LinkModules.cpp revision ebb5850c39cca94fcc7e5186f246bb90eb9ba5cb
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/Instructions.h"
26#include "llvm/Assembly/Writer.h"
27#include "llvm/Support/Streams.h"
28#include "llvm/System/Path.h"
29#include <sstream>
30using namespace llvm;
31
32// Error - Simple wrapper function to conditionally assign to E and return true.
33// This just makes error return conditions a little bit simpler...
34static inline bool Error(std::string *E, const std::string &Message) {
35  if (E) *E = Message;
36  return true;
37}
38
39// ToStr - Simple wrapper function to convert a type to a string.
40static std::string ToStr(const Type *Ty, const Module *M) {
41  std::ostringstream OS;
42  WriteTypeSymbolic(OS, Ty, M);
43  return OS.str();
44}
45
46//
47// Function: ResolveTypes()
48//
49// Description:
50//  Attempt to link the two specified types together.
51//
52// Inputs:
53//  DestTy - The type to which we wish to resolve.
54//  SrcTy  - The original type which we want to resolve.
55//  Name   - The name of the type.
56//
57// Outputs:
58//  DestST - The symbol table in which the new type should be placed.
59//
60// Return value:
61//  true  - There is an error and the types cannot yet be linked.
62//  false - No errors.
63//
64static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
65                         TypeSymbolTable *DestST, const std::string &Name) {
66  if (DestTy == SrcTy) return false;       // If already equal, noop
67
68  // Does the type already exist in the module?
69  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
70    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
71      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
72    } else {
73      return true;  // Cannot link types... neither is opaque and not-equal
74    }
75  } else {                       // Type not in dest module.  Add it now.
76    if (DestTy)                  // Type _is_ in module, just opaque...
77      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
78                           ->refineAbstractTypeTo(SrcTy);
79    else if (!Name.empty())
80      DestST->insert(Name, const_cast<Type*>(SrcTy));
81  }
82  return false;
83}
84
85static const FunctionType *getFT(const PATypeHolder &TH) {
86  return cast<FunctionType>(TH.get());
87}
88static const StructType *getST(const PATypeHolder &TH) {
89  return cast<StructType>(TH.get());
90}
91
92// RecursiveResolveTypes - This is just like ResolveTypes, except that it
93// recurses down into derived types, merging the used types if the parent types
94// are compatible.
95static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
96                                   const PATypeHolder &SrcTy,
97                                   TypeSymbolTable *DestST,
98                                   const std::string &Name,
99                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
100  const Type *SrcTyT = SrcTy.get();
101  const Type *DestTyT = DestTy.get();
102  if (DestTyT == SrcTyT) return false;       // If already equal, noop
103
104  // If we found our opaque type, resolve it now!
105  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
106    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
107
108  // Two types cannot be resolved together if they are of different primitive
109  // type.  For example, we cannot resolve an int to a float.
110  if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
111
112  // Otherwise, resolve the used type used by this derived type...
113  switch (DestTyT->getTypeID()) {
114  case Type::IntegerTyID: {
115    if (cast<IntegerType>(DestTyT)->getBitWidth() !=
116        cast<IntegerType>(SrcTyT)->getBitWidth())
117      return true;
118    return false;
119  }
120  case Type::FunctionTyID: {
121    if (cast<FunctionType>(DestTyT)->isVarArg() !=
122        cast<FunctionType>(SrcTyT)->isVarArg() ||
123        cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
124        cast<FunctionType>(SrcTyT)->getNumContainedTypes())
125      return true;
126    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
127      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
128                                 getFT(SrcTy)->getContainedType(i), DestST, "",
129                                 Pointers))
130        return true;
131    return false;
132  }
133  case Type::StructTyID: {
134    if (getST(DestTy)->getNumContainedTypes() !=
135        getST(SrcTy)->getNumContainedTypes()) return 1;
136    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
137      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
138                                 getST(SrcTy)->getContainedType(i), DestST, "",
139                                 Pointers))
140        return true;
141    return false;
142  }
143  case Type::ArrayTyID: {
144    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
145    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
146    if (DAT->getNumElements() != SAT->getNumElements()) return true;
147    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
148                                  DestST, "", Pointers);
149  }
150  case Type::PointerTyID: {
151    // If this is a pointer type, check to see if we have already seen it.  If
152    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
153    // an associative container for this search, because the type pointers (keys
154    // in the container) change whenever types get resolved...
155    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
156      if (Pointers[i].first == DestTy)
157        return Pointers[i].second != SrcTy;
158
159    // Otherwise, add the current pointers to the vector to stop recursion on
160    // this pair.
161    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
162    bool Result =
163      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
164                             cast<PointerType>(SrcTy.get())->getElementType(),
165                             DestST, "", Pointers);
166    Pointers.pop_back();
167    return Result;
168  }
169  default: assert(0 && "Unexpected type!"); return true;
170  }
171}
172
173static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
174                                  const PATypeHolder &SrcTy,
175                                  TypeSymbolTable *DestST,
176                                  const std::string &Name){
177  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
178  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
179}
180
181
182// LinkTypes - Go through the symbol table of the Src module and see if any
183// types are named in the src module that are not named in the Dst module.
184// Make sure there are no type name conflicts.
185static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
186        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
187  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
188
189  // Look for a type plane for Type's...
190  TypeSymbolTable::const_iterator TI = SrcST->begin();
191  TypeSymbolTable::const_iterator TE = SrcST->end();
192  if (TI == TE) return false;  // No named types, do nothing.
193
194  // Some types cannot be resolved immediately because they depend on other
195  // types being resolved to each other first.  This contains a list of types we
196  // are waiting to recheck.
197  std::vector<std::string> DelayedTypesToResolve;
198
199  for ( ; TI != TE; ++TI ) {
200    const std::string &Name = TI->first;
201    const Type *RHS = TI->second;
202
203    // Check to see if this type name is already in the dest module...
204    Type *Entry = DestST->lookup(Name);
205
206    if (ResolveTypes(Entry, RHS, DestST, Name)) {
207      // They look different, save the types 'till later to resolve.
208      DelayedTypesToResolve.push_back(Name);
209    }
210  }
211
212  // Iteratively resolve types while we can...
213  while (!DelayedTypesToResolve.empty()) {
214    // Loop over all of the types, attempting to resolve them if possible...
215    unsigned OldSize = DelayedTypesToResolve.size();
216
217    // Try direct resolution by name...
218    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
219      const std::string &Name = DelayedTypesToResolve[i];
220      Type *T1 = SrcST->lookup(Name);
221      Type *T2 = DestST->lookup(Name);
222      if (!ResolveTypes(T2, T1, DestST, Name)) {
223        // We are making progress!
224        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
225        --i;
226      }
227    }
228
229    // Did we not eliminate any types?
230    if (DelayedTypesToResolve.size() == OldSize) {
231      // Attempt to resolve subelements of types.  This allows us to merge these
232      // two types: { int* } and { opaque* }
233      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
234        const std::string &Name = DelayedTypesToResolve[i];
235        PATypeHolder T1(SrcST->lookup(Name));
236        PATypeHolder T2(DestST->lookup(Name));
237
238        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
239          // We are making progress!
240          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
241
242          // Go back to the main loop, perhaps we can resolve directly by name
243          // now...
244          break;
245        }
246      }
247
248      // If we STILL cannot resolve the types, then there is something wrong.
249      if (DelayedTypesToResolve.size() == OldSize) {
250        // Remove the symbol name from the destination.
251        DelayedTypesToResolve.pop_back();
252      }
253    }
254  }
255
256
257  return false;
258}
259
260static void PrintMap(const std::map<const Value*, Value*> &M) {
261  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
262       I != E; ++I) {
263    cerr << " Fr: " << (void*)I->first << " ";
264    I->first->dump();
265    cerr << " To: " << (void*)I->second << " ";
266    I->second->dump();
267    cerr << "\n";
268  }
269}
270
271
272// RemapOperand - Use ValueMap to convert constants from one module to another.
273static Value *RemapOperand(const Value *In,
274                           std::map<const Value*, Value*> &ValueMap) {
275  std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
276  if (I != ValueMap.end())
277    return I->second;
278
279  // Check to see if it's a constant that we are interested in transforming.
280  Value *Result = 0;
281  if (const Constant *CPV = dyn_cast<Constant>(In)) {
282    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
283        isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
284      return const_cast<Constant*>(CPV);   // Simple constants stay identical.
285
286    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
287      std::vector<Constant*> Operands(CPA->getNumOperands());
288      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
289        Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
290      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
291    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
292      std::vector<Constant*> Operands(CPS->getNumOperands());
293      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
294        Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
295      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
296    } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
297      Result = const_cast<Constant*>(CPV);
298    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
299      std::vector<Constant*> Operands(CP->getNumOperands());
300      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
301        Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
302      Result = ConstantVector::get(Operands);
303    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
304      std::vector<Constant*> Ops;
305      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
306        Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
307      Result = CE->getWithOperands(Ops);
308    } else if (isa<GlobalValue>(CPV)) {
309      assert(0 && "Unmapped global?");
310    } else {
311      assert(0 && "Unknown type of derived type constant value!");
312    }
313  } else if (isa<InlineAsm>(In)) {
314    Result = const_cast<Value*>(In);
315  }
316
317  // Cache the mapping in our local map structure
318  if (Result) {
319    ValueMap.insert(std::make_pair(In, Result));
320    return Result;
321  }
322
323
324  cerr << "LinkModules ValueMap: \n";
325  PrintMap(ValueMap);
326
327  cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
328  assert(0 && "Couldn't remap value!");
329  return 0;
330}
331
332/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
333/// in the symbol table.  This is good for all clients except for us.  Go
334/// through the trouble to force this back.
335static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
336  assert(GV->getName() != Name && "Can't force rename to self");
337  ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
338
339  // If there is a conflict, rename the conflict.
340  if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
341    assert(ConflictGV->hasInternalLinkage() &&
342           "Not conflicting with a static global, should link instead!");
343    GV->takeName(ConflictGV);
344    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
345    assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
346  } else {
347    GV->setName(Name);              // Force the name back
348  }
349}
350
351/// CopyGVAttributes - copy additional attributes (those not needed to construct
352/// a GlobalValue) from the SrcGV to the DestGV.
353static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
354  // Propagate alignment, visibility and section info.
355  DestGV->setAlignment(std::max(DestGV->getAlignment(), SrcGV->getAlignment()));
356  DestGV->setSection(SrcGV->getSection());
357  DestGV->setVisibility(SrcGV->getVisibility());
358  if (const Function *SrcF = dyn_cast<Function>(SrcGV)) {
359    Function *DestF = cast<Function>(DestGV);
360    DestF->setCallingConv(SrcF->getCallingConv());
361    DestF->setParamAttrs(SrcF->getParamAttrs());
362    if (SrcF->hasCollector())
363      DestF->setCollector(SrcF->getCollector());
364  } else if (const GlobalVariable *SrcVar = dyn_cast<GlobalVariable>(SrcGV)) {
365    GlobalVariable *DestVar = cast<GlobalVariable>(DestGV);
366    DestVar->setThreadLocal(SrcVar->isThreadLocal());
367  }
368}
369
370/// GetLinkageResult - This analyzes the two global values and determines what
371/// the result will look like in the destination module.  In particular, it
372/// computes the resultant linkage type, computes whether the global in the
373/// source should be copied over to the destination (replacing the existing
374/// one), and computes whether this linkage is an error or not. It also performs
375/// visibility checks: we cannot link together two symbols with different
376/// visibilities.
377static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
378                             GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
379                             std::string *Err) {
380  assert((!Dest || !Src->hasInternalLinkage()) &&
381         "If Src has internal linkage, Dest shouldn't be set!");
382  if (!Dest) {
383    // Linking something to nothing.
384    LinkFromSrc = true;
385    LT = Src->getLinkage();
386  } else if (Src->isDeclaration()) {
387    // If Src is external or if both Src & Dest are external..  Just link the
388    // external globals, we aren't adding anything.
389    if (Src->hasDLLImportLinkage()) {
390      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
391      if (Dest->isDeclaration()) {
392        LinkFromSrc = true;
393        LT = Src->getLinkage();
394      }
395    } else if (Dest->hasExternalWeakLinkage()) {
396      //If the Dest is weak, use the source linkage
397      LinkFromSrc = true;
398      LT = Src->getLinkage();
399    } else {
400      LinkFromSrc = false;
401      LT = Dest->getLinkage();
402    }
403  } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
404    // If Dest is external but Src is not:
405    LinkFromSrc = true;
406    LT = Src->getLinkage();
407  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
408    if (Src->getLinkage() != Dest->getLinkage())
409      return Error(Err, "Linking globals named '" + Src->getName() +
410            "': can only link appending global with another appending global!");
411    LinkFromSrc = true; // Special cased.
412    LT = Src->getLinkage();
413  } else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage()) {
414    // At this point we know that Dest has LinkOnce, External*, Weak, or
415    // DLL* linkage.
416    if ((Dest->hasLinkOnceLinkage() && Src->hasWeakLinkage()) ||
417        Dest->hasExternalWeakLinkage()) {
418      LinkFromSrc = true;
419      LT = Src->getLinkage();
420    } else {
421      LinkFromSrc = false;
422      LT = Dest->getLinkage();
423    }
424  } else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage()) {
425    // At this point we know that Src has External* or DLL* linkage.
426    if (Src->hasExternalWeakLinkage()) {
427      LinkFromSrc = false;
428      LT = Dest->getLinkage();
429    } else {
430      LinkFromSrc = true;
431      LT = GlobalValue::ExternalLinkage;
432    }
433  } else {
434    assert((Dest->hasExternalLinkage() ||
435            Dest->hasDLLImportLinkage() ||
436            Dest->hasDLLExportLinkage() ||
437            Dest->hasExternalWeakLinkage()) &&
438           (Src->hasExternalLinkage() ||
439            Src->hasDLLImportLinkage() ||
440            Src->hasDLLExportLinkage() ||
441            Src->hasExternalWeakLinkage()) &&
442           "Unexpected linkage type!");
443    return Error(Err, "Linking globals named '" + Src->getName() +
444                 "': symbol multiply defined!");
445  }
446
447  // Check visibility
448  if (Dest && Src->getVisibility() != Dest->getVisibility())
449    if (!Src->isDeclaration() && !Dest->isDeclaration())
450      return Error(Err, "Linking globals named '" + Src->getName() +
451                   "': symbols have different visibilities!");
452  return false;
453}
454
455// LinkGlobals - Loop through the global variables in the src module and merge
456// them into the dest module.
457static bool LinkGlobals(Module *Dest, const Module *Src,
458                        std::map<const Value*, Value*> &ValueMap,
459                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
460                        std::string *Err) {
461  // Loop over all of the globals in the src module, mapping them over as we go
462  for (Module::const_global_iterator I = Src->global_begin(), E = Src->global_end();
463       I != E; ++I) {
464    const GlobalVariable *SGV = I;
465    GlobalVariable *DGV = 0;
466    // Check to see if may have to link the global.
467    if (SGV->hasName() && !SGV->hasInternalLinkage()) {
468      DGV = Dest->getGlobalVariable(SGV->getName());
469      if (DGV && DGV->getType() != SGV->getType())
470        // If types don't agree due to opaque types, try to resolve them.
471        RecursiveResolveTypes(SGV->getType(), DGV->getType(),
472                              &Dest->getTypeSymbolTable(), "");
473    }
474
475    if (DGV && DGV->hasInternalLinkage())
476      DGV = 0;
477
478    assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
479            SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
480           "Global must either be external or have an initializer!");
481
482    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
483    bool LinkFromSrc = false;
484    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
485      return true;
486
487    if (!DGV) {
488      // No linking to be performed, simply create an identical version of the
489      // symbol over in the dest module... the initializer will be filled in
490      // later by LinkGlobalInits...
491      GlobalVariable *NewDGV =
492        new GlobalVariable(SGV->getType()->getElementType(),
493                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
494                           SGV->getName(), Dest);
495      // Propagate alignment, visibility and section info.
496      CopyGVAttributes(NewDGV, SGV);
497
498      // If the LLVM runtime renamed the global, but it is an externally visible
499      // symbol, DGV must be an existing global with internal linkage.  Rename
500      // it.
501      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
502        ForceRenaming(NewDGV, SGV->getName());
503
504      // Make sure to remember this mapping...
505      ValueMap.insert(std::make_pair(SGV, NewDGV));
506      if (SGV->hasAppendingLinkage())
507        // Keep track that this is an appending variable...
508        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
509    } else if (DGV->hasAppendingLinkage()) {
510      // No linking is performed yet.  Just insert a new copy of the global, and
511      // keep track of the fact that it is an appending variable in the
512      // AppendingVars map.  The name is cleared out so that no linkage is
513      // performed.
514      GlobalVariable *NewDGV =
515        new GlobalVariable(SGV->getType()->getElementType(),
516                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
517                           "", Dest);
518
519      // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
520      NewDGV->setAlignment(DGV->getAlignment());
521      // Propagate alignment, section and visibility info.
522      CopyGVAttributes(NewDGV, SGV);
523
524      // Make sure to remember this mapping...
525      ValueMap.insert(std::make_pair(SGV, NewDGV));
526
527      // Keep track that this is an appending variable...
528      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
529    } else {
530      // Otherwise, perform the mapping as instructed by GetLinkageResult.
531      if (LinkFromSrc) {
532        // Propagate alignment, section, and visibility info.
533        CopyGVAttributes(DGV, SGV);
534
535        // If the types don't match, and if we are to link from the source, nuke
536        // DGV and create a new one of the appropriate type.
537        if (SGV->getType() != DGV->getType()) {
538          GlobalVariable *NewDGV =
539            new GlobalVariable(SGV->getType()->getElementType(),
540                               DGV->isConstant(), DGV->getLinkage(),
541                               /*init*/0, DGV->getName(), Dest);
542          CopyGVAttributes(NewDGV, DGV);
543          DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV,
544                                                           DGV->getType()));
545          // DGV will conflict with NewDGV because they both had the same
546          // name. We must erase this now so ForceRenaming doesn't assert
547          // because DGV might not have internal linkage.
548          DGV->eraseFromParent();
549
550          // If the symbol table renamed the global, but it is an externally
551          // visible symbol, DGV must be an existing global with internal
552          // linkage. Rename it.
553          if (NewDGV->getName() != SGV->getName() &&
554              !NewDGV->hasInternalLinkage())
555            ForceRenaming(NewDGV, SGV->getName());
556
557          DGV = NewDGV;
558        }
559
560        // Inherit const as appropriate
561        DGV->setConstant(SGV->isConstant());
562
563        // Set initializer to zero, so we can link the stuff later
564        DGV->setInitializer(0);
565      } else {
566        // Special case for const propagation
567        if (DGV->isDeclaration() && SGV->isConstant() && !DGV->isConstant())
568          DGV->setConstant(true);
569      }
570
571      // Set calculated linkage
572      DGV->setLinkage(NewLinkage);
573
574      // Make sure to remember this mapping...
575      ValueMap.insert(std::make_pair(SGV,
576                                     ConstantExpr::getBitCast(DGV,
577                                                              SGV->getType())));
578    }
579  }
580  return false;
581}
582
583static GlobalValue::LinkageTypes
584CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
585  if (SGV->hasExternalLinkage() || DGV->hasExternalLinkage())
586    return GlobalValue::ExternalLinkage;
587  else if (SGV->hasWeakLinkage() || DGV->hasWeakLinkage())
588    return GlobalValue::WeakLinkage;
589  else {
590    assert(SGV->hasInternalLinkage() && DGV->hasInternalLinkage() &&
591           "Unexpected linkage type");
592    return GlobalValue::InternalLinkage;
593  }
594}
595
596// LinkAlias - Loop through the alias in the src module and link them into the
597// dest module. We're assuming, that all functions/global variables were already
598// linked in.
599static bool LinkAlias(Module *Dest, const Module *Src,
600                      std::map<const Value*, Value*> &ValueMap,
601                      std::string *Err) {
602  // Loop over all alias in the src module
603  for (Module::const_alias_iterator I = Src->alias_begin(),
604         E = Src->alias_end(); I != E; ++I) {
605    const GlobalAlias *SGA = I;
606    const GlobalValue *SAliasee = SGA->getAliasedGlobal();
607    GlobalAlias *NewGA = NULL;
608
609    // Globals were already linked, thus we can just query ValueMap for variant
610    // of SAliasee in Dest
611    std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
612    assert(VMI != ValueMap.end() && "Aliasee not linked");
613    GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
614
615    // Try to find something 'similar' to SGA in destination module.
616    if (GlobalAlias *DGA = Dest->getNamedAlias(SGA->getName())) {
617      // If types don't agree due to opaque types, try to resolve them.
618      if (RecursiveResolveTypes(SGA->getType(), DGA->getType(),
619                                &Dest->getTypeSymbolTable(), ""))
620        return Error(Err, "Alias Collision on '" +
621                         ToStr(SGA->getType(), Src) +"':%"+SGA->getName()+
622                     " - aliases have different types");
623
624      // Now types are known to be the same, check whether aliasees equal. As
625      // globals are already linked we just need query ValueMap to find the
626      // mapping.
627      if (DAliasee == DGA->getAliasedGlobal()) {
628        // This is just two copies of the same alias. Propagate linkage, if
629        // necessary.
630        DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
631
632        NewGA = DGA;
633        // Proceed to 'common' steps
634      } else
635        return Error(Err, "Alias Collision on '" +
636                     ToStr(SGA->getType(), Src) +"':%"+SGA->getName()+
637                     " - aliases have different aliasees");
638    } else if (GlobalVariable *DGV = Dest->getGlobalVariable(SGA->getName())) {
639      RecursiveResolveTypes(SGA->getType(), DGV->getType(),
640                            &Dest->getTypeSymbolTable(), "");
641
642      // The only allowed way is to link alias with external declaration.
643      if (DGV->isDeclaration()) {
644        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
645                                SGA->getName(), DAliasee, Dest);
646        CopyGVAttributes(NewGA, SGA);
647
648        // Any uses of DGV need to change to NewGA, with cast, if needed.
649        if (SGA->getType() != DGV->getType())
650          DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
651                                                           DGV->getType()));
652        else
653          DGV->replaceAllUsesWith(NewGA);
654
655        // DGV will conflict with NewGA because they both had the same
656        // name. We must erase this now so ForceRenaming doesn't assert
657        // because DGV might not have internal linkage.
658        DGV->eraseFromParent();
659
660        // Proceed to 'common' steps
661      } else
662        return Error(Err, "Alias Collision on '" +
663                     ToStr(SGA->getType(), Src) +"':%"+SGA->getName()+
664                     " - symbol multiple defined");
665    } else if (Function *DF = Dest->getFunction(SGA->getName())) {
666      RecursiveResolveTypes(SGA->getType(), DF->getType(),
667                            &Dest->getTypeSymbolTable(), "");
668
669      // The only allowed way is to link alias with external declaration.
670      if (DF->isDeclaration()) {
671        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
672                                SGA->getName(), DAliasee, Dest);
673        CopyGVAttributes(NewGA, SGA);
674
675        // Any uses of DF need to change to NewGA, with cast, if needed.
676        if (SGA->getType() != DF->getType())
677          DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
678                                                          DF->getType()));
679        else
680          DF->replaceAllUsesWith(NewGA);
681
682        // DF will conflict with NewGA because they both had the same
683        // name. We must erase this now so ForceRenaming doesn't assert
684        // because DF might not have internal linkage.
685        DF->eraseFromParent();
686
687        // Proceed to 'common' steps
688      } else
689        return Error(Err, "Alias Collision on '" +
690                     ToStr(SGA->getType(), Src) +"':%"+SGA->getName()+
691                     " - symbol multiple defined");
692    } else {
693      // Nothing similar found, just copy alias into destination module.
694
695      NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
696                              SGA->getName(), DAliasee, Dest);
697      CopyGVAttributes(NewGA, SGA);
698
699      // Proceed to 'common' steps
700    }
701
702    assert(NewGA && "No alias was created in destination module!");
703
704    // If the symbol table renamed the function, but it is an externally
705    // visible symbol, DGV must be an existing function with internal
706    // linkage. Rename it.
707    if (NewGA->getName() != SGA->getName() &&
708        !NewGA->hasInternalLinkage())
709      ForceRenaming(NewGA, SGA->getName());
710
711    // Remember this mapping so uses in the source module get remapped
712    // later by RemapOperand.
713    ValueMap.insert(std::make_pair(SGA, NewGA));
714  }
715
716  return false;
717}
718
719
720// LinkGlobalInits - Update the initializers in the Dest module now that all
721// globals that may be referenced are in Dest.
722static bool LinkGlobalInits(Module *Dest, const Module *Src,
723                            std::map<const Value*, Value*> &ValueMap,
724                            std::string *Err) {
725
726  // Loop over all of the globals in the src module, mapping them over as we go
727  for (Module::const_global_iterator I = Src->global_begin(),
728       E = Src->global_end(); I != E; ++I) {
729    const GlobalVariable *SGV = I;
730
731    if (SGV->hasInitializer()) {      // Only process initialized GV's
732      // Figure out what the initializer looks like in the dest module...
733      Constant *SInit =
734        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
735
736      GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
737      if (DGV->hasInitializer()) {
738        if (SGV->hasExternalLinkage()) {
739          if (DGV->getInitializer() != SInit)
740            return Error(Err, "Global Variable Collision on '" +
741                         ToStr(SGV->getType(), Src) +"':%"+SGV->getName()+
742                         " - Global variables have different initializers");
743        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
744          // Nothing is required, mapped values will take the new global
745          // automatically.
746        } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
747          // Nothing is required, mapped values will take the new global
748          // automatically.
749        } else if (DGV->hasAppendingLinkage()) {
750          assert(0 && "Appending linkage unimplemented!");
751        } else {
752          assert(0 && "Unknown linkage!");
753        }
754      } else {
755        // Copy the initializer over now...
756        DGV->setInitializer(SInit);
757      }
758    }
759  }
760  return false;
761}
762
763// LinkFunctionProtos - Link the functions together between the two modules,
764// without doing function bodies... this just adds external function prototypes
765// to the Dest function...
766//
767static bool LinkFunctionProtos(Module *Dest, const Module *Src,
768                               std::map<const Value*, Value*> &ValueMap,
769                               std::string *Err) {
770  // Loop over all of the functions in the src module, mapping them over
771  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
772    const Function *SF = I;   // SrcFunction
773    Function *DF = 0;
774    if (SF->hasName() && !SF->hasInternalLinkage()) {
775      // Check to see if may have to link the function.
776      DF = Dest->getFunction(SF->getName());
777      if (DF && SF->getType() != DF->getType())
778        // If types don't agree because of opaque, try to resolve them
779        RecursiveResolveTypes(SF->getType(), DF->getType(),
780                              &Dest->getTypeSymbolTable(), "");
781    }
782
783    // Check visibility
784    if (DF && !DF->hasInternalLinkage() &&
785        SF->getVisibility() != DF->getVisibility()) {
786      // If one is a prototype, ignore its visibility.  Prototypes are always
787      // overridden by the definition.
788      if (!SF->isDeclaration() && !DF->isDeclaration())
789        return Error(Err, "Linking functions named '" + SF->getName() +
790                     "': symbols have different visibilities!");
791    }
792
793    if (DF && DF->hasInternalLinkage())
794      DF = NULL;
795
796    if (DF && DF->getType() != SF->getType()) {
797      if (DF->isDeclaration() && !SF->isDeclaration()) {
798        // We have a definition of the same name but different type in the
799        // source module. Copy the prototype to the destination and replace
800        // uses of the destination's prototype with the new prototype.
801        Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
802                                       SF->getName(), Dest);
803        CopyGVAttributes(NewDF, SF);
804
805        // Any uses of DF need to change to NewDF, with cast
806        DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DF->getType()));
807
808        // DF will conflict with NewDF because they both had the same. We must
809        // erase this now so ForceRenaming doesn't assert because DF might
810        // not have internal linkage.
811        DF->eraseFromParent();
812
813        // If the symbol table renamed the function, but it is an externally
814        // visible symbol, DF must be an existing function with internal
815        // linkage.  Rename it.
816        if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
817          ForceRenaming(NewDF, SF->getName());
818
819        // Remember this mapping so uses in the source module get remapped
820        // later by RemapOperand.
821        ValueMap[SF] = NewDF;
822      } else if (SF->isDeclaration()) {
823        // We have two functions of the same name but different type and the
824        // source is a declaration while the destination is not. Any use of
825        // the source must be mapped to the destination, with a cast.
826        ValueMap[SF] = ConstantExpr::getBitCast(DF, SF->getType());
827      } else {
828        // We have two functions of the same name but different types and they
829        // are both definitions. This is an error.
830        return Error(Err, "Function '" + DF->getName() + "' defined as both '" +
831                     ToStr(SF->getFunctionType(), Src) + "' and '" +
832                     ToStr(DF->getFunctionType(), Dest) + "'");
833      }
834    } else if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
835      // Function does not already exist, simply insert an function signature
836      // identical to SF into the dest module.
837      Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
838                                     SF->getName(), Dest);
839      CopyGVAttributes(NewDF, SF);
840
841      // If the LLVM runtime renamed the function, but it is an externally
842      // visible symbol, DF must be an existing function with internal linkage.
843      // Rename it.
844      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
845        ForceRenaming(NewDF, SF->getName());
846
847      // ... and remember this mapping...
848      ValueMap.insert(std::make_pair(SF, NewDF));
849    } else if (SF->isDeclaration()) {
850      // If SF is a declaration or if both SF & DF are declarations, just link
851      // the declarations, we aren't adding anything.
852      if (SF->hasDLLImportLinkage()) {
853        if (DF->isDeclaration()) {
854          ValueMap.insert(std::make_pair(SF, DF));
855          DF->setLinkage(SF->getLinkage());
856        }
857      } else {
858        ValueMap.insert(std::make_pair(SF, DF));
859      }
860    } else if (DF->isDeclaration() && !DF->hasDLLImportLinkage()) {
861      // If DF is external but SF is not...
862      // Link the external functions, update linkage qualifiers
863      ValueMap.insert(std::make_pair(SF, DF));
864      DF->setLinkage(SF->getLinkage());
865      // Visibility of prototype is overridden by vis of definition.
866      DF->setVisibility(SF->getVisibility());
867    } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
868      // At this point we know that DF has LinkOnce, Weak, or External* linkage.
869      ValueMap.insert(std::make_pair(SF, DF));
870
871      // Linkonce+Weak = Weak
872      // *+External Weak = *
873      if ((DF->hasLinkOnceLinkage() && SF->hasWeakLinkage()) ||
874          DF->hasExternalWeakLinkage())
875        DF->setLinkage(SF->getLinkage());
876    } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
877      // At this point we know that SF has LinkOnce or External* linkage.
878      ValueMap.insert(std::make_pair(SF, DF));
879      if (!SF->hasLinkOnceLinkage() && !SF->hasExternalWeakLinkage())
880        // Don't inherit linkonce & external weak linkage
881        DF->setLinkage(SF->getLinkage());
882    } else if (SF->getLinkage() != DF->getLinkage()) {
883        return Error(Err, "Functions named '" + SF->getName() +
884                     "' have different linkage specifiers!");
885    } else if (SF->hasExternalLinkage()) {
886      // The function is defined identically in both modules!!
887      return Error(Err, "Function '" +
888                   ToStr(SF->getFunctionType(), Src) + "':\"" +
889                   SF->getName() + "\" - Function is already defined!");
890    } else {
891      assert(0 && "Unknown linkage configuration found!");
892    }
893  }
894  return false;
895}
896
897// LinkFunctionBody - Copy the source function over into the dest function and
898// fix up references to values.  At this point we know that Dest is an external
899// function, and that Src is not.
900static bool LinkFunctionBody(Function *Dest, Function *Src,
901                             std::map<const Value*, Value*> &ValueMap,
902                             std::string *Err) {
903  assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
904
905  // Go through and convert function arguments over, remembering the mapping.
906  Function::arg_iterator DI = Dest->arg_begin();
907  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
908       I != E; ++I, ++DI) {
909    DI->setName(I->getName());  // Copy the name information over...
910
911    // Add a mapping to our local map
912    ValueMap.insert(std::make_pair(I, DI));
913  }
914
915  // Splice the body of the source function into the dest function.
916  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
917
918  // At this point, all of the instructions and values of the function are now
919  // copied over.  The only problem is that they are still referencing values in
920  // the Source function as operands.  Loop through all of the operands of the
921  // functions and patch them up to point to the local versions...
922  //
923  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
924    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
925      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
926           OI != OE; ++OI)
927        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
928          *OI = RemapOperand(*OI, ValueMap);
929
930  // There is no need to map the arguments anymore.
931  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
932       I != E; ++I)
933    ValueMap.erase(I);
934
935  return false;
936}
937
938
939// LinkFunctionBodies - Link in the function bodies that are defined in the
940// source module into the DestModule.  This consists basically of copying the
941// function over and fixing up references to values.
942static bool LinkFunctionBodies(Module *Dest, Module *Src,
943                               std::map<const Value*, Value*> &ValueMap,
944                               std::string *Err) {
945
946  // Loop over all of the functions in the src module, mapping them over as we
947  // go
948  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
949    if (!SF->isDeclaration()) {               // No body if function is external
950      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
951
952      // DF not external SF external?
953      if (DF->isDeclaration())
954        // Only provide the function body if there isn't one already.
955        if (LinkFunctionBody(DF, SF, ValueMap, Err))
956          return true;
957    }
958  }
959  return false;
960}
961
962// LinkAppendingVars - If there were any appending global variables, link them
963// together now.  Return true on error.
964static bool LinkAppendingVars(Module *M,
965                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
966                              std::string *ErrorMsg) {
967  if (AppendingVars.empty()) return false; // Nothing to do.
968
969  // Loop over the multimap of appending vars, processing any variables with the
970  // same name, forming a new appending global variable with both of the
971  // initializers merged together, then rewrite references to the old variables
972  // and delete them.
973  std::vector<Constant*> Inits;
974  while (AppendingVars.size() > 1) {
975    // Get the first two elements in the map...
976    std::multimap<std::string,
977      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
978
979    // If the first two elements are for different names, there is no pair...
980    // Otherwise there is a pair, so link them together...
981    if (First->first == Second->first) {
982      GlobalVariable *G1 = First->second, *G2 = Second->second;
983      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
984      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
985
986      // Check to see that they two arrays agree on type...
987      if (T1->getElementType() != T2->getElementType())
988        return Error(ErrorMsg,
989         "Appending variables with different element types need to be linked!");
990      if (G1->isConstant() != G2->isConstant())
991        return Error(ErrorMsg,
992                     "Appending variables linked with different const'ness!");
993
994      if (G1->getAlignment() != G2->getAlignment())
995        return Error(ErrorMsg,
996         "Appending variables with different alignment need to be linked!");
997
998      if (G1->getVisibility() != G2->getVisibility())
999        return Error(ErrorMsg,
1000         "Appending variables with different visibility need to be linked!");
1001
1002      if (G1->getSection() != G2->getSection())
1003        return Error(ErrorMsg,
1004         "Appending variables with different section name need to be linked!");
1005
1006      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
1007      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
1008
1009      G1->setName("");   // Clear G1's name in case of a conflict!
1010
1011      // Create the new global variable...
1012      GlobalVariable *NG =
1013        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
1014                           /*init*/0, First->first, M, G1->isThreadLocal());
1015
1016      // Propagate alignment, visibility and section info.
1017      CopyGVAttributes(NG, G1);
1018
1019      // Merge the initializer...
1020      Inits.reserve(NewSize);
1021      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1022        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1023          Inits.push_back(I->getOperand(i));
1024      } else {
1025        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1026        Constant *CV = Constant::getNullValue(T1->getElementType());
1027        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1028          Inits.push_back(CV);
1029      }
1030      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1031        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1032          Inits.push_back(I->getOperand(i));
1033      } else {
1034        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1035        Constant *CV = Constant::getNullValue(T2->getElementType());
1036        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1037          Inits.push_back(CV);
1038      }
1039      NG->setInitializer(ConstantArray::get(NewType, Inits));
1040      Inits.clear();
1041
1042      // Replace any uses of the two global variables with uses of the new
1043      // global...
1044
1045      // FIXME: This should rewrite simple/straight-forward uses such as
1046      // getelementptr instructions to not use the Cast!
1047      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G1->getType()));
1048      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G2->getType()));
1049
1050      // Remove the two globals from the module now...
1051      M->getGlobalList().erase(G1);
1052      M->getGlobalList().erase(G2);
1053
1054      // Put the new global into the AppendingVars map so that we can handle
1055      // linking of more than two vars...
1056      Second->second = NG;
1057    }
1058    AppendingVars.erase(First);
1059  }
1060
1061  return false;
1062}
1063
1064static bool ResolveAliases(Module *Dest) {
1065  for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1066       I != E; ++I) {
1067    GlobalValue* GV = const_cast<GlobalValue*>(I->getAliasedGlobal());
1068    if (!GV->isDeclaration())
1069      I->replaceAllUsesWith(GV);
1070  }
1071
1072  return false;
1073}
1074
1075// LinkModules - This function links two modules together, with the resulting
1076// left module modified to be the composite of the two input modules.  If an
1077// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1078// the problem.  Upon failure, the Dest module could be in a modified state, and
1079// shouldn't be relied on to be consistent.
1080bool
1081Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1082  assert(Dest != 0 && "Invalid Destination module");
1083  assert(Src  != 0 && "Invalid Source Module");
1084
1085  if (Dest->getDataLayout().empty()) {
1086    if (!Src->getDataLayout().empty()) {
1087      Dest->setDataLayout(Src->getDataLayout());
1088    } else {
1089      std::string DataLayout;
1090
1091      if (Dest->getEndianness() == Module::AnyEndianness) {
1092        if (Src->getEndianness() == Module::BigEndian)
1093          DataLayout.append("E");
1094        else if (Src->getEndianness() == Module::LittleEndian)
1095          DataLayout.append("e");
1096      }
1097
1098      if (Dest->getPointerSize() == Module::AnyPointerSize) {
1099        if (Src->getPointerSize() == Module::Pointer64)
1100          DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1101        else if (Src->getPointerSize() == Module::Pointer32)
1102          DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1103      }
1104      Dest->setDataLayout(DataLayout);
1105    }
1106  }
1107
1108  // Copy the target triple from the source to dest if the dest's is empty.
1109  if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1110    Dest->setTargetTriple(Src->getTargetTriple());
1111
1112  if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1113      Src->getDataLayout() != Dest->getDataLayout())
1114    cerr << "WARNING: Linking two modules of different data layouts!\n";
1115  if (!Src->getTargetTriple().empty() &&
1116      Dest->getTargetTriple() != Src->getTargetTriple())
1117    cerr << "WARNING: Linking two modules of different target triples!\n";
1118
1119  // Append the module inline asm string.
1120  if (!Src->getModuleInlineAsm().empty()) {
1121    if (Dest->getModuleInlineAsm().empty())
1122      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1123    else
1124      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1125                               Src->getModuleInlineAsm());
1126  }
1127
1128  // Update the destination module's dependent libraries list with the libraries
1129  // from the source module. There's no opportunity for duplicates here as the
1130  // Module ensures that duplicate insertions are discarded.
1131  for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1132       SI != SE; ++SI)
1133    Dest->addLibrary(*SI);
1134
1135  // LinkTypes - Go through the symbol table of the Src module and see if any
1136  // types are named in the src module that are not named in the Dst module.
1137  // Make sure there are no type name conflicts.
1138  if (LinkTypes(Dest, Src, ErrorMsg))
1139    return true;
1140
1141  // ValueMap - Mapping of values from what they used to be in Src, to what they
1142  // are now in Dest.
1143  std::map<const Value*, Value*> ValueMap;
1144
1145  // AppendingVars - Keep track of global variables in the destination module
1146  // with appending linkage.  After the module is linked together, they are
1147  // appended and the module is rewritten.
1148  std::multimap<std::string, GlobalVariable *> AppendingVars;
1149  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1150       I != E; ++I) {
1151    // Add all of the appending globals already in the Dest module to
1152    // AppendingVars.
1153    if (I->hasAppendingLinkage())
1154      AppendingVars.insert(std::make_pair(I->getName(), I));
1155  }
1156
1157  // Insert all of the globals in src into the Dest module... without linking
1158  // initializers (which could refer to functions not yet mapped over).
1159  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1160    return true;
1161
1162  // Link the functions together between the two modules, without doing function
1163  // bodies... this just adds external function prototypes to the Dest
1164  // function...  We do this so that when we begin processing function bodies,
1165  // all of the global values that may be referenced are available in our
1166  // ValueMap.
1167  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1168    return true;
1169
1170  // If there were any alias, link them now. We really need to do this now,
1171  // because all of the aliases that may be referenced need to be available in
1172  // ValueMap
1173  if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1174
1175  // Update the initializers in the Dest module now that all globals that may
1176  // be referenced are in Dest.
1177  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1178
1179  // Link in the function bodies that are defined in the source module into the
1180  // DestModule.  This consists basically of copying the function over and
1181  // fixing up references to values.
1182  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1183
1184  // If there were any appending global variables, link them together now.
1185  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1186
1187  // Resolve all uses of aliases with aliasees
1188  if (ResolveAliases(Dest)) return true;
1189
1190  // If the source library's module id is in the dependent library list of the
1191  // destination library, remove it since that module is now linked in.
1192  sys::Path modId;
1193  modId.set(Src->getModuleIdentifier());
1194  if (!modId.isEmpty())
1195    Dest->removeLibrary(modId.getBasename());
1196
1197  return false;
1198}
1199
1200// vim: sw=2
1201