LinkModules.cpp revision ece76b00b4343749f7d3fcf16ce9437248d7aff5
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Module.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/ValueSymbolTable.h"
26#include "llvm/Instructions.h"
27#include "llvm/Assembly/Writer.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/System/Path.h"
31#include "llvm/ADT/DenseMap.h"
32using namespace llvm;
33
34// Error - Simple wrapper function to conditionally assign to E and return true.
35// This just makes error return conditions a little bit simpler...
36static inline bool Error(std::string *E, const Twine &Message) {
37  if (E) *E = Message.str();
38  return true;
39}
40
41// Function: ResolveTypes()
42//
43// Description:
44//  Attempt to link the two specified types together.
45//
46// Inputs:
47//  DestTy - The type to which we wish to resolve.
48//  SrcTy  - The original type which we want to resolve.
49//
50// Outputs:
51//  DestST - The symbol table in which the new type should be placed.
52//
53// Return value:
54//  true  - There is an error and the types cannot yet be linked.
55//  false - No errors.
56//
57static bool ResolveTypes(const Type *DestTy, const Type *SrcTy) {
58  if (DestTy == SrcTy) return false;       // If already equal, noop
59  assert(DestTy && SrcTy && "Can't handle null types");
60
61  if (const OpaqueType *OT = dyn_cast<OpaqueType>(DestTy)) {
62    // Type _is_ in module, just opaque...
63    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(SrcTy);
64  } else if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
65    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
66  } else {
67    return true;  // Cannot link types... not-equal and neither is opaque.
68  }
69  return false;
70}
71
72/// LinkerTypeMap - This implements a map of types that is stable
73/// even if types are resolved/refined to other types.  This is not a general
74/// purpose map, it is specific to the linker's use.
75namespace {
76class LinkerTypeMap : public AbstractTypeUser {
77  typedef DenseMap<const Type*, PATypeHolder> TheMapTy;
78  TheMapTy TheMap;
79
80  LinkerTypeMap(const LinkerTypeMap&); // DO NOT IMPLEMENT
81  void operator=(const LinkerTypeMap&); // DO NOT IMPLEMENT
82public:
83  LinkerTypeMap() {}
84  ~LinkerTypeMap() {
85    for (DenseMap<const Type*, PATypeHolder>::iterator I = TheMap.begin(),
86         E = TheMap.end(); I != E; ++I)
87      I->first->removeAbstractTypeUser(this);
88  }
89
90  /// lookup - Return the value for the specified type or null if it doesn't
91  /// exist.
92  const Type *lookup(const Type *Ty) const {
93    TheMapTy::const_iterator I = TheMap.find(Ty);
94    if (I != TheMap.end()) return I->second;
95    return 0;
96  }
97
98  /// erase - Remove the specified type, returning true if it was in the set.
99  bool erase(const Type *Ty) {
100    if (!TheMap.erase(Ty))
101      return false;
102    if (Ty->isAbstract())
103      Ty->removeAbstractTypeUser(this);
104    return true;
105  }
106
107  /// insert - This returns true if the pointer was new to the set, false if it
108  /// was already in the set.
109  bool insert(const Type *Src, const Type *Dst) {
110    if (!TheMap.insert(std::make_pair(Src, PATypeHolder(Dst))).second)
111      return false;  // Already in map.
112    if (Src->isAbstract())
113      Src->addAbstractTypeUser(this);
114    return true;
115  }
116
117protected:
118  /// refineAbstractType - The callback method invoked when an abstract type is
119  /// resolved to another type.  An object must override this method to update
120  /// its internal state to reference NewType instead of OldType.
121  ///
122  virtual void refineAbstractType(const DerivedType *OldTy,
123                                  const Type *NewTy) {
124    TheMapTy::iterator I = TheMap.find(OldTy);
125    const Type *DstTy = I->second;
126
127    TheMap.erase(I);
128    if (OldTy->isAbstract())
129      OldTy->removeAbstractTypeUser(this);
130
131    // Don't reinsert into the map if the key is concrete now.
132    if (NewTy->isAbstract())
133      insert(NewTy, DstTy);
134  }
135
136  /// The other case which AbstractTypeUsers must be aware of is when a type
137  /// makes the transition from being abstract (where it has clients on it's
138  /// AbstractTypeUsers list) to concrete (where it does not).  This method
139  /// notifies ATU's when this occurs for a type.
140  virtual void typeBecameConcrete(const DerivedType *AbsTy) {
141    TheMap.erase(AbsTy);
142    AbsTy->removeAbstractTypeUser(this);
143  }
144
145  // for debugging...
146  virtual void dump() const {
147    errs() << "AbstractTypeSet!\n";
148  }
149};
150}
151
152
153// RecursiveResolveTypes - This is just like ResolveTypes, except that it
154// recurses down into derived types, merging the used types if the parent types
155// are compatible.
156static bool RecursiveResolveTypesI(const Type *DstTy, const Type *SrcTy,
157                                   LinkerTypeMap &Pointers) {
158  if (DstTy == SrcTy) return false;       // If already equal, noop
159
160  // If we found our opaque type, resolve it now!
161  if (isa<OpaqueType>(DstTy) || isa<OpaqueType>(SrcTy))
162    return ResolveTypes(DstTy, SrcTy);
163
164  // Two types cannot be resolved together if they are of different primitive
165  // type.  For example, we cannot resolve an int to a float.
166  if (DstTy->getTypeID() != SrcTy->getTypeID()) return true;
167
168  // If neither type is abstract, then they really are just different types.
169  if (!DstTy->isAbstract() && !SrcTy->isAbstract())
170    return true;
171
172  // Otherwise, resolve the used type used by this derived type...
173  switch (DstTy->getTypeID()) {
174  default:
175    return true;
176  case Type::FunctionTyID: {
177    const FunctionType *DstFT = cast<FunctionType>(DstTy);
178    const FunctionType *SrcFT = cast<FunctionType>(SrcTy);
179    if (DstFT->isVarArg() != SrcFT->isVarArg() ||
180        DstFT->getNumContainedTypes() != SrcFT->getNumContainedTypes())
181      return true;
182
183    // Use TypeHolder's so recursive resolution won't break us.
184    PATypeHolder ST(SrcFT), DT(DstFT);
185    for (unsigned i = 0, e = DstFT->getNumContainedTypes(); i != e; ++i) {
186      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
187      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
188        return true;
189    }
190    return false;
191  }
192  case Type::StructTyID: {
193    const StructType *DstST = cast<StructType>(DstTy);
194    const StructType *SrcST = cast<StructType>(SrcTy);
195    if (DstST->getNumContainedTypes() != SrcST->getNumContainedTypes())
196      return true;
197
198    PATypeHolder ST(SrcST), DT(DstST);
199    for (unsigned i = 0, e = DstST->getNumContainedTypes(); i != e; ++i) {
200      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
201      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
202        return true;
203    }
204    return false;
205  }
206  case Type::ArrayTyID: {
207    const ArrayType *DAT = cast<ArrayType>(DstTy);
208    const ArrayType *SAT = cast<ArrayType>(SrcTy);
209    if (DAT->getNumElements() != SAT->getNumElements()) return true;
210    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
211                                  Pointers);
212  }
213  case Type::VectorTyID: {
214    const VectorType *DVT = cast<VectorType>(DstTy);
215    const VectorType *SVT = cast<VectorType>(SrcTy);
216    if (DVT->getNumElements() != SVT->getNumElements()) return true;
217    return RecursiveResolveTypesI(DVT->getElementType(), SVT->getElementType(),
218                                  Pointers);
219  }
220  case Type::PointerTyID: {
221    const PointerType *DstPT = cast<PointerType>(DstTy);
222    const PointerType *SrcPT = cast<PointerType>(SrcTy);
223
224    if (DstPT->getAddressSpace() != SrcPT->getAddressSpace())
225      return true;
226
227    // If this is a pointer type, check to see if we have already seen it.  If
228    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
229    // an associative container for this search, because the type pointers (keys
230    // in the container) change whenever types get resolved.
231    if (SrcPT->isAbstract())
232      if (const Type *ExistingDestTy = Pointers.lookup(SrcPT))
233        return ExistingDestTy != DstPT;
234
235    if (DstPT->isAbstract())
236      if (const Type *ExistingSrcTy = Pointers.lookup(DstPT))
237        return ExistingSrcTy != SrcPT;
238    // Otherwise, add the current pointers to the vector to stop recursion on
239    // this pair.
240    if (DstPT->isAbstract())
241      Pointers.insert(DstPT, SrcPT);
242    if (SrcPT->isAbstract())
243      Pointers.insert(SrcPT, DstPT);
244
245    return RecursiveResolveTypesI(DstPT->getElementType(),
246                                  SrcPT->getElementType(), Pointers);
247  }
248  }
249}
250
251static bool RecursiveResolveTypes(const Type *DestTy, const Type *SrcTy) {
252  LinkerTypeMap PointerTypes;
253  return RecursiveResolveTypesI(DestTy, SrcTy, PointerTypes);
254}
255
256
257// LinkTypes - Go through the symbol table of the Src module and see if any
258// types are named in the src module that are not named in the Dst module.
259// Make sure there are no type name conflicts.
260static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
261        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
262  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
263
264  // Look for a type plane for Type's...
265  TypeSymbolTable::const_iterator TI = SrcST->begin();
266  TypeSymbolTable::const_iterator TE = SrcST->end();
267  if (TI == TE) return false;  // No named types, do nothing.
268
269  // Some types cannot be resolved immediately because they depend on other
270  // types being resolved to each other first.  This contains a list of types we
271  // are waiting to recheck.
272  std::vector<std::string> DelayedTypesToResolve;
273
274  for ( ; TI != TE; ++TI ) {
275    const std::string &Name = TI->first;
276    const Type *RHS = TI->second;
277
278    // Check to see if this type name is already in the dest module.
279    Type *Entry = DestST->lookup(Name);
280
281    // If the name is just in the source module, bring it over to the dest.
282    if (Entry == 0) {
283      if (!Name.empty())
284        DestST->insert(Name, const_cast<Type*>(RHS));
285    } else if (ResolveTypes(Entry, RHS)) {
286      // They look different, save the types 'till later to resolve.
287      DelayedTypesToResolve.push_back(Name);
288    }
289  }
290
291  // Iteratively resolve types while we can...
292  while (!DelayedTypesToResolve.empty()) {
293    // Loop over all of the types, attempting to resolve them if possible...
294    unsigned OldSize = DelayedTypesToResolve.size();
295
296    // Try direct resolution by name...
297    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
298      const std::string &Name = DelayedTypesToResolve[i];
299      Type *T1 = SrcST->lookup(Name);
300      Type *T2 = DestST->lookup(Name);
301      if (!ResolveTypes(T2, T1)) {
302        // We are making progress!
303        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
304        --i;
305      }
306    }
307
308    // Did we not eliminate any types?
309    if (DelayedTypesToResolve.size() == OldSize) {
310      // Attempt to resolve subelements of types.  This allows us to merge these
311      // two types: { int* } and { opaque* }
312      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
313        const std::string &Name = DelayedTypesToResolve[i];
314        if (!RecursiveResolveTypes(SrcST->lookup(Name), DestST->lookup(Name))) {
315          // We are making progress!
316          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
317
318          // Go back to the main loop, perhaps we can resolve directly by name
319          // now...
320          break;
321        }
322      }
323
324      // If we STILL cannot resolve the types, then there is something wrong.
325      if (DelayedTypesToResolve.size() == OldSize) {
326        // Remove the symbol name from the destination.
327        DelayedTypesToResolve.pop_back();
328      }
329    }
330  }
331
332
333  return false;
334}
335
336#ifndef NDEBUG
337static void PrintMap(const std::map<const Value*, Value*> &M) {
338  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
339       I != E; ++I) {
340    errs() << " Fr: " << (void*)I->first << " ";
341    I->first->dump();
342    errs() << " To: " << (void*)I->second << " ";
343    I->second->dump();
344    errs() << "\n";
345  }
346}
347#endif
348
349
350// RemapOperand - Use ValueMap to convert constants from one module to another.
351static Value *RemapOperand(const Value *In,
352                           std::map<const Value*, Value*> &ValueMap) {
353  std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
354  if (I != ValueMap.end())
355    return I->second;
356
357  // Check to see if it's a constant that we are interested in transforming.
358  Value *Result = 0;
359  if (const Constant *CPV = dyn_cast<Constant>(In)) {
360    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
361        isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
362      return const_cast<Constant*>(CPV);   // Simple constants stay identical.
363
364    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
365      std::vector<Constant*> Operands(CPA->getNumOperands());
366      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
367        Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
368      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
369    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
370      std::vector<Constant*> Operands(CPS->getNumOperands());
371      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
372        Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
373      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
374    } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
375      Result = const_cast<Constant*>(CPV);
376    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
377      std::vector<Constant*> Operands(CP->getNumOperands());
378      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
379        Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
380      Result = ConstantVector::get(Operands);
381    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
382      std::vector<Constant*> Ops;
383      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
384        Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
385      Result = CE->getWithOperands(Ops);
386    } else if (const BlockAddress *CE = dyn_cast<BlockAddress>(CPV)) {
387      Result = BlockAddress::get(
388                 cast<Function>(RemapOperand(CE->getFunction(), ValueMap)),
389                                 CE->getBasicBlock());
390    } else {
391      assert(!isa<GlobalValue>(CPV) && "Unmapped global?");
392      llvm_unreachable("Unknown type of derived type constant value!");
393    }
394  } else if (isa<MetadataBase>(In)) {
395    Result = const_cast<Value*>(In);
396  } else if (isa<InlineAsm>(In)) {
397    Result = const_cast<Value*>(In);
398  }
399
400  // Cache the mapping in our local map structure
401  if (Result) {
402    ValueMap[In] = Result;
403    return Result;
404  }
405
406#ifndef NDEBUG
407  errs() << "LinkModules ValueMap: \n";
408  PrintMap(ValueMap);
409
410  errs() << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
411  llvm_unreachable("Couldn't remap value!");
412#endif
413  return 0;
414}
415
416/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
417/// in the symbol table.  This is good for all clients except for us.  Go
418/// through the trouble to force this back.
419static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
420  assert(GV->getName() != Name && "Can't force rename to self");
421  ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
422
423  // If there is a conflict, rename the conflict.
424  if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
425    assert(ConflictGV->hasLocalLinkage() &&
426           "Not conflicting with a static global, should link instead!");
427    GV->takeName(ConflictGV);
428    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
429    assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
430  } else {
431    GV->setName(Name);              // Force the name back
432  }
433}
434
435/// CopyGVAttributes - copy additional attributes (those not needed to construct
436/// a GlobalValue) from the SrcGV to the DestGV.
437static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
438  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
439  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
440  DestGV->copyAttributesFrom(SrcGV);
441  DestGV->setAlignment(Alignment);
442}
443
444/// GetLinkageResult - This analyzes the two global values and determines what
445/// the result will look like in the destination module.  In particular, it
446/// computes the resultant linkage type, computes whether the global in the
447/// source should be copied over to the destination (replacing the existing
448/// one), and computes whether this linkage is an error or not. It also performs
449/// visibility checks: we cannot link together two symbols with different
450/// visibilities.
451static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
452                             GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
453                             std::string *Err) {
454  assert((!Dest || !Src->hasLocalLinkage()) &&
455         "If Src has internal linkage, Dest shouldn't be set!");
456  if (!Dest) {
457    // Linking something to nothing.
458    LinkFromSrc = true;
459    LT = Src->getLinkage();
460  } else if (Src->isDeclaration()) {
461    // If Src is external or if both Src & Dest are external..  Just link the
462    // external globals, we aren't adding anything.
463    if (Src->hasDLLImportLinkage()) {
464      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
465      if (Dest->isDeclaration()) {
466        LinkFromSrc = true;
467        LT = Src->getLinkage();
468      }
469    } else if (Dest->hasExternalWeakLinkage()) {
470      // If the Dest is weak, use the source linkage.
471      LinkFromSrc = true;
472      LT = Src->getLinkage();
473    } else {
474      LinkFromSrc = false;
475      LT = Dest->getLinkage();
476    }
477  } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
478    // If Dest is external but Src is not:
479    LinkFromSrc = true;
480    LT = Src->getLinkage();
481  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
482    if (Src->getLinkage() != Dest->getLinkage())
483      return Error(Err, "Linking globals named '" + Src->getName() +
484            "': can only link appending global with another appending global!");
485    LinkFromSrc = true; // Special cased.
486    LT = Src->getLinkage();
487  } else if (Src->isWeakForLinker()) {
488    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
489    // or DLL* linkage.
490    if (Dest->hasExternalWeakLinkage() ||
491        Dest->hasAvailableExternallyLinkage() ||
492        (Dest->hasLinkOnceLinkage() &&
493         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
494      LinkFromSrc = true;
495      LT = Src->getLinkage();
496    } else {
497      LinkFromSrc = false;
498      LT = Dest->getLinkage();
499    }
500  } else if (Dest->isWeakForLinker()) {
501    // At this point we know that Src has External* or DLL* linkage.
502    if (Src->hasExternalWeakLinkage()) {
503      LinkFromSrc = false;
504      LT = Dest->getLinkage();
505    } else {
506      LinkFromSrc = true;
507      LT = GlobalValue::ExternalLinkage;
508    }
509  } else {
510    assert((Dest->hasExternalLinkage() ||
511            Dest->hasDLLImportLinkage() ||
512            Dest->hasDLLExportLinkage() ||
513            Dest->hasExternalWeakLinkage()) &&
514           (Src->hasExternalLinkage() ||
515            Src->hasDLLImportLinkage() ||
516            Src->hasDLLExportLinkage() ||
517            Src->hasExternalWeakLinkage()) &&
518           "Unexpected linkage type!");
519    return Error(Err, "Linking globals named '" + Src->getName() +
520                 "': symbol multiply defined!");
521  }
522
523  // Check visibility
524  if (Dest && Src->getVisibility() != Dest->getVisibility())
525    if (!Src->isDeclaration() && !Dest->isDeclaration())
526      return Error(Err, "Linking globals named '" + Src->getName() +
527                   "': symbols have different visibilities!");
528  return false;
529}
530
531// Insert all of the named mdnoes in Src into the Dest module.
532static void LinkNamedMDNodes(Module *Dest, Module *Src) {
533  for (Module::const_named_metadata_iterator I = Src->named_metadata_begin(),
534         E = Src->named_metadata_end(); I != E; ++I) {
535    const NamedMDNode *SrcNMD = I;
536    NamedMDNode *DestNMD = Dest->getNamedMetadata(SrcNMD->getName());
537    if (!DestNMD)
538      NamedMDNode::Create(SrcNMD, Dest);
539    else {
540      // Add Src elements into Dest node.
541      for (unsigned i = 0, e = SrcNMD->getNumOperands(); i != e; ++i)
542        DestNMD->addOperand(SrcNMD->getOperand(i));
543    }
544  }
545}
546
547// LinkGlobals - Loop through the global variables in the src module and merge
548// them into the dest module.
549static bool LinkGlobals(Module *Dest, const Module *Src,
550                        std::map<const Value*, Value*> &ValueMap,
551                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
552                        std::string *Err) {
553  ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
554
555  // Loop over all of the globals in the src module, mapping them over as we go
556  for (Module::const_global_iterator I = Src->global_begin(),
557       E = Src->global_end(); I != E; ++I) {
558    const GlobalVariable *SGV = I;
559    GlobalValue *DGV = 0;
560
561    // Check to see if may have to link the global with the global, alias or
562    // function.
563    if (SGV->hasName() && !SGV->hasLocalLinkage())
564      DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SGV->getName()));
565
566    // If we found a global with the same name in the dest module, but it has
567    // internal linkage, we are really not doing any linkage here.
568    if (DGV && DGV->hasLocalLinkage())
569      DGV = 0;
570
571    // If types don't agree due to opaque types, try to resolve them.
572    if (DGV && DGV->getType() != SGV->getType())
573      RecursiveResolveTypes(SGV->getType(), DGV->getType());
574
575    assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
576            SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
577           "Global must either be external or have an initializer!");
578
579    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
580    bool LinkFromSrc = false;
581    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
582      return true;
583
584    if (DGV == 0) {
585      // No linking to be performed, simply create an identical version of the
586      // symbol over in the dest module... the initializer will be filled in
587      // later by LinkGlobalInits.
588      GlobalVariable *NewDGV =
589        new GlobalVariable(*Dest, SGV->getType()->getElementType(),
590                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
591                           SGV->getName(), 0, false,
592                           SGV->getType()->getAddressSpace());
593      // Propagate alignment, visibility and section info.
594      CopyGVAttributes(NewDGV, SGV);
595
596      // If the LLVM runtime renamed the global, but it is an externally visible
597      // symbol, DGV must be an existing global with internal linkage.  Rename
598      // it.
599      if (!NewDGV->hasLocalLinkage() && NewDGV->getName() != SGV->getName())
600        ForceRenaming(NewDGV, SGV->getName());
601
602      // Make sure to remember this mapping.
603      ValueMap[SGV] = NewDGV;
604
605      // Keep track that this is an appending variable.
606      if (SGV->hasAppendingLinkage())
607        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
608      continue;
609    }
610
611    // If the visibilities of the symbols disagree and the destination is a
612    // prototype, take the visibility of its input.
613    if (DGV->isDeclaration())
614      DGV->setVisibility(SGV->getVisibility());
615
616    if (DGV->hasAppendingLinkage()) {
617      // No linking is performed yet.  Just insert a new copy of the global, and
618      // keep track of the fact that it is an appending variable in the
619      // AppendingVars map.  The name is cleared out so that no linkage is
620      // performed.
621      GlobalVariable *NewDGV =
622        new GlobalVariable(*Dest, SGV->getType()->getElementType(),
623                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
624                           "", 0, false,
625                           SGV->getType()->getAddressSpace());
626
627      // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
628      NewDGV->setAlignment(DGV->getAlignment());
629      // Propagate alignment, section and visibility info.
630      CopyGVAttributes(NewDGV, SGV);
631
632      // Make sure to remember this mapping...
633      ValueMap[SGV] = NewDGV;
634
635      // Keep track that this is an appending variable...
636      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
637      continue;
638    }
639
640    if (LinkFromSrc) {
641      if (isa<GlobalAlias>(DGV))
642        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
643                     "': symbol multiple defined");
644
645      // If the types don't match, and if we are to link from the source, nuke
646      // DGV and create a new one of the appropriate type.  Note that the thing
647      // we are replacing may be a function (if a prototype, weak, etc) or a
648      // global variable.
649      GlobalVariable *NewDGV =
650        new GlobalVariable(*Dest, SGV->getType()->getElementType(),
651                           SGV->isConstant(), NewLinkage, /*init*/0,
652                           DGV->getName(), 0, false,
653                           SGV->getType()->getAddressSpace());
654
655      // Propagate alignment, section, and visibility info.
656      CopyGVAttributes(NewDGV, SGV);
657      DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV,
658                                                              DGV->getType()));
659
660      // DGV will conflict with NewDGV because they both had the same
661      // name. We must erase this now so ForceRenaming doesn't assert
662      // because DGV might not have internal linkage.
663      if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
664        Var->eraseFromParent();
665      else
666        cast<Function>(DGV)->eraseFromParent();
667
668      // If the symbol table renamed the global, but it is an externally visible
669      // symbol, DGV must be an existing global with internal linkage.  Rename.
670      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasLocalLinkage())
671        ForceRenaming(NewDGV, SGV->getName());
672
673      // Inherit const as appropriate.
674      NewDGV->setConstant(SGV->isConstant());
675
676      // Make sure to remember this mapping.
677      ValueMap[SGV] = NewDGV;
678      continue;
679    }
680
681    // Not "link from source", keep the one in the DestModule and remap the
682    // input onto it.
683
684    // Special case for const propagation.
685    if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
686      if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
687        DGVar->setConstant(true);
688
689    // SGV is global, but DGV is alias.
690    if (isa<GlobalAlias>(DGV)) {
691      // The only valid mappings are:
692      // - SGV is external declaration, which is effectively a no-op.
693      // - SGV is weak, when we just need to throw SGV out.
694      if (!SGV->isDeclaration() && !SGV->isWeakForLinker())
695        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
696                     "': symbol multiple defined");
697    }
698
699    // Set calculated linkage
700    DGV->setLinkage(NewLinkage);
701
702    // Make sure to remember this mapping...
703    ValueMap[SGV] = ConstantExpr::getBitCast(DGV, SGV->getType());
704  }
705  return false;
706}
707
708static GlobalValue::LinkageTypes
709CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
710  GlobalValue::LinkageTypes SL = SGV->getLinkage();
711  GlobalValue::LinkageTypes DL = DGV->getLinkage();
712  if (SL == GlobalValue::ExternalLinkage || DL == GlobalValue::ExternalLinkage)
713    return GlobalValue::ExternalLinkage;
714  else if (SL == GlobalValue::WeakAnyLinkage ||
715           DL == GlobalValue::WeakAnyLinkage)
716    return GlobalValue::WeakAnyLinkage;
717  else if (SL == GlobalValue::WeakODRLinkage ||
718           DL == GlobalValue::WeakODRLinkage)
719    return GlobalValue::WeakODRLinkage;
720  else if (SL == GlobalValue::InternalLinkage &&
721           DL == GlobalValue::InternalLinkage)
722    return GlobalValue::InternalLinkage;
723  else if (SL == GlobalValue::LinkerPrivateLinkage &&
724           DL == GlobalValue::LinkerPrivateLinkage)
725    return GlobalValue::LinkerPrivateLinkage;
726  else {
727    assert (SL == GlobalValue::PrivateLinkage &&
728            DL == GlobalValue::PrivateLinkage && "Unexpected linkage type");
729    return GlobalValue::PrivateLinkage;
730  }
731}
732
733// LinkAlias - Loop through the alias in the src module and link them into the
734// dest module. We're assuming, that all functions/global variables were already
735// linked in.
736static bool LinkAlias(Module *Dest, const Module *Src,
737                      std::map<const Value*, Value*> &ValueMap,
738                      std::string *Err) {
739  // Loop over all alias in the src module
740  for (Module::const_alias_iterator I = Src->alias_begin(),
741         E = Src->alias_end(); I != E; ++I) {
742    const GlobalAlias *SGA = I;
743    const GlobalValue *SAliasee = SGA->getAliasedGlobal();
744    GlobalAlias *NewGA = NULL;
745
746    // Globals were already linked, thus we can just query ValueMap for variant
747    // of SAliasee in Dest.
748    std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
749    assert(VMI != ValueMap.end() && "Aliasee not linked");
750    GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
751    GlobalValue* DGV = NULL;
752
753    // Try to find something 'similar' to SGA in destination module.
754    if (!DGV && !SGA->hasLocalLinkage()) {
755      DGV = Dest->getNamedAlias(SGA->getName());
756
757      // If types don't agree due to opaque types, try to resolve them.
758      if (DGV && DGV->getType() != SGA->getType())
759        RecursiveResolveTypes(SGA->getType(), DGV->getType());
760    }
761
762    if (!DGV && !SGA->hasLocalLinkage()) {
763      DGV = Dest->getGlobalVariable(SGA->getName());
764
765      // If types don't agree due to opaque types, try to resolve them.
766      if (DGV && DGV->getType() != SGA->getType())
767        RecursiveResolveTypes(SGA->getType(), DGV->getType());
768    }
769
770    if (!DGV && !SGA->hasLocalLinkage()) {
771      DGV = Dest->getFunction(SGA->getName());
772
773      // If types don't agree due to opaque types, try to resolve them.
774      if (DGV && DGV->getType() != SGA->getType())
775        RecursiveResolveTypes(SGA->getType(), DGV->getType());
776    }
777
778    // No linking to be performed on internal stuff.
779    if (DGV && DGV->hasLocalLinkage())
780      DGV = NULL;
781
782    if (GlobalAlias *DGA = dyn_cast_or_null<GlobalAlias>(DGV)) {
783      // Types are known to be the same, check whether aliasees equal. As
784      // globals are already linked we just need query ValueMap to find the
785      // mapping.
786      if (DAliasee == DGA->getAliasedGlobal()) {
787        // This is just two copies of the same alias. Propagate linkage, if
788        // necessary.
789        DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
790
791        NewGA = DGA;
792        // Proceed to 'common' steps
793      } else
794        return Error(Err, "Alias Collision on '"  + SGA->getName()+
795                     "': aliases have different aliasees");
796    } else if (GlobalVariable *DGVar = dyn_cast_or_null<GlobalVariable>(DGV)) {
797      // The only allowed way is to link alias with external declaration or weak
798      // symbol..
799      if (DGVar->isDeclaration() || DGVar->isWeakForLinker()) {
800        // But only if aliasee is global too...
801        if (!isa<GlobalVariable>(DAliasee))
802          return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
803                       "': aliasee is not global variable");
804
805        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
806                                SGA->getName(), DAliasee, Dest);
807        CopyGVAttributes(NewGA, SGA);
808
809        // Any uses of DGV need to change to NewGA, with cast, if needed.
810        if (SGA->getType() != DGVar->getType())
811          DGVar->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
812                                                             DGVar->getType()));
813        else
814          DGVar->replaceAllUsesWith(NewGA);
815
816        // DGVar will conflict with NewGA because they both had the same
817        // name. We must erase this now so ForceRenaming doesn't assert
818        // because DGV might not have internal linkage.
819        DGVar->eraseFromParent();
820
821        // Proceed to 'common' steps
822      } else
823        return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
824                     "': symbol multiple defined");
825    } else if (Function *DF = dyn_cast_or_null<Function>(DGV)) {
826      // The only allowed way is to link alias with external declaration or weak
827      // symbol...
828      if (DF->isDeclaration() || DF->isWeakForLinker()) {
829        // But only if aliasee is function too...
830        if (!isa<Function>(DAliasee))
831          return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
832                       "': aliasee is not function");
833
834        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
835                                SGA->getName(), DAliasee, Dest);
836        CopyGVAttributes(NewGA, SGA);
837
838        // Any uses of DF need to change to NewGA, with cast, if needed.
839        if (SGA->getType() != DF->getType())
840          DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
841                                                          DF->getType()));
842        else
843          DF->replaceAllUsesWith(NewGA);
844
845        // DF will conflict with NewGA because they both had the same
846        // name. We must erase this now so ForceRenaming doesn't assert
847        // because DF might not have internal linkage.
848        DF->eraseFromParent();
849
850        // Proceed to 'common' steps
851      } else
852        return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
853                     "': symbol multiple defined");
854    } else {
855      // No linking to be performed, simply create an identical version of the
856      // alias over in the dest module...
857
858      NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
859                              SGA->getName(), DAliasee, Dest);
860      CopyGVAttributes(NewGA, SGA);
861
862      // Proceed to 'common' steps
863    }
864
865    assert(NewGA && "No alias was created in destination module!");
866
867    // If the symbol table renamed the alias, but it is an externally visible
868    // symbol, DGA must be an global value with internal linkage. Rename it.
869    if (NewGA->getName() != SGA->getName() &&
870        !NewGA->hasLocalLinkage())
871      ForceRenaming(NewGA, SGA->getName());
872
873    // Remember this mapping so uses in the source module get remapped
874    // later by RemapOperand.
875    ValueMap[SGA] = NewGA;
876  }
877
878  return false;
879}
880
881
882// LinkGlobalInits - Update the initializers in the Dest module now that all
883// globals that may be referenced are in Dest.
884static bool LinkGlobalInits(Module *Dest, const Module *Src,
885                            std::map<const Value*, Value*> &ValueMap,
886                            std::string *Err) {
887  // Loop over all of the globals in the src module, mapping them over as we go
888  for (Module::const_global_iterator I = Src->global_begin(),
889       E = Src->global_end(); I != E; ++I) {
890    const GlobalVariable *SGV = I;
891
892    if (SGV->hasInitializer()) {      // Only process initialized GV's
893      // Figure out what the initializer looks like in the dest module...
894      Constant *SInit =
895        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
896      // Grab destination global variable or alias.
897      GlobalValue *DGV = cast<GlobalValue>(ValueMap[SGV]->stripPointerCasts());
898
899      // If dest if global variable, check that initializers match.
900      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
901        if (DGVar->hasInitializer()) {
902          if (SGV->hasExternalLinkage()) {
903            if (DGVar->getInitializer() != SInit)
904              return Error(Err, "Global Variable Collision on '" +
905                           SGV->getName() +
906                           "': global variables have different initializers");
907          } else if (DGVar->isWeakForLinker()) {
908            // Nothing is required, mapped values will take the new global
909            // automatically.
910          } else if (SGV->isWeakForLinker()) {
911            // Nothing is required, mapped values will take the new global
912            // automatically.
913          } else if (DGVar->hasAppendingLinkage()) {
914            llvm_unreachable("Appending linkage unimplemented!");
915          } else {
916            llvm_unreachable("Unknown linkage!");
917          }
918        } else {
919          // Copy the initializer over now...
920          DGVar->setInitializer(SInit);
921        }
922      } else {
923        // Destination is alias, the only valid situation is when source is
924        // weak. Also, note, that we already checked linkage in LinkGlobals(),
925        // thus we assert here.
926        // FIXME: Should we weaken this assumption, 'dereference' alias and
927        // check for initializer of aliasee?
928        assert(SGV->isWeakForLinker());
929      }
930    }
931  }
932  return false;
933}
934
935// LinkFunctionProtos - Link the functions together between the two modules,
936// without doing function bodies... this just adds external function prototypes
937// to the Dest function...
938//
939static bool LinkFunctionProtos(Module *Dest, const Module *Src,
940                               std::map<const Value*, Value*> &ValueMap,
941                               std::string *Err) {
942  ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
943
944  // Loop over all of the functions in the src module, mapping them over
945  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
946    const Function *SF = I;   // SrcFunction
947    GlobalValue *DGV = 0;
948
949    // Check to see if may have to link the function with the global, alias or
950    // function.
951    if (SF->hasName() && !SF->hasLocalLinkage())
952      DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SF->getName()));
953
954    // If we found a global with the same name in the dest module, but it has
955    // internal linkage, we are really not doing any linkage here.
956    if (DGV && DGV->hasLocalLinkage())
957      DGV = 0;
958
959    // If types don't agree due to opaque types, try to resolve them.
960    if (DGV && DGV->getType() != SF->getType())
961      RecursiveResolveTypes(SF->getType(), DGV->getType());
962
963    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
964    bool LinkFromSrc = false;
965    if (GetLinkageResult(DGV, SF, NewLinkage, LinkFromSrc, Err))
966      return true;
967
968    // If there is no linkage to be performed, just bring over SF without
969    // modifying it.
970    if (DGV == 0) {
971      // Function does not already exist, simply insert an function signature
972      // identical to SF into the dest module.
973      Function *NewDF = Function::Create(SF->getFunctionType(),
974                                         SF->getLinkage(),
975                                         SF->getName(), Dest);
976      CopyGVAttributes(NewDF, SF);
977
978      // If the LLVM runtime renamed the function, but it is an externally
979      // visible symbol, DF must be an existing function with internal linkage.
980      // Rename it.
981      if (!NewDF->hasLocalLinkage() && NewDF->getName() != SF->getName())
982        ForceRenaming(NewDF, SF->getName());
983
984      // ... and remember this mapping...
985      ValueMap[SF] = NewDF;
986      continue;
987    }
988
989    // If the visibilities of the symbols disagree and the destination is a
990    // prototype, take the visibility of its input.
991    if (DGV->isDeclaration())
992      DGV->setVisibility(SF->getVisibility());
993
994    if (LinkFromSrc) {
995      if (isa<GlobalAlias>(DGV))
996        return Error(Err, "Function-Alias Collision on '" + SF->getName() +
997                     "': symbol multiple defined");
998
999      // We have a definition of the same name but different type in the
1000      // source module. Copy the prototype to the destination and replace
1001      // uses of the destination's prototype with the new prototype.
1002      Function *NewDF = Function::Create(SF->getFunctionType(), NewLinkage,
1003                                         SF->getName(), Dest);
1004      CopyGVAttributes(NewDF, SF);
1005
1006      // Any uses of DF need to change to NewDF, with cast
1007      DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF,
1008                                                              DGV->getType()));
1009
1010      // DF will conflict with NewDF because they both had the same. We must
1011      // erase this now so ForceRenaming doesn't assert because DF might
1012      // not have internal linkage.
1013      if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
1014        Var->eraseFromParent();
1015      else
1016        cast<Function>(DGV)->eraseFromParent();
1017
1018      // If the symbol table renamed the function, but it is an externally
1019      // visible symbol, DF must be an existing function with internal
1020      // linkage.  Rename it.
1021      if (NewDF->getName() != SF->getName() && !NewDF->hasLocalLinkage())
1022        ForceRenaming(NewDF, SF->getName());
1023
1024      // Remember this mapping so uses in the source module get remapped
1025      // later by RemapOperand.
1026      ValueMap[SF] = NewDF;
1027      continue;
1028    }
1029
1030    // Not "link from source", keep the one in the DestModule and remap the
1031    // input onto it.
1032
1033    if (isa<GlobalAlias>(DGV)) {
1034      // The only valid mappings are:
1035      // - SF is external declaration, which is effectively a no-op.
1036      // - SF is weak, when we just need to throw SF out.
1037      if (!SF->isDeclaration() && !SF->isWeakForLinker())
1038        return Error(Err, "Function-Alias Collision on '" + SF->getName() +
1039                     "': symbol multiple defined");
1040    }
1041
1042    // Set calculated linkage
1043    DGV->setLinkage(NewLinkage);
1044
1045    // Make sure to remember this mapping.
1046    ValueMap[SF] = ConstantExpr::getBitCast(DGV, SF->getType());
1047  }
1048  return false;
1049}
1050
1051// LinkFunctionBody - Copy the source function over into the dest function and
1052// fix up references to values.  At this point we know that Dest is an external
1053// function, and that Src is not.
1054static bool LinkFunctionBody(Function *Dest, Function *Src,
1055                             std::map<const Value*, Value*> &ValueMap,
1056                             std::string *Err) {
1057  assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
1058
1059  // Go through and convert function arguments over, remembering the mapping.
1060  Function::arg_iterator DI = Dest->arg_begin();
1061  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1062       I != E; ++I, ++DI) {
1063    DI->setName(I->getName());  // Copy the name information over...
1064
1065    // Add a mapping to our local map
1066    ValueMap[I] = DI;
1067  }
1068
1069  // Splice the body of the source function into the dest function.
1070  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
1071
1072  // At this point, all of the instructions and values of the function are now
1073  // copied over.  The only problem is that they are still referencing values in
1074  // the Source function as operands.  Loop through all of the operands of the
1075  // functions and patch them up to point to the local versions...
1076  //
1077  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
1078    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1079      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1080           OI != OE; ++OI)
1081        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
1082          *OI = RemapOperand(*OI, ValueMap);
1083
1084  // There is no need to map the arguments anymore.
1085  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1086       I != E; ++I)
1087    ValueMap.erase(I);
1088
1089  return false;
1090}
1091
1092
1093// LinkFunctionBodies - Link in the function bodies that are defined in the
1094// source module into the DestModule.  This consists basically of copying the
1095// function over and fixing up references to values.
1096static bool LinkFunctionBodies(Module *Dest, Module *Src,
1097                               std::map<const Value*, Value*> &ValueMap,
1098                               std::string *Err) {
1099
1100  // Loop over all of the functions in the src module, mapping them over as we
1101  // go
1102  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
1103    if (!SF->isDeclaration()) {               // No body if function is external
1104      Function *DF = dyn_cast<Function>(ValueMap[SF]); // Destination function
1105
1106      // DF not external SF external?
1107      if (DF && DF->isDeclaration())
1108        // Only provide the function body if there isn't one already.
1109        if (LinkFunctionBody(DF, SF, ValueMap, Err))
1110          return true;
1111    }
1112  }
1113  return false;
1114}
1115
1116// LinkAppendingVars - If there were any appending global variables, link them
1117// together now.  Return true on error.
1118static bool LinkAppendingVars(Module *M,
1119                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
1120                              std::string *ErrorMsg) {
1121  if (AppendingVars.empty()) return false; // Nothing to do.
1122
1123  // Loop over the multimap of appending vars, processing any variables with the
1124  // same name, forming a new appending global variable with both of the
1125  // initializers merged together, then rewrite references to the old variables
1126  // and delete them.
1127  std::vector<Constant*> Inits;
1128  while (AppendingVars.size() > 1) {
1129    // Get the first two elements in the map...
1130    std::multimap<std::string,
1131      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
1132
1133    // If the first two elements are for different names, there is no pair...
1134    // Otherwise there is a pair, so link them together...
1135    if (First->first == Second->first) {
1136      GlobalVariable *G1 = First->second, *G2 = Second->second;
1137      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
1138      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
1139
1140      // Check to see that they two arrays agree on type...
1141      if (T1->getElementType() != T2->getElementType())
1142        return Error(ErrorMsg,
1143         "Appending variables with different element types need to be linked!");
1144      if (G1->isConstant() != G2->isConstant())
1145        return Error(ErrorMsg,
1146                     "Appending variables linked with different const'ness!");
1147
1148      if (G1->getAlignment() != G2->getAlignment())
1149        return Error(ErrorMsg,
1150         "Appending variables with different alignment need to be linked!");
1151
1152      if (G1->getVisibility() != G2->getVisibility())
1153        return Error(ErrorMsg,
1154         "Appending variables with different visibility need to be linked!");
1155
1156      if (G1->getSection() != G2->getSection())
1157        return Error(ErrorMsg,
1158         "Appending variables with different section name need to be linked!");
1159
1160      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
1161      ArrayType *NewType = ArrayType::get(T1->getElementType(),
1162                                                         NewSize);
1163
1164      G1->setName("");   // Clear G1's name in case of a conflict!
1165
1166      // Create the new global variable...
1167      GlobalVariable *NG =
1168        new GlobalVariable(*M, NewType, G1->isConstant(), G1->getLinkage(),
1169                           /*init*/0, First->first, 0, G1->isThreadLocal(),
1170                           G1->getType()->getAddressSpace());
1171
1172      // Propagate alignment, visibility and section info.
1173      CopyGVAttributes(NG, G1);
1174
1175      // Merge the initializer...
1176      Inits.reserve(NewSize);
1177      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1178        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1179          Inits.push_back(I->getOperand(i));
1180      } else {
1181        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1182        Constant *CV = Constant::getNullValue(T1->getElementType());
1183        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1184          Inits.push_back(CV);
1185      }
1186      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1187        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1188          Inits.push_back(I->getOperand(i));
1189      } else {
1190        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1191        Constant *CV = Constant::getNullValue(T2->getElementType());
1192        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1193          Inits.push_back(CV);
1194      }
1195      NG->setInitializer(ConstantArray::get(NewType, Inits));
1196      Inits.clear();
1197
1198      // Replace any uses of the two global variables with uses of the new
1199      // global...
1200
1201      // FIXME: This should rewrite simple/straight-forward uses such as
1202      // getelementptr instructions to not use the Cast!
1203      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
1204                             G1->getType()));
1205      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
1206                             G2->getType()));
1207
1208      // Remove the two globals from the module now...
1209      M->getGlobalList().erase(G1);
1210      M->getGlobalList().erase(G2);
1211
1212      // Put the new global into the AppendingVars map so that we can handle
1213      // linking of more than two vars...
1214      Second->second = NG;
1215    }
1216    AppendingVars.erase(First);
1217  }
1218
1219  return false;
1220}
1221
1222static bool ResolveAliases(Module *Dest) {
1223  for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1224       I != E; ++I)
1225    if (const GlobalValue *GV = I->resolveAliasedGlobal())
1226      if (GV != I && !GV->isDeclaration())
1227        I->replaceAllUsesWith(const_cast<GlobalValue*>(GV));
1228
1229  return false;
1230}
1231
1232// LinkModules - This function links two modules together, with the resulting
1233// left module modified to be the composite of the two input modules.  If an
1234// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1235// the problem.  Upon failure, the Dest module could be in a modified state, and
1236// shouldn't be relied on to be consistent.
1237bool
1238Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1239  assert(Dest != 0 && "Invalid Destination module");
1240  assert(Src  != 0 && "Invalid Source Module");
1241
1242  if (Dest->getDataLayout().empty()) {
1243    if (!Src->getDataLayout().empty()) {
1244      Dest->setDataLayout(Src->getDataLayout());
1245    } else {
1246      std::string DataLayout;
1247
1248      if (Dest->getEndianness() == Module::AnyEndianness) {
1249        if (Src->getEndianness() == Module::BigEndian)
1250          DataLayout.append("E");
1251        else if (Src->getEndianness() == Module::LittleEndian)
1252          DataLayout.append("e");
1253      }
1254
1255      if (Dest->getPointerSize() == Module::AnyPointerSize) {
1256        if (Src->getPointerSize() == Module::Pointer64)
1257          DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1258        else if (Src->getPointerSize() == Module::Pointer32)
1259          DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1260      }
1261      Dest->setDataLayout(DataLayout);
1262    }
1263  }
1264
1265  // Copy the target triple from the source to dest if the dest's is empty.
1266  if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1267    Dest->setTargetTriple(Src->getTargetTriple());
1268
1269  if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1270      Src->getDataLayout() != Dest->getDataLayout())
1271    errs() << "WARNING: Linking two modules of different data layouts!\n";
1272  if (!Src->getTargetTriple().empty() &&
1273      Dest->getTargetTriple() != Src->getTargetTriple())
1274    errs() << "WARNING: Linking two modules of different target triples!\n";
1275
1276  // Append the module inline asm string.
1277  if (!Src->getModuleInlineAsm().empty()) {
1278    if (Dest->getModuleInlineAsm().empty())
1279      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1280    else
1281      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1282                               Src->getModuleInlineAsm());
1283  }
1284
1285  // Update the destination module's dependent libraries list with the libraries
1286  // from the source module. There's no opportunity for duplicates here as the
1287  // Module ensures that duplicate insertions are discarded.
1288  for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1289       SI != SE; ++SI)
1290    Dest->addLibrary(*SI);
1291
1292  // LinkTypes - Go through the symbol table of the Src module and see if any
1293  // types are named in the src module that are not named in the Dst module.
1294  // Make sure there are no type name conflicts.
1295  if (LinkTypes(Dest, Src, ErrorMsg))
1296    return true;
1297
1298  // ValueMap - Mapping of values from what they used to be in Src, to what they
1299  // are now in Dest.
1300  std::map<const Value*, Value*> ValueMap;
1301
1302  // AppendingVars - Keep track of global variables in the destination module
1303  // with appending linkage.  After the module is linked together, they are
1304  // appended and the module is rewritten.
1305  std::multimap<std::string, GlobalVariable *> AppendingVars;
1306  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1307       I != E; ++I) {
1308    // Add all of the appending globals already in the Dest module to
1309    // AppendingVars.
1310    if (I->hasAppendingLinkage())
1311      AppendingVars.insert(std::make_pair(I->getName(), I));
1312  }
1313
1314  // Insert all of the named mdnoes in Src into the Dest module.
1315  LinkNamedMDNodes(Dest, Src);
1316
1317  // Insert all of the globals in src into the Dest module... without linking
1318  // initializers (which could refer to functions not yet mapped over).
1319  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1320    return true;
1321
1322  // Link the functions together between the two modules, without doing function
1323  // bodies... this just adds external function prototypes to the Dest
1324  // function...  We do this so that when we begin processing function bodies,
1325  // all of the global values that may be referenced are available in our
1326  // ValueMap.
1327  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1328    return true;
1329
1330  // If there were any alias, link them now. We really need to do this now,
1331  // because all of the aliases that may be referenced need to be available in
1332  // ValueMap
1333  if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1334
1335  // Update the initializers in the Dest module now that all globals that may
1336  // be referenced are in Dest.
1337  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1338
1339  // Link in the function bodies that are defined in the source module into the
1340  // DestModule.  This consists basically of copying the function over and
1341  // fixing up references to values.
1342  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1343
1344  // If there were any appending global variables, link them together now.
1345  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1346
1347  // Resolve all uses of aliases with aliasees
1348  if (ResolveAliases(Dest)) return true;
1349
1350  // If the source library's module id is in the dependent library list of the
1351  // destination library, remove it since that module is now linked in.
1352  sys::Path modId;
1353  modId.set(Src->getModuleIdentifier());
1354  if (!modId.isEmpty())
1355    Dest->removeLibrary(modId.getBasename());
1356
1357  return false;
1358}
1359
1360// vim: sw=2
1361