LinkModules.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Linker/Linker.h"
15#include "llvm-c/Linker.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Module.h"
21#include "llvm/IR/TypeFinder.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Transforms/Utils/Cloning.h"
26#include <cctype>
27using namespace llvm;
28
29
30//===----------------------------------------------------------------------===//
31// TypeMap implementation.
32//===----------------------------------------------------------------------===//
33
34namespace {
35  typedef SmallPtrSet<StructType*, 32> TypeSet;
36
37class TypeMapTy : public ValueMapTypeRemapper {
38  /// MappedTypes - This is a mapping from a source type to a destination type
39  /// to use.
40  DenseMap<Type*, Type*> MappedTypes;
41
42  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
43  /// we speculatively add types to MappedTypes, but keep track of them here in
44  /// case we need to roll back.
45  SmallVector<Type*, 16> SpeculativeTypes;
46
47  /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
48  /// source module that are mapped to an opaque struct in the destination
49  /// module.
50  SmallVector<StructType*, 16> SrcDefinitionsToResolve;
51
52  /// DstResolvedOpaqueTypes - This is the set of opaque types in the
53  /// destination modules who are getting a body from the source module.
54  SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
55
56public:
57  TypeMapTy(TypeSet &Set) : DstStructTypesSet(Set) {}
58
59  TypeSet &DstStructTypesSet;
60  /// addTypeMapping - Indicate that the specified type in the destination
61  /// module is conceptually equivalent to the specified type in the source
62  /// module.
63  void addTypeMapping(Type *DstTy, Type *SrcTy);
64
65  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
66  /// module from a type definition in the source module.
67  void linkDefinedTypeBodies();
68
69  /// get - Return the mapped type to use for the specified input type from the
70  /// source module.
71  Type *get(Type *SrcTy);
72
73  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
74
75  /// dump - Dump out the type map for debugging purposes.
76  void dump() const {
77    for (DenseMap<Type*, Type*>::const_iterator
78           I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
79      dbgs() << "TypeMap: ";
80      I->first->dump();
81      dbgs() << " => ";
82      I->second->dump();
83      dbgs() << '\n';
84    }
85  }
86
87private:
88  Type *getImpl(Type *T);
89  /// remapType - Implement the ValueMapTypeRemapper interface.
90  Type *remapType(Type *SrcTy) override {
91    return get(SrcTy);
92  }
93
94  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
95};
96}
97
98void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
99  Type *&Entry = MappedTypes[SrcTy];
100  if (Entry) return;
101
102  if (DstTy == SrcTy) {
103    Entry = DstTy;
104    return;
105  }
106
107  // Check to see if these types are recursively isomorphic and establish a
108  // mapping between them if so.
109  if (!areTypesIsomorphic(DstTy, SrcTy)) {
110    // Oops, they aren't isomorphic.  Just discard this request by rolling out
111    // any speculative mappings we've established.
112    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
113      MappedTypes.erase(SpeculativeTypes[i]);
114  }
115  SpeculativeTypes.clear();
116}
117
118/// areTypesIsomorphic - Recursively walk this pair of types, returning true
119/// if they are isomorphic, false if they are not.
120bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
121  // Two types with differing kinds are clearly not isomorphic.
122  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
123
124  // If we have an entry in the MappedTypes table, then we have our answer.
125  Type *&Entry = MappedTypes[SrcTy];
126  if (Entry)
127    return Entry == DstTy;
128
129  // Two identical types are clearly isomorphic.  Remember this
130  // non-speculatively.
131  if (DstTy == SrcTy) {
132    Entry = DstTy;
133    return true;
134  }
135
136  // Okay, we have two types with identical kinds that we haven't seen before.
137
138  // If this is an opaque struct type, special case it.
139  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
140    // Mapping an opaque type to any struct, just keep the dest struct.
141    if (SSTy->isOpaque()) {
142      Entry = DstTy;
143      SpeculativeTypes.push_back(SrcTy);
144      return true;
145    }
146
147    // Mapping a non-opaque source type to an opaque dest.  If this is the first
148    // type that we're mapping onto this destination type then we succeed.  Keep
149    // the dest, but fill it in later.  This doesn't need to be speculative.  If
150    // this is the second (different) type that we're trying to map onto the
151    // same opaque type then we fail.
152    if (cast<StructType>(DstTy)->isOpaque()) {
153      // We can only map one source type onto the opaque destination type.
154      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
155        return false;
156      SrcDefinitionsToResolve.push_back(SSTy);
157      Entry = DstTy;
158      return true;
159    }
160  }
161
162  // If the number of subtypes disagree between the two types, then we fail.
163  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
164    return false;
165
166  // Fail if any of the extra properties (e.g. array size) of the type disagree.
167  if (isa<IntegerType>(DstTy))
168    return false;  // bitwidth disagrees.
169  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
170    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
171      return false;
172
173  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
174    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
175      return false;
176  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
177    StructType *SSTy = cast<StructType>(SrcTy);
178    if (DSTy->isLiteral() != SSTy->isLiteral() ||
179        DSTy->isPacked() != SSTy->isPacked())
180      return false;
181  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
182    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
183      return false;
184  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
185    if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
186      return false;
187  }
188
189  // Otherwise, we speculate that these two types will line up and recursively
190  // check the subelements.
191  Entry = DstTy;
192  SpeculativeTypes.push_back(SrcTy);
193
194  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
195    if (!areTypesIsomorphic(DstTy->getContainedType(i),
196                            SrcTy->getContainedType(i)))
197      return false;
198
199  // If everything seems to have lined up, then everything is great.
200  return true;
201}
202
203/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
204/// module from a type definition in the source module.
205void TypeMapTy::linkDefinedTypeBodies() {
206  SmallVector<Type*, 16> Elements;
207  SmallString<16> TmpName;
208
209  // Note that processing entries in this loop (calling 'get') can add new
210  // entries to the SrcDefinitionsToResolve vector.
211  while (!SrcDefinitionsToResolve.empty()) {
212    StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
213    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
214
215    // TypeMap is a many-to-one mapping, if there were multiple types that
216    // provide a body for DstSTy then previous iterations of this loop may have
217    // already handled it.  Just ignore this case.
218    if (!DstSTy->isOpaque()) continue;
219    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
220
221    // Map the body of the source type over to a new body for the dest type.
222    Elements.resize(SrcSTy->getNumElements());
223    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
224      Elements[i] = getImpl(SrcSTy->getElementType(i));
225
226    DstSTy->setBody(Elements, SrcSTy->isPacked());
227
228    // If DstSTy has no name or has a longer name than STy, then viciously steal
229    // STy's name.
230    if (!SrcSTy->hasName()) continue;
231    StringRef SrcName = SrcSTy->getName();
232
233    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
234      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
235      SrcSTy->setName("");
236      DstSTy->setName(TmpName.str());
237      TmpName.clear();
238    }
239  }
240
241  DstResolvedOpaqueTypes.clear();
242}
243
244/// get - Return the mapped type to use for the specified input type from the
245/// source module.
246Type *TypeMapTy::get(Type *Ty) {
247  Type *Result = getImpl(Ty);
248
249  // If this caused a reference to any struct type, resolve it before returning.
250  if (!SrcDefinitionsToResolve.empty())
251    linkDefinedTypeBodies();
252  return Result;
253}
254
255/// getImpl - This is the recursive version of get().
256Type *TypeMapTy::getImpl(Type *Ty) {
257  // If we already have an entry for this type, return it.
258  Type **Entry = &MappedTypes[Ty];
259  if (*Entry) return *Entry;
260
261  // If this is not a named struct type, then just map all of the elements and
262  // then rebuild the type from inside out.
263  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
264    // If there are no element types to map, then the type is itself.  This is
265    // true for the anonymous {} struct, things like 'float', integers, etc.
266    if (Ty->getNumContainedTypes() == 0)
267      return *Entry = Ty;
268
269    // Remap all of the elements, keeping track of whether any of them change.
270    bool AnyChange = false;
271    SmallVector<Type*, 4> ElementTypes;
272    ElementTypes.resize(Ty->getNumContainedTypes());
273    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
274      ElementTypes[i] = getImpl(Ty->getContainedType(i));
275      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
276    }
277
278    // If we found our type while recursively processing stuff, just use it.
279    Entry = &MappedTypes[Ty];
280    if (*Entry) return *Entry;
281
282    // If all of the element types mapped directly over, then the type is usable
283    // as-is.
284    if (!AnyChange)
285      return *Entry = Ty;
286
287    // Otherwise, rebuild a modified type.
288    switch (Ty->getTypeID()) {
289    default: llvm_unreachable("unknown derived type to remap");
290    case Type::ArrayTyID:
291      return *Entry = ArrayType::get(ElementTypes[0],
292                                     cast<ArrayType>(Ty)->getNumElements());
293    case Type::VectorTyID:
294      return *Entry = VectorType::get(ElementTypes[0],
295                                      cast<VectorType>(Ty)->getNumElements());
296    case Type::PointerTyID:
297      return *Entry = PointerType::get(ElementTypes[0],
298                                      cast<PointerType>(Ty)->getAddressSpace());
299    case Type::FunctionTyID:
300      return *Entry = FunctionType::get(ElementTypes[0],
301                                        makeArrayRef(ElementTypes).slice(1),
302                                        cast<FunctionType>(Ty)->isVarArg());
303    case Type::StructTyID:
304      // Note that this is only reached for anonymous structs.
305      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
306                                      cast<StructType>(Ty)->isPacked());
307    }
308  }
309
310  // Otherwise, this is an unmapped named struct.  If the struct can be directly
311  // mapped over, just use it as-is.  This happens in a case when the linked-in
312  // module has something like:
313  //   %T = type {%T*, i32}
314  //   @GV = global %T* null
315  // where T does not exist at all in the destination module.
316  //
317  // The other case we watch for is when the type is not in the destination
318  // module, but that it has to be rebuilt because it refers to something that
319  // is already mapped.  For example, if the destination module has:
320  //  %A = type { i32 }
321  // and the source module has something like
322  //  %A' = type { i32 }
323  //  %B = type { %A'* }
324  //  @GV = global %B* null
325  // then we want to create a new type: "%B = type { %A*}" and have it take the
326  // pristine "%B" name from the source module.
327  //
328  // To determine which case this is, we have to recursively walk the type graph
329  // speculating that we'll be able to reuse it unmodified.  Only if this is
330  // safe would we map the entire thing over.  Because this is an optimization,
331  // and is not required for the prettiness of the linked module, we just skip
332  // it and always rebuild a type here.
333  StructType *STy = cast<StructType>(Ty);
334
335  // If the type is opaque, we can just use it directly.
336  if (STy->isOpaque()) {
337    // A named structure type from src module is used. Add it to the Set of
338    // identified structs in the destination module.
339    DstStructTypesSet.insert(STy);
340    return *Entry = STy;
341  }
342
343  // Otherwise we create a new type and resolve its body later.  This will be
344  // resolved by the top level of get().
345  SrcDefinitionsToResolve.push_back(STy);
346  StructType *DTy = StructType::create(STy->getContext());
347  // A new identified structure type was created. Add it to the set of
348  // identified structs in the destination module.
349  DstStructTypesSet.insert(DTy);
350  DstResolvedOpaqueTypes.insert(DTy);
351  return *Entry = DTy;
352}
353
354//===----------------------------------------------------------------------===//
355// ModuleLinker implementation.
356//===----------------------------------------------------------------------===//
357
358namespace {
359  class ModuleLinker;
360
361  /// ValueMaterializerTy - Creates prototypes for functions that are lazily
362  /// linked on the fly. This speeds up linking for modules with many
363  /// lazily linked functions of which few get used.
364  class ValueMaterializerTy : public ValueMaterializer {
365    TypeMapTy &TypeMap;
366    Module *DstM;
367    std::vector<Function*> &LazilyLinkFunctions;
368  public:
369    ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
370                        std::vector<Function*> &LazilyLinkFunctions) :
371      ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
372      LazilyLinkFunctions(LazilyLinkFunctions) {
373    }
374
375    Value *materializeValueFor(Value *V) override;
376  };
377
378  /// ModuleLinker - This is an implementation class for the LinkModules
379  /// function, which is the entrypoint for this file.
380  class ModuleLinker {
381    Module *DstM, *SrcM;
382
383    TypeMapTy TypeMap;
384    ValueMaterializerTy ValMaterializer;
385
386    /// ValueMap - Mapping of values from what they used to be in Src, to what
387    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
388    /// some overhead due to the use of Value handles which the Linker doesn't
389    /// actually need, but this allows us to reuse the ValueMapper code.
390    ValueToValueMapTy ValueMap;
391
392    std::vector<std::pair<GlobalValue *, GlobalAlias *>> ReplaceWithAlias;
393
394    struct AppendingVarInfo {
395      GlobalVariable *NewGV;  // New aggregate global in dest module.
396      Constant *DstInit;      // Old initializer from dest module.
397      Constant *SrcInit;      // Old initializer from src module.
398    };
399
400    std::vector<AppendingVarInfo> AppendingVars;
401
402    unsigned Mode; // Mode to treat source module.
403
404    // Set of items not to link in from source.
405    SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
406
407    // Vector of functions to lazily link in.
408    std::vector<Function*> LazilyLinkFunctions;
409
410    bool SuppressWarnings;
411
412  public:
413    std::string ErrorMsg;
414
415    ModuleLinker(Module *dstM, TypeSet &Set, Module *srcM, unsigned mode,
416                 bool SuppressWarnings=false)
417        : DstM(dstM), SrcM(srcM), TypeMap(Set),
418          ValMaterializer(TypeMap, DstM, LazilyLinkFunctions), Mode(mode),
419          SuppressWarnings(SuppressWarnings) {}
420
421    bool run();
422
423  private:
424    /// emitError - Helper method for setting a message and returning an error
425    /// code.
426    bool emitError(const Twine &Message) {
427      ErrorMsg = Message.str();
428      return true;
429    }
430
431    /// getLinkageResult - This analyzes the two global values and determines
432    /// what the result will look like in the destination module.
433    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
434                          GlobalValue::LinkageTypes &LT,
435                          GlobalValue::VisibilityTypes &Vis,
436                          bool &LinkFromSrc);
437
438    /// getLinkedToGlobal - Given a global in the source module, return the
439    /// global in the destination module that is being linked to, if any.
440    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
441      // If the source has no name it can't link.  If it has local linkage,
442      // there is no name match-up going on.
443      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
444        return nullptr;
445
446      // Otherwise see if we have a match in the destination module's symtab.
447      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
448      if (!DGV) return nullptr;
449
450      // If we found a global with the same name in the dest module, but it has
451      // internal linkage, we are really not doing any linkage here.
452      if (DGV->hasLocalLinkage())
453        return nullptr;
454
455      // Otherwise, we do in fact link to the destination global.
456      return DGV;
457    }
458
459    void computeTypeMapping();
460
461    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
462    bool linkGlobalProto(GlobalVariable *SrcGV);
463    bool linkFunctionProto(Function *SrcF);
464    bool linkAliasProto(GlobalAlias *SrcA);
465    bool linkModuleFlagsMetadata();
466
467    void linkAppendingVarInit(const AppendingVarInfo &AVI);
468    void linkGlobalInits();
469    void linkFunctionBody(Function *Dst, Function *Src);
470    void linkAliasBodies();
471    void linkNamedMDNodes();
472  };
473}
474
475/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
476/// in the symbol table.  This is good for all clients except for us.  Go
477/// through the trouble to force this back.
478static void forceRenaming(GlobalValue *GV, StringRef Name) {
479  // If the global doesn't force its name or if it already has the right name,
480  // there is nothing for us to do.
481  if (GV->hasLocalLinkage() || GV->getName() == Name)
482    return;
483
484  Module *M = GV->getParent();
485
486  // If there is a conflict, rename the conflict.
487  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
488    GV->takeName(ConflictGV);
489    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
490    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
491  } else {
492    GV->setName(Name);              // Force the name back
493  }
494}
495
496/// copyGVAttributes - copy additional attributes (those not needed to construct
497/// a GlobalValue) from the SrcGV to the DestGV.
498static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
499  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
500  auto *DestGO = dyn_cast<GlobalObject>(DestGV);
501  unsigned Alignment;
502  if (DestGO)
503    Alignment = std::max(DestGO->getAlignment(), SrcGV->getAlignment());
504
505  DestGV->copyAttributesFrom(SrcGV);
506
507  if (DestGO)
508    DestGO->setAlignment(Alignment);
509
510  forceRenaming(DestGV, SrcGV->getName());
511}
512
513static bool isLessConstraining(GlobalValue::VisibilityTypes a,
514                               GlobalValue::VisibilityTypes b) {
515  if (a == GlobalValue::HiddenVisibility)
516    return false;
517  if (b == GlobalValue::HiddenVisibility)
518    return true;
519  if (a == GlobalValue::ProtectedVisibility)
520    return false;
521  if (b == GlobalValue::ProtectedVisibility)
522    return true;
523  return false;
524}
525
526Value *ValueMaterializerTy::materializeValueFor(Value *V) {
527  Function *SF = dyn_cast<Function>(V);
528  if (!SF)
529    return nullptr;
530
531  Function *DF = Function::Create(TypeMap.get(SF->getFunctionType()),
532                                  SF->getLinkage(), SF->getName(), DstM);
533  copyGVAttributes(DF, SF);
534
535  LazilyLinkFunctions.push_back(SF);
536  return DF;
537}
538
539
540/// getLinkageResult - This analyzes the two global values and determines what
541/// the result will look like in the destination module.  In particular, it
542/// computes the resultant linkage type and visibility, computes whether the
543/// global in the source should be copied over to the destination (replacing
544/// the existing one), and computes whether this linkage is an error or not.
545bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
546                                    GlobalValue::LinkageTypes &LT,
547                                    GlobalValue::VisibilityTypes &Vis,
548                                    bool &LinkFromSrc) {
549  assert(Dest && "Must have two globals being queried");
550  assert(!Src->hasLocalLinkage() &&
551         "If Src has internal linkage, Dest shouldn't be set!");
552
553  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
554  bool DestIsDeclaration = Dest->isDeclaration();
555
556  if (SrcIsDeclaration) {
557    // If Src is external or if both Src & Dest are external..  Just link the
558    // external globals, we aren't adding anything.
559    if (Src->hasDLLImportStorageClass()) {
560      // If one of GVs is marked as DLLImport, result should be dllimport'ed.
561      if (DestIsDeclaration) {
562        LinkFromSrc = true;
563        LT = Src->getLinkage();
564      }
565    } else if (Dest->hasExternalWeakLinkage()) {
566      // If the Dest is weak, use the source linkage.
567      LinkFromSrc = true;
568      LT = Src->getLinkage();
569    } else {
570      LinkFromSrc = false;
571      LT = Dest->getLinkage();
572    }
573  } else if (DestIsDeclaration && !Dest->hasDLLImportStorageClass()) {
574    // If Dest is external but Src is not:
575    LinkFromSrc = true;
576    LT = Src->getLinkage();
577  } else if (Src->isWeakForLinker()) {
578    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
579    // or DLL* linkage.
580    if (Dest->hasExternalWeakLinkage() ||
581        Dest->hasAvailableExternallyLinkage() ||
582        (Dest->hasLinkOnceLinkage() &&
583         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
584      LinkFromSrc = true;
585      LT = Src->getLinkage();
586    } else {
587      LinkFromSrc = false;
588      LT = Dest->getLinkage();
589    }
590  } else if (Dest->isWeakForLinker()) {
591    // At this point we know that Src has External* or DLL* linkage.
592    if (Src->hasExternalWeakLinkage()) {
593      LinkFromSrc = false;
594      LT = Dest->getLinkage();
595    } else {
596      LinkFromSrc = true;
597      LT = GlobalValue::ExternalLinkage;
598    }
599  } else {
600    assert((Dest->hasExternalLinkage()  || Dest->hasExternalWeakLinkage()) &&
601           (Src->hasExternalLinkage()   || Src->hasExternalWeakLinkage()) &&
602           "Unexpected linkage type!");
603    return emitError("Linking globals named '" + Src->getName() +
604                 "': symbol multiply defined!");
605  }
606
607  // Compute the visibility. We follow the rules in the System V Application
608  // Binary Interface.
609  assert(!GlobalValue::isLocalLinkage(LT) &&
610         "Symbols with local linkage should not be merged");
611  Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
612    Dest->getVisibility() : Src->getVisibility();
613  return false;
614}
615
616/// computeTypeMapping - Loop over all of the linked values to compute type
617/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
618/// we have two struct types 'Foo' but one got renamed when the module was
619/// loaded into the same LLVMContext.
620void ModuleLinker::computeTypeMapping() {
621  // Incorporate globals.
622  for (Module::global_iterator I = SrcM->global_begin(),
623       E = SrcM->global_end(); I != E; ++I) {
624    GlobalValue *DGV = getLinkedToGlobal(I);
625    if (!DGV) continue;
626
627    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
628      TypeMap.addTypeMapping(DGV->getType(), I->getType());
629      continue;
630    }
631
632    // Unify the element type of appending arrays.
633    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
634    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
635    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
636  }
637
638  // Incorporate functions.
639  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
640    if (GlobalValue *DGV = getLinkedToGlobal(I))
641      TypeMap.addTypeMapping(DGV->getType(), I->getType());
642  }
643
644  // Incorporate types by name, scanning all the types in the source module.
645  // At this point, the destination module may have a type "%foo = { i32 }" for
646  // example.  When the source module got loaded into the same LLVMContext, if
647  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
648  TypeFinder SrcStructTypes;
649  SrcStructTypes.run(*SrcM, true);
650  SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
651                                                 SrcStructTypes.end());
652
653  for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
654    StructType *ST = SrcStructTypes[i];
655    if (!ST->hasName()) continue;
656
657    // Check to see if there is a dot in the name followed by a digit.
658    size_t DotPos = ST->getName().rfind('.');
659    if (DotPos == 0 || DotPos == StringRef::npos ||
660        ST->getName().back() == '.' ||
661        !isdigit(static_cast<unsigned char>(ST->getName()[DotPos+1])))
662      continue;
663
664    // Check to see if the destination module has a struct with the prefix name.
665    if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
666      // Don't use it if this actually came from the source module. They're in
667      // the same LLVMContext after all. Also don't use it unless the type is
668      // actually used in the destination module. This can happen in situations
669      // like this:
670      //
671      //      Module A                         Module B
672      //      --------                         --------
673      //   %Z = type { %A }                %B = type { %C.1 }
674      //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
675      //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
676      //   %C = type { i8* }               %B.3 = type { %C.1 }
677      //
678      // When we link Module B with Module A, the '%B' in Module B is
679      // used. However, that would then use '%C.1'. But when we process '%C.1',
680      // we prefer to take the '%C' version. So we are then left with both
681      // '%C.1' and '%C' being used for the same types. This leads to some
682      // variables using one type and some using the other.
683      if (!SrcStructTypesSet.count(DST) && TypeMap.DstStructTypesSet.count(DST))
684        TypeMap.addTypeMapping(DST, ST);
685  }
686
687  // Don't bother incorporating aliases, they aren't generally typed well.
688
689  // Now that we have discovered all of the type equivalences, get a body for
690  // any 'opaque' types in the dest module that are now resolved.
691  TypeMap.linkDefinedTypeBodies();
692}
693
694/// linkAppendingVarProto - If there were any appending global variables, link
695/// them together now.  Return true on error.
696bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
697                                         GlobalVariable *SrcGV) {
698
699  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
700    return emitError("Linking globals named '" + SrcGV->getName() +
701           "': can only link appending global with another appending global!");
702
703  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
704  ArrayType *SrcTy =
705    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
706  Type *EltTy = DstTy->getElementType();
707
708  // Check to see that they two arrays agree on type.
709  if (EltTy != SrcTy->getElementType())
710    return emitError("Appending variables with different element types!");
711  if (DstGV->isConstant() != SrcGV->isConstant())
712    return emitError("Appending variables linked with different const'ness!");
713
714  if (DstGV->getAlignment() != SrcGV->getAlignment())
715    return emitError(
716             "Appending variables with different alignment need to be linked!");
717
718  if (DstGV->getVisibility() != SrcGV->getVisibility())
719    return emitError(
720            "Appending variables with different visibility need to be linked!");
721
722  if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
723    return emitError(
724        "Appending variables with different unnamed_addr need to be linked!");
725
726  if (DstGV->getSection() != SrcGV->getSection())
727    return emitError(
728          "Appending variables with different section name need to be linked!");
729
730  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
731  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
732
733  // Create the new global variable.
734  GlobalVariable *NG =
735    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
736                       DstGV->getLinkage(), /*init*/nullptr, /*name*/"", DstGV,
737                       DstGV->getThreadLocalMode(),
738                       DstGV->getType()->getAddressSpace());
739
740  // Propagate alignment, visibility and section info.
741  copyGVAttributes(NG, DstGV);
742
743  AppendingVarInfo AVI;
744  AVI.NewGV = NG;
745  AVI.DstInit = DstGV->getInitializer();
746  AVI.SrcInit = SrcGV->getInitializer();
747  AppendingVars.push_back(AVI);
748
749  // Replace any uses of the two global variables with uses of the new
750  // global.
751  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
752
753  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
754  DstGV->eraseFromParent();
755
756  // Track the source variable so we don't try to link it.
757  DoNotLinkFromSource.insert(SrcGV);
758
759  return false;
760}
761
762/// linkGlobalProto - Loop through the global variables in the src module and
763/// merge them into the dest module.
764bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
765  GlobalValue *DGV = getLinkedToGlobal(SGV);
766  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
767  bool HasUnnamedAddr = SGV->hasUnnamedAddr();
768
769  if (DGV) {
770    // Concatenation of appending linkage variables is magic and handled later.
771    if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
772      return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
773
774    // Determine whether linkage of these two globals follows the source
775    // module's definition or the destination module's definition.
776    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
777    GlobalValue::VisibilityTypes NV;
778    bool LinkFromSrc = false;
779    if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
780      return true;
781    NewVisibility = NV;
782    HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
783
784    // If we're not linking from the source, then keep the definition that we
785    // have.
786    if (!LinkFromSrc) {
787      // Special case for const propagation.
788      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
789        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
790          DGVar->setConstant(true);
791
792      // Set calculated linkage, visibility and unnamed_addr.
793      DGV->setLinkage(NewLinkage);
794      DGV->setVisibility(*NewVisibility);
795      DGV->setUnnamedAddr(HasUnnamedAddr);
796
797      // Make sure to remember this mapping.
798      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
799
800      // Track the source global so that we don't attempt to copy it over when
801      // processing global initializers.
802      DoNotLinkFromSource.insert(SGV);
803
804      return false;
805    }
806  }
807
808  // No linking to be performed or linking from the source: simply create an
809  // identical version of the symbol over in the dest module... the
810  // initializer will be filled in later by LinkGlobalInits.
811  GlobalVariable *NewDGV =
812    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
813                       SGV->isConstant(), SGV->getLinkage(), /*init*/nullptr,
814                       SGV->getName(), /*insertbefore*/nullptr,
815                       SGV->getThreadLocalMode(),
816                       SGV->getType()->getAddressSpace());
817  // Propagate alignment, visibility and section info.
818  copyGVAttributes(NewDGV, SGV);
819  if (NewVisibility)
820    NewDGV->setVisibility(*NewVisibility);
821  NewDGV->setUnnamedAddr(HasUnnamedAddr);
822
823  if (DGV) {
824    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
825    DGV->eraseFromParent();
826  }
827
828  // Make sure to remember this mapping.
829  ValueMap[SGV] = NewDGV;
830  return false;
831}
832
833/// linkFunctionProto - Link the function in the source module into the
834/// destination module if needed, setting up mapping information.
835bool ModuleLinker::linkFunctionProto(Function *SF) {
836  GlobalValue *DGV = getLinkedToGlobal(SF);
837  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
838  bool HasUnnamedAddr = SF->hasUnnamedAddr();
839
840  if (DGV) {
841    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
842    bool LinkFromSrc = false;
843    GlobalValue::VisibilityTypes NV;
844    if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
845      return true;
846    NewVisibility = NV;
847    HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
848
849    if (!LinkFromSrc) {
850      // Set calculated linkage
851      DGV->setLinkage(NewLinkage);
852      DGV->setVisibility(*NewVisibility);
853      DGV->setUnnamedAddr(HasUnnamedAddr);
854
855      // Make sure to remember this mapping.
856      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
857
858      // Track the function from the source module so we don't attempt to remap
859      // it.
860      DoNotLinkFromSource.insert(SF);
861
862      return false;
863    }
864  }
865
866  // If the function is to be lazily linked, don't create it just yet.
867  // The ValueMaterializerTy will deal with creating it if it's used.
868  if (!DGV && (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
869               SF->hasAvailableExternallyLinkage())) {
870    DoNotLinkFromSource.insert(SF);
871    return false;
872  }
873
874  // If there is no linkage to be performed or we are linking from the source,
875  // bring SF over.
876  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
877                                     SF->getLinkage(), SF->getName(), DstM);
878  copyGVAttributes(NewDF, SF);
879  if (NewVisibility)
880    NewDF->setVisibility(*NewVisibility);
881  NewDF->setUnnamedAddr(HasUnnamedAddr);
882
883  if (DGV) {
884    // Any uses of DF need to change to NewDF, with cast.
885    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
886    DGV->eraseFromParent();
887  }
888
889  ValueMap[SF] = NewDF;
890  return false;
891}
892
893/// LinkAliasProto - Set up prototypes for any aliases that come over from the
894/// source module.
895bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
896  GlobalValue *DGV = getLinkedToGlobal(SGA);
897  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
898
899  if (DGV) {
900    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
901    GlobalValue::VisibilityTypes NV;
902    bool LinkFromSrc = false;
903    if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
904      return true;
905    NewVisibility = NV;
906
907    if (!LinkFromSrc) {
908      // Set calculated linkage.
909      DGV->setLinkage(NewLinkage);
910      DGV->setVisibility(*NewVisibility);
911
912      // Make sure to remember this mapping.
913      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
914
915      // Track the alias from the source module so we don't attempt to remap it.
916      DoNotLinkFromSource.insert(SGA);
917
918      return false;
919    }
920  }
921
922  // If there is no linkage to be performed or we're linking from the source,
923  // bring over SGA.
924  auto *PTy = cast<PointerType>(TypeMap.get(SGA->getType()));
925  auto *NewDA =
926      GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
927                          SGA->getLinkage(), SGA->getName(), DstM);
928  copyGVAttributes(NewDA, SGA);
929  if (NewVisibility)
930    NewDA->setVisibility(*NewVisibility);
931
932  if (DGV)
933    ReplaceWithAlias.push_back(std::make_pair(DGV, NewDA));
934
935  ValueMap[SGA] = NewDA;
936  return false;
937}
938
939static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
940  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
941
942  for (unsigned i = 0; i != NumElements; ++i)
943    Dest.push_back(C->getAggregateElement(i));
944}
945
946void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
947  // Merge the initializer.
948  SmallVector<Constant*, 16> Elements;
949  getArrayElements(AVI.DstInit, Elements);
950
951  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap, &ValMaterializer);
952  getArrayElements(SrcInit, Elements);
953
954  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
955  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
956}
957
958/// linkGlobalInits - Update the initializers in the Dest module now that all
959/// globals that may be referenced are in Dest.
960void ModuleLinker::linkGlobalInits() {
961  // Loop over all of the globals in the src module, mapping them over as we go
962  for (Module::const_global_iterator I = SrcM->global_begin(),
963       E = SrcM->global_end(); I != E; ++I) {
964
965    // Only process initialized GV's or ones not already in dest.
966    if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
967
968    // Grab destination global variable.
969    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
970    // Figure out what the initializer looks like in the dest module.
971    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
972                                 RF_None, &TypeMap, &ValMaterializer));
973  }
974}
975
976/// linkFunctionBody - Copy the source function over into the dest function and
977/// fix up references to values.  At this point we know that Dest is an external
978/// function, and that Src is not.
979void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
980  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
981
982  // Go through and convert function arguments over, remembering the mapping.
983  Function::arg_iterator DI = Dst->arg_begin();
984  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
985       I != E; ++I, ++DI) {
986    DI->setName(I->getName());  // Copy the name over.
987
988    // Add a mapping to our mapping.
989    ValueMap[I] = DI;
990  }
991
992  if (Mode == Linker::DestroySource) {
993    // Splice the body of the source function into the dest function.
994    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
995
996    // At this point, all of the instructions and values of the function are now
997    // copied over.  The only problem is that they are still referencing values in
998    // the Source function as operands.  Loop through all of the operands of the
999    // functions and patch them up to point to the local versions.
1000    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
1001      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1002        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries,
1003                         &TypeMap, &ValMaterializer);
1004
1005  } else {
1006    // Clone the body of the function into the dest function.
1007    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
1008    CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", nullptr,
1009                      &TypeMap, &ValMaterializer);
1010  }
1011
1012  // There is no need to map the arguments anymore.
1013  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1014       I != E; ++I)
1015    ValueMap.erase(I);
1016
1017}
1018
1019static GlobalObject &getGlobalObjectInExpr(Constant &C) {
1020  auto *GO = dyn_cast<GlobalObject>(&C);
1021  if (GO)
1022    return *GO;
1023  auto *GA = dyn_cast<GlobalAlias>(&C);
1024  if (GA)
1025    return *GA->getAliasee();
1026  auto &CE = cast<ConstantExpr>(C);
1027  assert(CE.getOpcode() == Instruction::BitCast ||
1028         CE.getOpcode() == Instruction::AddrSpaceCast);
1029  return getGlobalObjectInExpr(*CE.getOperand(0));
1030}
1031
1032/// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
1033void ModuleLinker::linkAliasBodies() {
1034  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
1035       I != E; ++I) {
1036    if (DoNotLinkFromSource.count(I))
1037      continue;
1038    if (Constant *Aliasee = I->getAliasee()) {
1039      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
1040      Constant *Val =
1041          MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer);
1042      DA->setAliasee(&getGlobalObjectInExpr(*Val));
1043    }
1044  }
1045
1046  // Any uses of DGV need to change to NewDA, with cast.
1047  for (auto &Pair : ReplaceWithAlias) {
1048    GlobalValue *DGV = Pair.first;
1049    GlobalAlias *NewDA = Pair.second;
1050
1051    for (auto *User : DGV->users()) {
1052      if (auto *GA = dyn_cast<GlobalAlias>(User)) {
1053        if (GA == NewDA)
1054          report_fatal_error("Linking these modules creates an alias cycle.");
1055      }
1056    }
1057
1058    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
1059    DGV->eraseFromParent();
1060  }
1061}
1062
1063/// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
1064/// module.
1065void ModuleLinker::linkNamedMDNodes() {
1066  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1067  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
1068       E = SrcM->named_metadata_end(); I != E; ++I) {
1069    // Don't link module flags here. Do them separately.
1070    if (&*I == SrcModFlags) continue;
1071    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
1072    // Add Src elements into Dest node.
1073    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1074      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
1075                                   RF_None, &TypeMap, &ValMaterializer));
1076  }
1077}
1078
1079/// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
1080/// module.
1081bool ModuleLinker::linkModuleFlagsMetadata() {
1082  // If the source module has no module flags, we are done.
1083  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1084  if (!SrcModFlags) return false;
1085
1086  // If the destination module doesn't have module flags yet, then just copy
1087  // over the source module's flags.
1088  NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1089  if (DstModFlags->getNumOperands() == 0) {
1090    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1091      DstModFlags->addOperand(SrcModFlags->getOperand(I));
1092
1093    return false;
1094  }
1095
1096  // First build a map of the existing module flags and requirements.
1097  DenseMap<MDString*, MDNode*> Flags;
1098  SmallSetVector<MDNode*, 16> Requirements;
1099  for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1100    MDNode *Op = DstModFlags->getOperand(I);
1101    ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
1102    MDString *ID = cast<MDString>(Op->getOperand(1));
1103
1104    if (Behavior->getZExtValue() == Module::Require) {
1105      Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1106    } else {
1107      Flags[ID] = Op;
1108    }
1109  }
1110
1111  // Merge in the flags from the source module, and also collect its set of
1112  // requirements.
1113  bool HasErr = false;
1114  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1115    MDNode *SrcOp = SrcModFlags->getOperand(I);
1116    ConstantInt *SrcBehavior = cast<ConstantInt>(SrcOp->getOperand(0));
1117    MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1118    MDNode *DstOp = Flags.lookup(ID);
1119    unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1120
1121    // If this is a requirement, add it and continue.
1122    if (SrcBehaviorValue == Module::Require) {
1123      // If the destination module does not already have this requirement, add
1124      // it.
1125      if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1126        DstModFlags->addOperand(SrcOp);
1127      }
1128      continue;
1129    }
1130
1131    // If there is no existing flag with this ID, just add it.
1132    if (!DstOp) {
1133      Flags[ID] = SrcOp;
1134      DstModFlags->addOperand(SrcOp);
1135      continue;
1136    }
1137
1138    // Otherwise, perform a merge.
1139    ConstantInt *DstBehavior = cast<ConstantInt>(DstOp->getOperand(0));
1140    unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1141
1142    // If either flag has override behavior, handle it first.
1143    if (DstBehaviorValue == Module::Override) {
1144      // Diagnose inconsistent flags which both have override behavior.
1145      if (SrcBehaviorValue == Module::Override &&
1146          SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1147        HasErr |= emitError("linking module flags '" + ID->getString() +
1148                            "': IDs have conflicting override values");
1149      }
1150      continue;
1151    } else if (SrcBehaviorValue == Module::Override) {
1152      // Update the destination flag to that of the source.
1153      DstOp->replaceOperandWith(0, SrcBehavior);
1154      DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
1155      continue;
1156    }
1157
1158    // Diagnose inconsistent merge behavior types.
1159    if (SrcBehaviorValue != DstBehaviorValue) {
1160      HasErr |= emitError("linking module flags '" + ID->getString() +
1161                          "': IDs have conflicting behaviors");
1162      continue;
1163    }
1164
1165    // Perform the merge for standard behavior types.
1166    switch (SrcBehaviorValue) {
1167    case Module::Require:
1168    case Module::Override: assert(0 && "not possible"); break;
1169    case Module::Error: {
1170      // Emit an error if the values differ.
1171      if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1172        HasErr |= emitError("linking module flags '" + ID->getString() +
1173                            "': IDs have conflicting values");
1174      }
1175      continue;
1176    }
1177    case Module::Warning: {
1178      // Emit a warning if the values differ.
1179      if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1180        if (!SuppressWarnings) {
1181          errs() << "WARNING: linking module flags '" << ID->getString()
1182                 << "': IDs have conflicting values";
1183        }
1184      }
1185      continue;
1186    }
1187    case Module::Append: {
1188      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1189      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1190      unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands();
1191      Value **VP, **Values = VP = new Value*[NumOps];
1192      for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP)
1193        *VP = DstValue->getOperand(i);
1194      for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP)
1195        *VP = SrcValue->getOperand(i);
1196      DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1197                                               ArrayRef<Value*>(Values,
1198                                                                NumOps)));
1199      delete[] Values;
1200      break;
1201    }
1202    case Module::AppendUnique: {
1203      SmallSetVector<Value*, 16> Elts;
1204      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1205      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1206      for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
1207        Elts.insert(DstValue->getOperand(i));
1208      for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
1209        Elts.insert(SrcValue->getOperand(i));
1210      DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1211                                               ArrayRef<Value*>(Elts.begin(),
1212                                                                Elts.end())));
1213      break;
1214    }
1215    }
1216  }
1217
1218  // Check all of the requirements.
1219  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1220    MDNode *Requirement = Requirements[I];
1221    MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1222    Value *ReqValue = Requirement->getOperand(1);
1223
1224    MDNode *Op = Flags[Flag];
1225    if (!Op || Op->getOperand(2) != ReqValue) {
1226      HasErr |= emitError("linking module flags '" + Flag->getString() +
1227                          "': does not have the required value");
1228      continue;
1229    }
1230  }
1231
1232  return HasErr;
1233}
1234
1235bool ModuleLinker::run() {
1236  assert(DstM && "Null destination module");
1237  assert(SrcM && "Null source module");
1238
1239  // Inherit the target data from the source module if the destination module
1240  // doesn't have one already.
1241  if (!DstM->getDataLayout() && SrcM->getDataLayout())
1242    DstM->setDataLayout(SrcM->getDataLayout());
1243
1244  // Copy the target triple from the source to dest if the dest's is empty.
1245  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1246    DstM->setTargetTriple(SrcM->getTargetTriple());
1247
1248  if (SrcM->getDataLayout() && DstM->getDataLayout() &&
1249      *SrcM->getDataLayout() != *DstM->getDataLayout()) {
1250    if (!SuppressWarnings) {
1251      errs() << "WARNING: Linking two modules of different data layouts: '"
1252             << SrcM->getModuleIdentifier() << "' is '"
1253             << SrcM->getDataLayoutStr() << "' whereas '"
1254             << DstM->getModuleIdentifier() << "' is '"
1255             << DstM->getDataLayoutStr() << "'\n";
1256    }
1257  }
1258  if (!SrcM->getTargetTriple().empty() &&
1259      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1260    if (!SuppressWarnings) {
1261      errs() << "WARNING: Linking two modules of different target triples: "
1262             << SrcM->getModuleIdentifier() << "' is '"
1263             << SrcM->getTargetTriple() << "' whereas '"
1264             << DstM->getModuleIdentifier() << "' is '"
1265             << DstM->getTargetTriple() << "'\n";
1266    }
1267  }
1268
1269  // Append the module inline asm string.
1270  if (!SrcM->getModuleInlineAsm().empty()) {
1271    if (DstM->getModuleInlineAsm().empty())
1272      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1273    else
1274      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1275                               SrcM->getModuleInlineAsm());
1276  }
1277
1278  // Loop over all of the linked values to compute type mappings.
1279  computeTypeMapping();
1280
1281  // Insert all of the globals in src into the DstM module... without linking
1282  // initializers (which could refer to functions not yet mapped over).
1283  for (Module::global_iterator I = SrcM->global_begin(),
1284       E = SrcM->global_end(); I != E; ++I)
1285    if (linkGlobalProto(I))
1286      return true;
1287
1288  // Link the functions together between the two modules, without doing function
1289  // bodies... this just adds external function prototypes to the DstM
1290  // function...  We do this so that when we begin processing function bodies,
1291  // all of the global values that may be referenced are available in our
1292  // ValueMap.
1293  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1294    if (linkFunctionProto(I))
1295      return true;
1296
1297  // If there were any aliases, link them now.
1298  for (Module::alias_iterator I = SrcM->alias_begin(),
1299       E = SrcM->alias_end(); I != E; ++I)
1300    if (linkAliasProto(I))
1301      return true;
1302
1303  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1304    linkAppendingVarInit(AppendingVars[i]);
1305
1306  // Link in the function bodies that are defined in the source module into
1307  // DstM.
1308  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1309    // Skip if not linking from source.
1310    if (DoNotLinkFromSource.count(SF)) continue;
1311
1312    Function *DF = cast<Function>(ValueMap[SF]);
1313    if (SF->hasPrefixData()) {
1314      // Link in the prefix data.
1315      DF->setPrefixData(MapValue(
1316          SF->getPrefixData(), ValueMap, RF_None, &TypeMap, &ValMaterializer));
1317    }
1318
1319    // Skip if no body (function is external) or materialize.
1320    if (SF->isDeclaration()) {
1321      if (!SF->isMaterializable())
1322        continue;
1323      if (SF->Materialize(&ErrorMsg))
1324        return true;
1325    }
1326
1327    linkFunctionBody(DF, SF);
1328    SF->Dematerialize();
1329  }
1330
1331  // Resolve all uses of aliases with aliasees.
1332  linkAliasBodies();
1333
1334  // Remap all of the named MDNodes in Src into the DstM module. We do this
1335  // after linking GlobalValues so that MDNodes that reference GlobalValues
1336  // are properly remapped.
1337  linkNamedMDNodes();
1338
1339  // Merge the module flags into the DstM module.
1340  if (linkModuleFlagsMetadata())
1341    return true;
1342
1343  // Update the initializers in the DstM module now that all globals that may
1344  // be referenced are in DstM.
1345  linkGlobalInits();
1346
1347  // Process vector of lazily linked in functions.
1348  bool LinkedInAnyFunctions;
1349  do {
1350    LinkedInAnyFunctions = false;
1351
1352    for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1353        E = LazilyLinkFunctions.end(); I != E; ++I) {
1354      Function *SF = *I;
1355      if (!SF)
1356        continue;
1357
1358      Function *DF = cast<Function>(ValueMap[SF]);
1359      if (SF->hasPrefixData()) {
1360        // Link in the prefix data.
1361        DF->setPrefixData(MapValue(SF->getPrefixData(),
1362                                   ValueMap,
1363                                   RF_None,
1364                                   &TypeMap,
1365                                   &ValMaterializer));
1366      }
1367
1368      // Materialize if necessary.
1369      if (SF->isDeclaration()) {
1370        if (!SF->isMaterializable())
1371          continue;
1372        if (SF->Materialize(&ErrorMsg))
1373          return true;
1374      }
1375
1376      // Erase from vector *before* the function body is linked - linkFunctionBody could
1377      // invalidate I.
1378      LazilyLinkFunctions.erase(I);
1379
1380      // Link in function body.
1381      linkFunctionBody(DF, SF);
1382      SF->Dematerialize();
1383
1384      // Set flag to indicate we may have more functions to lazily link in
1385      // since we linked in a function.
1386      LinkedInAnyFunctions = true;
1387      break;
1388    }
1389  } while (LinkedInAnyFunctions);
1390
1391  // Now that all of the types from the source are used, resolve any structs
1392  // copied over to the dest that didn't exist there.
1393  TypeMap.linkDefinedTypeBodies();
1394
1395  return false;
1396}
1397
1398Linker::Linker(Module *M, bool SuppressWarnings)
1399    : Composite(M), SuppressWarnings(SuppressWarnings) {
1400  TypeFinder StructTypes;
1401  StructTypes.run(*M, true);
1402  IdentifiedStructTypes.insert(StructTypes.begin(), StructTypes.end());
1403}
1404
1405Linker::~Linker() {
1406}
1407
1408void Linker::deleteModule() {
1409  delete Composite;
1410  Composite = nullptr;
1411}
1412
1413bool Linker::linkInModule(Module *Src, unsigned Mode, std::string *ErrorMsg) {
1414  ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src, Mode,
1415                         SuppressWarnings);
1416  if (TheLinker.run()) {
1417    if (ErrorMsg)
1418      *ErrorMsg = TheLinker.ErrorMsg;
1419    return true;
1420  }
1421  return false;
1422}
1423
1424//===----------------------------------------------------------------------===//
1425// LinkModules entrypoint.
1426//===----------------------------------------------------------------------===//
1427
1428/// LinkModules - This function links two modules together, with the resulting
1429/// Dest module modified to be the composite of the two input modules.  If an
1430/// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1431/// the problem.  Upon failure, the Dest module could be in a modified state,
1432/// and shouldn't be relied on to be consistent.
1433bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1434                         std::string *ErrorMsg) {
1435  Linker L(Dest);
1436  return L.linkInModule(Src, Mode, ErrorMsg);
1437}
1438
1439//===----------------------------------------------------------------------===//
1440// C API.
1441//===----------------------------------------------------------------------===//
1442
1443LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
1444                         LLVMLinkerMode Mode, char **OutMessages) {
1445  std::string Messages;
1446  LLVMBool Result = Linker::LinkModules(unwrap(Dest), unwrap(Src),
1447                                        Mode, OutMessages? &Messages : nullptr);
1448  if (OutMessages)
1449    *OutMessages = strdup(Messages.c_str());
1450  return Result;
1451}
1452