LinkModules.cpp revision d4984cca0ec95b3602955b8e41260d0d8b882129
1//===- Linker.cpp - Module Linker Implementation --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Support/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/SymbolTable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/System/Path.h"
27#include <iostream>
28#include <sstream>
29using namespace llvm;
30
31// Error - Simple wrapper function to conditionally assign to E and return true.
32// This just makes error return conditions a little bit simpler...
33//
34static inline bool Error(std::string *E, const std::string &Message) {
35  if (E) *E = Message;
36  return true;
37}
38
39static std::string ToStr(const Type *Ty, const Module *M) {
40  std::ostringstream OS;
41  WriteTypeSymbolic(OS, Ty, M);
42  return OS.str();
43}
44
45//
46// Function: ResolveTypes()
47//
48// Description:
49//  Attempt to link the two specified types together.
50//
51// Inputs:
52//  DestTy - The type to which we wish to resolve.
53//  SrcTy  - The original type which we want to resolve.
54//  Name   - The name of the type.
55//
56// Outputs:
57//  DestST - The symbol table in which the new type should be placed.
58//
59// Return value:
60//  true  - There is an error and the types cannot yet be linked.
61//  false - No errors.
62//
63static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
64                         SymbolTable *DestST, const std::string &Name) {
65  if (DestTy == SrcTy) return false;       // If already equal, noop
66
67  // Does the type already exist in the module?
68  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
69    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
70      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
71    } else {
72      return true;  // Cannot link types... neither is opaque and not-equal
73    }
74  } else {                       // Type not in dest module.  Add it now.
75    if (DestTy)                  // Type _is_ in module, just opaque...
76      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
77                           ->refineAbstractTypeTo(SrcTy);
78    else if (!Name.empty())
79      DestST->insert(Name, const_cast<Type*>(SrcTy));
80  }
81  return false;
82}
83
84static const FunctionType *getFT(const PATypeHolder &TH) {
85  return cast<FunctionType>(TH.get());
86}
87static const StructType *getST(const PATypeHolder &TH) {
88  return cast<StructType>(TH.get());
89}
90
91// RecursiveResolveTypes - This is just like ResolveTypes, except that it
92// recurses down into derived types, merging the used types if the parent types
93// are compatible.
94//
95static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
96                                   const PATypeHolder &SrcTy,
97                                   SymbolTable *DestST, const std::string &Name,
98                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
99  const Type *SrcTyT = SrcTy.get();
100  const Type *DestTyT = DestTy.get();
101  if (DestTyT == SrcTyT) return false;       // If already equal, noop
102
103  // If we found our opaque type, resolve it now!
104  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
105    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
106
107  // Two types cannot be resolved together if they are of different primitive
108  // type.  For example, we cannot resolve an int to a float.
109  if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
110
111  // Otherwise, resolve the used type used by this derived type...
112  switch (DestTyT->getTypeID()) {
113  case Type::FunctionTyID: {
114    if (cast<FunctionType>(DestTyT)->isVarArg() !=
115        cast<FunctionType>(SrcTyT)->isVarArg() ||
116        cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
117        cast<FunctionType>(SrcTyT)->getNumContainedTypes())
118      return true;
119    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
120      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
121                                 getFT(SrcTy)->getContainedType(i), DestST, "",
122                                 Pointers))
123        return true;
124    return false;
125  }
126  case Type::StructTyID: {
127    if (getST(DestTy)->getNumContainedTypes() !=
128        getST(SrcTy)->getNumContainedTypes()) return 1;
129    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
130      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
131                                 getST(SrcTy)->getContainedType(i), DestST, "",
132                                 Pointers))
133        return true;
134    return false;
135  }
136  case Type::ArrayTyID: {
137    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
138    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
139    if (DAT->getNumElements() != SAT->getNumElements()) return true;
140    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
141                                  DestST, "", Pointers);
142  }
143  case Type::PointerTyID: {
144    // If this is a pointer type, check to see if we have already seen it.  If
145    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
146    // an associative container for this search, because the type pointers (keys
147    // in the container) change whenever types get resolved...
148    //
149    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
150      if (Pointers[i].first == DestTy)
151        return Pointers[i].second != SrcTy;
152
153    // Otherwise, add the current pointers to the vector to stop recursion on
154    // this pair.
155    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
156    bool Result =
157      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
158                             cast<PointerType>(SrcTy.get())->getElementType(),
159                             DestST, "", Pointers);
160    Pointers.pop_back();
161    return Result;
162  }
163  default: assert(0 && "Unexpected type!"); return true;
164  }
165}
166
167static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
168                                  const PATypeHolder &SrcTy,
169                                  SymbolTable *DestST, const std::string &Name){
170  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
171  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
172}
173
174
175// LinkTypes - Go through the symbol table of the Src module and see if any
176// types are named in the src module that are not named in the Dst module.
177// Make sure there are no type name conflicts.
178//
179static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
180  SymbolTable       *DestST = &Dest->getSymbolTable();
181  const SymbolTable *SrcST  = &Src->getSymbolTable();
182
183  // Look for a type plane for Type's...
184  SymbolTable::type_const_iterator TI = SrcST->type_begin();
185  SymbolTable::type_const_iterator TE = SrcST->type_end();
186  if (TI == TE) return false;  // No named types, do nothing.
187
188  // Some types cannot be resolved immediately because they depend on other
189  // types being resolved to each other first.  This contains a list of types we
190  // are waiting to recheck.
191  std::vector<std::string> DelayedTypesToResolve;
192
193  for ( ; TI != TE; ++TI ) {
194    const std::string &Name = TI->first;
195    const Type *RHS = TI->second;
196
197    // Check to see if this type name is already in the dest module...
198    Type *Entry = DestST->lookupType(Name);
199
200    if (ResolveTypes(Entry, RHS, DestST, Name)) {
201      // They look different, save the types 'till later to resolve.
202      DelayedTypesToResolve.push_back(Name);
203    }
204  }
205
206  // Iteratively resolve types while we can...
207  while (!DelayedTypesToResolve.empty()) {
208    // Loop over all of the types, attempting to resolve them if possible...
209    unsigned OldSize = DelayedTypesToResolve.size();
210
211    // Try direct resolution by name...
212    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
213      const std::string &Name = DelayedTypesToResolve[i];
214      Type *T1 = SrcST->lookupType(Name);
215      Type *T2 = DestST->lookupType(Name);
216      if (!ResolveTypes(T2, T1, DestST, Name)) {
217        // We are making progress!
218        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
219        --i;
220      }
221    }
222
223    // Did we not eliminate any types?
224    if (DelayedTypesToResolve.size() == OldSize) {
225      // Attempt to resolve subelements of types.  This allows us to merge these
226      // two types: { int* } and { opaque* }
227      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
228        const std::string &Name = DelayedTypesToResolve[i];
229        PATypeHolder T1(SrcST->lookupType(Name));
230        PATypeHolder T2(DestST->lookupType(Name));
231
232        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
233          // We are making progress!
234          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
235
236          // Go back to the main loop, perhaps we can resolve directly by name
237          // now...
238          break;
239        }
240      }
241
242      // If we STILL cannot resolve the types, then there is something wrong.
243      // Report the warning and delete one of the names.
244      if (DelayedTypesToResolve.size() == OldSize) {
245        const std::string &Name = DelayedTypesToResolve.back();
246
247        const Type *T1 = SrcST->lookupType(Name);
248        const Type *T2 = DestST->lookupType(Name);
249        std::cerr << "WARNING: Type conflict between types named '" << Name
250                  <<  "'.\n    Src='";
251        WriteTypeSymbolic(std::cerr, T1, Src);
252        std::cerr << "'.\n   Dest='";
253        WriteTypeSymbolic(std::cerr, T2, Dest);
254        std::cerr << "'\n";
255
256        // Remove the symbol name from the destination.
257        DelayedTypesToResolve.pop_back();
258      }
259    }
260  }
261
262
263  return false;
264}
265
266static void PrintMap(const std::map<const Value*, Value*> &M) {
267  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
268       I != E; ++I) {
269    std::cerr << " Fr: " << (void*)I->first << " ";
270    I->first->dump();
271    std::cerr << " To: " << (void*)I->second << " ";
272    I->second->dump();
273    std::cerr << "\n";
274  }
275}
276
277
278// RemapOperand - Use LocalMap and GlobalMap to convert references from one
279// module to another.  This is somewhat sophisticated in that it can
280// automatically handle constant references correctly as well...
281//
282static Value *RemapOperand(const Value *In,
283                           std::map<const Value*, Value*> &LocalMap,
284                           std::map<const Value*, Value*> *GlobalMap) {
285  std::map<const Value*,Value*>::const_iterator I = LocalMap.find(In);
286  if (I != LocalMap.end()) return I->second;
287
288  if (GlobalMap) {
289    I = GlobalMap->find(In);
290    if (I != GlobalMap->end()) return I->second;
291  }
292
293  // Check to see if it's a constant that we are interesting in transforming...
294  if (const Constant *CPV = dyn_cast<Constant>(In)) {
295    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
296        isa<ConstantAggregateZero>(CPV))
297      return const_cast<Constant*>(CPV);   // Simple constants stay identical...
298
299    Constant *Result = 0;
300
301    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
302      std::vector<Constant*> Operands(CPA->getNumOperands());
303      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
304        Operands[i] =
305          cast<Constant>(RemapOperand(CPA->getOperand(i), LocalMap, GlobalMap));
306      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
307    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
308      std::vector<Constant*> Operands(CPS->getNumOperands());
309      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
310        Operands[i] =
311          cast<Constant>(RemapOperand(CPS->getOperand(i), LocalMap, GlobalMap));
312      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
313    } else if (isa<ConstantPointerNull>(CPV)) {
314      Result = const_cast<Constant*>(CPV);
315    } else if (isa<GlobalValue>(CPV)) {
316      Result = cast<Constant>(RemapOperand(CPV, LocalMap, GlobalMap));
317    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
318      if (CE->getOpcode() == Instruction::GetElementPtr) {
319        Value *Ptr = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
320        std::vector<Constant*> Indices;
321        Indices.reserve(CE->getNumOperands()-1);
322        for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
323          Indices.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),
324                                                        LocalMap, GlobalMap)));
325
326        Result = ConstantExpr::getGetElementPtr(cast<Constant>(Ptr), Indices);
327      } else if (CE->getNumOperands() == 1) {
328        // Cast instruction
329        assert(CE->getOpcode() == Instruction::Cast);
330        Value *V = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
331        Result = ConstantExpr::getCast(cast<Constant>(V), CE->getType());
332      } else if (CE->getNumOperands() == 3) {
333        // Select instruction
334        assert(CE->getOpcode() == Instruction::Select);
335        Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
336        Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
337        Value *V3 = RemapOperand(CE->getOperand(2), LocalMap, GlobalMap);
338        Result = ConstantExpr::getSelect(cast<Constant>(V1), cast<Constant>(V2),
339                                         cast<Constant>(V3));
340      } else if (CE->getNumOperands() == 2) {
341        // Binary operator...
342        Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
343        Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
344
345        Result = ConstantExpr::get(CE->getOpcode(), cast<Constant>(V1),
346                                   cast<Constant>(V2));
347      } else {
348        assert(0 && "Unknown constant expr type!");
349      }
350
351    } else {
352      assert(0 && "Unknown type of derived type constant value!");
353    }
354
355    // Cache the mapping in our local map structure...
356    if (GlobalMap)
357      GlobalMap->insert(std::make_pair(In, Result));
358    else
359      LocalMap.insert(std::make_pair(In, Result));
360    return Result;
361  }
362
363  std::cerr << "XXX LocalMap: \n";
364  PrintMap(LocalMap);
365
366  if (GlobalMap) {
367    std::cerr << "XXX GlobalMap: \n";
368    PrintMap(*GlobalMap);
369  }
370
371  std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
372  assert(0 && "Couldn't remap value!");
373  return 0;
374}
375
376/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
377/// in the symbol table.  This is good for all clients except for us.  Go
378/// through the trouble to force this back.
379static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
380  assert(GV->getName() != Name && "Can't force rename to self");
381  SymbolTable &ST = GV->getParent()->getSymbolTable();
382
383  // If there is a conflict, rename the conflict.
384  Value *ConflictVal = ST.lookup(GV->getType(), Name);
385  assert(ConflictVal&&"Why do we have to force rename if there is no conflic?");
386  GlobalValue *ConflictGV = cast<GlobalValue>(ConflictVal);
387  assert(ConflictGV->hasInternalLinkage() &&
388         "Not conflicting with a static global, should link instead!");
389
390  ConflictGV->setName("");          // Eliminate the conflict
391  GV->setName(Name);                // Force the name back
392  ConflictGV->setName(Name);        // This will cause ConflictGV to get renamed
393  assert(GV->getName() == Name && ConflictGV->getName() != Name &&
394         "ForceRenaming didn't work");
395}
396
397
398// LinkGlobals - Loop through the global variables in the src module and merge
399// them into the dest module.
400//
401static bool LinkGlobals(Module *Dest, const Module *Src,
402                        std::map<const Value*, Value*> &ValueMap,
403                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
404                        std::map<std::string, GlobalValue*> &GlobalsByName,
405                        std::string *Err) {
406  // We will need a module level symbol table if the src module has a module
407  // level symbol table...
408  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
409
410  // Loop over all of the globals in the src module, mapping them over as we go
411  //
412  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
413    const GlobalVariable *SGV = I;
414    GlobalVariable *DGV = 0;
415    // Check to see if may have to link the global.
416    if (SGV->hasName() && !SGV->hasInternalLinkage())
417      if (!(DGV = Dest->getGlobalVariable(SGV->getName(),
418                                          SGV->getType()->getElementType()))) {
419        std::map<std::string, GlobalValue*>::iterator EGV =
420          GlobalsByName.find(SGV->getName());
421        if (EGV != GlobalsByName.end())
422          DGV = dyn_cast<GlobalVariable>(EGV->second);
423        if (DGV && RecursiveResolveTypes(SGV->getType(), DGV->getType(), ST, ""))
424          DGV = 0;  // FIXME: gross.
425      }
426
427    assert(SGV->hasInitializer() || SGV->hasExternalLinkage() &&
428           "Global must either be external or have an initializer!");
429
430    bool SGExtern = SGV->isExternal();
431    bool DGExtern = DGV ? DGV->isExternal() : false;
432
433    if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) {
434      // No linking to be performed, simply create an identical version of the
435      // symbol over in the dest module... the initializer will be filled in
436      // later by LinkGlobalInits...
437      //
438      GlobalVariable *NewDGV =
439        new GlobalVariable(SGV->getType()->getElementType(),
440                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
441                           SGV->getName(), Dest);
442
443      // If the LLVM runtime renamed the global, but it is an externally visible
444      // symbol, DGV must be an existing global with internal linkage.  Rename
445      // it.
446      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
447        ForceRenaming(NewDGV, SGV->getName());
448
449      // Make sure to remember this mapping...
450      ValueMap.insert(std::make_pair(SGV, NewDGV));
451      if (SGV->hasAppendingLinkage())
452        // Keep track that this is an appending variable...
453        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
454
455    } else if (SGV->isExternal()) {
456      // If SGV is external or if both SGV & DGV are external..  Just link the
457      // external globals, we aren't adding anything.
458      ValueMap.insert(std::make_pair(SGV, DGV));
459
460      // Inherit 'const' information.
461      if (SGV->isConstant()) DGV->setConstant(true);
462
463    } else if (DGV->isExternal()) {   // If DGV is external but SGV is not...
464      ValueMap.insert(std::make_pair(SGV, DGV));
465      DGV->setLinkage(SGV->getLinkage());    // Inherit linkage!
466
467      if (DGV->isConstant() && !SGV->isConstant())
468        return Error(Err, "Linking globals named '" + SGV->getName() +
469                     "': declaration is const but definition is not!");
470
471      // Inherit 'const' information.
472      if (SGV->isConstant()) DGV->setConstant(true);
473
474    } else if (SGV->hasWeakLinkage() || SGV->hasLinkOnceLinkage()) {
475      // At this point we know that DGV has LinkOnce, Appending, Weak, or
476      // External linkage.  If DGV is Appending, this is an error.
477      if (DGV->hasAppendingLinkage())
478        return Error(Err, "Linking globals named '" + SGV->getName() +
479                     "' with 'weak' and 'appending' linkage is not allowed!");
480
481      if (SGV->isConstant() != DGV->isConstant())
482        return Error(Err, "Global Variable Collision on '" +
483                     ToStr(SGV->getType(), Src) + " %" + SGV->getName() +
484                     "' - Global variables differ in const'ness");
485
486      // Otherwise, just perform the link.
487      ValueMap.insert(std::make_pair(SGV, DGV));
488
489      // Linkonce+Weak = Weak
490      if (DGV->hasLinkOnceLinkage() && SGV->hasWeakLinkage())
491        DGV->setLinkage(SGV->getLinkage());
492
493    } else if (DGV->hasWeakLinkage() || DGV->hasLinkOnceLinkage()) {
494      // At this point we know that SGV has LinkOnce, Appending, or External
495      // linkage.  If SGV is Appending, this is an error.
496      if (SGV->hasAppendingLinkage())
497        return Error(Err, "Linking globals named '" + SGV->getName() +
498                     " ' with 'weak' and 'appending' linkage is not allowed!");
499
500      if (SGV->isConstant() != DGV->isConstant())
501        return Error(Err, "Global Variable Collision on '" +
502                     ToStr(SGV->getType(), Src) + " %" + SGV->getName() +
503                     "' - Global variables differ in const'ness");
504
505      if (!SGV->hasLinkOnceLinkage())
506        DGV->setLinkage(SGV->getLinkage());    // Inherit linkage!
507      ValueMap.insert(std::make_pair(SGV, DGV));
508
509    } else if (SGV->getLinkage() != DGV->getLinkage()) {
510      return Error(Err, "Global variables named '" + SGV->getName() +
511                   "' have different linkage specifiers!");
512      // Inherit 'const' information.
513      if (SGV->isConstant()) DGV->setConstant(true);
514
515    } else if (SGV->hasExternalLinkage()) {
516      // Allow linking two exactly identical external global variables...
517      if (SGV->isConstant() != DGV->isConstant())
518        return Error(Err, "Global Variable Collision on '" +
519                     ToStr(SGV->getType(), Src) + " %" + SGV->getName() +
520                     "' - Global variables differ in const'ness");
521
522      if (SGV->getInitializer() != DGV->getInitializer())
523        return Error(Err, "Global Variable Collision on '" +
524                     ToStr(SGV->getType(), Src) + " %" + SGV->getName() +
525                    "' - External linkage globals have different initializers");
526
527      ValueMap.insert(std::make_pair(SGV, DGV));
528    } else if (SGV->hasAppendingLinkage()) {
529      // No linking is performed yet.  Just insert a new copy of the global, and
530      // keep track of the fact that it is an appending variable in the
531      // AppendingVars map.  The name is cleared out so that no linkage is
532      // performed.
533      GlobalVariable *NewDGV =
534        new GlobalVariable(SGV->getType()->getElementType(),
535                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
536                           "", Dest);
537
538      // Make sure to remember this mapping...
539      ValueMap.insert(std::make_pair(SGV, NewDGV));
540
541      // Keep track that this is an appending variable...
542      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
543    } else {
544      assert(0 && "Unknown linkage!");
545    }
546  }
547  return false;
548}
549
550
551// LinkGlobalInits - Update the initializers in the Dest module now that all
552// globals that may be referenced are in Dest.
553//
554static bool LinkGlobalInits(Module *Dest, const Module *Src,
555                            std::map<const Value*, Value*> &ValueMap,
556                            std::string *Err) {
557
558  // Loop over all of the globals in the src module, mapping them over as we go
559  //
560  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
561    const GlobalVariable *SGV = I;
562
563    if (SGV->hasInitializer()) {      // Only process initialized GV's
564      // Figure out what the initializer looks like in the dest module...
565      Constant *SInit =
566        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap, 0));
567
568      GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
569      if (DGV->hasInitializer()) {
570        if (SGV->hasExternalLinkage()) {
571          if (DGV->getInitializer() != SInit)
572            return Error(Err, "Global Variable Collision on '" +
573                         ToStr(SGV->getType(), Src) +"':%"+SGV->getName()+
574                         " - Global variables have different initializers");
575        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
576          // Nothing is required, mapped values will take the new global
577          // automatically.
578        } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
579          // Nothing is required, mapped values will take the new global
580          // automatically.
581        } else if (DGV->hasAppendingLinkage()) {
582          assert(0 && "Appending linkage unimplemented!");
583        } else {
584          assert(0 && "Unknown linkage!");
585        }
586      } else {
587        // Copy the initializer over now...
588        DGV->setInitializer(SInit);
589      }
590    }
591  }
592  return false;
593}
594
595// LinkFunctionProtos - Link the functions together between the two modules,
596// without doing function bodies... this just adds external function prototypes
597// to the Dest function...
598//
599static bool LinkFunctionProtos(Module *Dest, const Module *Src,
600                               std::map<const Value*, Value*> &ValueMap,
601                             std::map<std::string, GlobalValue*> &GlobalsByName,
602                               std::string *Err) {
603  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
604
605  // Loop over all of the functions in the src module, mapping them over as we
606  // go
607  //
608  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
609    const Function *SF = I;   // SrcFunction
610    Function *DF = 0;
611    if (SF->hasName() && !SF->hasInternalLinkage()) {
612      // Check to see if may have to link the function.
613      if (!(DF = Dest->getFunction(SF->getName(), SF->getFunctionType()))) {
614        std::map<std::string, GlobalValue*>::iterator EF =
615          GlobalsByName.find(SF->getName());
616        if (EF != GlobalsByName.end())
617          DF = dyn_cast<Function>(EF->second);
618        if (DF && RecursiveResolveTypes(SF->getType(), DF->getType(), ST, ""))
619          DF = 0;  // FIXME: gross.
620      }
621    }
622
623    if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
624      // Function does not already exist, simply insert an function signature
625      // identical to SF into the dest module...
626      Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
627                                     SF->getName(), Dest);
628
629      // If the LLVM runtime renamed the function, but it is an externally
630      // visible symbol, DF must be an existing function with internal linkage.
631      // Rename it.
632      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
633        ForceRenaming(NewDF, SF->getName());
634
635      // ... and remember this mapping...
636      ValueMap.insert(std::make_pair(SF, NewDF));
637    } else if (SF->isExternal()) {
638      // If SF is external or if both SF & DF are external..  Just link the
639      // external functions, we aren't adding anything.
640      ValueMap.insert(std::make_pair(SF, DF));
641    } else if (DF->isExternal()) {   // If DF is external but SF is not...
642      // Link the external functions, update linkage qualifiers
643      ValueMap.insert(std::make_pair(SF, DF));
644      DF->setLinkage(SF->getLinkage());
645
646    } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
647      // At this point we know that DF has LinkOnce, Weak, or External linkage.
648      ValueMap.insert(std::make_pair(SF, DF));
649
650      // Linkonce+Weak = Weak
651      if (DF->hasLinkOnceLinkage() && SF->hasWeakLinkage())
652        DF->setLinkage(SF->getLinkage());
653
654    } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
655      // At this point we know that SF has LinkOnce or External linkage.
656      ValueMap.insert(std::make_pair(SF, DF));
657      if (!SF->hasLinkOnceLinkage())   // Don't inherit linkonce linkage
658        DF->setLinkage(SF->getLinkage());
659
660    } else if (SF->getLinkage() != DF->getLinkage()) {
661      return Error(Err, "Functions named '" + SF->getName() +
662                   "' have different linkage specifiers!");
663    } else if (SF->hasExternalLinkage()) {
664      // The function is defined in both modules!!
665      return Error(Err, "Function '" +
666                   ToStr(SF->getFunctionType(), Src) + "':\"" +
667                   SF->getName() + "\" - Function is already defined!");
668    } else {
669      assert(0 && "Unknown linkage configuration found!");
670    }
671  }
672  return false;
673}
674
675// LinkFunctionBody - Copy the source function over into the dest function and
676// fix up references to values.  At this point we know that Dest is an external
677// function, and that Src is not.
678//
679static bool LinkFunctionBody(Function *Dest, const Function *Src,
680                             std::map<const Value*, Value*> &GlobalMap,
681                             std::string *Err) {
682  assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
683  std::map<const Value*, Value*> LocalMap;   // Map for function local values
684
685  // Go through and convert function arguments over...
686  Function::aiterator DI = Dest->abegin();
687  for (Function::const_aiterator I = Src->abegin(), E = Src->aend();
688       I != E; ++I, ++DI) {
689    DI->setName(I->getName());  // Copy the name information over...
690
691    // Add a mapping to our local map
692    LocalMap.insert(std::make_pair(I, DI));
693  }
694
695  // Loop over all of the basic blocks, copying the instructions over...
696  //
697  for (Function::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
698    // Create new basic block and add to mapping and the Dest function...
699    BasicBlock *DBB = new BasicBlock(I->getName(), Dest);
700    LocalMap.insert(std::make_pair(I, DBB));
701
702    // Loop over all of the instructions in the src basic block, copying them
703    // over.  Note that this is broken in a strict sense because the cloned
704    // instructions will still be referencing values in the Src module, not
705    // the remapped values.  In our case, however, we will not get caught and
706    // so we can delay patching the values up until later...
707    //
708    for (BasicBlock::const_iterator II = I->begin(), IE = I->end();
709         II != IE; ++II) {
710      Instruction *DI = II->clone();
711      DI->setName(II->getName());
712      DBB->getInstList().push_back(DI);
713      LocalMap.insert(std::make_pair(II, DI));
714    }
715  }
716
717  // At this point, all of the instructions and values of the function are now
718  // copied over.  The only problem is that they are still referencing values in
719  // the Source function as operands.  Loop through all of the operands of the
720  // functions and patch them up to point to the local versions...
721  //
722  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
723    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
724      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
725           OI != OE; ++OI)
726        *OI = RemapOperand(*OI, LocalMap, &GlobalMap);
727
728  return false;
729}
730
731
732// LinkFunctionBodies - Link in the function bodies that are defined in the
733// source module into the DestModule.  This consists basically of copying the
734// function over and fixing up references to values.
735//
736static bool LinkFunctionBodies(Module *Dest, const Module *Src,
737                               std::map<const Value*, Value*> &ValueMap,
738                               std::string *Err) {
739
740  // Loop over all of the functions in the src module, mapping them over as we
741  // go
742  //
743  for (Module::const_iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF){
744    if (!SF->isExternal()) {                  // No body if function is external
745      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
746
747      // DF not external SF external?
748      if (DF->isExternal()) {
749        // Only provide the function body if there isn't one already.
750        if (LinkFunctionBody(DF, SF, ValueMap, Err))
751          return true;
752      }
753    }
754  }
755  return false;
756}
757
758// LinkAppendingVars - If there were any appending global variables, link them
759// together now.  Return true on error.
760//
761static bool LinkAppendingVars(Module *M,
762                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
763                              std::string *ErrorMsg) {
764  if (AppendingVars.empty()) return false; // Nothing to do.
765
766  // Loop over the multimap of appending vars, processing any variables with the
767  // same name, forming a new appending global variable with both of the
768  // initializers merged together, then rewrite references to the old variables
769  // and delete them.
770  //
771  std::vector<Constant*> Inits;
772  while (AppendingVars.size() > 1) {
773    // Get the first two elements in the map...
774    std::multimap<std::string,
775      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
776
777    // If the first two elements are for different names, there is no pair...
778    // Otherwise there is a pair, so link them together...
779    if (First->first == Second->first) {
780      GlobalVariable *G1 = First->second, *G2 = Second->second;
781      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
782      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
783
784      // Check to see that they two arrays agree on type...
785      if (T1->getElementType() != T2->getElementType())
786        return Error(ErrorMsg,
787         "Appending variables with different element types need to be linked!");
788      if (G1->isConstant() != G2->isConstant())
789        return Error(ErrorMsg,
790                     "Appending variables linked with different const'ness!");
791
792      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
793      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
794
795      // Create the new global variable...
796      GlobalVariable *NG =
797        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
798                           /*init*/0, First->first, M);
799
800      // Merge the initializer...
801      Inits.reserve(NewSize);
802      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
803        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
804          Inits.push_back(I->getOperand(i));
805      } else {
806        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
807        Constant *CV = Constant::getNullValue(T1->getElementType());
808        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
809          Inits.push_back(CV);
810      }
811      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
812        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
813          Inits.push_back(I->getOperand(i));
814      } else {
815        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
816        Constant *CV = Constant::getNullValue(T2->getElementType());
817        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
818          Inits.push_back(CV);
819      }
820      NG->setInitializer(ConstantArray::get(NewType, Inits));
821      Inits.clear();
822
823      // Replace any uses of the two global variables with uses of the new
824      // global...
825
826      // FIXME: This should rewrite simple/straight-forward uses such as
827      // getelementptr instructions to not use the Cast!
828      G1->replaceAllUsesWith(ConstantExpr::getCast(NG, G1->getType()));
829      G2->replaceAllUsesWith(ConstantExpr::getCast(NG, G2->getType()));
830
831      // Remove the two globals from the module now...
832      M->getGlobalList().erase(G1);
833      M->getGlobalList().erase(G2);
834
835      // Put the new global into the AppendingVars map so that we can handle
836      // linking of more than two vars...
837      Second->second = NG;
838    }
839    AppendingVars.erase(First);
840  }
841
842  return false;
843}
844
845
846// LinkModules - This function links two modules together, with the resulting
847// left module modified to be the composite of the two input modules.  If an
848// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
849// the problem.  Upon failure, the Dest module could be in a modified state, and
850// shouldn't be relied on to be consistent.
851//
852bool llvm::LinkModules(Module *Dest, const Module *Src, std::string *ErrorMsg) {
853  assert(Dest != 0 && "Invalid Destination module");
854  assert(Src  != 0 && "Invalid Source Module");
855
856  if (Dest->getEndianness() == Module::AnyEndianness)
857    Dest->setEndianness(Src->getEndianness());
858  if (Dest->getPointerSize() == Module::AnyPointerSize)
859    Dest->setPointerSize(Src->getPointerSize());
860
861  if (Src->getEndianness() != Module::AnyEndianness &&
862      Dest->getEndianness() != Src->getEndianness())
863    std::cerr << "WARNING: Linking two modules of different endianness!\n";
864  if (Src->getPointerSize() != Module::AnyPointerSize &&
865      Dest->getPointerSize() != Src->getPointerSize())
866    std::cerr << "WARNING: Linking two modules of different pointer size!\n";
867
868  // Update the destination module's dependent libraries list with the libraries
869  // from the source module. There's no opportunity for duplicates here as the
870  // Module ensures that duplicate insertions are discarded.
871  Module::lib_iterator SI = Src->lib_begin();
872  Module::lib_iterator SE = Src->lib_end();
873  while ( SI != SE ) {
874    Dest->addLibrary(*SI);
875    ++SI;
876  }
877
878  // LinkTypes - Go through the symbol table of the Src module and see if any
879  // types are named in the src module that are not named in the Dst module.
880  // Make sure there are no type name conflicts.
881  //
882  if (LinkTypes(Dest, Src, ErrorMsg)) return true;
883
884  // ValueMap - Mapping of values from what they used to be in Src, to what they
885  // are now in Dest.
886  //
887  std::map<const Value*, Value*> ValueMap;
888
889  // AppendingVars - Keep track of global variables in the destination module
890  // with appending linkage.  After the module is linked together, they are
891  // appended and the module is rewritten.
892  //
893  std::multimap<std::string, GlobalVariable *> AppendingVars;
894
895  // GlobalsByName - The LLVM SymbolTable class fights our best efforts at
896  // linking by separating globals by type.  Until PR411 is fixed, we replicate
897  // it's functionality here.
898  std::map<std::string, GlobalValue*> GlobalsByName;
899
900  for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I) {
901    // Add all of the appending globals already in the Dest module to
902    // AppendingVars.
903    if (I->hasAppendingLinkage())
904      AppendingVars.insert(std::make_pair(I->getName(), I));
905
906    // Keep track of all globals by name.
907    if (!I->hasInternalLinkage() && I->hasName())
908      GlobalsByName[I->getName()] = I;
909  }
910
911  // Keep track of all globals by name.
912  for (Module::iterator I = Dest->begin(), E = Dest->end(); I != E; ++I)
913    if (!I->hasInternalLinkage() && I->hasName())
914      GlobalsByName[I->getName()] = I;
915
916  // Insert all of the globals in src into the Dest module... without linking
917  // initializers (which could refer to functions not yet mapped over).
918  //
919  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, GlobalsByName, ErrorMsg))
920    return true;
921
922  // Link the functions together between the two modules, without doing function
923  // bodies... this just adds external function prototypes to the Dest
924  // function...  We do this so that when we begin processing function bodies,
925  // all of the global values that may be referenced are available in our
926  // ValueMap.
927  //
928  if (LinkFunctionProtos(Dest, Src, ValueMap, GlobalsByName, ErrorMsg))
929    return true;
930
931  // Update the initializers in the Dest module now that all globals that may
932  // be referenced are in Dest.
933  //
934  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
935
936  // Link in the function bodies that are defined in the source module into the
937  // DestModule.  This consists basically of copying the function over and
938  // fixing up references to values.
939  //
940  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
941
942  // If there were any appending global variables, link them together now.
943  //
944  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
945
946  // If the source library's module id is in the dependent library list of the
947  // destination library, remove it since that module is now linked in.
948  sys::Path modId;
949  modId.set_file(Src->getModuleIdentifier());
950  if (!modId.is_empty())
951    Dest->removeLibrary(modId.get_basename());
952
953  return false;
954}
955
956// vim: sw=2
957