LinkModules.cpp revision ef1eb5e2d84954b550222f445eaea7da961ac416
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/Instructions.h"
26#include "llvm/Assembly/Writer.h"
27#include "llvm/Support/Streams.h"
28#include "llvm/System/Path.h"
29#include <sstream>
30using namespace llvm;
31
32// Error - Simple wrapper function to conditionally assign to E and return true.
33// This just makes error return conditions a little bit simpler...
34static inline bool Error(std::string *E, const std::string &Message) {
35  if (E) *E = Message;
36  return true;
37}
38
39// ToStr - Simple wrapper function to convert a type to a string.
40static std::string ToStr(const Type *Ty, const Module *M) {
41  std::ostringstream OS;
42  WriteTypeSymbolic(OS, Ty, M);
43  return OS.str();
44}
45
46//
47// Function: ResolveTypes()
48//
49// Description:
50//  Attempt to link the two specified types together.
51//
52// Inputs:
53//  DestTy - The type to which we wish to resolve.
54//  SrcTy  - The original type which we want to resolve.
55//  Name   - The name of the type.
56//
57// Outputs:
58//  DestST - The symbol table in which the new type should be placed.
59//
60// Return value:
61//  true  - There is an error and the types cannot yet be linked.
62//  false - No errors.
63//
64static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
65                         TypeSymbolTable *DestST, const std::string &Name) {
66  if (DestTy == SrcTy) return false;       // If already equal, noop
67
68  // Does the type already exist in the module?
69  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
70    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
71      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
72    } else {
73      return true;  // Cannot link types... neither is opaque and not-equal
74    }
75  } else {                       // Type not in dest module.  Add it now.
76    if (DestTy)                  // Type _is_ in module, just opaque...
77      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
78                           ->refineAbstractTypeTo(SrcTy);
79    else if (!Name.empty())
80      DestST->insert(Name, const_cast<Type*>(SrcTy));
81  }
82  return false;
83}
84
85static const FunctionType *getFT(const PATypeHolder &TH) {
86  return cast<FunctionType>(TH.get());
87}
88static const StructType *getST(const PATypeHolder &TH) {
89  return cast<StructType>(TH.get());
90}
91
92// RecursiveResolveTypes - This is just like ResolveTypes, except that it
93// recurses down into derived types, merging the used types if the parent types
94// are compatible.
95static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
96                                   const PATypeHolder &SrcTy,
97                                   TypeSymbolTable *DestST,
98                                   const std::string &Name,
99                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
100  const Type *SrcTyT = SrcTy.get();
101  const Type *DestTyT = DestTy.get();
102  if (DestTyT == SrcTyT) return false;       // If already equal, noop
103
104  // If we found our opaque type, resolve it now!
105  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
106    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
107
108  // Two types cannot be resolved together if they are of different primitive
109  // type.  For example, we cannot resolve an int to a float.
110  if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
111
112  // Otherwise, resolve the used type used by this derived type...
113  switch (DestTyT->getTypeID()) {
114  case Type::IntegerTyID: {
115    if (cast<IntegerType>(DestTyT)->getBitWidth() !=
116        cast<IntegerType>(SrcTyT)->getBitWidth())
117      return true;
118    return false;
119  }
120  case Type::FunctionTyID: {
121    if (cast<FunctionType>(DestTyT)->isVarArg() !=
122        cast<FunctionType>(SrcTyT)->isVarArg() ||
123        cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
124        cast<FunctionType>(SrcTyT)->getNumContainedTypes())
125      return true;
126    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
127      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
128                                 getFT(SrcTy)->getContainedType(i), DestST, "",
129                                 Pointers))
130        return true;
131    return false;
132  }
133  case Type::StructTyID: {
134    if (getST(DestTy)->getNumContainedTypes() !=
135        getST(SrcTy)->getNumContainedTypes()) return 1;
136    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
137      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
138                                 getST(SrcTy)->getContainedType(i), DestST, "",
139                                 Pointers))
140        return true;
141    return false;
142  }
143  case Type::ArrayTyID: {
144    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
145    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
146    if (DAT->getNumElements() != SAT->getNumElements()) return true;
147    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
148                                  DestST, "", Pointers);
149  }
150  case Type::PointerTyID: {
151    // If this is a pointer type, check to see if we have already seen it.  If
152    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
153    // an associative container for this search, because the type pointers (keys
154    // in the container) change whenever types get resolved...
155    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
156      if (Pointers[i].first == DestTy)
157        return Pointers[i].second != SrcTy;
158
159    // Otherwise, add the current pointers to the vector to stop recursion on
160    // this pair.
161    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
162    bool Result =
163      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
164                             cast<PointerType>(SrcTy.get())->getElementType(),
165                             DestST, "", Pointers);
166    Pointers.pop_back();
167    return Result;
168  }
169  default: assert(0 && "Unexpected type!"); return true;
170  }
171}
172
173static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
174                                  const PATypeHolder &SrcTy,
175                                  TypeSymbolTable *DestST,
176                                  const std::string &Name){
177  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
178  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
179}
180
181
182// LinkTypes - Go through the symbol table of the Src module and see if any
183// types are named in the src module that are not named in the Dst module.
184// Make sure there are no type name conflicts.
185static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
186        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
187  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
188
189  // Look for a type plane for Type's...
190  TypeSymbolTable::const_iterator TI = SrcST->begin();
191  TypeSymbolTable::const_iterator TE = SrcST->end();
192  if (TI == TE) return false;  // No named types, do nothing.
193
194  // Some types cannot be resolved immediately because they depend on other
195  // types being resolved to each other first.  This contains a list of types we
196  // are waiting to recheck.
197  std::vector<std::string> DelayedTypesToResolve;
198
199  for ( ; TI != TE; ++TI ) {
200    const std::string &Name = TI->first;
201    const Type *RHS = TI->second;
202
203    // Check to see if this type name is already in the dest module...
204    Type *Entry = DestST->lookup(Name);
205
206    if (ResolveTypes(Entry, RHS, DestST, Name)) {
207      // They look different, save the types 'till later to resolve.
208      DelayedTypesToResolve.push_back(Name);
209    }
210  }
211
212  // Iteratively resolve types while we can...
213  while (!DelayedTypesToResolve.empty()) {
214    // Loop over all of the types, attempting to resolve them if possible...
215    unsigned OldSize = DelayedTypesToResolve.size();
216
217    // Try direct resolution by name...
218    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
219      const std::string &Name = DelayedTypesToResolve[i];
220      Type *T1 = SrcST->lookup(Name);
221      Type *T2 = DestST->lookup(Name);
222      if (!ResolveTypes(T2, T1, DestST, Name)) {
223        // We are making progress!
224        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
225        --i;
226      }
227    }
228
229    // Did we not eliminate any types?
230    if (DelayedTypesToResolve.size() == OldSize) {
231      // Attempt to resolve subelements of types.  This allows us to merge these
232      // two types: { int* } and { opaque* }
233      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
234        const std::string &Name = DelayedTypesToResolve[i];
235        PATypeHolder T1(SrcST->lookup(Name));
236        PATypeHolder T2(DestST->lookup(Name));
237
238        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
239          // We are making progress!
240          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
241
242          // Go back to the main loop, perhaps we can resolve directly by name
243          // now...
244          break;
245        }
246      }
247
248      // If we STILL cannot resolve the types, then there is something wrong.
249      if (DelayedTypesToResolve.size() == OldSize) {
250        // Remove the symbol name from the destination.
251        DelayedTypesToResolve.pop_back();
252      }
253    }
254  }
255
256
257  return false;
258}
259
260static void PrintMap(const std::map<const Value*, Value*> &M) {
261  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
262       I != E; ++I) {
263    cerr << " Fr: " << (void*)I->first << " ";
264    I->first->dump();
265    cerr << " To: " << (void*)I->second << " ";
266    I->second->dump();
267    cerr << "\n";
268  }
269}
270
271
272// RemapOperand - Use ValueMap to convert constants from one module to another.
273static Value *RemapOperand(const Value *In,
274                           std::map<const Value*, Value*> &ValueMap) {
275  std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
276  if (I != ValueMap.end())
277    return I->second;
278
279  // Check to see if it's a constant that we are interested in transforming.
280  Value *Result = 0;
281  if (const Constant *CPV = dyn_cast<Constant>(In)) {
282    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
283        isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
284      return const_cast<Constant*>(CPV);   // Simple constants stay identical.
285
286    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
287      std::vector<Constant*> Operands(CPA->getNumOperands());
288      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
289        Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
290      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
291    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
292      std::vector<Constant*> Operands(CPS->getNumOperands());
293      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
294        Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
295      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
296    } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
297      Result = const_cast<Constant*>(CPV);
298    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
299      std::vector<Constant*> Operands(CP->getNumOperands());
300      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
301        Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
302      Result = ConstantVector::get(Operands);
303    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
304      std::vector<Constant*> Ops;
305      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
306        Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
307      Result = CE->getWithOperands(Ops);
308    } else if (isa<GlobalValue>(CPV)) {
309      assert(0 && "Unmapped global?");
310    } else {
311      assert(0 && "Unknown type of derived type constant value!");
312    }
313  } else if (isa<InlineAsm>(In)) {
314    Result = const_cast<Value*>(In);
315  }
316
317  // Cache the mapping in our local map structure
318  if (Result) {
319    ValueMap[In] = Result;
320    return Result;
321  }
322
323
324  cerr << "LinkModules ValueMap: \n";
325  PrintMap(ValueMap);
326
327  cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
328  assert(0 && "Couldn't remap value!");
329  return 0;
330}
331
332/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
333/// in the symbol table.  This is good for all clients except for us.  Go
334/// through the trouble to force this back.
335static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
336  assert(GV->getName() != Name && "Can't force rename to self");
337  ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
338
339  // If there is a conflict, rename the conflict.
340  if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
341    assert(ConflictGV->hasInternalLinkage() &&
342           "Not conflicting with a static global, should link instead!");
343    GV->takeName(ConflictGV);
344    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
345    assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
346  } else {
347    GV->setName(Name);              // Force the name back
348  }
349}
350
351/// CopyGVAttributes - copy additional attributes (those not needed to construct
352/// a GlobalValue) from the SrcGV to the DestGV.
353static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
354  // Propagate alignment, visibility and section info.
355  DestGV->setAlignment(std::max(DestGV->getAlignment(), SrcGV->getAlignment()));
356  DestGV->setSection(SrcGV->getSection());
357  DestGV->setVisibility(SrcGV->getVisibility());
358  if (const Function *SrcF = dyn_cast<Function>(SrcGV)) {
359    Function *DestF = cast<Function>(DestGV);
360    DestF->setCallingConv(SrcF->getCallingConv());
361    DestF->setParamAttrs(SrcF->getParamAttrs());
362    if (SrcF->hasCollector())
363      DestF->setCollector(SrcF->getCollector());
364  } else if (const GlobalVariable *SrcVar = dyn_cast<GlobalVariable>(SrcGV)) {
365    GlobalVariable *DestVar = cast<GlobalVariable>(DestGV);
366    DestVar->setThreadLocal(SrcVar->isThreadLocal());
367  }
368}
369
370/// GetLinkageResult - This analyzes the two global values and determines what
371/// the result will look like in the destination module.  In particular, it
372/// computes the resultant linkage type, computes whether the global in the
373/// source should be copied over to the destination (replacing the existing
374/// one), and computes whether this linkage is an error or not. It also performs
375/// visibility checks: we cannot link together two symbols with different
376/// visibilities.
377static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
378                             GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
379                             std::string *Err) {
380  assert((!Dest || !Src->hasInternalLinkage()) &&
381         "If Src has internal linkage, Dest shouldn't be set!");
382  if (!Dest) {
383    // Linking something to nothing.
384    LinkFromSrc = true;
385    LT = Src->getLinkage();
386  } else if (Src->isDeclaration()) {
387    // If Src is external or if both Src & Dest are external..  Just link the
388    // external globals, we aren't adding anything.
389    if (Src->hasDLLImportLinkage()) {
390      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
391      if (Dest->isDeclaration()) {
392        LinkFromSrc = true;
393        LT = Src->getLinkage();
394      }
395    } else if (Dest->hasExternalWeakLinkage()) {
396      //If the Dest is weak, use the source linkage
397      LinkFromSrc = true;
398      LT = Src->getLinkage();
399    } else {
400      LinkFromSrc = false;
401      LT = Dest->getLinkage();
402    }
403  } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
404    // If Dest is external but Src is not:
405    LinkFromSrc = true;
406    LT = Src->getLinkage();
407  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
408    if (Src->getLinkage() != Dest->getLinkage())
409      return Error(Err, "Linking globals named '" + Src->getName() +
410            "': can only link appending global with another appending global!");
411    LinkFromSrc = true; // Special cased.
412    LT = Src->getLinkage();
413  } else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage()) {
414    // At this point we know that Dest has LinkOnce, External*, Weak, or
415    // DLL* linkage.
416    if ((Dest->hasLinkOnceLinkage() && Src->hasWeakLinkage()) ||
417        Dest->hasExternalWeakLinkage()) {
418      LinkFromSrc = true;
419      LT = Src->getLinkage();
420    } else {
421      LinkFromSrc = false;
422      LT = Dest->getLinkage();
423    }
424  } else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage()) {
425    // At this point we know that Src has External* or DLL* linkage.
426    if (Src->hasExternalWeakLinkage()) {
427      LinkFromSrc = false;
428      LT = Dest->getLinkage();
429    } else {
430      LinkFromSrc = true;
431      LT = GlobalValue::ExternalLinkage;
432    }
433  } else {
434    assert((Dest->hasExternalLinkage() ||
435            Dest->hasDLLImportLinkage() ||
436            Dest->hasDLLExportLinkage() ||
437            Dest->hasExternalWeakLinkage()) &&
438           (Src->hasExternalLinkage() ||
439            Src->hasDLLImportLinkage() ||
440            Src->hasDLLExportLinkage() ||
441            Src->hasExternalWeakLinkage()) &&
442           "Unexpected linkage type!");
443    return Error(Err, "Linking globals named '" + Src->getName() +
444                 "': symbol multiply defined!");
445  }
446
447  // Check visibility
448  if (Dest && Src->getVisibility() != Dest->getVisibility())
449    if (!Src->isDeclaration() && !Dest->isDeclaration())
450      return Error(Err, "Linking globals named '" + Src->getName() +
451                   "': symbols have different visibilities!");
452  return false;
453}
454
455// LinkGlobals - Loop through the global variables in the src module and merge
456// them into the dest module.
457static bool LinkGlobals(Module *Dest, const Module *Src,
458                        std::map<const Value*, Value*> &ValueMap,
459                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
460                        std::string *Err) {
461  // Loop over all of the globals in the src module, mapping them over as we go
462  for (Module::const_global_iterator I = Src->global_begin(), E = Src->global_end();
463       I != E; ++I) {
464    const GlobalVariable *SGV = I;
465    GlobalValue *DGV = 0;
466
467    // Check to see if may have to link the global with the global
468    if (SGV->hasName() && !SGV->hasInternalLinkage()) {
469      DGV = Dest->getGlobalVariable(SGV->getName());
470      if (DGV && DGV->getType() != SGV->getType())
471        // If types don't agree due to opaque types, try to resolve them.
472        RecursiveResolveTypes(SGV->getType(), DGV->getType(),
473                              &Dest->getTypeSymbolTable(), "");
474    }
475
476    // Check to see if may have to link the global with the alias
477    if (!DGV && SGV->hasName() && !SGV->hasInternalLinkage()) {
478      DGV = Dest->getNamedAlias(SGV->getName());
479      if (DGV && DGV->getType() != SGV->getType())
480        // If types don't agree due to opaque types, try to resolve them.
481        RecursiveResolveTypes(SGV->getType(), DGV->getType(),
482                              &Dest->getTypeSymbolTable(), "");
483    }
484
485    if (DGV && DGV->hasInternalLinkage())
486      DGV = 0;
487
488    assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
489            SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
490           "Global must either be external or have an initializer!");
491
492    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
493    bool LinkFromSrc = false;
494    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
495      return true;
496
497    if (!DGV) {
498      // No linking to be performed, simply create an identical version of the
499      // symbol over in the dest module... the initializer will be filled in
500      // later by LinkGlobalInits...
501      GlobalVariable *NewDGV =
502        new GlobalVariable(SGV->getType()->getElementType(),
503                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
504                           SGV->getName(), Dest);
505      // Propagate alignment, visibility and section info.
506      CopyGVAttributes(NewDGV, SGV);
507
508      // If the LLVM runtime renamed the global, but it is an externally visible
509      // symbol, DGV must be an existing global with internal linkage.  Rename
510      // it.
511      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
512        ForceRenaming(NewDGV, SGV->getName());
513
514      // Make sure to remember this mapping...
515      ValueMap[SGV] = NewDGV;
516
517      if (SGV->hasAppendingLinkage())
518        // Keep track that this is an appending variable...
519        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
520    } else if (DGV->hasAppendingLinkage()) {
521      // No linking is performed yet.  Just insert a new copy of the global, and
522      // keep track of the fact that it is an appending variable in the
523      // AppendingVars map.  The name is cleared out so that no linkage is
524      // performed.
525      GlobalVariable *NewDGV =
526        new GlobalVariable(SGV->getType()->getElementType(),
527                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
528                           "", Dest);
529
530      // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
531      NewDGV->setAlignment(DGV->getAlignment());
532      // Propagate alignment, section and visibility info.
533      CopyGVAttributes(NewDGV, SGV);
534
535      // Make sure to remember this mapping...
536      ValueMap[SGV] = NewDGV;
537
538      // Keep track that this is an appending variable...
539      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
540    } else if (GlobalAlias *DGA = dyn_cast<GlobalAlias>(DGV)) {
541      // SGV is global, but DGV is alias. The only valid mapping is when SGV is
542      // external declaration, which is effectively a no-op. Also make sure
543      // linkage calculation was correct.
544      if (SGV->isDeclaration() && !LinkFromSrc) {
545        // Make sure to remember this mapping...
546        ValueMap[SGV] = DGA;
547      } else
548        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
549                     "': symbol multiple defined");
550    } else if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
551      // Otherwise, perform the global-global mapping as instructed by
552      // GetLinkageResult.
553      if (LinkFromSrc) {
554        // Propagate alignment, section, and visibility info.
555        CopyGVAttributes(DGVar, SGV);
556
557        // If the types don't match, and if we are to link from the source, nuke
558        // DGV and create a new one of the appropriate type.
559        if (SGV->getType() != DGVar->getType()) {
560          GlobalVariable *NewDGV =
561            new GlobalVariable(SGV->getType()->getElementType(),
562                               DGVar->isConstant(), DGVar->getLinkage(),
563                               /*init*/0, DGVar->getName(), Dest);
564          CopyGVAttributes(NewDGV, DGVar);
565          DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV,
566                                                           DGVar->getType()));
567          // DGVar will conflict with NewDGV because they both had the same
568          // name. We must erase this now so ForceRenaming doesn't assert
569          // because DGV might not have internal linkage.
570          DGVar->eraseFromParent();
571
572          // If the symbol table renamed the global, but it is an externally
573          // visible symbol, DGV must be an existing global with internal
574          // linkage. Rename it.
575          if (NewDGV->getName() != SGV->getName() &&
576              !NewDGV->hasInternalLinkage())
577            ForceRenaming(NewDGV, SGV->getName());
578
579          DGVar = NewDGV;
580        }
581
582        // Inherit const as appropriate
583        DGVar->setConstant(SGV->isConstant());
584
585        // Set initializer to zero, so we can link the stuff later
586        DGVar->setInitializer(0);
587      } else {
588        // Special case for const propagation
589        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
590          DGVar->setConstant(true);
591      }
592
593      // Set calculated linkage
594      DGVar->setLinkage(NewLinkage);
595
596      // Make sure to remember this mapping...
597      ValueMap[SGV] = ConstantExpr::getBitCast(DGVar, SGV->getType());
598    }
599  }
600  return false;
601}
602
603static GlobalValue::LinkageTypes
604CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
605  if (SGV->hasExternalLinkage() || DGV->hasExternalLinkage())
606    return GlobalValue::ExternalLinkage;
607  else if (SGV->hasWeakLinkage() || DGV->hasWeakLinkage())
608    return GlobalValue::WeakLinkage;
609  else {
610    assert(SGV->hasInternalLinkage() && DGV->hasInternalLinkage() &&
611           "Unexpected linkage type");
612    return GlobalValue::InternalLinkage;
613  }
614}
615
616// LinkAlias - Loop through the alias in the src module and link them into the
617// dest module. We're assuming, that all functions/global variables were already
618// linked in.
619static bool LinkAlias(Module *Dest, const Module *Src,
620                      std::map<const Value*, Value*> &ValueMap,
621                      std::string *Err) {
622  // Loop over all alias in the src module
623  for (Module::const_alias_iterator I = Src->alias_begin(),
624         E = Src->alias_end(); I != E; ++I) {
625    const GlobalAlias *SGA = I;
626    const GlobalValue *SAliasee = SGA->getAliasedGlobal();
627    GlobalAlias *NewGA = NULL;
628
629    // Globals were already linked, thus we can just query ValueMap for variant
630    // of SAliasee in Dest
631    std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
632    assert(VMI != ValueMap.end() && "Aliasee not linked");
633    GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
634
635    // Try to find something 'similar' to SGA in destination module.
636    if (GlobalAlias *DGA = Dest->getNamedAlias(SGA->getName())) {
637      // If types don't agree due to opaque types, try to resolve them.
638      if (RecursiveResolveTypes(SGA->getType(), DGA->getType(),
639                                &Dest->getTypeSymbolTable(), ""))
640        return Error(Err, "Alias Collision on '" + SGA->getName()+
641                     "': aliases have different types");
642
643      // Now types are known to be the same, check whether aliasees equal. As
644      // globals are already linked we just need query ValueMap to find the
645      // mapping.
646      if (DAliasee == DGA->getAliasedGlobal()) {
647        // This is just two copies of the same alias. Propagate linkage, if
648        // necessary.
649        DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
650
651        NewGA = DGA;
652        // Proceed to 'common' steps
653      } else
654        return Error(Err, "Alias Collision on '"  + SGA->getName()+
655                     "': aliases have different aliasees");
656    } else if (GlobalVariable *DGV = Dest->getGlobalVariable(SGA->getName())) {
657      RecursiveResolveTypes(SGA->getType(), DGV->getType(),
658                            &Dest->getTypeSymbolTable(), "");
659
660      // The only allowed way is to link alias with external declaration.
661      if (DGV->isDeclaration()) {
662        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
663                                SGA->getName(), DAliasee, Dest);
664        CopyGVAttributes(NewGA, SGA);
665
666        // Any uses of DGV need to change to NewGA, with cast, if needed.
667        if (SGA->getType() != DGV->getType())
668          DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
669                                                           DGV->getType()));
670        else
671          DGV->replaceAllUsesWith(NewGA);
672
673        // DGV will conflict with NewGA because they both had the same
674        // name. We must erase this now so ForceRenaming doesn't assert
675        // because DGV might not have internal linkage.
676        DGV->eraseFromParent();
677
678        // Proceed to 'common' steps
679      } else
680        return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
681                     "': symbol multiple defined");
682    } else if (Function *DF = Dest->getFunction(SGA->getName())) {
683      RecursiveResolveTypes(SGA->getType(), DF->getType(),
684                            &Dest->getTypeSymbolTable(), "");
685
686      // The only allowed way is to link alias with external declaration.
687      if (DF->isDeclaration()) {
688        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
689                                SGA->getName(), DAliasee, Dest);
690        CopyGVAttributes(NewGA, SGA);
691
692        // Any uses of DF need to change to NewGA, with cast, if needed.
693        if (SGA->getType() != DF->getType())
694          DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
695                                                          DF->getType()));
696        else
697          DF->replaceAllUsesWith(NewGA);
698
699        // DF will conflict with NewGA because they both had the same
700        // name. We must erase this now so ForceRenaming doesn't assert
701        // because DF might not have internal linkage.
702        DF->eraseFromParent();
703
704        // Proceed to 'common' steps
705      } else
706        return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
707                     "': symbol multiple defined");
708    } else {
709      // Nothing similar found, just copy alias into destination module.
710
711      NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
712                              SGA->getName(), DAliasee, Dest);
713      CopyGVAttributes(NewGA, SGA);
714
715      // Proceed to 'common' steps
716    }
717
718    assert(NewGA && "No alias was created in destination module!");
719
720    // If the symbol table renamed the function, but it is an externally
721    // visible symbol, DGV must be an existing function with internal
722    // linkage. Rename it.
723    if (NewGA->getName() != SGA->getName() &&
724        !NewGA->hasInternalLinkage())
725      ForceRenaming(NewGA, SGA->getName());
726
727    // Remember this mapping so uses in the source module get remapped
728    // later by RemapOperand.
729    ValueMap[SGA] = NewGA;
730  }
731
732  return false;
733}
734
735
736// LinkGlobalInits - Update the initializers in the Dest module now that all
737// globals that may be referenced are in Dest.
738static bool LinkGlobalInits(Module *Dest, const Module *Src,
739                            std::map<const Value*, Value*> &ValueMap,
740                            std::string *Err) {
741
742  // Loop over all of the globals in the src module, mapping them over as we go
743  for (Module::const_global_iterator I = Src->global_begin(),
744       E = Src->global_end(); I != E; ++I) {
745    const GlobalVariable *SGV = I;
746
747    if (SGV->hasInitializer()) {      // Only process initialized GV's
748      // Figure out what the initializer looks like in the dest module...
749      Constant *SInit =
750        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
751
752      GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
753      if (DGV->hasInitializer()) {
754        if (SGV->hasExternalLinkage()) {
755          if (DGV->getInitializer() != SInit)
756            return Error(Err, "Global Variable Collision on '" + SGV->getName() +
757                         "': global variables have different initializers");
758        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
759          // Nothing is required, mapped values will take the new global
760          // automatically.
761        } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
762          // Nothing is required, mapped values will take the new global
763          // automatically.
764        } else if (DGV->hasAppendingLinkage()) {
765          assert(0 && "Appending linkage unimplemented!");
766        } else {
767          assert(0 && "Unknown linkage!");
768        }
769      } else {
770        // Copy the initializer over now...
771        DGV->setInitializer(SInit);
772      }
773    }
774  }
775  return false;
776}
777
778// LinkFunctionProtos - Link the functions together between the two modules,
779// without doing function bodies... this just adds external function prototypes
780// to the Dest function...
781//
782static bool LinkFunctionProtos(Module *Dest, const Module *Src,
783                               std::map<const Value*, Value*> &ValueMap,
784                               std::string *Err) {
785  // Loop over all of the functions in the src module, mapping them over
786  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
787    const Function *SF = I;   // SrcFunction
788    Function *DF = 0;
789    if (SF->hasName() && !SF->hasInternalLinkage()) {
790      // Check to see if may have to link the function.
791      DF = Dest->getFunction(SF->getName());
792      if (DF && SF->getType() != DF->getType())
793        // If types don't agree because of opaque, try to resolve them
794        RecursiveResolveTypes(SF->getType(), DF->getType(),
795                              &Dest->getTypeSymbolTable(), "");
796    }
797
798    // Check visibility
799    if (DF && !DF->hasInternalLinkage() &&
800        SF->getVisibility() != DF->getVisibility()) {
801      // If one is a prototype, ignore its visibility.  Prototypes are always
802      // overridden by the definition.
803      if (!SF->isDeclaration() && !DF->isDeclaration())
804        return Error(Err, "Linking functions named '" + SF->getName() +
805                     "': symbols have different visibilities!");
806    }
807
808    if (DF && DF->hasInternalLinkage())
809      DF = NULL;
810
811    if (DF && DF->getType() != SF->getType()) {
812      if (DF->isDeclaration() && !SF->isDeclaration()) {
813        // We have a definition of the same name but different type in the
814        // source module. Copy the prototype to the destination and replace
815        // uses of the destination's prototype with the new prototype.
816        Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
817                                       SF->getName(), Dest);
818        CopyGVAttributes(NewDF, SF);
819
820        // Any uses of DF need to change to NewDF, with cast
821        DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DF->getType()));
822
823        // DF will conflict with NewDF because they both had the same. We must
824        // erase this now so ForceRenaming doesn't assert because DF might
825        // not have internal linkage.
826        DF->eraseFromParent();
827
828        // If the symbol table renamed the function, but it is an externally
829        // visible symbol, DF must be an existing function with internal
830        // linkage.  Rename it.
831        if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
832          ForceRenaming(NewDF, SF->getName());
833
834        // Remember this mapping so uses in the source module get remapped
835        // later by RemapOperand.
836        ValueMap[SF] = NewDF;
837      } else if (SF->isDeclaration()) {
838        // We have two functions of the same name but different type and the
839        // source is a declaration while the destination is not. Any use of
840        // the source must be mapped to the destination, with a cast.
841        ValueMap[SF] = ConstantExpr::getBitCast(DF, SF->getType());
842      } else {
843        // We have two functions of the same name but different types and they
844        // are both definitions. This is an error.
845        return Error(Err, "Function '" + DF->getName() + "' defined as both '" +
846                     ToStr(SF->getFunctionType(), Src) + "' and '" +
847                     ToStr(DF->getFunctionType(), Dest) + "'");
848      }
849    } else if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
850      // Function does not already exist, simply insert an function signature
851      // identical to SF into the dest module.
852      Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
853                                     SF->getName(), Dest);
854      CopyGVAttributes(NewDF, SF);
855
856      // If the LLVM runtime renamed the function, but it is an externally
857      // visible symbol, DF must be an existing function with internal linkage.
858      // Rename it.
859      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
860        ForceRenaming(NewDF, SF->getName());
861
862      // ... and remember this mapping...
863      ValueMap[SF] = NewDF;
864    } else if (SF->isDeclaration()) {
865      // If SF is a declaration or if both SF & DF are declarations, just link
866      // the declarations, we aren't adding anything.
867      if (SF->hasDLLImportLinkage()) {
868        if (DF->isDeclaration()) {
869          ValueMap.insert(std::make_pair(SF, DF));
870          DF->setLinkage(SF->getLinkage());
871        }
872      } else {
873        ValueMap[SF] = DF;
874      }
875    } else if (DF->isDeclaration() && !DF->hasDLLImportLinkage()) {
876      // If DF is external but SF is not...
877      // Link the external functions, update linkage qualifiers
878      ValueMap.insert(std::make_pair(SF, DF));
879      DF->setLinkage(SF->getLinkage());
880      // Visibility of prototype is overridden by vis of definition.
881      DF->setVisibility(SF->getVisibility());
882    } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
883      // At this point we know that DF has LinkOnce, Weak, or External* linkage.
884      ValueMap[SF] = DF;
885
886      // Linkonce+Weak = Weak
887      // *+External Weak = *
888      if ((DF->hasLinkOnceLinkage() && SF->hasWeakLinkage()) ||
889          DF->hasExternalWeakLinkage())
890        DF->setLinkage(SF->getLinkage());
891    } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
892      // At this point we know that SF has LinkOnce or External* linkage.
893      ValueMap[SF] = DF;
894      if (!SF->hasLinkOnceLinkage() && !SF->hasExternalWeakLinkage())
895        // Don't inherit linkonce & external weak linkage
896        DF->setLinkage(SF->getLinkage());
897    } else if (SF->getLinkage() != DF->getLinkage()) {
898        return Error(Err, "Functions named '" + SF->getName() +
899                     "' have different linkage specifiers!");
900    } else if (SF->hasExternalLinkage()) {
901      // The function is defined identically in both modules!!
902      return Error(Err, "Function '" +
903                   ToStr(SF->getFunctionType(), Src) + "':\"" +
904                   SF->getName() + "\" - Function is already defined!");
905    } else {
906      assert(0 && "Unknown linkage configuration found!");
907    }
908  }
909  return false;
910}
911
912// LinkFunctionBody - Copy the source function over into the dest function and
913// fix up references to values.  At this point we know that Dest is an external
914// function, and that Src is not.
915static bool LinkFunctionBody(Function *Dest, Function *Src,
916                             std::map<const Value*, Value*> &ValueMap,
917                             std::string *Err) {
918  assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
919
920  // Go through and convert function arguments over, remembering the mapping.
921  Function::arg_iterator DI = Dest->arg_begin();
922  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
923       I != E; ++I, ++DI) {
924    DI->setName(I->getName());  // Copy the name information over...
925
926    // Add a mapping to our local map
927    ValueMap[I] = DI;
928  }
929
930  // Splice the body of the source function into the dest function.
931  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
932
933  // At this point, all of the instructions and values of the function are now
934  // copied over.  The only problem is that they are still referencing values in
935  // the Source function as operands.  Loop through all of the operands of the
936  // functions and patch them up to point to the local versions...
937  //
938  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
939    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
940      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
941           OI != OE; ++OI)
942        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
943          *OI = RemapOperand(*OI, ValueMap);
944
945  // There is no need to map the arguments anymore.
946  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
947       I != E; ++I)
948    ValueMap.erase(I);
949
950  return false;
951}
952
953
954// LinkFunctionBodies - Link in the function bodies that are defined in the
955// source module into the DestModule.  This consists basically of copying the
956// function over and fixing up references to values.
957static bool LinkFunctionBodies(Module *Dest, Module *Src,
958                               std::map<const Value*, Value*> &ValueMap,
959                               std::string *Err) {
960
961  // Loop over all of the functions in the src module, mapping them over as we
962  // go
963  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
964    if (!SF->isDeclaration()) {               // No body if function is external
965      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
966
967      // DF not external SF external?
968      if (DF->isDeclaration())
969        // Only provide the function body if there isn't one already.
970        if (LinkFunctionBody(DF, SF, ValueMap, Err))
971          return true;
972    }
973  }
974  return false;
975}
976
977// LinkAppendingVars - If there were any appending global variables, link them
978// together now.  Return true on error.
979static bool LinkAppendingVars(Module *M,
980                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
981                              std::string *ErrorMsg) {
982  if (AppendingVars.empty()) return false; // Nothing to do.
983
984  // Loop over the multimap of appending vars, processing any variables with the
985  // same name, forming a new appending global variable with both of the
986  // initializers merged together, then rewrite references to the old variables
987  // and delete them.
988  std::vector<Constant*> Inits;
989  while (AppendingVars.size() > 1) {
990    // Get the first two elements in the map...
991    std::multimap<std::string,
992      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
993
994    // If the first two elements are for different names, there is no pair...
995    // Otherwise there is a pair, so link them together...
996    if (First->first == Second->first) {
997      GlobalVariable *G1 = First->second, *G2 = Second->second;
998      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
999      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
1000
1001      // Check to see that they two arrays agree on type...
1002      if (T1->getElementType() != T2->getElementType())
1003        return Error(ErrorMsg,
1004         "Appending variables with different element types need to be linked!");
1005      if (G1->isConstant() != G2->isConstant())
1006        return Error(ErrorMsg,
1007                     "Appending variables linked with different const'ness!");
1008
1009      if (G1->getAlignment() != G2->getAlignment())
1010        return Error(ErrorMsg,
1011         "Appending variables with different alignment need to be linked!");
1012
1013      if (G1->getVisibility() != G2->getVisibility())
1014        return Error(ErrorMsg,
1015         "Appending variables with different visibility need to be linked!");
1016
1017      if (G1->getSection() != G2->getSection())
1018        return Error(ErrorMsg,
1019         "Appending variables with different section name need to be linked!");
1020
1021      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
1022      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
1023
1024      G1->setName("");   // Clear G1's name in case of a conflict!
1025
1026      // Create the new global variable...
1027      GlobalVariable *NG =
1028        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
1029                           /*init*/0, First->first, M, G1->isThreadLocal());
1030
1031      // Propagate alignment, visibility and section info.
1032      CopyGVAttributes(NG, G1);
1033
1034      // Merge the initializer...
1035      Inits.reserve(NewSize);
1036      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1037        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1038          Inits.push_back(I->getOperand(i));
1039      } else {
1040        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1041        Constant *CV = Constant::getNullValue(T1->getElementType());
1042        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1043          Inits.push_back(CV);
1044      }
1045      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1046        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1047          Inits.push_back(I->getOperand(i));
1048      } else {
1049        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1050        Constant *CV = Constant::getNullValue(T2->getElementType());
1051        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1052          Inits.push_back(CV);
1053      }
1054      NG->setInitializer(ConstantArray::get(NewType, Inits));
1055      Inits.clear();
1056
1057      // Replace any uses of the two global variables with uses of the new
1058      // global...
1059
1060      // FIXME: This should rewrite simple/straight-forward uses such as
1061      // getelementptr instructions to not use the Cast!
1062      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G1->getType()));
1063      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G2->getType()));
1064
1065      // Remove the two globals from the module now...
1066      M->getGlobalList().erase(G1);
1067      M->getGlobalList().erase(G2);
1068
1069      // Put the new global into the AppendingVars map so that we can handle
1070      // linking of more than two vars...
1071      Second->second = NG;
1072    }
1073    AppendingVars.erase(First);
1074  }
1075
1076  return false;
1077}
1078
1079static bool ResolveAliases(Module *Dest) {
1080  for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1081       I != E; ++I) {
1082    GlobalValue* GV = const_cast<GlobalValue*>(I->getAliasedGlobal());
1083    if (!GV->isDeclaration())
1084      I->replaceAllUsesWith(GV);
1085  }
1086
1087  return false;
1088}
1089
1090// LinkModules - This function links two modules together, with the resulting
1091// left module modified to be the composite of the two input modules.  If an
1092// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1093// the problem.  Upon failure, the Dest module could be in a modified state, and
1094// shouldn't be relied on to be consistent.
1095bool
1096Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1097  assert(Dest != 0 && "Invalid Destination module");
1098  assert(Src  != 0 && "Invalid Source Module");
1099
1100  if (Dest->getDataLayout().empty()) {
1101    if (!Src->getDataLayout().empty()) {
1102      Dest->setDataLayout(Src->getDataLayout());
1103    } else {
1104      std::string DataLayout;
1105
1106      if (Dest->getEndianness() == Module::AnyEndianness) {
1107        if (Src->getEndianness() == Module::BigEndian)
1108          DataLayout.append("E");
1109        else if (Src->getEndianness() == Module::LittleEndian)
1110          DataLayout.append("e");
1111      }
1112
1113      if (Dest->getPointerSize() == Module::AnyPointerSize) {
1114        if (Src->getPointerSize() == Module::Pointer64)
1115          DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1116        else if (Src->getPointerSize() == Module::Pointer32)
1117          DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1118      }
1119      Dest->setDataLayout(DataLayout);
1120    }
1121  }
1122
1123  // Copy the target triple from the source to dest if the dest's is empty.
1124  if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1125    Dest->setTargetTriple(Src->getTargetTriple());
1126
1127  if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1128      Src->getDataLayout() != Dest->getDataLayout())
1129    cerr << "WARNING: Linking two modules of different data layouts!\n";
1130  if (!Src->getTargetTriple().empty() &&
1131      Dest->getTargetTriple() != Src->getTargetTriple())
1132    cerr << "WARNING: Linking two modules of different target triples!\n";
1133
1134  // Append the module inline asm string.
1135  if (!Src->getModuleInlineAsm().empty()) {
1136    if (Dest->getModuleInlineAsm().empty())
1137      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1138    else
1139      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1140                               Src->getModuleInlineAsm());
1141  }
1142
1143  // Update the destination module's dependent libraries list with the libraries
1144  // from the source module. There's no opportunity for duplicates here as the
1145  // Module ensures that duplicate insertions are discarded.
1146  for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1147       SI != SE; ++SI)
1148    Dest->addLibrary(*SI);
1149
1150  // LinkTypes - Go through the symbol table of the Src module and see if any
1151  // types are named in the src module that are not named in the Dst module.
1152  // Make sure there are no type name conflicts.
1153  if (LinkTypes(Dest, Src, ErrorMsg))
1154    return true;
1155
1156  // ValueMap - Mapping of values from what they used to be in Src, to what they
1157  // are now in Dest.
1158  std::map<const Value*, Value*> ValueMap;
1159
1160  // AppendingVars - Keep track of global variables in the destination module
1161  // with appending linkage.  After the module is linked together, they are
1162  // appended and the module is rewritten.
1163  std::multimap<std::string, GlobalVariable *> AppendingVars;
1164  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1165       I != E; ++I) {
1166    // Add all of the appending globals already in the Dest module to
1167    // AppendingVars.
1168    if (I->hasAppendingLinkage())
1169      AppendingVars.insert(std::make_pair(I->getName(), I));
1170  }
1171
1172  // Insert all of the globals in src into the Dest module... without linking
1173  // initializers (which could refer to functions not yet mapped over).
1174  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1175    return true;
1176
1177  // Link the functions together between the two modules, without doing function
1178  // bodies... this just adds external function prototypes to the Dest
1179  // function...  We do this so that when we begin processing function bodies,
1180  // all of the global values that may be referenced are available in our
1181  // ValueMap.
1182  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1183    return true;
1184
1185  // If there were any alias, link them now. We really need to do this now,
1186  // because all of the aliases that may be referenced need to be available in
1187  // ValueMap
1188  if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1189
1190  // Update the initializers in the Dest module now that all globals that may
1191  // be referenced are in Dest.
1192  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1193
1194  // Link in the function bodies that are defined in the source module into the
1195  // DestModule.  This consists basically of copying the function over and
1196  // fixing up references to values.
1197  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1198
1199  // If there were any appending global variables, link them together now.
1200  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1201
1202  // Resolve all uses of aliases with aliasees
1203  if (ResolveAliases(Dest)) return true;
1204
1205  // If the source library's module id is in the dependent library list of the
1206  // destination library, remove it since that module is now linked in.
1207  sys::Path modId;
1208  modId.set(Src->getModuleIdentifier());
1209  if (!modId.isEmpty())
1210    Dest->removeLibrary(modId.getBasename());
1211
1212  return false;
1213}
1214
1215// vim: sw=2
1216