LinkModules.cpp revision e3092c94ad2e3af96f37a0a8186149acbbd9700a
1//===- Linker.cpp - Module Linker Implementation --------------------------===//
2//
3// This file implements the LLVM module linker.
4//
5// Specifically, this:
6//  * Merges global variables between the two modules
7//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
8//  * Merges functions between two modules
9//
10//===----------------------------------------------------------------------===//
11
12#include "llvm/Transforms/Utils/Linker.h"
13#include "llvm/Module.h"
14#include "llvm/SymbolTable.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/iOther.h"
17#include "llvm/Constants.h"
18
19// Error - Simple wrapper function to conditionally assign to E and return true.
20// This just makes error return conditions a little bit simpler...
21//
22static inline bool Error(std::string *E, const std::string &Message) {
23  if (E) *E = Message;
24  return true;
25}
26
27// ResolveTypes - Attempt to link the two specified types together.  Return true
28// if there is an error and they cannot yet be linked.
29//
30static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
31                         SymbolTable *DestST, const std::string &Name) {
32  if (DestTy == SrcTy) return false;       // If already equal, noop
33
34  // Does the type already exist in the module?
35  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
36    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
37      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
38    } else {
39      return true;  // Cannot link types... neither is opaque and not-equal
40    }
41  } else {                       // Type not in dest module.  Add it now.
42    if (DestTy)                  // Type _is_ in module, just opaque...
43      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
44                           ->refineAbstractTypeTo(SrcTy);
45    else if (!Name.empty())
46      DestST->insert(Name, const_cast<Type*>(SrcTy));
47  }
48  return false;
49}
50
51static const FunctionType *getFT(const PATypeHolder &TH) {
52  return cast<FunctionType>(TH.get());
53}
54static const StructType *getST(const PATypeHolder &TH) {
55  return cast<StructType>(TH.get());
56}
57
58// RecursiveResolveTypes - This is just like ResolveTypes, except that it
59// recurses down into derived types, merging the used types if the parent types
60// are compatible.
61//
62static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
63                                   const PATypeHolder &SrcTy,
64                                   SymbolTable *DestST, const std::string &Name,
65                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
66  const Type *SrcTyT = SrcTy.get();
67  const Type *DestTyT = DestTy.get();
68  if (DestTyT == SrcTyT) return false;       // If already equal, noop
69
70  // If we found our opaque type, resolve it now!
71  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
72    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
73
74  // Two types cannot be resolved together if they are of different primitive
75  // type.  For example, we cannot resolve an int to a float.
76  if (DestTyT->getPrimitiveID() != SrcTyT->getPrimitiveID()) return true;
77
78  // Otherwise, resolve the used type used by this derived type...
79  switch (DestTyT->getPrimitiveID()) {
80  case Type::FunctionTyID: {
81    if (cast<FunctionType>(DestTyT)->isVarArg() !=
82        cast<FunctionType>(SrcTyT)->isVarArg())
83      return true;
84    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
85      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
86                                 getFT(SrcTy)->getContainedType(i), DestST, "",
87                                 Pointers))
88        return true;
89    return false;
90  }
91  case Type::StructTyID: {
92    if (getST(DestTy)->getNumContainedTypes() !=
93        getST(SrcTy)->getNumContainedTypes()) return 1;
94    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
95      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
96                                 getST(SrcTy)->getContainedType(i), DestST, "",
97                                 Pointers))
98        return true;
99    return false;
100  }
101  case Type::ArrayTyID: {
102    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
103    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
104    if (DAT->getNumElements() != SAT->getNumElements()) return true;
105    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
106                                  DestST, "", Pointers);
107  }
108  case Type::PointerTyID: {
109    // If this is a pointer type, check to see if we have already seen it.  If
110    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
111    // an associative container for this search, because the type pointers (keys
112    // in the container) change whenever types get resolved...
113    //
114    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
115      if (Pointers[i].first == DestTy)
116        return Pointers[i].second != SrcTy;
117
118    // Otherwise, add the current pointers to the vector to stop recursion on
119    // this pair.
120    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
121    bool Result =
122      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
123                             cast<PointerType>(SrcTy.get())->getElementType(),
124                             DestST, "", Pointers);
125    Pointers.pop_back();
126    return Result;
127  }
128  default: assert(0 && "Unexpected type!"); return true;
129  }
130}
131
132static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
133                                  const PATypeHolder &SrcTy,
134                                  SymbolTable *DestST, const std::string &Name){
135  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
136  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
137}
138
139
140// LinkTypes - Go through the symbol table of the Src module and see if any
141// types are named in the src module that are not named in the Dst module.
142// Make sure there are no type name conflicts.
143//
144static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
145  SymbolTable       *DestST = &Dest->getSymbolTable();
146  const SymbolTable *SrcST  = &Src->getSymbolTable();
147
148  // Look for a type plane for Type's...
149  SymbolTable::const_iterator PI = SrcST->find(Type::TypeTy);
150  if (PI == SrcST->end()) return false;  // No named types, do nothing.
151
152  // Some types cannot be resolved immediately becuse they depend on other types
153  // being resolved to each other first.  This contains a list of types we are
154  // waiting to recheck.
155  std::vector<std::string> DelayedTypesToResolve;
156
157  const SymbolTable::VarMap &VM = PI->second;
158  for (SymbolTable::type_const_iterator I = VM.begin(), E = VM.end();
159       I != E; ++I) {
160    const std::string &Name = I->first;
161    Type *RHS = cast<Type>(I->second);
162
163    // Check to see if this type name is already in the dest module...
164    Type *Entry = cast_or_null<Type>(DestST->lookup(Type::TypeTy, Name));
165
166    if (ResolveTypes(Entry, RHS, DestST, Name)) {
167      // They look different, save the types 'till later to resolve.
168      DelayedTypesToResolve.push_back(Name);
169    }
170  }
171
172  // Iteratively resolve types while we can...
173  while (!DelayedTypesToResolve.empty()) {
174    // Loop over all of the types, attempting to resolve them if possible...
175    unsigned OldSize = DelayedTypesToResolve.size();
176
177    // Try direct resolution by name...
178    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
179      const std::string &Name = DelayedTypesToResolve[i];
180      Type *T1 = cast<Type>(VM.find(Name)->second);
181      Type *T2 = cast<Type>(DestST->lookup(Type::TypeTy, Name));
182      if (!ResolveTypes(T2, T1, DestST, Name)) {
183        // We are making progress!
184        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
185        --i;
186      }
187    }
188
189    // Did we not eliminate any types?
190    if (DelayedTypesToResolve.size() == OldSize) {
191      // Attempt to resolve subelements of types.  This allows us to merge these
192      // two types: { int* } and { opaque* }
193      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
194        const std::string &Name = DelayedTypesToResolve[i];
195        PATypeHolder T1(cast<Type>(VM.find(Name)->second));
196        PATypeHolder T2(cast<Type>(DestST->lookup(Type::TypeTy, Name)));
197
198        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
199          // We are making progress!
200          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
201
202          // Go back to the main loop, perhaps we can resolve directly by name
203          // now...
204          break;
205        }
206      }
207
208      // If we STILL cannot resolve the types, then there is something wrong.
209      // Report the error.
210      if (DelayedTypesToResolve.size() == OldSize) {
211        // Build up an error message of all of the mismatched types.
212        std::string ErrorMessage;
213        for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
214          const std::string &Name = DelayedTypesToResolve[i];
215          const Type *T1 = cast<Type>(VM.find(Name)->second);
216          const Type *T2 = cast<Type>(DestST->lookup(Type::TypeTy, Name));
217          ErrorMessage += "  Type named '" + Name +
218                          "' conflicts.\n    Src='" + T1->getDescription() +
219                          "'.\n   Dest='" + T2->getDescription() + "'\n";
220        }
221        return Error(Err, "Type conflict between types in modules:\n" +
222                     ErrorMessage);
223      }
224    }
225  }
226
227
228  return false;
229}
230
231static void PrintMap(const std::map<const Value*, Value*> &M) {
232  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
233       I != E; ++I) {
234    std::cerr << " Fr: " << (void*)I->first << " ";
235    I->first->dump();
236    std::cerr << " To: " << (void*)I->second << " ";
237    I->second->dump();
238    std::cerr << "\n";
239  }
240}
241
242
243// RemapOperand - Use LocalMap and GlobalMap to convert references from one
244// module to another.  This is somewhat sophisticated in that it can
245// automatically handle constant references correctly as well...
246//
247static Value *RemapOperand(const Value *In,
248                           std::map<const Value*, Value*> &LocalMap,
249                           std::map<const Value*, Value*> *GlobalMap) {
250  std::map<const Value*,Value*>::const_iterator I = LocalMap.find(In);
251  if (I != LocalMap.end()) return I->second;
252
253  if (GlobalMap) {
254    I = GlobalMap->find(In);
255    if (I != GlobalMap->end()) return I->second;
256  }
257
258  // Check to see if it's a constant that we are interesting in transforming...
259  if (const Constant *CPV = dyn_cast<Constant>(In)) {
260    if (!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV))
261      return const_cast<Constant*>(CPV);   // Simple constants stay identical...
262
263    Constant *Result = 0;
264
265    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
266      const std::vector<Use> &Ops = CPA->getValues();
267      std::vector<Constant*> Operands(Ops.size());
268      for (unsigned i = 0, e = Ops.size(); i != e; ++i)
269        Operands[i] =
270          cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
271      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
272    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
273      const std::vector<Use> &Ops = CPS->getValues();
274      std::vector<Constant*> Operands(Ops.size());
275      for (unsigned i = 0; i < Ops.size(); ++i)
276        Operands[i] =
277          cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
278      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
279    } else if (isa<ConstantPointerNull>(CPV)) {
280      Result = const_cast<Constant*>(CPV);
281    } else if (const ConstantPointerRef *CPR =
282                      dyn_cast<ConstantPointerRef>(CPV)) {
283      Value *V = RemapOperand(CPR->getValue(), LocalMap, GlobalMap);
284      Result = ConstantPointerRef::get(cast<GlobalValue>(V));
285    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
286      if (CE->getOpcode() == Instruction::GetElementPtr) {
287        Value *Ptr = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
288        std::vector<Constant*> Indices;
289        Indices.reserve(CE->getNumOperands()-1);
290        for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
291          Indices.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),
292                                                        LocalMap, GlobalMap)));
293
294        Result = ConstantExpr::getGetElementPtr(cast<Constant>(Ptr), Indices);
295      } else if (CE->getNumOperands() == 1) {
296        // Cast instruction
297        assert(CE->getOpcode() == Instruction::Cast);
298        Value *V = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
299        Result = ConstantExpr::getCast(cast<Constant>(V), CE->getType());
300      } else if (CE->getNumOperands() == 2) {
301        // Binary operator...
302        Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
303        Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
304
305        Result = ConstantExpr::get(CE->getOpcode(), cast<Constant>(V1),
306                                   cast<Constant>(V2));
307      } else {
308        assert(0 && "Unknown constant expr type!");
309      }
310
311    } else {
312      assert(0 && "Unknown type of derived type constant value!");
313    }
314
315    // Cache the mapping in our local map structure...
316    if (GlobalMap)
317      GlobalMap->insert(std::make_pair(In, Result));
318    else
319      LocalMap.insert(std::make_pair(In, Result));
320    return Result;
321  }
322
323  std::cerr << "XXX LocalMap: \n";
324  PrintMap(LocalMap);
325
326  if (GlobalMap) {
327    std::cerr << "XXX GlobalMap: \n";
328    PrintMap(*GlobalMap);
329  }
330
331  std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
332  assert(0 && "Couldn't remap value!");
333  return 0;
334}
335
336/// FindGlobalNamed - Look in the specified symbol table for a global with the
337/// specified name and type.  If an exactly matching global does not exist, see
338/// if there is a global which is "type compatible" with the specified
339/// name/type.  This allows us to resolve things like '%x = global int*' with
340/// '%x = global opaque*'.
341///
342static GlobalValue *FindGlobalNamed(const std::string &Name, const Type *Ty,
343                                    SymbolTable *ST) {
344  // See if an exact match exists in the symbol table...
345  if (Value *V = ST->lookup(Ty, Name)) return cast<GlobalValue>(V);
346
347  // It doesn't exist exactly, scan through all of the type planes in the symbol
348  // table, checking each of them for a type-compatible version.
349  //
350  for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I) {
351    SymbolTable::VarMap &VM = I->second;
352    // Does this type plane contain an entry with the specified name?
353    SymbolTable::type_iterator TI = VM.find(Name);
354    if (TI != VM.end()) {
355      // Determine whether we can fold the two types together, resolving them.
356      // If so, we can use this value.
357      if (!RecursiveResolveTypes(Ty, I->first, ST, ""))
358        return cast<GlobalValue>(TI->second);
359    }
360  }
361  return 0;  // Otherwise, nothing could be found.
362}
363
364
365// LinkGlobals - Loop through the global variables in the src module and merge
366// them into the dest module.
367//
368static bool LinkGlobals(Module *Dest, const Module *Src,
369                        std::map<const Value*, Value*> &ValueMap,
370                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
371                        std::string *Err) {
372  // We will need a module level symbol table if the src module has a module
373  // level symbol table...
374  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
375
376  // Loop over all of the globals in the src module, mapping them over as we go
377  //
378  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
379    const GlobalVariable *SGV = I;
380    GlobalVariable *DGV = 0;
381    if (SGV->hasName()) {
382      // A same named thing is a global variable, because the only two things
383      // that may be in a module level symbol table are Global Vars and
384      // Functions, and they both have distinct, nonoverlapping, possible types.
385      //
386      DGV = cast_or_null<GlobalVariable>(FindGlobalNamed(SGV->getName(),
387                                                         SGV->getType(), ST));
388    }
389
390    assert(SGV->hasInitializer() || SGV->hasExternalLinkage() &&
391           "Global must either be external or have an initializer!");
392
393    bool SGExtern = SGV->isExternal();
394    bool DGExtern = DGV ? DGV->isExternal() : false;
395
396    if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) {
397      // No linking to be performed, simply create an identical version of the
398      // symbol over in the dest module... the initializer will be filled in
399      // later by LinkGlobalInits...
400      //
401      GlobalVariable *NewDGV =
402        new GlobalVariable(SGV->getType()->getElementType(),
403                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
404                           SGV->getName(), Dest);
405
406      // If the LLVM runtime renamed the global, but it is an externally visible
407      // symbol, DGV must be an existing global with internal linkage.  Rename
408      // it.
409      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage()){
410        assert(DGV && DGV->getName() == SGV->getName() &&
411               DGV->hasInternalLinkage());
412        DGV->setName("");
413        NewDGV->setName(SGV->getName());  // Force the name back
414        DGV->setName(SGV->getName());     // This will cause a renaming
415        assert(NewDGV->getName() == SGV->getName() &&
416               DGV->getName() != SGV->getName());
417      }
418
419      // Make sure to remember this mapping...
420      ValueMap.insert(std::make_pair(SGV, NewDGV));
421      if (SGV->hasAppendingLinkage())
422        // Keep track that this is an appending variable...
423        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
424
425    } else if (SGV->isExternal()) {
426      // If SGV is external or if both SGV & DGV are external..  Just link the
427      // external globals, we aren't adding anything.
428      ValueMap.insert(std::make_pair(SGV, DGV));
429
430    } else if (DGV->isExternal()) {   // If DGV is external but SGV is not...
431      ValueMap.insert(std::make_pair(SGV, DGV));
432      DGV->setLinkage(SGV->getLinkage());    // Inherit linkage!
433    } else if (SGV->getLinkage() != DGV->getLinkage()) {
434      return Error(Err, "Global variables named '" + SGV->getName() +
435                   "' have different linkage specifiers!");
436    } else if (SGV->hasExternalLinkage()) {
437      // Allow linking two exactly identical external global variables...
438      if (SGV->isConstant() != DGV->isConstant() ||
439          SGV->getInitializer() != DGV->getInitializer())
440        return Error(Err, "Global Variable Collision on '" +
441                     SGV->getType()->getDescription() + " %" + SGV->getName() +
442                     "' - Global variables differ in const'ness");
443      ValueMap.insert(std::make_pair(SGV, DGV));
444    } else if (SGV->hasLinkOnceLinkage()) {
445      // If the global variable has a name, and that name is already in use in
446      // the Dest module, make sure that the name is a compatible global
447      // variable...
448      //
449      // Check to see if the two GV's have the same Const'ness...
450      if (SGV->isConstant() != DGV->isConstant())
451        return Error(Err, "Global Variable Collision on '" +
452                     SGV->getType()->getDescription() + " %" + SGV->getName() +
453                     "' - Global variables differ in const'ness");
454
455      // Okay, everything is cool, remember the mapping...
456      ValueMap.insert(std::make_pair(SGV, DGV));
457    } else if (SGV->hasAppendingLinkage()) {
458      // No linking is performed yet.  Just insert a new copy of the global, and
459      // keep track of the fact that it is an appending variable in the
460      // AppendingVars map.  The name is cleared out so that no linkage is
461      // performed.
462      GlobalVariable *NewDGV =
463        new GlobalVariable(SGV->getType()->getElementType(),
464                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
465                           "", Dest);
466
467      // Make sure to remember this mapping...
468      ValueMap.insert(std::make_pair(SGV, NewDGV));
469
470      // Keep track that this is an appending variable...
471      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
472    } else {
473      assert(0 && "Unknown linkage!");
474    }
475  }
476  return false;
477}
478
479
480// LinkGlobalInits - Update the initializers in the Dest module now that all
481// globals that may be referenced are in Dest.
482//
483static bool LinkGlobalInits(Module *Dest, const Module *Src,
484                            std::map<const Value*, Value*> &ValueMap,
485                            std::string *Err) {
486
487  // Loop over all of the globals in the src module, mapping them over as we go
488  //
489  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
490    const GlobalVariable *SGV = I;
491
492    if (SGV->hasInitializer()) {      // Only process initialized GV's
493      // Figure out what the initializer looks like in the dest module...
494      Constant *SInit =
495        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap, 0));
496
497      GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
498      if (DGV->hasInitializer()) {
499        assert(SGV->getLinkage() == DGV->getLinkage());
500        if (SGV->hasExternalLinkage()) {
501          if (DGV->getInitializer() != SInit)
502            return Error(Err, "Global Variable Collision on '" +
503                         SGV->getType()->getDescription() +"':%"+SGV->getName()+
504                         " - Global variables have different initializers");
505        } else if (DGV->hasLinkOnceLinkage()) {
506          // Nothing is required, mapped values will take the new global
507          // automatically.
508        } else if (DGV->hasAppendingLinkage()) {
509          assert(0 && "Appending linkage unimplemented!");
510        } else {
511          assert(0 && "Unknown linkage!");
512        }
513      } else {
514        // Copy the initializer over now...
515        DGV->setInitializer(SInit);
516      }
517    }
518  }
519  return false;
520}
521
522// LinkFunctionProtos - Link the functions together between the two modules,
523// without doing function bodies... this just adds external function prototypes
524// to the Dest function...
525//
526static bool LinkFunctionProtos(Module *Dest, const Module *Src,
527                               std::map<const Value*, Value*> &ValueMap,
528                               std::string *Err) {
529  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
530
531  // Loop over all of the functions in the src module, mapping them over as we
532  // go
533  //
534  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
535    const Function *SF = I;   // SrcFunction
536    Function *DF = 0;
537    if (SF->hasName())
538      // The same named thing is a Function, because the only two things
539      // that may be in a module level symbol table are Global Vars and
540      // Functions, and they both have distinct, nonoverlapping, possible types.
541      //
542      DF = cast_or_null<Function>(FindGlobalNamed(SF->getName(), SF->getType(),
543                                                  ST));
544
545    if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
546      // Function does not already exist, simply insert an function signature
547      // identical to SF into the dest module...
548      Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
549                                     SF->getName(), Dest);
550
551      // If the LLVM runtime renamed the function, but it is an externally
552      // visible symbol, DF must be an existing function with internal linkage.
553      // Rename it.
554      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) {
555        assert(DF && DF->getName() == SF->getName() &&DF->hasInternalLinkage());
556        DF->setName("");
557        NewDF->setName(SF->getName());  // Force the name back
558        DF->setName(SF->getName());     // This will cause a renaming
559        assert(NewDF->getName() == SF->getName() &&
560               DF->getName() != SF->getName());
561      }
562
563      // ... and remember this mapping...
564      ValueMap.insert(std::make_pair(SF, NewDF));
565    } else if (SF->isExternal()) {
566      // If SF is external or if both SF & DF are external..  Just link the
567      // external functions, we aren't adding anything.
568      ValueMap.insert(std::make_pair(SF, DF));
569    } else if (DF->isExternal()) {   // If DF is external but SF is not...
570      // Link the external functions, update linkage qualifiers
571      ValueMap.insert(std::make_pair(SF, DF));
572      DF->setLinkage(SF->getLinkage());
573
574    } else if (SF->getLinkage() != DF->getLinkage()) {
575      return Error(Err, "Functions named '" + SF->getName() +
576                   "' have different linkage specifiers!");
577    } else if (SF->hasExternalLinkage()) {
578      // The function is defined in both modules!!
579      return Error(Err, "Function '" +
580                   SF->getFunctionType()->getDescription() + "':\"" +
581                   SF->getName() + "\" - Function is already defined!");
582    } else if (SF->hasLinkOnceLinkage()) {
583      // Completely ignore the source function.
584      ValueMap.insert(std::make_pair(SF, DF));
585    } else {
586      assert(0 && "Unknown linkage configuration found!");
587    }
588  }
589  return false;
590}
591
592// LinkFunctionBody - Copy the source function over into the dest function and
593// fix up references to values.  At this point we know that Dest is an external
594// function, and that Src is not.
595//
596static bool LinkFunctionBody(Function *Dest, const Function *Src,
597                             std::map<const Value*, Value*> &GlobalMap,
598                             std::string *Err) {
599  assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
600  std::map<const Value*, Value*> LocalMap;   // Map for function local values
601
602  // Go through and convert function arguments over...
603  Function::aiterator DI = Dest->abegin();
604  for (Function::const_aiterator I = Src->abegin(), E = Src->aend();
605       I != E; ++I, ++DI) {
606    DI->setName(I->getName());  // Copy the name information over...
607
608    // Add a mapping to our local map
609    LocalMap.insert(std::make_pair(I, DI));
610  }
611
612  // Loop over all of the basic blocks, copying the instructions over...
613  //
614  for (Function::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
615    // Create new basic block and add to mapping and the Dest function...
616    BasicBlock *DBB = new BasicBlock(I->getName(), Dest);
617    LocalMap.insert(std::make_pair(I, DBB));
618
619    // Loop over all of the instructions in the src basic block, copying them
620    // over.  Note that this is broken in a strict sense because the cloned
621    // instructions will still be referencing values in the Src module, not
622    // the remapped values.  In our case, however, we will not get caught and
623    // so we can delay patching the values up until later...
624    //
625    for (BasicBlock::const_iterator II = I->begin(), IE = I->end();
626         II != IE; ++II) {
627      Instruction *DI = II->clone();
628      DI->setName(II->getName());
629      DBB->getInstList().push_back(DI);
630      LocalMap.insert(std::make_pair(II, DI));
631    }
632  }
633
634  // At this point, all of the instructions and values of the function are now
635  // copied over.  The only problem is that they are still referencing values in
636  // the Source function as operands.  Loop through all of the operands of the
637  // functions and patch them up to point to the local versions...
638  //
639  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
640    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
641      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
642           OI != OE; ++OI)
643        *OI = RemapOperand(*OI, LocalMap, &GlobalMap);
644
645  return false;
646}
647
648
649// LinkFunctionBodies - Link in the function bodies that are defined in the
650// source module into the DestModule.  This consists basically of copying the
651// function over and fixing up references to values.
652//
653static bool LinkFunctionBodies(Module *Dest, const Module *Src,
654                               std::map<const Value*, Value*> &ValueMap,
655                               std::string *Err) {
656
657  // Loop over all of the functions in the src module, mapping them over as we
658  // go
659  //
660  for (Module::const_iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF){
661    if (!SF->isExternal()) {                  // No body if function is external
662      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
663
664      // DF not external SF external?
665      if (!DF->isExternal()) {
666        if (DF->hasLinkOnceLinkage()) continue; // No relinkage for link-once!
667        if (Err)
668          *Err = "Function '" + (SF->hasName() ? SF->getName() :std::string(""))
669               + "' body multiply defined!";
670        return true;
671      }
672
673      if (LinkFunctionBody(DF, SF, ValueMap, Err)) return true;
674    }
675  }
676  return false;
677}
678
679// LinkAppendingVars - If there were any appending global variables, link them
680// together now.  Return true on error.
681//
682static bool LinkAppendingVars(Module *M,
683                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
684                              std::string *ErrorMsg) {
685  if (AppendingVars.empty()) return false; // Nothing to do.
686
687  // Loop over the multimap of appending vars, processing any variables with the
688  // same name, forming a new appending global variable with both of the
689  // initializers merged together, then rewrite references to the old variables
690  // and delete them.
691  //
692  std::vector<Constant*> Inits;
693  while (AppendingVars.size() > 1) {
694    // Get the first two elements in the map...
695    std::multimap<std::string,
696      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
697
698    // If the first two elements are for different names, there is no pair...
699    // Otherwise there is a pair, so link them together...
700    if (First->first == Second->first) {
701      GlobalVariable *G1 = First->second, *G2 = Second->second;
702      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
703      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
704
705      // Check to see that they two arrays agree on type...
706      if (T1->getElementType() != T2->getElementType())
707        return Error(ErrorMsg,
708         "Appending variables with different element types need to be linked!");
709      if (G1->isConstant() != G2->isConstant())
710        return Error(ErrorMsg,
711                     "Appending variables linked with different const'ness!");
712
713      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
714      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
715
716      // Create the new global variable...
717      GlobalVariable *NG =
718        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
719                           /*init*/0, First->first, M);
720
721      // Merge the initializer...
722      Inits.reserve(NewSize);
723      ConstantArray *I = cast<ConstantArray>(G1->getInitializer());
724      for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
725        Inits.push_back(cast<Constant>(I->getValues()[i]));
726      I = cast<ConstantArray>(G2->getInitializer());
727      for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
728        Inits.push_back(cast<Constant>(I->getValues()[i]));
729      NG->setInitializer(ConstantArray::get(NewType, Inits));
730      Inits.clear();
731
732      // Replace any uses of the two global variables with uses of the new
733      // global...
734
735      // FIXME: This should rewrite simple/straight-forward uses such as
736      // getelementptr instructions to not use the Cast!
737      ConstantPointerRef *NGCP = ConstantPointerRef::get(NG);
738      G1->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G1->getType()));
739      G2->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G2->getType()));
740
741      // Remove the two globals from the module now...
742      M->getGlobalList().erase(G1);
743      M->getGlobalList().erase(G2);
744
745      // Put the new global into the AppendingVars map so that we can handle
746      // linking of more than two vars...
747      Second->second = NG;
748    }
749    AppendingVars.erase(First);
750  }
751
752  return false;
753}
754
755
756// LinkModules - This function links two modules together, with the resulting
757// left module modified to be the composite of the two input modules.  If an
758// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
759// the problem.  Upon failure, the Dest module could be in a modified state, and
760// shouldn't be relied on to be consistent.
761//
762bool LinkModules(Module *Dest, const Module *Src, std::string *ErrorMsg) {
763  if (Dest->getEndianness() != Src->getEndianness())
764    std::cerr << "WARNING: Linking two modules of different endianness!\n";
765  if (Dest->getPointerSize() != Src->getPointerSize())
766    std::cerr << "WARNING: Linking two modules of different pointer size!\n";
767
768  // LinkTypes - Go through the symbol table of the Src module and see if any
769  // types are named in the src module that are not named in the Dst module.
770  // Make sure there are no type name conflicts.
771  //
772  if (LinkTypes(Dest, Src, ErrorMsg)) return true;
773
774  // ValueMap - Mapping of values from what they used to be in Src, to what they
775  // are now in Dest.
776  //
777  std::map<const Value*, Value*> ValueMap;
778
779  // AppendingVars - Keep track of global variables in the destination module
780  // with appending linkage.  After the module is linked together, they are
781  // appended and the module is rewritten.
782  //
783  std::multimap<std::string, GlobalVariable *> AppendingVars;
784
785  // Add all of the appending globals already in the Dest module to
786  // AppendingVars.
787  for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I)
788    if (I->hasAppendingLinkage())
789      AppendingVars.insert(std::make_pair(I->getName(), I));
790
791  // Insert all of the globals in src into the Dest module... without linking
792  // initializers (which could refer to functions not yet mapped over).
793  //
794  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg)) return true;
795
796  // Link the functions together between the two modules, without doing function
797  // bodies... this just adds external function prototypes to the Dest
798  // function...  We do this so that when we begin processing function bodies,
799  // all of the global values that may be referenced are available in our
800  // ValueMap.
801  //
802  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg)) return true;
803
804  // Update the initializers in the Dest module now that all globals that may
805  // be referenced are in Dest.
806  //
807  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
808
809  // Link in the function bodies that are defined in the source module into the
810  // DestModule.  This consists basically of copying the function over and
811  // fixing up references to values.
812  //
813  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
814
815  // If there were any appending global variables, link them together now.
816  //
817  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
818
819  return false;
820}
821
822