LinkModules.cpp revision ef9b9a793949469cdaa4ab6d0173136229dcab7b
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13//  * Merges global variables between the two modules
14//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15//  * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Linker.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/Instructions.h"
26#include "llvm/Assembly/Writer.h"
27#include "llvm/Support/Streams.h"
28#include "llvm/System/Path.h"
29#include <sstream>
30using namespace llvm;
31
32// Error - Simple wrapper function to conditionally assign to E and return true.
33// This just makes error return conditions a little bit simpler...
34static inline bool Error(std::string *E, const std::string &Message) {
35  if (E) *E = Message;
36  return true;
37}
38
39// ToStr - Simple wrapper function to convert a type to a string.
40static std::string ToStr(const Type *Ty, const Module *M) {
41  std::ostringstream OS;
42  WriteTypeSymbolic(OS, Ty, M);
43  return OS.str();
44}
45
46//
47// Function: ResolveTypes()
48//
49// Description:
50//  Attempt to link the two specified types together.
51//
52// Inputs:
53//  DestTy - The type to which we wish to resolve.
54//  SrcTy  - The original type which we want to resolve.
55//  Name   - The name of the type.
56//
57// Outputs:
58//  DestST - The symbol table in which the new type should be placed.
59//
60// Return value:
61//  true  - There is an error and the types cannot yet be linked.
62//  false - No errors.
63//
64static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
65                         TypeSymbolTable *DestST, const std::string &Name) {
66  if (DestTy == SrcTy) return false;       // If already equal, noop
67
68  // Does the type already exist in the module?
69  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
70    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
71      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
72    } else {
73      return true;  // Cannot link types... neither is opaque and not-equal
74    }
75  } else {                       // Type not in dest module.  Add it now.
76    if (DestTy)                  // Type _is_ in module, just opaque...
77      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
78                           ->refineAbstractTypeTo(SrcTy);
79    else if (!Name.empty())
80      DestST->insert(Name, const_cast<Type*>(SrcTy));
81  }
82  return false;
83}
84
85static const FunctionType *getFT(const PATypeHolder &TH) {
86  return cast<FunctionType>(TH.get());
87}
88static const StructType *getST(const PATypeHolder &TH) {
89  return cast<StructType>(TH.get());
90}
91
92// RecursiveResolveTypes - This is just like ResolveTypes, except that it
93// recurses down into derived types, merging the used types if the parent types
94// are compatible.
95static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
96                                   const PATypeHolder &SrcTy,
97                                   TypeSymbolTable *DestST,
98                                   const std::string &Name,
99                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
100  const Type *SrcTyT = SrcTy.get();
101  const Type *DestTyT = DestTy.get();
102  if (DestTyT == SrcTyT) return false;       // If already equal, noop
103
104  // If we found our opaque type, resolve it now!
105  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
106    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
107
108  // Two types cannot be resolved together if they are of different primitive
109  // type.  For example, we cannot resolve an int to a float.
110  if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
111
112  // Otherwise, resolve the used type used by this derived type...
113  switch (DestTyT->getTypeID()) {
114  case Type::IntegerTyID: {
115    if (cast<IntegerType>(DestTyT)->getBitWidth() !=
116        cast<IntegerType>(SrcTyT)->getBitWidth())
117      return true;
118    return false;
119  }
120  case Type::FunctionTyID: {
121    if (cast<FunctionType>(DestTyT)->isVarArg() !=
122        cast<FunctionType>(SrcTyT)->isVarArg() ||
123        cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
124        cast<FunctionType>(SrcTyT)->getNumContainedTypes())
125      return true;
126    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
127      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
128                                 getFT(SrcTy)->getContainedType(i), DestST, "",
129                                 Pointers))
130        return true;
131    return false;
132  }
133  case Type::StructTyID: {
134    if (getST(DestTy)->getNumContainedTypes() !=
135        getST(SrcTy)->getNumContainedTypes()) return 1;
136    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
137      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
138                                 getST(SrcTy)->getContainedType(i), DestST, "",
139                                 Pointers))
140        return true;
141    return false;
142  }
143  case Type::ArrayTyID: {
144    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
145    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
146    if (DAT->getNumElements() != SAT->getNumElements()) return true;
147    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
148                                  DestST, "", Pointers);
149  }
150  case Type::PointerTyID: {
151    // If this is a pointer type, check to see if we have already seen it.  If
152    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
153    // an associative container for this search, because the type pointers (keys
154    // in the container) change whenever types get resolved...
155    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
156      if (Pointers[i].first == DestTy)
157        return Pointers[i].second != SrcTy;
158
159    // Otherwise, add the current pointers to the vector to stop recursion on
160    // this pair.
161    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
162    bool Result =
163      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
164                             cast<PointerType>(SrcTy.get())->getElementType(),
165                             DestST, "", Pointers);
166    Pointers.pop_back();
167    return Result;
168  }
169  default: assert(0 && "Unexpected type!"); return true;
170  }
171}
172
173static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
174                                  const PATypeHolder &SrcTy,
175                                  TypeSymbolTable *DestST,
176                                  const std::string &Name){
177  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
178  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
179}
180
181
182// LinkTypes - Go through the symbol table of the Src module and see if any
183// types are named in the src module that are not named in the Dst module.
184// Make sure there are no type name conflicts.
185static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
186        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
187  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
188
189  // Look for a type plane for Type's...
190  TypeSymbolTable::const_iterator TI = SrcST->begin();
191  TypeSymbolTable::const_iterator TE = SrcST->end();
192  if (TI == TE) return false;  // No named types, do nothing.
193
194  // Some types cannot be resolved immediately because they depend on other
195  // types being resolved to each other first.  This contains a list of types we
196  // are waiting to recheck.
197  std::vector<std::string> DelayedTypesToResolve;
198
199  for ( ; TI != TE; ++TI ) {
200    const std::string &Name = TI->first;
201    const Type *RHS = TI->second;
202
203    // Check to see if this type name is already in the dest module...
204    Type *Entry = DestST->lookup(Name);
205
206    if (ResolveTypes(Entry, RHS, DestST, Name)) {
207      // They look different, save the types 'till later to resolve.
208      DelayedTypesToResolve.push_back(Name);
209    }
210  }
211
212  // Iteratively resolve types while we can...
213  while (!DelayedTypesToResolve.empty()) {
214    // Loop over all of the types, attempting to resolve them if possible...
215    unsigned OldSize = DelayedTypesToResolve.size();
216
217    // Try direct resolution by name...
218    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
219      const std::string &Name = DelayedTypesToResolve[i];
220      Type *T1 = SrcST->lookup(Name);
221      Type *T2 = DestST->lookup(Name);
222      if (!ResolveTypes(T2, T1, DestST, Name)) {
223        // We are making progress!
224        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
225        --i;
226      }
227    }
228
229    // Did we not eliminate any types?
230    if (DelayedTypesToResolve.size() == OldSize) {
231      // Attempt to resolve subelements of types.  This allows us to merge these
232      // two types: { int* } and { opaque* }
233      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
234        const std::string &Name = DelayedTypesToResolve[i];
235        PATypeHolder T1(SrcST->lookup(Name));
236        PATypeHolder T2(DestST->lookup(Name));
237
238        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
239          // We are making progress!
240          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
241
242          // Go back to the main loop, perhaps we can resolve directly by name
243          // now...
244          break;
245        }
246      }
247
248      // If we STILL cannot resolve the types, then there is something wrong.
249      if (DelayedTypesToResolve.size() == OldSize) {
250        // Remove the symbol name from the destination.
251        DelayedTypesToResolve.pop_back();
252      }
253    }
254  }
255
256
257  return false;
258}
259
260static void PrintMap(const std::map<const Value*, Value*> &M) {
261  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
262       I != E; ++I) {
263    cerr << " Fr: " << (void*)I->first << " ";
264    I->first->dump();
265    cerr << " To: " << (void*)I->second << " ";
266    I->second->dump();
267    cerr << "\n";
268  }
269}
270
271
272// RemapOperand - Use ValueMap to convert constants from one module to another.
273static Value *RemapOperand(const Value *In,
274                           std::map<const Value*, Value*> &ValueMap) {
275  std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
276  if (I != ValueMap.end())
277    return I->second;
278
279  // Check to see if it's a constant that we are interested in transforming.
280  Value *Result = 0;
281  if (const Constant *CPV = dyn_cast<Constant>(In)) {
282    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
283        isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
284      return const_cast<Constant*>(CPV);   // Simple constants stay identical.
285
286    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
287      std::vector<Constant*> Operands(CPA->getNumOperands());
288      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
289        Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
290      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
291    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
292      std::vector<Constant*> Operands(CPS->getNumOperands());
293      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
294        Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
295      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
296    } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
297      Result = const_cast<Constant*>(CPV);
298    } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CPV)) {
299      std::vector<Constant*> Operands(CP->getNumOperands());
300      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
301        Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
302      Result = ConstantPacked::get(Operands);
303    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
304      std::vector<Constant*> Ops;
305      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
306        Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
307      Result = CE->getWithOperands(Ops);
308    } else if (isa<GlobalValue>(CPV)) {
309      assert(0 && "Unmapped global?");
310    } else {
311      assert(0 && "Unknown type of derived type constant value!");
312    }
313  } else if (isa<InlineAsm>(In)) {
314    Result = const_cast<Value*>(In);
315  }
316
317  // Cache the mapping in our local map structure
318  if (Result) {
319    ValueMap.insert(std::make_pair(In, Result));
320    return Result;
321  }
322
323
324  cerr << "LinkModules ValueMap: \n";
325  PrintMap(ValueMap);
326
327  cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
328  assert(0 && "Couldn't remap value!");
329  return 0;
330}
331
332/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
333/// in the symbol table.  This is good for all clients except for us.  Go
334/// through the trouble to force this back.
335static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
336  assert(GV->getName() != Name && "Can't force rename to self");
337  ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
338
339  // If there is a conflict, rename the conflict.
340  GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name));
341  if (ConflictGV) {
342    assert(ConflictGV->hasInternalLinkage() &&
343           "Not conflicting with a static global, should link instead!");
344    ConflictGV->setName("");        // Eliminate the conflict
345  }
346  GV->setName(Name);              // Force the name back
347  if (ConflictGV) {
348    ConflictGV->setName(Name);      // This will cause ConflictGV to get renamed
349    assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
350  }
351  assert(GV->getName() == Name && "ForceRenaming didn't work");
352}
353
354/// CopyGVAttributes - copy additional attributes (those not needed to construct
355/// a GlobalValue) from the SrcGV to the DestGV.
356static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
357  // Propagate alignment, visibility and section info.
358  DestGV->setAlignment(std::max(DestGV->getAlignment(), SrcGV->getAlignment()));
359  DestGV->setSection(SrcGV->getSection());
360  DestGV->setVisibility(SrcGV->getVisibility());
361  if (const Function *SrcF = dyn_cast<Function>(SrcGV)) {
362    Function *DestF = cast<Function>(DestGV);
363    DestF->setCallingConv(SrcF->getCallingConv());
364  }
365}
366
367/// GetLinkageResult - This analyzes the two global values and determines what
368/// the result will look like in the destination module.  In particular, it
369/// computes the resultant linkage type, computes whether the global in the
370/// source should be copied over to the destination (replacing the existing
371/// one), and computes whether this linkage is an error or not.
372static bool GetLinkageResult(GlobalValue *Dest, GlobalValue *Src,
373                             GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
374                             std::string *Err) {
375  assert((!Dest || !Src->hasInternalLinkage()) &&
376         "If Src has internal linkage, Dest shouldn't be set!");
377  if (!Dest) {
378    // Linking something to nothing.
379    LinkFromSrc = true;
380    LT = Src->getLinkage();
381  } else if (Src->isDeclaration()) {
382    // If Src is external or if both Src & Drc are external..  Just link the
383    // external globals, we aren't adding anything.
384    if (Src->hasDLLImportLinkage()) {
385      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
386      if (Dest->isDeclaration()) {
387        LinkFromSrc = true;
388        LT = Src->getLinkage();
389      }
390    } else if (Dest->hasExternalWeakLinkage()) {
391      //If the Dest is weak, use the source linkage
392      LinkFromSrc = true;
393      LT = Src->getLinkage();
394    } else {
395      LinkFromSrc = false;
396      LT = Dest->getLinkage();
397    }
398  } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
399    // If Dest is external but Src is not:
400    LinkFromSrc = true;
401    LT = Src->getLinkage();
402  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
403    if (Src->getLinkage() != Dest->getLinkage())
404      return Error(Err, "Linking globals named '" + Src->getName() +
405            "': can only link appending global with another appending global!");
406    LinkFromSrc = true; // Special cased.
407    LT = Src->getLinkage();
408  } else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage()) {
409    // At this point we know that Dest has LinkOnce, External*, Weak, or
410    // DLL* linkage.
411    if ((Dest->hasLinkOnceLinkage() && Src->hasWeakLinkage()) ||
412        Dest->hasExternalWeakLinkage()) {
413      LinkFromSrc = true;
414      LT = Src->getLinkage();
415    } else {
416      LinkFromSrc = false;
417      LT = Dest->getLinkage();
418    }
419  } else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage()) {
420    // At this point we know that Src has External* or DLL* linkage.
421    if (Src->hasExternalWeakLinkage()) {
422      LinkFromSrc = false;
423      LT = Dest->getLinkage();
424    } else {
425      LinkFromSrc = true;
426      LT = GlobalValue::ExternalLinkage;
427    }
428  } else {
429    assert((Dest->hasExternalLinkage() ||
430            Dest->hasDLLImportLinkage() ||
431            Dest->hasDLLExportLinkage() ||
432            Dest->hasExternalWeakLinkage()) &&
433           (Src->hasExternalLinkage() ||
434            Src->hasDLLImportLinkage() ||
435            Src->hasDLLExportLinkage() ||
436            Src->hasExternalWeakLinkage()) &&
437           "Unexpected linkage type!");
438    return Error(Err, "Linking globals named '" + Src->getName() +
439                 "': symbol multiply defined!");
440  }
441  return false;
442}
443
444// LinkGlobals - Loop through the global variables in the src module and merge
445// them into the dest module.
446static bool LinkGlobals(Module *Dest, Module *Src,
447                        std::map<const Value*, Value*> &ValueMap,
448                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
449                        std::string *Err) {
450  // Loop over all of the globals in the src module, mapping them over as we go
451  for (Module::global_iterator I = Src->global_begin(), E = Src->global_end();
452       I != E; ++I) {
453    GlobalVariable *SGV = I;
454    GlobalVariable *DGV = 0;
455    // Check to see if may have to link the global.
456    if (SGV->hasName() && !SGV->hasInternalLinkage()) {
457      DGV = Dest->getGlobalVariable(SGV->getName());
458      if (DGV && DGV->getType() != SGV->getType())
459        // If types don't agree due to opaque types, try to resolve them.
460        RecursiveResolveTypes(SGV->getType(), DGV->getType(),
461                              &Dest->getTypeSymbolTable(), "");
462    }
463
464    if (DGV && DGV->hasInternalLinkage())
465      DGV = 0;
466
467    assert(SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
468           SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage() &&
469           "Global must either be external or have an initializer!");
470
471    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
472    bool LinkFromSrc = false;
473    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
474      return true;
475
476    if (!DGV) {
477      // No linking to be performed, simply create an identical version of the
478      // symbol over in the dest module... the initializer will be filled in
479      // later by LinkGlobalInits...
480      GlobalVariable *NewDGV =
481        new GlobalVariable(SGV->getType()->getElementType(),
482                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
483                           SGV->getName(), Dest);
484      // Propagate alignment, visibility and section info.
485      CopyGVAttributes(NewDGV, SGV);
486
487      // If the LLVM runtime renamed the global, but it is an externally visible
488      // symbol, DGV must be an existing global with internal linkage.  Rename
489      // it.
490      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
491        ForceRenaming(NewDGV, SGV->getName());
492
493      // Make sure to remember this mapping...
494      ValueMap.insert(std::make_pair(SGV, NewDGV));
495      if (SGV->hasAppendingLinkage())
496        // Keep track that this is an appending variable...
497        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
498    } else if (DGV->hasAppendingLinkage()) {
499      // No linking is performed yet.  Just insert a new copy of the global, and
500      // keep track of the fact that it is an appending variable in the
501      // AppendingVars map.  The name is cleared out so that no linkage is
502      // performed.
503      GlobalVariable *NewDGV =
504        new GlobalVariable(SGV->getType()->getElementType(),
505                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
506                           "", Dest);
507
508      // Propagate alignment, section and visibility  info.
509      NewDGV->setAlignment(DGV->getAlignment());
510      CopyGVAttributes(NewDGV, SGV);
511
512      // Make sure to remember this mapping...
513      ValueMap.insert(std::make_pair(SGV, NewDGV));
514
515      // Keep track that this is an appending variable...
516      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
517    } else {
518      // Propagate alignment, section, and visibility info.
519      CopyGVAttributes(DGV, SGV);
520
521      // Otherwise, perform the mapping as instructed by GetLinkageResult.  If
522      // the types don't match, and if we are to link from the source, nuke DGV
523      // and create a new one of the appropriate type.
524      if (SGV->getType() != DGV->getType() && LinkFromSrc) {
525        GlobalVariable *NewDGV =
526          new GlobalVariable(SGV->getType()->getElementType(),
527                             DGV->isConstant(), DGV->getLinkage());
528        CopyGVAttributes(NewDGV, DGV);
529        Dest->getGlobalList().insert(DGV, NewDGV);
530        DGV->replaceAllUsesWith(
531            ConstantExpr::getBitCast(NewDGV, DGV->getType()));
532        DGV->eraseFromParent();
533        NewDGV->setName(SGV->getName());
534        DGV = NewDGV;
535      }
536
537      DGV->setLinkage(NewLinkage);
538
539      if (LinkFromSrc) {
540        // Inherit const as appropriate
541        DGV->setConstant(SGV->isConstant());
542        DGV->setInitializer(0);
543      } else {
544        if (SGV->isConstant() && !DGV->isConstant()) {
545          if (DGV->isDeclaration())
546            DGV->setConstant(true);
547        }
548        SGV->setLinkage(GlobalValue::ExternalLinkage);
549        SGV->setInitializer(0);
550      }
551
552      ValueMap.insert(
553        std::make_pair(SGV, ConstantExpr::getBitCast(DGV, SGV->getType())));
554    }
555  }
556  return false;
557}
558
559
560// LinkGlobalInits - Update the initializers in the Dest module now that all
561// globals that may be referenced are in Dest.
562static bool LinkGlobalInits(Module *Dest, const Module *Src,
563                            std::map<const Value*, Value*> &ValueMap,
564                            std::string *Err) {
565
566  // Loop over all of the globals in the src module, mapping them over as we go
567  for (Module::const_global_iterator I = Src->global_begin(),
568       E = Src->global_end(); I != E; ++I) {
569    const GlobalVariable *SGV = I;
570
571    if (SGV->hasInitializer()) {      // Only process initialized GV's
572      // Figure out what the initializer looks like in the dest module...
573      Constant *SInit =
574        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
575
576      GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
577      if (DGV->hasInitializer()) {
578        if (SGV->hasExternalLinkage()) {
579          if (DGV->getInitializer() != SInit)
580            return Error(Err, "Global Variable Collision on '" +
581                         ToStr(SGV->getType(), Src) +"':%"+SGV->getName()+
582                         " - Global variables have different initializers");
583        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
584          // Nothing is required, mapped values will take the new global
585          // automatically.
586        } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
587          // Nothing is required, mapped values will take the new global
588          // automatically.
589        } else if (DGV->hasAppendingLinkage()) {
590          assert(0 && "Appending linkage unimplemented!");
591        } else {
592          assert(0 && "Unknown linkage!");
593        }
594      } else {
595        // Copy the initializer over now...
596        DGV->setInitializer(SInit);
597      }
598    }
599  }
600  return false;
601}
602
603// LinkFunctionProtos - Link the functions together between the two modules,
604// without doing function bodies... this just adds external function prototypes
605// to the Dest function...
606//
607static bool LinkFunctionProtos(Module *Dest, const Module *Src,
608                               std::map<const Value*, Value*> &ValueMap,
609                               std::string *Err) {
610  // Loop over all of the functions in the src module, mapping them over
611  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
612    const Function *SF = I;   // SrcFunction
613    Function *DF = 0;
614    if (SF->hasName() && !SF->hasInternalLinkage()) {
615      // Check to see if may have to link the function.
616      DF = Dest->getFunction(SF->getName());
617      if (DF && SF->getType() != DF->getType())
618        // If types don't agree because of opaque, try to resolve them
619        RecursiveResolveTypes(SF->getType(), DF->getType(),
620                              &Dest->getTypeSymbolTable(), "");
621    }
622
623    if (DF && DF->getType() != SF->getType()) {
624      if (DF->isDeclaration() && !SF->isDeclaration()) {
625        // We have a definition of the same name but different type in the
626        // source module. Copy the prototype to the destination and replace
627        // uses of the destination's prototype with the new prototype.
628        Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
629                                       SF->getName(), Dest);
630        CopyGVAttributes(NewDF, SF);
631
632        // Any uses of DF need to change to NewDF, with cast
633        DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DF->getType()));
634
635        // DF will conflict with NewDF because they both had the same. We must
636        // erase this now so ForceRenaming doesn't assert because DF might
637        // not have internal linkage.
638        DF->eraseFromParent();
639
640        // If the symbol table renamed the function, but it is an externally
641        // visible symbol, DF must be an existing function with internal
642        // linkage.  Rename it.
643        if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
644          ForceRenaming(NewDF, SF->getName());
645
646        // Remember this mapping so uses in the source module get remapped
647        // later by RemapOperand.
648        ValueMap[SF] = NewDF;
649      } else if (SF->isDeclaration()) {
650        // We have two functions of the same name but different type and the
651        // source is a declaration while the destination is not. Any use of
652        // the source must be mapped to the destination, with a cast.
653        ValueMap[SF] = ConstantExpr::getBitCast(DF, SF->getType());
654      } else {
655        // We have two functions of the same name but different types and they
656        // are both definitions. This is an error.
657        return Error(Err, "Function '" + DF->getName() + "' defined as both '" +
658                     ToStr(SF->getFunctionType(), Src) + "' and '" +
659                     ToStr(DF->getFunctionType(), Dest) + "'");
660      }
661    } else if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
662      // Function does not already exist, simply insert an function signature
663      // identical to SF into the dest module...
664      Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
665                                     SF->getName(), Dest);
666      CopyGVAttributes(NewDF, SF);
667
668      // If the LLVM runtime renamed the function, but it is an externally
669      // visible symbol, DF must be an existing function with internal linkage.
670      // Rename it.
671      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
672        ForceRenaming(NewDF, SF->getName());
673
674      // ... and remember this mapping...
675      ValueMap.insert(std::make_pair(SF, NewDF));
676    } else if (SF->isDeclaration()) {
677      // If SF is a declaration or if both SF & DF are declarations, just link
678      // the declarations, we aren't adding anything.
679      if (SF->hasDLLImportLinkage()) {
680        if (DF->isDeclaration()) {
681          ValueMap.insert(std::make_pair(SF, DF));
682          DF->setLinkage(SF->getLinkage());
683        }
684      } else {
685        ValueMap.insert(std::make_pair(SF, DF));
686      }
687    } else if (DF->isDeclaration() && !DF->hasDLLImportLinkage()) {
688      // If DF is external but SF is not...
689      // Link the external functions, update linkage qualifiers
690      ValueMap.insert(std::make_pair(SF, DF));
691      DF->setLinkage(SF->getLinkage());
692    } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
693      // At this point we know that DF has LinkOnce, Weak, or External* linkage.
694      ValueMap.insert(std::make_pair(SF, DF));
695
696      // Linkonce+Weak = Weak
697      // *+External Weak = *
698      if ((DF->hasLinkOnceLinkage() && SF->hasWeakLinkage()) ||
699          DF->hasExternalWeakLinkage())
700        DF->setLinkage(SF->getLinkage());
701    } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
702      // At this point we know that SF has LinkOnce or External* linkage.
703      ValueMap.insert(std::make_pair(SF, DF));
704      if (!SF->hasLinkOnceLinkage() && !SF->hasExternalWeakLinkage())
705        // Don't inherit linkonce & external weak linkage
706        DF->setLinkage(SF->getLinkage());
707    } else if (SF->getLinkage() != DF->getLinkage()) {
708        return Error(Err, "Functions named '" + SF->getName() +
709                     "' have different linkage specifiers!");
710    } else if (SF->hasExternalLinkage()) {
711      // The function is defined identically in both modules!!
712      return Error(Err, "Function '" +
713                   ToStr(SF->getFunctionType(), Src) + "':\"" +
714                   SF->getName() + "\" - Function is already defined!");
715    } else {
716      assert(0 && "Unknown linkage configuration found!");
717    }
718  }
719  return false;
720}
721
722// LinkFunctionBody - Copy the source function over into the dest function and
723// fix up references to values.  At this point we know that Dest is an external
724// function, and that Src is not.
725static bool LinkFunctionBody(Function *Dest, Function *Src,
726                             std::map<const Value*, Value*> &ValueMap,
727                             std::string *Err) {
728  assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
729
730  // Go through and convert function arguments over, remembering the mapping.
731  Function::arg_iterator DI = Dest->arg_begin();
732  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
733       I != E; ++I, ++DI) {
734    DI->setName(I->getName());  // Copy the name information over...
735
736    // Add a mapping to our local map
737    ValueMap.insert(std::make_pair(I, DI));
738  }
739
740  // Splice the body of the source function into the dest function.
741  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
742
743  // At this point, all of the instructions and values of the function are now
744  // copied over.  The only problem is that they are still referencing values in
745  // the Source function as operands.  Loop through all of the operands of the
746  // functions and patch them up to point to the local versions...
747  //
748  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
749    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
750      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
751           OI != OE; ++OI)
752        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
753          *OI = RemapOperand(*OI, ValueMap);
754
755  // There is no need to map the arguments anymore.
756  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
757       I != E; ++I)
758    ValueMap.erase(I);
759
760  return false;
761}
762
763
764// LinkFunctionBodies - Link in the function bodies that are defined in the
765// source module into the DestModule.  This consists basically of copying the
766// function over and fixing up references to values.
767static bool LinkFunctionBodies(Module *Dest, Module *Src,
768                               std::map<const Value*, Value*> &ValueMap,
769                               std::string *Err) {
770
771  // Loop over all of the functions in the src module, mapping them over as we
772  // go
773  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
774    if (!SF->isDeclaration()) {               // No body if function is external
775      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
776
777      // DF not external SF external?
778      if (DF->isDeclaration())
779        // Only provide the function body if there isn't one already.
780        if (LinkFunctionBody(DF, SF, ValueMap, Err))
781          return true;
782    }
783  }
784  return false;
785}
786
787// LinkAppendingVars - If there were any appending global variables, link them
788// together now.  Return true on error.
789static bool LinkAppendingVars(Module *M,
790                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
791                              std::string *ErrorMsg) {
792  if (AppendingVars.empty()) return false; // Nothing to do.
793
794  // Loop over the multimap of appending vars, processing any variables with the
795  // same name, forming a new appending global variable with both of the
796  // initializers merged together, then rewrite references to the old variables
797  // and delete them.
798  std::vector<Constant*> Inits;
799  while (AppendingVars.size() > 1) {
800    // Get the first two elements in the map...
801    std::multimap<std::string,
802      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
803
804    // If the first two elements are for different names, there is no pair...
805    // Otherwise there is a pair, so link them together...
806    if (First->first == Second->first) {
807      GlobalVariable *G1 = First->second, *G2 = Second->second;
808      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
809      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
810
811      // Check to see that they two arrays agree on type...
812      if (T1->getElementType() != T2->getElementType())
813        return Error(ErrorMsg,
814         "Appending variables with different element types need to be linked!");
815      if (G1->isConstant() != G2->isConstant())
816        return Error(ErrorMsg,
817                     "Appending variables linked with different const'ness!");
818
819      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
820      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
821
822      G1->setName("");   // Clear G1's name in case of a conflict!
823
824      // Create the new global variable...
825      GlobalVariable *NG =
826        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
827                           /*init*/0, First->first, M);
828
829      // Merge the initializer...
830      Inits.reserve(NewSize);
831      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
832        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
833          Inits.push_back(I->getOperand(i));
834      } else {
835        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
836        Constant *CV = Constant::getNullValue(T1->getElementType());
837        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
838          Inits.push_back(CV);
839      }
840      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
841        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
842          Inits.push_back(I->getOperand(i));
843      } else {
844        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
845        Constant *CV = Constant::getNullValue(T2->getElementType());
846        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
847          Inits.push_back(CV);
848      }
849      NG->setInitializer(ConstantArray::get(NewType, Inits));
850      Inits.clear();
851
852      // Replace any uses of the two global variables with uses of the new
853      // global...
854
855      // FIXME: This should rewrite simple/straight-forward uses such as
856      // getelementptr instructions to not use the Cast!
857      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G1->getType()));
858      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G2->getType()));
859
860      // Remove the two globals from the module now...
861      M->getGlobalList().erase(G1);
862      M->getGlobalList().erase(G2);
863
864      // Put the new global into the AppendingVars map so that we can handle
865      // linking of more than two vars...
866      Second->second = NG;
867    }
868    AppendingVars.erase(First);
869  }
870
871  return false;
872}
873
874
875// LinkModules - This function links two modules together, with the resulting
876// left module modified to be the composite of the two input modules.  If an
877// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
878// the problem.  Upon failure, the Dest module could be in a modified state, and
879// shouldn't be relied on to be consistent.
880bool
881Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
882  assert(Dest != 0 && "Invalid Destination module");
883  assert(Src  != 0 && "Invalid Source Module");
884
885  if (Dest->getDataLayout().empty()) {
886    if (!Src->getDataLayout().empty()) {
887      Dest->setDataLayout(Src->getDataLayout());
888    } else {
889      std::string DataLayout;
890
891      if (Dest->getEndianness() == Module::AnyEndianness)
892        if (Src->getEndianness() == Module::BigEndian)
893          DataLayout.append("E");
894        else if (Src->getEndianness() == Module::LittleEndian)
895          DataLayout.append("e");
896      if (Dest->getPointerSize() == Module::AnyPointerSize)
897        if (Src->getPointerSize() == Module::Pointer64)
898          DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
899        else if (Src->getPointerSize() == Module::Pointer32)
900          DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
901      Dest->setDataLayout(DataLayout);
902    }
903  }
904
905  // COpy the target triple from the source to dest if the dest's is empty
906  if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
907    Dest->setTargetTriple(Src->getTargetTriple());
908
909  if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
910      Src->getDataLayout() != Dest->getDataLayout())
911    cerr << "WARNING: Linking two modules of different data layouts!\n";
912  if (!Src->getTargetTriple().empty() &&
913      Dest->getTargetTriple() != Src->getTargetTriple())
914    cerr << "WARNING: Linking two modules of different target triples!\n";
915
916  // Append the module inline asm string
917  if (!Src->getModuleInlineAsm().empty()) {
918    if (Dest->getModuleInlineAsm().empty())
919      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
920    else
921      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
922                               Src->getModuleInlineAsm());
923  }
924
925  // Update the destination module's dependent libraries list with the libraries
926  // from the source module. There's no opportunity for duplicates here as the
927  // Module ensures that duplicate insertions are discarded.
928  Module::lib_iterator SI = Src->lib_begin();
929  Module::lib_iterator SE = Src->lib_end();
930  while ( SI != SE ) {
931    Dest->addLibrary(*SI);
932    ++SI;
933  }
934
935  // LinkTypes - Go through the symbol table of the Src module and see if any
936  // types are named in the src module that are not named in the Dst module.
937  // Make sure there are no type name conflicts.
938  if (LinkTypes(Dest, Src, ErrorMsg))
939    return true;
940
941  // ValueMap - Mapping of values from what they used to be in Src, to what they
942  // are now in Dest.
943  std::map<const Value*, Value*> ValueMap;
944
945  // AppendingVars - Keep track of global variables in the destination module
946  // with appending linkage.  After the module is linked together, they are
947  // appended and the module is rewritten.
948  std::multimap<std::string, GlobalVariable *> AppendingVars;
949  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
950       I != E; ++I) {
951    // Add all of the appending globals already in the Dest module to
952    // AppendingVars.
953    if (I->hasAppendingLinkage())
954      AppendingVars.insert(std::make_pair(I->getName(), I));
955  }
956
957  // Insert all of the globals in src into the Dest module... without linking
958  // initializers (which could refer to functions not yet mapped over).
959  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
960    return true;
961
962  // Link the functions together between the two modules, without doing function
963  // bodies... this just adds external function prototypes to the Dest
964  // function...  We do this so that when we begin processing function bodies,
965  // all of the global values that may be referenced are available in our
966  // ValueMap.
967  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
968    return true;
969
970  // Update the initializers in the Dest module now that all globals that may
971  // be referenced are in Dest.
972  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
973
974  // Link in the function bodies that are defined in the source module into the
975  // DestModule.  This consists basically of copying the function over and
976  // fixing up references to values.
977  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
978
979  // If there were any appending global variables, link them together now.
980  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
981
982  // If the source library's module id is in the dependent library list of the
983  // destination library, remove it since that module is now linked in.
984  sys::Path modId;
985  modId.set(Src->getModuleIdentifier());
986  if (!modId.isEmpty())
987    Dest->removeLibrary(modId.getBasename());
988
989  return false;
990}
991
992// vim: sw=2
993