0
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/Instructions.h"
26#include "llvm/Assembly/Writer.h"
27#include "llvm/Support/Streams.h"
28#include "llvm/System/Path.h"
29#include <sstream>
30using namespace llvm;
31
32// Error - Simple wrapper function to conditionally assign to E and return true.
33// This just makes error return conditions a little bit simpler...
34static inline bool Error(std::string *E, const std::string &Message) {
35  if (E) *E = Message;
36  return true;
37}
38
39// ToStr - Simple wrapper function to convert a type to a string.
40static std::string ToStr(const Type *Ty, const Module *M) {
41  std::ostringstream OS;
42  WriteTypeSymbolic(OS, Ty, M);
43  return OS.str();
44}
45
46//
47// Function: ResolveTypes()
48//
49// Description:
50//  Attempt to link the two specified types together.
51//
52// Inputs:
53//  DestTy - The type to which we wish to resolve.
54//  SrcTy  - The original type which we want to resolve.
55//  Name   - The name of the type.
56//
57// Outputs:
58//  DestST - The symbol table in which the new type should be placed.
59//
60// Return value:
61//  true  - There is an error and the types cannot yet be linked.
62//  false - No errors.
63//
64static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
65                         TypeSymbolTable *DestST, const std::string &Name) {
66  if (DestTy == SrcTy) return false;       // If already equal, noop
67
68  // Does the type already exist in the module?
69  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
70    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
71      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
72    } else {
73      return true;  // Cannot link types... neither is opaque and not-equal
74    }
75  } else {                       // Type not in dest module.  Add it now.
76    if (DestTy)                  // Type _is_ in module, just opaque...
77      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
78                           ->refineAbstractTypeTo(SrcTy);
79    else if (!Name.empty())
80      DestST->insert(Name, const_cast<Type*>(SrcTy));
81  }
82  return false;
83}
84
85static const FunctionType *getFT(const PATypeHolder &TH) {
86  return cast<FunctionType>(TH.get());
87}
88static const StructType *getST(const PATypeHolder &TH) {
89  return cast<StructType>(TH.get());
90}
91
92// RecursiveResolveTypes - This is just like ResolveTypes, except that it
93// recurses down into derived types, merging the used types if the parent types
94// are compatible.
95static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
96                                   const PATypeHolder &SrcTy,
97                                   TypeSymbolTable *DestST,
98                                   const std::string &Name,
99                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
100  const Type *SrcTyT = SrcTy.get();
101  const Type *DestTyT = DestTy.get();
102  if (DestTyT == SrcTyT) return false;       // If already equal, noop
103
104  // If we found our opaque type, resolve it now!
105  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
106    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
107
108  // Two types cannot be resolved together if they are of different primitive
109  // type.  For example, we cannot resolve an int to a float.
110  if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
111
112  // Otherwise, resolve the used type used by this derived type...
113  switch (DestTyT->getTypeID()) {
114  case Type::IntegerTyID: {
115    if (cast<IntegerType>(DestTyT)->getBitWidth() !=
116        cast<IntegerType>(SrcTyT)->getBitWidth())
117      return true;
118    return false;
119  }
120  case Type::FunctionTyID: {
121    if (cast<FunctionType>(DestTyT)->isVarArg() !=
122        cast<FunctionType>(SrcTyT)->isVarArg() ||
123        cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
124        cast<FunctionType>(SrcTyT)->getNumContainedTypes())
125      return true;
126    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
127      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
128                                 getFT(SrcTy)->getContainedType(i), DestST, "",
129                                 Pointers))
130        return true;
131    return false;
132  }
133  case Type::StructTyID: {
134    if (getST(DestTy)->getNumContainedTypes() !=
135        getST(SrcTy)->getNumContainedTypes()) return 1;
136    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
137      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
138                                 getST(SrcTy)->getContainedType(i), DestST, "",
139                                 Pointers))
140        return true;
141    return false;
142  }
143  case Type::ArrayTyID: {
144    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
145    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
146    if (DAT->getNumElements() != SAT->getNumElements()) return true;
147    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
148                                  DestST, "", Pointers);
149  }
150  case Type::PointerTyID: {
151    // If this is a pointer type, check to see if we have already seen it.  If
152    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
153    // an associative container for this search, because the type pointers (keys
154    // in the container) change whenever types get resolved...
155    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
156      if (Pointers[i].first == DestTy)
157        return Pointers[i].second != SrcTy;
158
159    // Otherwise, add the current pointers to the vector to stop recursion on
160    // this pair.
161    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
162    bool Result =
163      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
164                             cast<PointerType>(SrcTy.get())->getElementType(),
165                             DestST, "", Pointers);
166    Pointers.pop_back();
167    return Result;
168  }
169  default: assert(0 && "Unexpected type!"); return true;
170  }
171}
172
173static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
174                                  const PATypeHolder &SrcTy,
175                                  TypeSymbolTable *DestST,
176                                  const std::string &Name){
177  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
178  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
179}
180
181
182// LinkTypes - Go through the symbol table of the Src module and see if any
183// types are named in the src module that are not named in the Dst module.
184// Make sure there are no type name conflicts.
185static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
186        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
187  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
188
189  // Look for a type plane for Type's...
190  TypeSymbolTable::const_iterator TI = SrcST->begin();
191  TypeSymbolTable::const_iterator TE = SrcST->end();
192  if (TI == TE) return false;  // No named types, do nothing.
193
194  // Some types cannot be resolved immediately because they depend on other
195  // types being resolved to each other first.  This contains a list of types we
196  // are waiting to recheck.
197  std::vector<std::string> DelayedTypesToResolve;
198
199  for ( ; TI != TE; ++TI ) {
200    const std::string &Name = TI->first;
201    const Type *RHS = TI->second;
202
203    // Check to see if this type name is already in the dest module...
204    Type *Entry = DestST->lookup(Name);
205
206    if (ResolveTypes(Entry, RHS, DestST, Name)) {
207      // They look different, save the types 'till later to resolve.
208      DelayedTypesToResolve.push_back(Name);
209    }
210  }
211
212  // Iteratively resolve types while we can...
213  while (!DelayedTypesToResolve.empty()) {
214    // Loop over all of the types, attempting to resolve them if possible...
215    unsigned OldSize = DelayedTypesToResolve.size();
216
217    // Try direct resolution by name...
218    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
219      const std::string &Name = DelayedTypesToResolve[i];
220      Type *T1 = SrcST->lookup(Name);
221      Type *T2 = DestST->lookup(Name);
222      if (!ResolveTypes(T2, T1, DestST, Name)) {
223        // We are making progress!
224        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
225        --i;
226      }
227    }
228
229    // Did we not eliminate any types?
230    if (DelayedTypesToResolve.size() == OldSize) {
231      // Attempt to resolve subelements of types.  This allows us to merge these
232      // two types: { int* } and { opaque* }
233      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
234        const std::string &Name = DelayedTypesToResolve[i];
235        PATypeHolder T1(SrcST->lookup(Name));
236        PATypeHolder T2(DestST->lookup(Name));
237
238        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
239          // We are making progress!
240          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
241
242          // Go back to the main loop, perhaps we can resolve directly by name
243          // now...
244          break;
245        }
246      }
247
248      // If we STILL cannot resolve the types, then there is something wrong.
249      if (DelayedTypesToResolve.size() == OldSize) {
250        // Remove the symbol name from the destination.
251        DelayedTypesToResolve.pop_back();
252      }
253    }
254  }
255
256
257  return false;
258}
259
260static void PrintMap(const std::map<const Value*, Value*> &M) {
261  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
262       I != E; ++I) {
263    cerr << " Fr: " << (void*)I->first << " ";
264    I->first->dump();
265    cerr << " To: " << (void*)I->second << " ";
266    I->second->dump();
267    cerr << "\n";
268  }
269}
270
271
272// RemapOperand - Use ValueMap to convert constants from one module to another.
273static Value *RemapOperand(const Value *In,
274                           std::map<const Value*, Value*> &ValueMap) {
275  std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
276  if (I != ValueMap.end())
277    return I->second;
278
279  // Check to see if it's a constant that we are interested in transforming.
280  Value *Result = 0;
281  if (const Constant *CPV = dyn_cast<Constant>(In)) {
282    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
283        isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
284      return const_cast<Constant*>(CPV);   // Simple constants stay identical.
285
286    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
287      std::vector<Constant*> Operands(CPA->getNumOperands());
288      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
289        Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
290      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
291    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
292      std::vector<Constant*> Operands(CPS->getNumOperands());
293      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
294        Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
295      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
296    } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
297      Result = const_cast<Constant*>(CPV);
298    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
299      std::vector<Constant*> Operands(CP->getNumOperands());
300      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
301        Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
302      Result = ConstantVector::get(Operands);
303    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
304      std::vector<Constant*> Ops;
305      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
306        Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
307      Result = CE->getWithOperands(Ops);
308    } else if (isa<GlobalValue>(CPV)) {
309      assert(0 && "Unmapped global?");
310    } else {
311      assert(0 && "Unknown type of derived type constant value!");
312    }
313  } else if (isa<InlineAsm>(In)) {
314    Result = const_cast<Value*>(In);
315  }
316
317  // Cache the mapping in our local map structure
318  if (Result) {
319    ValueMap.insert(std::make_pair(In, Result));
320    return Result;
321  }
322
323
324  cerr << "LinkModules ValueMap: \n";
325  PrintMap(ValueMap);
326
327  cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
328  assert(0 && "Couldn't remap value!");
329  return 0;
330}
331
332/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
333/// in the symbol table.  This is good for all clients except for us.  Go
334/// through the trouble to force this back.
335static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
336  assert(GV->getName() != Name && "Can't force rename to self");
337  ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
338
339  // If there is a conflict, rename the conflict.
340  if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
341    assert(ConflictGV->hasInternalLinkage() &&
342           "Not conflicting with a static global, should link instead!");
343    GV->takeName(ConflictGV);
344    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
345    assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
346  } else {
347    GV->setName(Name);              // Force the name back
348  }
349}
350
351/// CopyGVAttributes - copy additional attributes (those not needed to construct
352/// a GlobalValue) from the SrcGV to the DestGV.
353static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
354  // Propagate alignment, visibility and section info.
355  DestGV->setAlignment(std::max(DestGV->getAlignment(), SrcGV->getAlignment()));
356  DestGV->setSection(SrcGV->getSection());
357  DestGV->setVisibility(SrcGV->getVisibility());
358  if (const Function *SrcF = dyn_cast<Function>(SrcGV)) {
359    Function *DestF = cast<Function>(DestGV);
360    DestF->setCallingConv(SrcF->getCallingConv());
361    DestF->setParamAttrs(SrcF->getParamAttrs());
362    if (SrcF->hasCollector())
363      DestF->setCollector(SrcF->getCollector());
364  } else if (const GlobalVariable *SrcVar = dyn_cast<GlobalVariable>(SrcGV)) {
365    GlobalVariable *DestVar = cast<GlobalVariable>(DestGV);
366    DestVar->setThreadLocal(SrcVar->isThreadLocal());
367  }
368}
369
370/// GetLinkageResult - This analyzes the two global values and determines what
371/// the result will look like in the destination module.  In particular, it
372/// computes the resultant linkage type, computes whether the global in the
373/// source should be copied over to the destination (replacing the existing
374/// one), and computes whether this linkage is an error or not. It also performs
375/// visibility checks: we cannot link together two symbols with different
376/// visibilities.
377static bool GetLinkageResult(GlobalValue *Dest, GlobalValue *Src,
378                             GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
379                             std::string *Err) {
380  assert((!Dest || !Src->hasInternalLinkage()) &&
381         "If Src has internal linkage, Dest shouldn't be set!");
382  if (!Dest) {
383    // Linking something to nothing.
384    LinkFromSrc = true;
385    LT = Src->getLinkage();
386  } else if (Src->isDeclaration()) {
387    // If Src is external or if both Src & Drc are external..  Just link the
388    // external globals, we aren't adding anything.
389    if (Src->hasDLLImportLinkage()) {
390      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
391      if (Dest->isDeclaration()) {
392        LinkFromSrc = true;
393        LT = Src->getLinkage();
394      }
395    } else if (Dest->hasExternalWeakLinkage()) {
396      //If the Dest is weak, use the source linkage
397      LinkFromSrc = true;
398      LT = Src->getLinkage();
399    } else {
400      LinkFromSrc = false;
401      LT = Dest->getLinkage();
402    }
403  } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
404    // If Dest is external but Src is not:
405    LinkFromSrc = true;
406    LT = Src->getLinkage();
407  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
408    if (Src->getLinkage() != Dest->getLinkage())
409      return Error(Err, "Linking globals named '" + Src->getName() +
410            "': can only link appending global with another appending global!");
411    LinkFromSrc = true; // Special cased.
412    LT = Src->getLinkage();
413  } else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage()) {
414    // At this point we know that Dest has LinkOnce, External*, Weak, or
415    // DLL* linkage.
416    if ((Dest->hasLinkOnceLinkage() && Src->hasWeakLinkage()) ||
417        Dest->hasExternalWeakLinkage()) {
418      LinkFromSrc = true;
419      LT = Src->getLinkage();
420    } else {
421      LinkFromSrc = false;
422      LT = Dest->getLinkage();
423    }
424  } else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage()) {
425    // At this point we know that Src has External* or DLL* linkage.
426    if (Src->hasExternalWeakLinkage()) {
427      LinkFromSrc = false;
428      LT = Dest->getLinkage();
429    } else {
430      LinkFromSrc = true;
431      LT = GlobalValue::ExternalLinkage;
432    }
433  } else {
434    assert((Dest->hasExternalLinkage() ||
435            Dest->hasDLLImportLinkage() ||
436            Dest->hasDLLExportLinkage() ||
437            Dest->hasExternalWeakLinkage()) &&
438           (Src->hasExternalLinkage() ||
439            Src->hasDLLImportLinkage() ||
440            Src->hasDLLExportLinkage() ||
441            Src->hasExternalWeakLinkage()) &&
442           "Unexpected linkage type!");
443    return Error(Err, "Linking globals named '" + Src->getName() +
444                 "': symbol multiply defined!");
445  }
446
447  // Check visibility
448  if (Dest && Src->getVisibility() != Dest->getVisibility())
449    if (!Src->isDeclaration() && !Dest->isDeclaration())
450      return Error(Err, "Linking globals named '" + Src->getName() +
451                   "': symbols have different visibilities!");
452  return false;
453}
454
455// LinkGlobals - Loop through the global variables in the src module and merge
456// them into the dest module.
457static bool LinkGlobals(Module *Dest, Module *Src,
458                        std::map<const Value*, Value*> &ValueMap,
459                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
460                        std::string *Err) {
461  // Loop over all of the globals in the src module, mapping them over as we go
462  for (Module::global_iterator I = Src->global_begin(), E = Src->global_end();
463       I != E; ++I) {
464    GlobalVariable *SGV = I;
465    GlobalVariable *DGV = 0;
466    // Check to see if may have to link the global.
467    if (SGV->hasName() && !SGV->hasInternalLinkage()) {
468      DGV = Dest->getGlobalVariable(SGV->getName());
469      if (DGV && DGV->getType() != SGV->getType())
470        // If types don't agree due to opaque types, try to resolve them.
471        RecursiveResolveTypes(SGV->getType(), DGV->getType(),
472                              &Dest->getTypeSymbolTable(), "");
473    }
474
475    if (DGV && DGV->hasInternalLinkage())
476      DGV = 0;
477
478    assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
479            SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
480           "Global must either be external or have an initializer!");
481
482    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
483    bool LinkFromSrc = false;
484    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
485      return true;
486
487    if (!DGV) {
488      // No linking to be performed, simply create an identical version of the
489      // symbol over in the dest module... the initializer will be filled in
490      // later by LinkGlobalInits...
491      GlobalVariable *NewDGV =
492        new GlobalVariable(SGV->getType()->getElementType(),
493                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
494                           SGV->getName(), Dest);
495      // Propagate alignment, visibility and section info.
496      CopyGVAttributes(NewDGV, SGV);
497
498      // If the LLVM runtime renamed the global, but it is an externally visible
499      // symbol, DGV must be an existing global with internal linkage.  Rename
500      // it.
501      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
502        ForceRenaming(NewDGV, SGV->getName());
503
504      // Make sure to remember this mapping...
505      ValueMap.insert(std::make_pair(SGV, NewDGV));
506      if (SGV->hasAppendingLinkage())
507        // Keep track that this is an appending variable...
508        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
509    } else if (DGV->hasAppendingLinkage()) {
510      // No linking is performed yet.  Just insert a new copy of the global, and
511      // keep track of the fact that it is an appending variable in the
512      // AppendingVars map.  The name is cleared out so that no linkage is
513      // performed.
514      GlobalVariable *NewDGV =
515        new GlobalVariable(SGV->getType()->getElementType(),
516                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
517                           "", Dest);
518
519      // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
520      NewDGV->setAlignment(DGV->getAlignment());
521      // Propagate alignment, section and visibility info.
522      CopyGVAttributes(NewDGV, SGV);
523
524      // Make sure to remember this mapping...
525      ValueMap.insert(std::make_pair(SGV, NewDGV));
526
527      // Keep track that this is an appending variable...
528      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
529    } else {
530      // Otherwise, perform the mapping as instructed by GetLinkageResult.
531
532      // Propagate alignment, section, and visibility info.
533      CopyGVAttributes(DGV, SGV);
534
535      // If the types don't match, and if we are to link from the source, nuke
536      // DGV and create a new one of the appropriate type.
537      if (SGV->getType() != DGV->getType() && LinkFromSrc) {
538        GlobalVariable *NewDGV =
539          new GlobalVariable(SGV->getType()->getElementType(),
540                             DGV->isConstant(), DGV->getLinkage());
541        CopyGVAttributes(NewDGV, DGV);
542        Dest->getGlobalList().insert(DGV, NewDGV);
543        DGV->replaceAllUsesWith(
544            ConstantExpr::getBitCast(NewDGV, DGV->getType()));
545        DGV->eraseFromParent();
546        NewDGV->setName(SGV->getName());
547        DGV = NewDGV;
548      }
549
550      DGV->setLinkage(NewLinkage);
551
552      if (LinkFromSrc) {
553        // Inherit const as appropriate
554        DGV->setConstant(SGV->isConstant());
555        DGV->setInitializer(0);
556      } else {
557        if (SGV->isConstant() && !DGV->isConstant()) {
558          if (DGV->isDeclaration())
559            DGV->setConstant(true);
560        }
561        SGV->setLinkage(GlobalValue::ExternalLinkage);
562        SGV->setInitializer(0);
563      }
564
565      ValueMap.insert(
566        std::make_pair(SGV, ConstantExpr::getBitCast(DGV, SGV->getType())));
567    }
568  }
569  return false;
570}
571
572static GlobalValue::LinkageTypes
573CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
574  if (SGV->hasExternalLinkage() || DGV->hasExternalLinkage())
575    return GlobalValue::ExternalLinkage;
576  else if (SGV->hasWeakLinkage() || DGV->hasWeakLinkage())
577    return GlobalValue::WeakLinkage;
578  else {
579    assert(SGV->hasInternalLinkage() && DGV->hasInternalLinkage() &&
580           "Unexpected linkage type");
581    return GlobalValue::InternalLinkage;
582  }
583}
584
585// LinkAlias - Loop through the alias in the src module and link them into the
586// dest module. We're assuming, that all functions/global variables were already
587// linked in.
588static bool LinkAlias(Module *Dest, const Module *Src,
589                      std::map<const Value*, Value*> &ValueMap,
590                      std::string *Err) {
591  // Loop over all alias in the src module
592  for (Module::const_alias_iterator I = Src->alias_begin(),
593         E = Src->alias_end(); I != E; ++I) {
594    const GlobalAlias *SGA = I;
595    const GlobalValue *SAliasee = SGA->getAliasedGlobal();
596    GlobalAlias *NewGA = NULL;
597
598    // Globals were already linked, thus we can just query ValueMap for variant
599    // of SAliasee in Dest
600    std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
601    assert(VMI != ValueMap.end() && "Aliasee not linked");
602    GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
603
604    // Try to find something 'similar' to SGA in destination module.
605    if (GlobalAlias *DGA = Dest->getNamedAlias(SGA->getName())) {
606      // If types don't agree due to opaque types, try to resolve them.
607      if (RecursiveResolveTypes(SGA->getType(), DGA->getType(),
608                                &Dest->getTypeSymbolTable(), ""))
609        return Error(Err, "Alias Collision on '" +
610                         ToStr(SGA->getType(), Src) +"':%"+SGA->getName()+
611                     " - aliases have different types");
612
613      // Now types are known to be the same, check whether aliasees equal. As
614      // globals are already linked we just need query ValueMap to find the
615      // mapping.
616      if (DAliasee == DGA->getAliasedGlobal()) {
617        // This is just two copies of the same alias. Propagate linkage, if
618        // necessary.
619        DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
620
621        NewGA = DGA;
622        // Proceed to 'common' steps
623      } else
624        return Error(Err, "Alias Collision on '" +
625                     ToStr(SGA->getType(), Src) +"':%"+SGA->getName()+
626                     " - aliases have different aliasees");
627    } else if (GlobalVariable *DGV = Dest->getGlobalVariable(SGA->getName())) {
628      RecursiveResolveTypes(SGA->getType(), DGV->getType(),
629                            &Dest->getTypeSymbolTable(), "");
630
631      // The only allowed way is to link alias with external declaration.
632      if (DGV->isDeclaration()) {
633        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
634                                SGA->getName(), DAliasee, Dest);
635        CopyGVAttributes(NewGA, SGA);
636
637        // Any uses of DGV need to change to NewGA, with cast, if needed.
638        if (SGA->getType() != DGV->getType())
639          DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
640                                                           DGV->getType()));
641        else
642          DGV->replaceAllUsesWith(NewGA);
643
644        // DGV will conflict with NewGA because they both had the same
645        // name. We must erase this now so ForceRenaming doesn't assert
646        // because DGV might not have internal linkage.
647        DGV->eraseFromParent();
648
649        // Proceed to 'common' steps
650      } else
651        return Error(Err, "Alias Collision on '" +
652                     ToStr(SGA->getType(), Src) +"':%"+SGA->getName()+
653                     " - symbol multiple defined");
654    } else if (Function *DF = Dest->getFunction(SGA->getName())) {
655      RecursiveResolveTypes(SGA->getType(), DF->getType(),
656                            &Dest->getTypeSymbolTable(), "");
657
658      // The only allowed way is to link alias with external declaration.
659      if (DF->isDeclaration()) {
660        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
661                                SGA->getName(), DAliasee, Dest);
662        CopyGVAttributes(NewGA, SGA);
663
664        // Any uses of DF need to change to NewGA, with cast, if needed.
665        if (SGA->getType() != DF->getType())
666          DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
667                                                          DF->getType()));
668        else
669          DF->replaceAllUsesWith(NewGA);
670
671        // DF will conflict with NewGA because they both had the same
672        // name. We must erase this now so ForceRenaming doesn't assert
673        // because DF might not have internal linkage.
674        DF->eraseFromParent();
675
676        // Proceed to 'common' steps
677      } else
678        return Error(Err, "Alias Collision on '" +
679                     ToStr(SGA->getType(), Src) +"':%"+SGA->getName()+
680                     " - symbol multiple defined");
681    } else {
682      // Nothing similar found, just copy alias into destination module.
683
684      NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
685                              SGA->getName(), DAliasee, Dest);
686      CopyGVAttributes(NewGA, SGA);
687
688      // Proceed to 'common' steps
689    }
690
691    assert(NewGA && "No alias was created in destination module!");
692
693    // If the symbol table renamed the function, but it is an externally
694    // visible symbol, DGV must be an existing function with internal
695    // linkage. Rename it.
696    if (NewGA->getName() != SGA->getName() &&
697        !NewGA->hasInternalLinkage())
698      ForceRenaming(NewGA, SGA->getName());
699
700    // Remember this mapping so uses in the source module get remapped
701    // later by RemapOperand.
702    ValueMap.insert(std::make_pair(SGA, NewGA));
703  }
704
705  return false;
706}
707
708
709// LinkGlobalInits - Update the initializers in the Dest module now that all
710// globals that may be referenced are in Dest.
711static bool LinkGlobalInits(Module *Dest, const Module *Src,
712                            std::map<const Value*, Value*> &ValueMap,
713                            std::string *Err) {
714
715  // Loop over all of the globals in the src module, mapping them over as we go
716  for (Module::const_global_iterator I = Src->global_begin(),
717       E = Src->global_end(); I != E; ++I) {
718    const GlobalVariable *SGV = I;
719
720    if (SGV->hasInitializer()) {      // Only process initialized GV's
721      // Figure out what the initializer looks like in the dest module...
722      Constant *SInit =
723        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
724
725      GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
726      if (DGV->hasInitializer()) {
727        if (SGV->hasExternalLinkage()) {
728          if (DGV->getInitializer() != SInit)
729            return Error(Err, "Global Variable Collision on '" +
730                         ToStr(SGV->getType(), Src) +"':%"+SGV->getName()+
731                         " - Global variables have different initializers");
732        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
733          // Nothing is required, mapped values will take the new global
734          // automatically.
735        } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
736          // Nothing is required, mapped values will take the new global
737          // automatically.
738        } else if (DGV->hasAppendingLinkage()) {
739          assert(0 && "Appending linkage unimplemented!");
740        } else {
741          assert(0 && "Unknown linkage!");
742        }
743      } else {
744        // Copy the initializer over now...
745        DGV->setInitializer(SInit);
746      }
747    }
748  }
749  return false;
750}
751
752// LinkFunctionProtos - Link the functions together between the two modules,
753// without doing function bodies... this just adds external function prototypes
754// to the Dest function...
755//
756static bool LinkFunctionProtos(Module *Dest, const Module *Src,
757                               std::map<const Value*, Value*> &ValueMap,
758                               std::string *Err) {
759  // Loop over all of the functions in the src module, mapping them over
760  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
761    const Function *SF = I;   // SrcFunction
762    Function *DF = 0;
763    if (SF->hasName() && !SF->hasInternalLinkage()) {
764      // Check to see if may have to link the function.
765      DF = Dest->getFunction(SF->getName());
766      if (DF && SF->getType() != DF->getType())
767        // If types don't agree because of opaque, try to resolve them
768        RecursiveResolveTypes(SF->getType(), DF->getType(),
769                              &Dest->getTypeSymbolTable(), "");
770    }
771
772    // Check visibility
773    if (DF && !DF->hasInternalLinkage() &&
774        SF->getVisibility() != DF->getVisibility()) {
775      // If one is a prototype, ignore its visibility.  Prototypes are always
776      // overridden by the definition.
777      if (!SF->isDeclaration() && !DF->isDeclaration())
778        return Error(Err, "Linking functions named '" + SF->getName() +
779                     "': symbols have different visibilities!");
780    }
781
782    if (DF && DF->hasInternalLinkage())
783      DF = NULL;
784
785    if (DF && DF->getType() != SF->getType()) {
786      if (DF->isDeclaration() && !SF->isDeclaration()) {
787        // We have a definition of the same name but different type in the
788        // source module. Copy the prototype to the destination and replace
789        // uses of the destination's prototype with the new prototype.
790        Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
791                                       SF->getName(), Dest);
792        CopyGVAttributes(NewDF, SF);
793
794        // Any uses of DF need to change to NewDF, with cast
795        DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DF->getType()));
796
797        // DF will conflict with NewDF because they both had the same. We must
798        // erase this now so ForceRenaming doesn't assert because DF might
799        // not have internal linkage.
800        DF->eraseFromParent();
801
802        // If the symbol table renamed the function, but it is an externally
803        // visible symbol, DF must be an existing function with internal
804        // linkage.  Rename it.
805        if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
806          ForceRenaming(NewDF, SF->getName());
807
808        // Remember this mapping so uses in the source module get remapped
809        // later by RemapOperand.
810        ValueMap[SF] = NewDF;
811      } else if (SF->isDeclaration()) {
812        // We have two functions of the same name but different type and the
813        // source is a declaration while the destination is not. Any use of
814        // the source must be mapped to the destination, with a cast.
815        ValueMap[SF] = ConstantExpr::getBitCast(DF, SF->getType());
816      } else {
817        // We have two functions of the same name but different types and they
818        // are both definitions. This is an error.
819        return Error(Err, "Function '" + DF->getName() + "' defined as both '" +
820                     ToStr(SF->getFunctionType(), Src) + "' and '" +
821                     ToStr(DF->getFunctionType(), Dest) + "'");
822      }
823    } else if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
824      // Function does not already exist, simply insert an function signature
825      // identical to SF into the dest module.
826      Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
827                                     SF->getName(), Dest);
828      CopyGVAttributes(NewDF, SF);
829
830      // If the LLVM runtime renamed the function, but it is an externally
831      // visible symbol, DF must be an existing function with internal linkage.
832      // Rename it.
833      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
834        ForceRenaming(NewDF, SF->getName());
835
836      // ... and remember this mapping...
837      ValueMap.insert(std::make_pair(SF, NewDF));
838    } else if (SF->isDeclaration()) {
839      // If SF is a declaration or if both SF & DF are declarations, just link
840      // the declarations, we aren't adding anything.
841      if (SF->hasDLLImportLinkage()) {
842        if (DF->isDeclaration()) {
843          ValueMap.insert(std::make_pair(SF, DF));
844          DF->setLinkage(SF->getLinkage());
845        }
846      } else {
847        ValueMap.insert(std::make_pair(SF, DF));
848      }
849    } else if (DF->isDeclaration() && !DF->hasDLLImportLinkage()) {
850      // If DF is external but SF is not...
851      // Link the external functions, update linkage qualifiers
852      ValueMap.insert(std::make_pair(SF, DF));
853      DF->setLinkage(SF->getLinkage());
854      // Visibility of prototype is overridden by vis of definition.
855      DF->setVisibility(SF->getVisibility());
856    } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
857      // At this point we know that DF has LinkOnce, Weak, or External* linkage.
858      ValueMap.insert(std::make_pair(SF, DF));
859
860      // Linkonce+Weak = Weak
861      // *+External Weak = *
862      if ((DF->hasLinkOnceLinkage() && SF->hasWeakLinkage()) ||
863          DF->hasExternalWeakLinkage())
864        DF->setLinkage(SF->getLinkage());
865    } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
866      // At this point we know that SF has LinkOnce or External* linkage.
867      ValueMap.insert(std::make_pair(SF, DF));
868      if (!SF->hasLinkOnceLinkage() && !SF->hasExternalWeakLinkage())
869        // Don't inherit linkonce & external weak linkage
870        DF->setLinkage(SF->getLinkage());
871    } else if (SF->getLinkage() != DF->getLinkage()) {
872        return Error(Err, "Functions named '" + SF->getName() +
873                     "' have different linkage specifiers!");
874    } else if (SF->hasExternalLinkage()) {
875      // The function is defined identically in both modules!!
876      return Error(Err, "Function '" +
877                   ToStr(SF->getFunctionType(), Src) + "':\"" +
878                   SF->getName() + "\" - Function is already defined!");
879    } else {
880      assert(0 && "Unknown linkage configuration found!");
881    }
882  }
883  return false;
884}
885
886// LinkFunctionBody - Copy the source function over into the dest function and
887// fix up references to values.  At this point we know that Dest is an external
888// function, and that Src is not.
889static bool LinkFunctionBody(Function *Dest, Function *Src,
890                             std::map<const Value*, Value*> &ValueMap,
891                             std::string *Err) {
892  assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
893
894  // Go through and convert function arguments over, remembering the mapping.
895  Function::arg_iterator DI = Dest->arg_begin();
896  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
897       I != E; ++I, ++DI) {
898    DI->setName(I->getName());  // Copy the name information over...
899
900    // Add a mapping to our local map
901    ValueMap.insert(std::make_pair(I, DI));
902  }
903
904  // Splice the body of the source function into the dest function.
905  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
906
907  // At this point, all of the instructions and values of the function are now
908  // copied over.  The only problem is that they are still referencing values in
909  // the Source function as operands.  Loop through all of the operands of the
910  // functions and patch them up to point to the local versions...
911  //
912  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
913    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
914      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
915           OI != OE; ++OI)
916        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
917          *OI = RemapOperand(*OI, ValueMap);
918
919  // There is no need to map the arguments anymore.
920  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
921       I != E; ++I)
922    ValueMap.erase(I);
923
924  return false;
925}
926
927
928// LinkFunctionBodies - Link in the function bodies that are defined in the
929// source module into the DestModule.  This consists basically of copying the
930// function over and fixing up references to values.
931static bool LinkFunctionBodies(Module *Dest, Module *Src,
932                               std::map<const Value*, Value*> &ValueMap,
933                               std::string *Err) {
934
935  // Loop over all of the functions in the src module, mapping them over as we
936  // go
937  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
938    if (!SF->isDeclaration()) {               // No body if function is external
939      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
940
941      // DF not external SF external?
942      if (DF->isDeclaration())
943        // Only provide the function body if there isn't one already.
944        if (LinkFunctionBody(DF, SF, ValueMap, Err))
945          return true;
946    }
947  }
948  return false;
949}
950
951// LinkAppendingVars - If there were any appending global variables, link them
952// together now.  Return true on error.
953static bool LinkAppendingVars(Module *M,
954                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
955                              std::string *ErrorMsg) {
956  if (AppendingVars.empty()) return false; // Nothing to do.
957
958  // Loop over the multimap of appending vars, processing any variables with the
959  // same name, forming a new appending global variable with both of the
960  // initializers merged together, then rewrite references to the old variables
961  // and delete them.
962  std::vector<Constant*> Inits;
963  while (AppendingVars.size() > 1) {
964    // Get the first two elements in the map...
965    std::multimap<std::string,
966      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
967
968    // If the first two elements are for different names, there is no pair...
969    // Otherwise there is a pair, so link them together...
970    if (First->first == Second->first) {
971      GlobalVariable *G1 = First->second, *G2 = Second->second;
972      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
973      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
974
975      // Check to see that they two arrays agree on type...
976      if (T1->getElementType() != T2->getElementType())
977        return Error(ErrorMsg,
978         "Appending variables with different element types need to be linked!");
979      if (G1->isConstant() != G2->isConstant())
980        return Error(ErrorMsg,
981                     "Appending variables linked with different const'ness!");
982
983      if (G1->getAlignment() != G2->getAlignment())
984        return Error(ErrorMsg,
985         "Appending variables with different alignment need to be linked!");
986
987      if (G1->getVisibility() != G2->getVisibility())
988        return Error(ErrorMsg,
989         "Appending variables with different visibility need to be linked!");
990
991      if (G1->getSection() != G2->getSection())
992        return Error(ErrorMsg,
993         "Appending variables with different section name need to be linked!");
994
995      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
996      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
997
998      G1->setName("");   // Clear G1's name in case of a conflict!
999
1000      // Create the new global variable...
1001      GlobalVariable *NG =
1002        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
1003                           /*init*/0, First->first, M, G1->isThreadLocal());
1004
1005      // Propagate alignment, visibility and section info.
1006      CopyGVAttributes(NG, G1);
1007
1008      // Merge the initializer...
1009      Inits.reserve(NewSize);
1010      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1011        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1012          Inits.push_back(I->getOperand(i));
1013      } else {
1014        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1015        Constant *CV = Constant::getNullValue(T1->getElementType());
1016        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1017          Inits.push_back(CV);
1018      }
1019      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1020        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1021          Inits.push_back(I->getOperand(i));
1022      } else {
1023        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1024        Constant *CV = Constant::getNullValue(T2->getElementType());
1025        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1026          Inits.push_back(CV);
1027      }
1028      NG->setInitializer(ConstantArray::get(NewType, Inits));
1029      Inits.clear();
1030
1031      // Replace any uses of the two global variables with uses of the new
1032      // global...
1033
1034      // FIXME: This should rewrite simple/straight-forward uses such as
1035      // getelementptr instructions to not use the Cast!
1036      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G1->getType()));
1037      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G2->getType()));
1038
1039      // Remove the two globals from the module now...
1040      M->getGlobalList().erase(G1);
1041      M->getGlobalList().erase(G2);
1042
1043      // Put the new global into the AppendingVars map so that we can handle
1044      // linking of more than two vars...
1045      Second->second = NG;
1046    }
1047    AppendingVars.erase(First);
1048  }
1049
1050  return false;
1051}
1052
1053static bool ResolveAliases(Module *Dest) {
1054  for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1055       I != E; ++I) {
1056    GlobalValue* GV = const_cast<GlobalValue*>(I->getAliasedGlobal());
1057    if (!GV->isDeclaration())
1058      I->replaceAllUsesWith(GV);
1059  }
1060
1061  return false;
1062}
1063
1064// LinkModules - This function links two modules together, with the resulting
1065// left module modified to be the composite of the two input modules.  If an
1066// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1067// the problem.  Upon failure, the Dest module could be in a modified state, and
1068// shouldn't be relied on to be consistent.
1069bool
1070Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1071  assert(Dest != 0 && "Invalid Destination module");
1072  assert(Src  != 0 && "Invalid Source Module");
1073
1074  if (Dest->getDataLayout().empty()) {
1075    if (!Src->getDataLayout().empty()) {
1076      Dest->setDataLayout(Src->getDataLayout());
1077    } else {
1078      std::string DataLayout;
1079
1080      if (Dest->getEndianness() == Module::AnyEndianness) {
1081        if (Src->getEndianness() == Module::BigEndian)
1082          DataLayout.append("E");
1083        else if (Src->getEndianness() == Module::LittleEndian)
1084          DataLayout.append("e");
1085      }
1086
1087      if (Dest->getPointerSize() == Module::AnyPointerSize) {
1088        if (Src->getPointerSize() == Module::Pointer64)
1089          DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1090        else if (Src->getPointerSize() == Module::Pointer32)
1091          DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1092      }
1093      Dest->setDataLayout(DataLayout);
1094    }
1095  }
1096
1097  // Copy the target triple from the source to dest if the dest's is empty.
1098  if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1099    Dest->setTargetTriple(Src->getTargetTriple());
1100
1101  if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1102      Src->getDataLayout() != Dest->getDataLayout())
1103    cerr << "WARNING: Linking two modules of different data layouts!\n";
1104  if (!Src->getTargetTriple().empty() &&
1105      Dest->getTargetTriple() != Src->getTargetTriple())
1106    cerr << "WARNING: Linking two modules of different target triples!\n";
1107
1108  // Append the module inline asm string.
1109  if (!Src->getModuleInlineAsm().empty()) {
1110    if (Dest->getModuleInlineAsm().empty())
1111      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1112    else
1113      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1114                               Src->getModuleInlineAsm());
1115  }
1116
1117  // Update the destination module's dependent libraries list with the libraries
1118  // from the source module. There's no opportunity for duplicates here as the
1119  // Module ensures that duplicate insertions are discarded.
1120  for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1121       SI != SE; ++SI)
1122    Dest->addLibrary(*SI);
1123
1124  // LinkTypes - Go through the symbol table of the Src module and see if any
1125  // types are named in the src module that are not named in the Dst module.
1126  // Make sure there are no type name conflicts.
1127  if (LinkTypes(Dest, Src, ErrorMsg))
1128    return true;
1129
1130  // ValueMap - Mapping of values from what they used to be in Src, to what they
1131  // are now in Dest.
1132  std::map<const Value*, Value*> ValueMap;
1133
1134  // AppendingVars - Keep track of global variables in the destination module
1135  // with appending linkage.  After the module is linked together, they are
1136  // appended and the module is rewritten.
1137  std::multimap<std::string, GlobalVariable *> AppendingVars;
1138  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1139       I != E; ++I) {
1140    // Add all of the appending globals already in the Dest module to
1141    // AppendingVars.
1142    if (I->hasAppendingLinkage())
1143      AppendingVars.insert(std::make_pair(I->getName(), I));
1144  }
1145
1146  // Insert all of the globals in src into the Dest module... without linking
1147  // initializers (which could refer to functions not yet mapped over).
1148  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1149    return true;
1150
1151  // Link the functions together between the two modules, without doing function
1152  // bodies... this just adds external function prototypes to the Dest
1153  // function...  We do this so that when we begin processing function bodies,
1154  // all of the global values that may be referenced are available in our
1155  // ValueMap.
1156  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1157    return true;
1158
1159  // If there were any alias, link them now. We really need to do this now,
1160  // because all of the aliases that may be referenced need to be available in
1161  // ValueMap
1162  if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1163
1164  // Update the initializers in the Dest module now that all globals that may
1165  // be referenced are in Dest.
1166  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1167
1168  // Link in the function bodies that are defined in the source module into the
1169  // DestModule.  This consists basically of copying the function over and
1170  // fixing up references to values.
1171  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1172
1173  // If there were any appending global variables, link them together now.
1174  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1175
1176  // Resolve all uses of aliases with aliasees
1177  if (ResolveAliases(Dest)) return true;
1178
1179  // If the source library's module id is in the dependent library list of the
1180  // destination library, remove it since that module is now linked in.
1181  sys::Path modId;
1182  modId.set(Src->getModuleIdentifier());
1183  if (!modId.isEmpty())
1184    Dest->removeLibrary(modId.getBasename());
1185
1186  return false;
1187}
1188
1189// vim: sw=2
1190