LinkModules.cpp revision f24fde20c8d6db5a52b50a010e831c9159d3fec7
1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Linker.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Instructions.h"
18#include "llvm/Module.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/Path.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Transforms/Utils/Cloning.h"
27#include "llvm/Transforms/Utils/ValueMapper.h"
28#include "llvm-c/Linker.h"
29#include <cctype>
30using namespace llvm;
31
32//===----------------------------------------------------------------------===//
33// TypeMap implementation.
34//===----------------------------------------------------------------------===//
35
36namespace {
37class TypeMapTy : public ValueMapTypeRemapper {
38  /// MappedTypes - This is a mapping from a source type to a destination type
39  /// to use.
40  DenseMap<Type*, Type*> MappedTypes;
41
42  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
43  /// we speculatively add types to MappedTypes, but keep track of them here in
44  /// case we need to roll back.
45  SmallVector<Type*, 16> SpeculativeTypes;
46
47  /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
48  /// source module that are mapped to an opaque struct in the destination
49  /// module.
50  SmallVector<StructType*, 16> SrcDefinitionsToResolve;
51
52  /// DstResolvedOpaqueTypes - This is the set of opaque types in the
53  /// destination modules who are getting a body from the source module.
54  SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
55
56public:
57  /// addTypeMapping - Indicate that the specified type in the destination
58  /// module is conceptually equivalent to the specified type in the source
59  /// module.
60  void addTypeMapping(Type *DstTy, Type *SrcTy);
61
62  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
63  /// module from a type definition in the source module.
64  void linkDefinedTypeBodies();
65
66  /// get - Return the mapped type to use for the specified input type from the
67  /// source module.
68  Type *get(Type *SrcTy);
69
70  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
71
72  /// dump - Dump out the type map for debugging purposes.
73  void dump() const {
74    for (DenseMap<Type*, Type*>::const_iterator
75           I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
76      dbgs() << "TypeMap: ";
77      I->first->dump();
78      dbgs() << " => ";
79      I->second->dump();
80      dbgs() << '\n';
81    }
82  }
83
84private:
85  Type *getImpl(Type *T);
86  /// remapType - Implement the ValueMapTypeRemapper interface.
87  Type *remapType(Type *SrcTy) {
88    return get(SrcTy);
89  }
90
91  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
92};
93}
94
95void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
96  Type *&Entry = MappedTypes[SrcTy];
97  if (Entry) return;
98
99  if (DstTy == SrcTy) {
100    Entry = DstTy;
101    return;
102  }
103
104  // Check to see if these types are recursively isomorphic and establish a
105  // mapping between them if so.
106  if (!areTypesIsomorphic(DstTy, SrcTy)) {
107    // Oops, they aren't isomorphic.  Just discard this request by rolling out
108    // any speculative mappings we've established.
109    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
110      MappedTypes.erase(SpeculativeTypes[i]);
111  }
112  SpeculativeTypes.clear();
113}
114
115/// areTypesIsomorphic - Recursively walk this pair of types, returning true
116/// if they are isomorphic, false if they are not.
117bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
118  // Two types with differing kinds are clearly not isomorphic.
119  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
120
121  // If we have an entry in the MappedTypes table, then we have our answer.
122  Type *&Entry = MappedTypes[SrcTy];
123  if (Entry)
124    return Entry == DstTy;
125
126  // Two identical types are clearly isomorphic.  Remember this
127  // non-speculatively.
128  if (DstTy == SrcTy) {
129    Entry = DstTy;
130    return true;
131  }
132
133  // Okay, we have two types with identical kinds that we haven't seen before.
134
135  // If this is an opaque struct type, special case it.
136  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
137    // Mapping an opaque type to any struct, just keep the dest struct.
138    if (SSTy->isOpaque()) {
139      Entry = DstTy;
140      SpeculativeTypes.push_back(SrcTy);
141      return true;
142    }
143
144    // Mapping a non-opaque source type to an opaque dest.  If this is the first
145    // type that we're mapping onto this destination type then we succeed.  Keep
146    // the dest, but fill it in later.  This doesn't need to be speculative.  If
147    // this is the second (different) type that we're trying to map onto the
148    // same opaque type then we fail.
149    if (cast<StructType>(DstTy)->isOpaque()) {
150      // We can only map one source type onto the opaque destination type.
151      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
152        return false;
153      SrcDefinitionsToResolve.push_back(SSTy);
154      Entry = DstTy;
155      return true;
156    }
157  }
158
159  // If the number of subtypes disagree between the two types, then we fail.
160  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
161    return false;
162
163  // Fail if any of the extra properties (e.g. array size) of the type disagree.
164  if (isa<IntegerType>(DstTy))
165    return false;  // bitwidth disagrees.
166  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
167    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
168      return false;
169
170  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
171    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
172      return false;
173  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
174    StructType *SSTy = cast<StructType>(SrcTy);
175    if (DSTy->isLiteral() != SSTy->isLiteral() ||
176        DSTy->isPacked() != SSTy->isPacked())
177      return false;
178  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
179    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
180      return false;
181  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
182    if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
183      return false;
184  }
185
186  // Otherwise, we speculate that these two types will line up and recursively
187  // check the subelements.
188  Entry = DstTy;
189  SpeculativeTypes.push_back(SrcTy);
190
191  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
192    if (!areTypesIsomorphic(DstTy->getContainedType(i),
193                            SrcTy->getContainedType(i)))
194      return false;
195
196  // If everything seems to have lined up, then everything is great.
197  return true;
198}
199
200/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
201/// module from a type definition in the source module.
202void TypeMapTy::linkDefinedTypeBodies() {
203  SmallVector<Type*, 16> Elements;
204  SmallString<16> TmpName;
205
206  // Note that processing entries in this loop (calling 'get') can add new
207  // entries to the SrcDefinitionsToResolve vector.
208  while (!SrcDefinitionsToResolve.empty()) {
209    StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
210    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
211
212    // TypeMap is a many-to-one mapping, if there were multiple types that
213    // provide a body for DstSTy then previous iterations of this loop may have
214    // already handled it.  Just ignore this case.
215    if (!DstSTy->isOpaque()) continue;
216    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
217
218    // Map the body of the source type over to a new body for the dest type.
219    Elements.resize(SrcSTy->getNumElements());
220    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
221      Elements[i] = getImpl(SrcSTy->getElementType(i));
222
223    DstSTy->setBody(Elements, SrcSTy->isPacked());
224
225    // If DstSTy has no name or has a longer name than STy, then viciously steal
226    // STy's name.
227    if (!SrcSTy->hasName()) continue;
228    StringRef SrcName = SrcSTy->getName();
229
230    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
231      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
232      SrcSTy->setName("");
233      DstSTy->setName(TmpName.str());
234      TmpName.clear();
235    }
236  }
237
238  DstResolvedOpaqueTypes.clear();
239}
240
241/// get - Return the mapped type to use for the specified input type from the
242/// source module.
243Type *TypeMapTy::get(Type *Ty) {
244  Type *Result = getImpl(Ty);
245
246  // If this caused a reference to any struct type, resolve it before returning.
247  if (!SrcDefinitionsToResolve.empty())
248    linkDefinedTypeBodies();
249  return Result;
250}
251
252/// getImpl - This is the recursive version of get().
253Type *TypeMapTy::getImpl(Type *Ty) {
254  // If we already have an entry for this type, return it.
255  Type **Entry = &MappedTypes[Ty];
256  if (*Entry) return *Entry;
257
258  // If this is not a named struct type, then just map all of the elements and
259  // then rebuild the type from inside out.
260  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
261    // If there are no element types to map, then the type is itself.  This is
262    // true for the anonymous {} struct, things like 'float', integers, etc.
263    if (Ty->getNumContainedTypes() == 0)
264      return *Entry = Ty;
265
266    // Remap all of the elements, keeping track of whether any of them change.
267    bool AnyChange = false;
268    SmallVector<Type*, 4> ElementTypes;
269    ElementTypes.resize(Ty->getNumContainedTypes());
270    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
271      ElementTypes[i] = getImpl(Ty->getContainedType(i));
272      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
273    }
274
275    // If we found our type while recursively processing stuff, just use it.
276    Entry = &MappedTypes[Ty];
277    if (*Entry) return *Entry;
278
279    // If all of the element types mapped directly over, then the type is usable
280    // as-is.
281    if (!AnyChange)
282      return *Entry = Ty;
283
284    // Otherwise, rebuild a modified type.
285    switch (Ty->getTypeID()) {
286    default: llvm_unreachable("unknown derived type to remap");
287    case Type::ArrayTyID:
288      return *Entry = ArrayType::get(ElementTypes[0],
289                                     cast<ArrayType>(Ty)->getNumElements());
290    case Type::VectorTyID:
291      return *Entry = VectorType::get(ElementTypes[0],
292                                      cast<VectorType>(Ty)->getNumElements());
293    case Type::PointerTyID:
294      return *Entry = PointerType::get(ElementTypes[0],
295                                      cast<PointerType>(Ty)->getAddressSpace());
296    case Type::FunctionTyID:
297      return *Entry = FunctionType::get(ElementTypes[0],
298                                        makeArrayRef(ElementTypes).slice(1),
299                                        cast<FunctionType>(Ty)->isVarArg());
300    case Type::StructTyID:
301      // Note that this is only reached for anonymous structs.
302      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
303                                      cast<StructType>(Ty)->isPacked());
304    }
305  }
306
307  // Otherwise, this is an unmapped named struct.  If the struct can be directly
308  // mapped over, just use it as-is.  This happens in a case when the linked-in
309  // module has something like:
310  //   %T = type {%T*, i32}
311  //   @GV = global %T* null
312  // where T does not exist at all in the destination module.
313  //
314  // The other case we watch for is when the type is not in the destination
315  // module, but that it has to be rebuilt because it refers to something that
316  // is already mapped.  For example, if the destination module has:
317  //  %A = type { i32 }
318  // and the source module has something like
319  //  %A' = type { i32 }
320  //  %B = type { %A'* }
321  //  @GV = global %B* null
322  // then we want to create a new type: "%B = type { %A*}" and have it take the
323  // pristine "%B" name from the source module.
324  //
325  // To determine which case this is, we have to recursively walk the type graph
326  // speculating that we'll be able to reuse it unmodified.  Only if this is
327  // safe would we map the entire thing over.  Because this is an optimization,
328  // and is not required for the prettiness of the linked module, we just skip
329  // it and always rebuild a type here.
330  StructType *STy = cast<StructType>(Ty);
331
332  // If the type is opaque, we can just use it directly.
333  if (STy->isOpaque())
334    return *Entry = STy;
335
336  // Otherwise we create a new type and resolve its body later.  This will be
337  // resolved by the top level of get().
338  SrcDefinitionsToResolve.push_back(STy);
339  StructType *DTy = StructType::create(STy->getContext());
340  DstResolvedOpaqueTypes.insert(DTy);
341  return *Entry = DTy;
342}
343
344//===----------------------------------------------------------------------===//
345// ModuleLinker implementation.
346//===----------------------------------------------------------------------===//
347
348namespace {
349  /// ModuleLinker - This is an implementation class for the LinkModules
350  /// function, which is the entrypoint for this file.
351  class ModuleLinker {
352    Module *DstM, *SrcM;
353
354    TypeMapTy TypeMap;
355
356    /// ValueMap - Mapping of values from what they used to be in Src, to what
357    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
358    /// some overhead due to the use of Value handles which the Linker doesn't
359    /// actually need, but this allows us to reuse the ValueMapper code.
360    ValueToValueMapTy ValueMap;
361
362    struct AppendingVarInfo {
363      GlobalVariable *NewGV;  // New aggregate global in dest module.
364      Constant *DstInit;      // Old initializer from dest module.
365      Constant *SrcInit;      // Old initializer from src module.
366    };
367
368    std::vector<AppendingVarInfo> AppendingVars;
369
370    unsigned Mode; // Mode to treat source module.
371
372    // Set of items not to link in from source.
373    SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
374
375    // Vector of functions to lazily link in.
376    std::vector<Function*> LazilyLinkFunctions;
377
378  public:
379    std::string ErrorMsg;
380
381    ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
382      : DstM(dstM), SrcM(srcM), Mode(mode) { }
383
384    bool run();
385
386  private:
387    /// emitError - Helper method for setting a message and returning an error
388    /// code.
389    bool emitError(const Twine &Message) {
390      ErrorMsg = Message.str();
391      return true;
392    }
393
394    /// getLinkageResult - This analyzes the two global values and determines
395    /// what the result will look like in the destination module.
396    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
397                          GlobalValue::LinkageTypes &LT,
398                          GlobalValue::VisibilityTypes &Vis,
399                          bool &LinkFromSrc);
400
401    /// getLinkedToGlobal - Given a global in the source module, return the
402    /// global in the destination module that is being linked to, if any.
403    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
404      // If the source has no name it can't link.  If it has local linkage,
405      // there is no name match-up going on.
406      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
407        return 0;
408
409      // Otherwise see if we have a match in the destination module's symtab.
410      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
411      if (DGV == 0) return 0;
412
413      // If we found a global with the same name in the dest module, but it has
414      // internal linkage, we are really not doing any linkage here.
415      if (DGV->hasLocalLinkage())
416        return 0;
417
418      // Otherwise, we do in fact link to the destination global.
419      return DGV;
420    }
421
422    void computeTypeMapping();
423    bool categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
424                                   DenseMap<MDString*, MDNode*> &ErrorNode,
425                                   DenseMap<MDString*, MDNode*> &WarningNode,
426                                   DenseMap<MDString*, MDNode*> &OverrideNode,
427                                   DenseMap<MDString*,
428                                   SmallSetVector<MDNode*, 8> > &RequireNodes,
429                                   SmallSetVector<MDString*, 16> &SeenIDs);
430
431    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
432    bool linkGlobalProto(GlobalVariable *SrcGV);
433    bool linkFunctionProto(Function *SrcF);
434    bool linkAliasProto(GlobalAlias *SrcA);
435    bool linkModuleFlagsMetadata();
436
437    void linkAppendingVarInit(const AppendingVarInfo &AVI);
438    void linkGlobalInits();
439    void linkFunctionBody(Function *Dst, Function *Src);
440    void linkAliasBodies();
441    void linkNamedMDNodes();
442  };
443}
444
445/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
446/// in the symbol table.  This is good for all clients except for us.  Go
447/// through the trouble to force this back.
448static void forceRenaming(GlobalValue *GV, StringRef Name) {
449  // If the global doesn't force its name or if it already has the right name,
450  // there is nothing for us to do.
451  if (GV->hasLocalLinkage() || GV->getName() == Name)
452    return;
453
454  Module *M = GV->getParent();
455
456  // If there is a conflict, rename the conflict.
457  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
458    GV->takeName(ConflictGV);
459    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
460    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
461  } else {
462    GV->setName(Name);              // Force the name back
463  }
464}
465
466/// copyGVAttributes - copy additional attributes (those not needed to construct
467/// a GlobalValue) from the SrcGV to the DestGV.
468static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
469  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
470  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
471  DestGV->copyAttributesFrom(SrcGV);
472  DestGV->setAlignment(Alignment);
473
474  forceRenaming(DestGV, SrcGV->getName());
475}
476
477static bool isLessConstraining(GlobalValue::VisibilityTypes a,
478                               GlobalValue::VisibilityTypes b) {
479  if (a == GlobalValue::HiddenVisibility)
480    return false;
481  if (b == GlobalValue::HiddenVisibility)
482    return true;
483  if (a == GlobalValue::ProtectedVisibility)
484    return false;
485  if (b == GlobalValue::ProtectedVisibility)
486    return true;
487  return false;
488}
489
490/// getLinkageResult - This analyzes the two global values and determines what
491/// the result will look like in the destination module.  In particular, it
492/// computes the resultant linkage type and visibility, computes whether the
493/// global in the source should be copied over to the destination (replacing
494/// the existing one), and computes whether this linkage is an error or not.
495bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
496                                    GlobalValue::LinkageTypes &LT,
497                                    GlobalValue::VisibilityTypes &Vis,
498                                    bool &LinkFromSrc) {
499  assert(Dest && "Must have two globals being queried");
500  assert(!Src->hasLocalLinkage() &&
501         "If Src has internal linkage, Dest shouldn't be set!");
502
503  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
504  bool DestIsDeclaration = Dest->isDeclaration();
505
506  if (SrcIsDeclaration) {
507    // If Src is external or if both Src & Dest are external..  Just link the
508    // external globals, we aren't adding anything.
509    if (Src->hasDLLImportLinkage()) {
510      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
511      if (DestIsDeclaration) {
512        LinkFromSrc = true;
513        LT = Src->getLinkage();
514      }
515    } else if (Dest->hasExternalWeakLinkage()) {
516      // If the Dest is weak, use the source linkage.
517      LinkFromSrc = true;
518      LT = Src->getLinkage();
519    } else {
520      LinkFromSrc = false;
521      LT = Dest->getLinkage();
522    }
523  } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
524    // If Dest is external but Src is not:
525    LinkFromSrc = true;
526    LT = Src->getLinkage();
527  } else if (Src->isWeakForLinker()) {
528    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
529    // or DLL* linkage.
530    if (Dest->hasExternalWeakLinkage() ||
531        Dest->hasAvailableExternallyLinkage() ||
532        (Dest->hasLinkOnceLinkage() &&
533         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
534      LinkFromSrc = true;
535      LT = Src->getLinkage();
536    } else {
537      LinkFromSrc = false;
538      LT = Dest->getLinkage();
539    }
540  } else if (Dest->isWeakForLinker()) {
541    // At this point we know that Src has External* or DLL* linkage.
542    if (Src->hasExternalWeakLinkage()) {
543      LinkFromSrc = false;
544      LT = Dest->getLinkage();
545    } else {
546      LinkFromSrc = true;
547      LT = GlobalValue::ExternalLinkage;
548    }
549  } else {
550    assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
551            Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
552           (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
553            Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
554           "Unexpected linkage type!");
555    return emitError("Linking globals named '" + Src->getName() +
556                 "': symbol multiply defined!");
557  }
558
559  // Compute the visibility. We follow the rules in the System V Application
560  // Binary Interface.
561  Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
562    Dest->getVisibility() : Src->getVisibility();
563  return false;
564}
565
566/// computeTypeMapping - Loop over all of the linked values to compute type
567/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
568/// we have two struct types 'Foo' but one got renamed when the module was
569/// loaded into the same LLVMContext.
570void ModuleLinker::computeTypeMapping() {
571  // Incorporate globals.
572  for (Module::global_iterator I = SrcM->global_begin(),
573       E = SrcM->global_end(); I != E; ++I) {
574    GlobalValue *DGV = getLinkedToGlobal(I);
575    if (DGV == 0) continue;
576
577    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
578      TypeMap.addTypeMapping(DGV->getType(), I->getType());
579      continue;
580    }
581
582    // Unify the element type of appending arrays.
583    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
584    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
585    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
586  }
587
588  // Incorporate functions.
589  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
590    if (GlobalValue *DGV = getLinkedToGlobal(I))
591      TypeMap.addTypeMapping(DGV->getType(), I->getType());
592  }
593
594  // Incorporate types by name, scanning all the types in the source module.
595  // At this point, the destination module may have a type "%foo = { i32 }" for
596  // example.  When the source module got loaded into the same LLVMContext, if
597  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
598  std::vector<StructType*> SrcStructTypes;
599  SrcM->findUsedStructTypes(SrcStructTypes, true);
600  SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
601                                                 SrcStructTypes.end());
602
603  std::vector<StructType*> DstStructTypes;
604  DstM->findUsedStructTypes(DstStructTypes, true);
605  SmallPtrSet<StructType*, 32> DstStructTypesSet(DstStructTypes.begin(),
606                                                 DstStructTypes.end());
607
608  for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
609    StructType *ST = SrcStructTypes[i];
610    if (!ST->hasName()) continue;
611
612    // Check to see if there is a dot in the name followed by a digit.
613    size_t DotPos = ST->getName().rfind('.');
614    if (DotPos == 0 || DotPos == StringRef::npos ||
615        ST->getName().back() == '.' || !isdigit(ST->getName()[DotPos+1]))
616      continue;
617
618    // Check to see if the destination module has a struct with the prefix name.
619    if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
620      // Don't use it if this actually came from the source module. They're in
621      // the same LLVMContext after all. Also don't use it unless the type is
622      // actually used in the destination module. This can happen in situations
623      // like this:
624      //
625      //      Module A                         Module B
626      //      --------                         --------
627      //   %Z = type { %A }                %B = type { %C.1 }
628      //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
629      //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
630      //   %C = type { i8* }               %B.3 = type { %C.1 }
631      //
632      // When we link Module B with Module A, the '%B' in Module B is
633      // used. However, that would then use '%C.1'. But when we process '%C.1',
634      // we prefer to take the '%C' version. So we are then left with both
635      // '%C.1' and '%C' being used for the same types. This leads to some
636      // variables using one type and some using the other.
637      if (!SrcStructTypesSet.count(DST) && DstStructTypesSet.count(DST))
638        TypeMap.addTypeMapping(DST, ST);
639  }
640
641  // Don't bother incorporating aliases, they aren't generally typed well.
642
643  // Now that we have discovered all of the type equivalences, get a body for
644  // any 'opaque' types in the dest module that are now resolved.
645  TypeMap.linkDefinedTypeBodies();
646}
647
648/// linkAppendingVarProto - If there were any appending global variables, link
649/// them together now.  Return true on error.
650bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
651                                         GlobalVariable *SrcGV) {
652
653  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
654    return emitError("Linking globals named '" + SrcGV->getName() +
655           "': can only link appending global with another appending global!");
656
657  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
658  ArrayType *SrcTy =
659    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
660  Type *EltTy = DstTy->getElementType();
661
662  // Check to see that they two arrays agree on type.
663  if (EltTy != SrcTy->getElementType())
664    return emitError("Appending variables with different element types!");
665  if (DstGV->isConstant() != SrcGV->isConstant())
666    return emitError("Appending variables linked with different const'ness!");
667
668  if (DstGV->getAlignment() != SrcGV->getAlignment())
669    return emitError(
670             "Appending variables with different alignment need to be linked!");
671
672  if (DstGV->getVisibility() != SrcGV->getVisibility())
673    return emitError(
674            "Appending variables with different visibility need to be linked!");
675
676  if (DstGV->getSection() != SrcGV->getSection())
677    return emitError(
678          "Appending variables with different section name need to be linked!");
679
680  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
681  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
682
683  // Create the new global variable.
684  GlobalVariable *NG =
685    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
686                       DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
687                       DstGV->isThreadLocal(),
688                       DstGV->getType()->getAddressSpace());
689
690  // Propagate alignment, visibility and section info.
691  copyGVAttributes(NG, DstGV);
692
693  AppendingVarInfo AVI;
694  AVI.NewGV = NG;
695  AVI.DstInit = DstGV->getInitializer();
696  AVI.SrcInit = SrcGV->getInitializer();
697  AppendingVars.push_back(AVI);
698
699  // Replace any uses of the two global variables with uses of the new
700  // global.
701  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
702
703  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
704  DstGV->eraseFromParent();
705
706  // Track the source variable so we don't try to link it.
707  DoNotLinkFromSource.insert(SrcGV);
708
709  return false;
710}
711
712/// linkGlobalProto - Loop through the global variables in the src module and
713/// merge them into the dest module.
714bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
715  GlobalValue *DGV = getLinkedToGlobal(SGV);
716  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
717
718  if (DGV) {
719    // Concatenation of appending linkage variables is magic and handled later.
720    if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
721      return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
722
723    // Determine whether linkage of these two globals follows the source
724    // module's definition or the destination module's definition.
725    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
726    GlobalValue::VisibilityTypes NV;
727    bool LinkFromSrc = false;
728    if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
729      return true;
730    NewVisibility = NV;
731
732    // If we're not linking from the source, then keep the definition that we
733    // have.
734    if (!LinkFromSrc) {
735      // Special case for const propagation.
736      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
737        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
738          DGVar->setConstant(true);
739
740      // Set calculated linkage and visibility.
741      DGV->setLinkage(NewLinkage);
742      DGV->setVisibility(*NewVisibility);
743
744      // Make sure to remember this mapping.
745      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
746
747      // Track the source global so that we don't attempt to copy it over when
748      // processing global initializers.
749      DoNotLinkFromSource.insert(SGV);
750
751      return false;
752    }
753  }
754
755  // No linking to be performed or linking from the source: simply create an
756  // identical version of the symbol over in the dest module... the
757  // initializer will be filled in later by LinkGlobalInits.
758  GlobalVariable *NewDGV =
759    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
760                       SGV->isConstant(), SGV->getLinkage(), /*init*/0,
761                       SGV->getName(), /*insertbefore*/0,
762                       SGV->isThreadLocal(),
763                       SGV->getType()->getAddressSpace());
764  // Propagate alignment, visibility and section info.
765  copyGVAttributes(NewDGV, SGV);
766  if (NewVisibility)
767    NewDGV->setVisibility(*NewVisibility);
768
769  if (DGV) {
770    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
771    DGV->eraseFromParent();
772  }
773
774  // Make sure to remember this mapping.
775  ValueMap[SGV] = NewDGV;
776  return false;
777}
778
779/// linkFunctionProto - Link the function in the source module into the
780/// destination module if needed, setting up mapping information.
781bool ModuleLinker::linkFunctionProto(Function *SF) {
782  GlobalValue *DGV = getLinkedToGlobal(SF);
783  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
784
785  if (DGV) {
786    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
787    bool LinkFromSrc = false;
788    GlobalValue::VisibilityTypes NV;
789    if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
790      return true;
791    NewVisibility = NV;
792
793    if (!LinkFromSrc) {
794      // Set calculated linkage
795      DGV->setLinkage(NewLinkage);
796      DGV->setVisibility(*NewVisibility);
797
798      // Make sure to remember this mapping.
799      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
800
801      // Track the function from the source module so we don't attempt to remap
802      // it.
803      DoNotLinkFromSource.insert(SF);
804
805      return false;
806    }
807  }
808
809  // If there is no linkage to be performed or we are linking from the source,
810  // bring SF over.
811  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
812                                     SF->getLinkage(), SF->getName(), DstM);
813  copyGVAttributes(NewDF, SF);
814  if (NewVisibility)
815    NewDF->setVisibility(*NewVisibility);
816
817  if (DGV) {
818    // Any uses of DF need to change to NewDF, with cast.
819    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
820    DGV->eraseFromParent();
821  } else {
822    // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
823    if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
824        SF->hasAvailableExternallyLinkage()) {
825      DoNotLinkFromSource.insert(SF);
826      LazilyLinkFunctions.push_back(SF);
827    }
828  }
829
830  ValueMap[SF] = NewDF;
831  return false;
832}
833
834/// LinkAliasProto - Set up prototypes for any aliases that come over from the
835/// source module.
836bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
837  GlobalValue *DGV = getLinkedToGlobal(SGA);
838  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
839
840  if (DGV) {
841    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
842    GlobalValue::VisibilityTypes NV;
843    bool LinkFromSrc = false;
844    if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
845      return true;
846    NewVisibility = NV;
847
848    if (!LinkFromSrc) {
849      // Set calculated linkage.
850      DGV->setLinkage(NewLinkage);
851      DGV->setVisibility(*NewVisibility);
852
853      // Make sure to remember this mapping.
854      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
855
856      // Track the alias from the source module so we don't attempt to remap it.
857      DoNotLinkFromSource.insert(SGA);
858
859      return false;
860    }
861  }
862
863  // If there is no linkage to be performed or we're linking from the source,
864  // bring over SGA.
865  GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
866                                       SGA->getLinkage(), SGA->getName(),
867                                       /*aliasee*/0, DstM);
868  copyGVAttributes(NewDA, SGA);
869  if (NewVisibility)
870    NewDA->setVisibility(*NewVisibility);
871
872  if (DGV) {
873    // Any uses of DGV need to change to NewDA, with cast.
874    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
875    DGV->eraseFromParent();
876  }
877
878  ValueMap[SGA] = NewDA;
879  return false;
880}
881
882static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
883  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
884
885  for (unsigned i = 0; i != NumElements; ++i)
886    Dest.push_back(C->getAggregateElement(i));
887}
888
889void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
890  // Merge the initializer.
891  SmallVector<Constant*, 16> Elements;
892  getArrayElements(AVI.DstInit, Elements);
893
894  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
895  getArrayElements(SrcInit, Elements);
896
897  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
898  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
899}
900
901/// linkGlobalInits - Update the initializers in the Dest module now that all
902/// globals that may be referenced are in Dest.
903void ModuleLinker::linkGlobalInits() {
904  // Loop over all of the globals in the src module, mapping them over as we go
905  for (Module::const_global_iterator I = SrcM->global_begin(),
906       E = SrcM->global_end(); I != E; ++I) {
907
908    // Only process initialized GV's or ones not already in dest.
909    if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
910
911    // Grab destination global variable.
912    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
913    // Figure out what the initializer looks like in the dest module.
914    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
915                                 RF_None, &TypeMap));
916  }
917}
918
919/// linkFunctionBody - Copy the source function over into the dest function and
920/// fix up references to values.  At this point we know that Dest is an external
921/// function, and that Src is not.
922void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
923  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
924
925  // Go through and convert function arguments over, remembering the mapping.
926  Function::arg_iterator DI = Dst->arg_begin();
927  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
928       I != E; ++I, ++DI) {
929    DI->setName(I->getName());  // Copy the name over.
930
931    // Add a mapping to our mapping.
932    ValueMap[I] = DI;
933  }
934
935  if (Mode == Linker::DestroySource) {
936    // Splice the body of the source function into the dest function.
937    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
938
939    // At this point, all of the instructions and values of the function are now
940    // copied over.  The only problem is that they are still referencing values in
941    // the Source function as operands.  Loop through all of the operands of the
942    // functions and patch them up to point to the local versions.
943    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
944      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
945        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
946
947  } else {
948    // Clone the body of the function into the dest function.
949    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
950    CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
951  }
952
953  // There is no need to map the arguments anymore.
954  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
955       I != E; ++I)
956    ValueMap.erase(I);
957
958}
959
960/// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
961void ModuleLinker::linkAliasBodies() {
962  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
963       I != E; ++I) {
964    if (DoNotLinkFromSource.count(I))
965      continue;
966    if (Constant *Aliasee = I->getAliasee()) {
967      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
968      DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
969    }
970  }
971}
972
973/// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
974/// module.
975void ModuleLinker::linkNamedMDNodes() {
976  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
977  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
978       E = SrcM->named_metadata_end(); I != E; ++I) {
979    // Don't link module flags here. Do them separately.
980    if (&*I == SrcModFlags) continue;
981    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
982    // Add Src elements into Dest node.
983    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
984      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
985                                   RF_None, &TypeMap));
986  }
987}
988
989/// categorizeModuleFlagNodes - Categorize the module flags according to their
990/// type: Error, Warning, Override, and Require.
991bool ModuleLinker::
992categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
993                          DenseMap<MDString*, MDNode*> &ErrorNode,
994                          DenseMap<MDString*, MDNode*> &WarningNode,
995                          DenseMap<MDString*, MDNode*> &OverrideNode,
996                          DenseMap<MDString*,
997                            SmallSetVector<MDNode*, 8> > &RequireNodes,
998                          SmallSetVector<MDString*, 16> &SeenIDs) {
999  bool HasErr = false;
1000
1001  for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) {
1002    MDNode *Op = ModFlags->getOperand(I);
1003    assert(Op->getNumOperands() == 3 && "Invalid module flag metadata!");
1004    assert(isa<ConstantInt>(Op->getOperand(0)) &&
1005           "Module flag's first operand must be an integer!");
1006    assert(isa<MDString>(Op->getOperand(1)) &&
1007           "Module flag's second operand must be an MDString!");
1008
1009    ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
1010    MDString *ID = cast<MDString>(Op->getOperand(1));
1011    Value *Val = Op->getOperand(2);
1012    switch (Behavior->getZExtValue()) {
1013    default:
1014      assert(false && "Invalid behavior in module flag metadata!");
1015      break;
1016    case Module::Error: {
1017      MDNode *&ErrNode = ErrorNode[ID];
1018      if (!ErrNode) ErrNode = Op;
1019      if (ErrNode->getOperand(2) != Val)
1020        HasErr = emitError("linking module flags '" + ID->getString() +
1021                           "': IDs have conflicting values");
1022      break;
1023    }
1024    case Module::Warning: {
1025      MDNode *&WarnNode = WarningNode[ID];
1026      if (!WarnNode) WarnNode = Op;
1027      if (WarnNode->getOperand(2) != Val)
1028        errs() << "WARNING: linking module flags '" << ID->getString()
1029               << "': IDs have conflicting values";
1030      break;
1031    }
1032    case Module::Require:  RequireNodes[ID].insert(Op);     break;
1033    case Module::Override: {
1034      MDNode *&OvrNode = OverrideNode[ID];
1035      if (!OvrNode) OvrNode = Op;
1036      if (OvrNode->getOperand(2) != Val)
1037        HasErr = emitError("linking module flags '" + ID->getString() +
1038                           "': IDs have conflicting override values");
1039      break;
1040    }
1041    }
1042
1043    SeenIDs.insert(ID);
1044  }
1045
1046  return HasErr;
1047}
1048
1049/// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
1050/// module.
1051bool ModuleLinker::linkModuleFlagsMetadata() {
1052  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1053  if (!SrcModFlags) return false;
1054
1055  NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1056
1057  // If the destination module doesn't have module flags yet, then just copy
1058  // over the source module's flags.
1059  if (DstModFlags->getNumOperands() == 0) {
1060    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1061      DstModFlags->addOperand(SrcModFlags->getOperand(I));
1062
1063    return false;
1064  }
1065
1066  bool HasErr = false;
1067
1068  // Otherwise, we have to merge them based on their behaviors. First,
1069  // categorize all of the nodes in the modules' module flags. If an error or
1070  // warning occurs, then emit the appropriate message(s).
1071  DenseMap<MDString*, MDNode*> ErrorNode;
1072  DenseMap<MDString*, MDNode*> WarningNode;
1073  DenseMap<MDString*, MDNode*> OverrideNode;
1074  DenseMap<MDString*, SmallSetVector<MDNode*, 8> > RequireNodes;
1075  SmallSetVector<MDString*, 16> SeenIDs;
1076
1077  HasErr |= categorizeModuleFlagNodes(SrcModFlags, ErrorNode, WarningNode,
1078                                      OverrideNode, RequireNodes, SeenIDs);
1079  HasErr |= categorizeModuleFlagNodes(DstModFlags, ErrorNode, WarningNode,
1080                                      OverrideNode, RequireNodes, SeenIDs);
1081
1082  // Check that there isn't both an error and warning node for a flag.
1083  for (SmallSetVector<MDString*, 16>::iterator
1084         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1085    MDString *ID = *I;
1086    if (ErrorNode[ID] && WarningNode[ID])
1087      HasErr = emitError("linking module flags '" + ID->getString() +
1088                         "': IDs have conflicting behaviors");
1089  }
1090
1091  // Early exit if we had an error.
1092  if (HasErr) return true;
1093
1094  // Get the destination's module flags ready for new operands.
1095  DstModFlags->dropAllReferences();
1096
1097  // Add all of the module flags to the destination module.
1098  DenseMap<MDString*, SmallVector<MDNode*, 4> > AddedNodes;
1099  for (SmallSetVector<MDString*, 16>::iterator
1100         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1101    MDString *ID = *I;
1102    if (OverrideNode[ID]) {
1103      DstModFlags->addOperand(OverrideNode[ID]);
1104      AddedNodes[ID].push_back(OverrideNode[ID]);
1105    } else if (ErrorNode[ID]) {
1106      DstModFlags->addOperand(ErrorNode[ID]);
1107      AddedNodes[ID].push_back(ErrorNode[ID]);
1108    } else if (WarningNode[ID]) {
1109      DstModFlags->addOperand(WarningNode[ID]);
1110      AddedNodes[ID].push_back(WarningNode[ID]);
1111    }
1112
1113    for (SmallSetVector<MDNode*, 8>::iterator
1114           II = RequireNodes[ID].begin(), IE = RequireNodes[ID].end();
1115         II != IE; ++II)
1116      DstModFlags->addOperand(*II);
1117  }
1118
1119  // Now check that all of the requirements have been satisfied.
1120  for (SmallSetVector<MDString*, 16>::iterator
1121         I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1122    MDString *ID = *I;
1123    SmallSetVector<MDNode*, 8> &Set = RequireNodes[ID];
1124
1125    for (SmallSetVector<MDNode*, 8>::iterator
1126           II = Set.begin(), IE = Set.end(); II != IE; ++II) {
1127      MDNode *Node = *II;
1128      assert(isa<MDNode>(Node->getOperand(2)) &&
1129             "Module flag's third operand must be an MDNode!");
1130      MDNode *Val = cast<MDNode>(Node->getOperand(2));
1131
1132      MDString *ReqID = cast<MDString>(Val->getOperand(0));
1133      Value *ReqVal = Val->getOperand(1);
1134
1135      bool HasValue = false;
1136      for (SmallVectorImpl<MDNode*>::iterator
1137             RI = AddedNodes[ReqID].begin(), RE = AddedNodes[ReqID].end();
1138           RI != RE; ++RI) {
1139        MDNode *ReqNode = *RI;
1140        if (ReqNode->getOperand(2) == ReqVal) {
1141          HasValue = true;
1142          break;
1143        }
1144      }
1145
1146      if (!HasValue)
1147        HasErr = emitError("linking module flags '" + ReqID->getString() +
1148                           "': does not have the required value");
1149    }
1150  }
1151
1152  return HasErr;
1153}
1154
1155bool ModuleLinker::run() {
1156  assert(DstM && "Null destination module");
1157  assert(SrcM && "Null source module");
1158
1159  // Inherit the target data from the source module if the destination module
1160  // doesn't have one already.
1161  if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
1162    DstM->setDataLayout(SrcM->getDataLayout());
1163
1164  // Copy the target triple from the source to dest if the dest's is empty.
1165  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1166    DstM->setTargetTriple(SrcM->getTargetTriple());
1167
1168  if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
1169      SrcM->getDataLayout() != DstM->getDataLayout())
1170    errs() << "WARNING: Linking two modules of different data layouts!\n";
1171  if (!SrcM->getTargetTriple().empty() &&
1172      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1173    errs() << "WARNING: Linking two modules of different target triples: ";
1174    if (!SrcM->getModuleIdentifier().empty())
1175      errs() << SrcM->getModuleIdentifier() << ": ";
1176    errs() << "'" << SrcM->getTargetTriple() << "' and '"
1177           << DstM->getTargetTriple() << "'\n";
1178  }
1179
1180  // Append the module inline asm string.
1181  if (!SrcM->getModuleInlineAsm().empty()) {
1182    if (DstM->getModuleInlineAsm().empty())
1183      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1184    else
1185      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1186                               SrcM->getModuleInlineAsm());
1187  }
1188
1189  // Update the destination module's dependent libraries list with the libraries
1190  // from the source module. There's no opportunity for duplicates here as the
1191  // Module ensures that duplicate insertions are discarded.
1192  for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
1193       SI != SE; ++SI)
1194    DstM->addLibrary(*SI);
1195
1196  // If the source library's module id is in the dependent library list of the
1197  // destination library, remove it since that module is now linked in.
1198  StringRef ModuleId = SrcM->getModuleIdentifier();
1199  if (!ModuleId.empty())
1200    DstM->removeLibrary(sys::path::stem(ModuleId));
1201
1202  // Loop over all of the linked values to compute type mappings.
1203  computeTypeMapping();
1204
1205  // Insert all of the globals in src into the DstM module... without linking
1206  // initializers (which could refer to functions not yet mapped over).
1207  for (Module::global_iterator I = SrcM->global_begin(),
1208       E = SrcM->global_end(); I != E; ++I)
1209    if (linkGlobalProto(I))
1210      return true;
1211
1212  // Link the functions together between the two modules, without doing function
1213  // bodies... this just adds external function prototypes to the DstM
1214  // function...  We do this so that when we begin processing function bodies,
1215  // all of the global values that may be referenced are available in our
1216  // ValueMap.
1217  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1218    if (linkFunctionProto(I))
1219      return true;
1220
1221  // If there were any aliases, link them now.
1222  for (Module::alias_iterator I = SrcM->alias_begin(),
1223       E = SrcM->alias_end(); I != E; ++I)
1224    if (linkAliasProto(I))
1225      return true;
1226
1227  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1228    linkAppendingVarInit(AppendingVars[i]);
1229
1230  // Update the initializers in the DstM module now that all globals that may
1231  // be referenced are in DstM.
1232  linkGlobalInits();
1233
1234  // Link in the function bodies that are defined in the source module into
1235  // DstM.
1236  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1237    // Skip if not linking from source.
1238    if (DoNotLinkFromSource.count(SF)) continue;
1239
1240    // Skip if no body (function is external) or materialize.
1241    if (SF->isDeclaration()) {
1242      if (!SF->isMaterializable())
1243        continue;
1244      if (SF->Materialize(&ErrorMsg))
1245        return true;
1246    }
1247
1248    linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
1249    SF->Dematerialize();
1250  }
1251
1252  // Resolve all uses of aliases with aliasees.
1253  linkAliasBodies();
1254
1255  // Remap all of the named MDNodes in Src into the DstM module. We do this
1256  // after linking GlobalValues so that MDNodes that reference GlobalValues
1257  // are properly remapped.
1258  linkNamedMDNodes();
1259
1260  // Merge the module flags into the DstM module.
1261  if (linkModuleFlagsMetadata())
1262    return true;
1263
1264  // Process vector of lazily linked in functions.
1265  bool LinkedInAnyFunctions;
1266  do {
1267    LinkedInAnyFunctions = false;
1268
1269    for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1270        E = LazilyLinkFunctions.end(); I != E; ++I) {
1271      if (!*I)
1272        continue;
1273
1274      Function *SF = *I;
1275      Function *DF = cast<Function>(ValueMap[SF]);
1276
1277      if (!DF->use_empty()) {
1278
1279        // Materialize if necessary.
1280        if (SF->isDeclaration()) {
1281          if (!SF->isMaterializable())
1282            continue;
1283          if (SF->Materialize(&ErrorMsg))
1284            return true;
1285        }
1286
1287        // Link in function body.
1288        linkFunctionBody(DF, SF);
1289        SF->Dematerialize();
1290
1291        // "Remove" from vector by setting the element to 0.
1292        *I = 0;
1293
1294        // Set flag to indicate we may have more functions to lazily link in
1295        // since we linked in a function.
1296        LinkedInAnyFunctions = true;
1297      }
1298    }
1299  } while (LinkedInAnyFunctions);
1300
1301  // Remove any prototypes of functions that were not actually linked in.
1302  for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1303      E = LazilyLinkFunctions.end(); I != E; ++I) {
1304    if (!*I)
1305      continue;
1306
1307    Function *SF = *I;
1308    Function *DF = cast<Function>(ValueMap[SF]);
1309    if (DF->use_empty())
1310      DF->eraseFromParent();
1311  }
1312
1313  // Now that all of the types from the source are used, resolve any structs
1314  // copied over to the dest that didn't exist there.
1315  TypeMap.linkDefinedTypeBodies();
1316
1317  return false;
1318}
1319
1320//===----------------------------------------------------------------------===//
1321// LinkModules entrypoint.
1322//===----------------------------------------------------------------------===//
1323
1324/// LinkModules - This function links two modules together, with the resulting
1325/// left module modified to be the composite of the two input modules.  If an
1326/// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1327/// the problem.  Upon failure, the Dest module could be in a modified state,
1328/// and shouldn't be relied on to be consistent.
1329bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1330                         std::string *ErrorMsg) {
1331  ModuleLinker TheLinker(Dest, Src, Mode);
1332  if (TheLinker.run()) {
1333    if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
1334    return true;
1335  }
1336
1337  return false;
1338}
1339
1340//===----------------------------------------------------------------------===//
1341// C API.
1342//===----------------------------------------------------------------------===//
1343
1344LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
1345                         LLVMLinkerMode Mode, char **OutMessages) {
1346  std::string Messages;
1347  LLVMBool Result = Linker::LinkModules(unwrap(Dest), unwrap(Src),
1348                                        Mode, OutMessages? &Messages : 0);
1349  if (OutMessages)
1350    *OutMessages = strdup(Messages.c_str());
1351  return Result;
1352}
1353