1//===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// For best-case performance on Cortex-A57, we should try to use a balanced
10// mix of odd and even D-registers when performing a critical sequence of
11// independent, non-quadword FP/ASIMD floating-point multiply or
12// multiply-accumulate operations.
13//
14// This pass attempts to detect situations where the register allocation may
15// adversely affect this load balancing and to change the registers used so as
16// to better utilize the CPU.
17//
18// Ideally we'd just take each multiply or multiply-accumulate in turn and
19// allocate it alternating even or odd registers. However, multiply-accumulates
20// are most efficiently performed in the same functional unit as their
21// accumulation operand. Therefore this pass tries to find maximal sequences
22// ("Chains") of multiply-accumulates linked via their accumulation operand,
23// and assign them all the same "color" (oddness/evenness).
24//
25// This optimization affects S-register and D-register floating point
26// multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
27// FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
28// not affected.
29//===----------------------------------------------------------------------===//
30
31#include "AArch64.h"
32#include "AArch64InstrInfo.h"
33#include "AArch64Subtarget.h"
34#include "llvm/ADT/BitVector.h"
35#include "llvm/ADT/EquivalenceClasses.h"
36#include "llvm/CodeGen/MachineFunction.h"
37#include "llvm/CodeGen/MachineFunctionPass.h"
38#include "llvm/CodeGen/MachineInstr.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/RegisterScavenging.h"
42#include "llvm/CodeGen/RegisterClassInfo.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/raw_ostream.h"
46#include <list>
47using namespace llvm;
48
49#define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
50
51// Enforce the algorithm to use the scavenged register even when the original
52// destination register is the correct color. Used for testing.
53static cl::opt<bool>
54TransformAll("aarch64-a57-fp-load-balancing-force-all",
55             cl::desc("Always modify dest registers regardless of color"),
56             cl::init(false), cl::Hidden);
57
58// Never use the balance information obtained from chains - return a specific
59// color always. Used for testing.
60static cl::opt<unsigned>
61OverrideBalance("aarch64-a57-fp-load-balancing-override",
62              cl::desc("Ignore balance information, always return "
63                       "(1: Even, 2: Odd)."),
64              cl::init(0), cl::Hidden);
65
66//===----------------------------------------------------------------------===//
67// Helper functions
68
69// Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
70static bool isMul(MachineInstr *MI) {
71  switch (MI->getOpcode()) {
72  case AArch64::FMULSrr:
73  case AArch64::FNMULSrr:
74  case AArch64::FMULDrr:
75  case AArch64::FNMULDrr:
76    return true;
77  default:
78    return false;
79  }
80}
81
82// Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
83static bool isMla(MachineInstr *MI) {
84  switch (MI->getOpcode()) {
85  case AArch64::FMSUBSrrr:
86  case AArch64::FMADDSrrr:
87  case AArch64::FNMSUBSrrr:
88  case AArch64::FNMADDSrrr:
89  case AArch64::FMSUBDrrr:
90  case AArch64::FMADDDrrr:
91  case AArch64::FNMSUBDrrr:
92  case AArch64::FNMADDDrrr:
93    return true;
94  default:
95    return false;
96  }
97}
98
99//===----------------------------------------------------------------------===//
100
101namespace {
102/// A "color", which is either even or odd. Yes, these aren't really colors
103/// but the algorithm is conceptually doing two-color graph coloring.
104enum class Color { Even, Odd };
105static const char *ColorNames[2] = { "Even", "Odd" };
106
107class Chain;
108
109class AArch64A57FPLoadBalancing : public MachineFunctionPass {
110  const AArch64InstrInfo *TII;
111  MachineRegisterInfo *MRI;
112  const TargetRegisterInfo *TRI;
113  RegisterClassInfo RCI;
114
115public:
116  static char ID;
117  explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {}
118
119  bool runOnMachineFunction(MachineFunction &F) override;
120
121  const char *getPassName() const override {
122    return "A57 FP Anti-dependency breaker";
123  }
124
125  void getAnalysisUsage(AnalysisUsage &AU) const override {
126    AU.setPreservesCFG();
127    MachineFunctionPass::getAnalysisUsage(AU);
128  }
129
130private:
131  bool runOnBasicBlock(MachineBasicBlock &MBB);
132  bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
133                     int &Balance);
134  bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
135  int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
136  void scanInstruction(MachineInstr *MI, unsigned Idx,
137                       std::map<unsigned, Chain*> &Active,
138                       std::set<std::unique_ptr<Chain>> &AllChains);
139  void maybeKillChain(MachineOperand &MO, unsigned Idx,
140                      std::map<unsigned, Chain*> &RegChains);
141  Color getColor(unsigned Register);
142  Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
143};
144char AArch64A57FPLoadBalancing::ID = 0;
145
146/// A Chain is a sequence of instructions that are linked together by
147/// an accumulation operand. For example:
148///
149///   fmul d0<def>, ?
150///   fmla d1<def>, ?, ?, d0<kill>
151///   fmla d2<def>, ?, ?, d1<kill>
152///
153/// There may be other instructions interleaved in the sequence that
154/// do not belong to the chain. These other instructions must not use
155/// the "chain" register at any point.
156///
157/// We currently only support chains where the "chain" operand is killed
158/// at each link in the chain for simplicity.
159/// A chain has three important instructions - Start, Last and Kill.
160///   * The start instruction is the first instruction in the chain.
161///   * Last is the final instruction in the chain.
162///   * Kill may or may not be defined. If defined, Kill is the instruction
163///     where the outgoing value of the Last instruction is killed.
164///     This information is important as if we know the outgoing value is
165///     killed with no intervening uses, we can safely change its register.
166///
167/// Without a kill instruction, we must assume the outgoing value escapes
168/// beyond our model and either must not change its register or must
169/// create a fixup FMOV to keep the old register value consistent.
170///
171class Chain {
172public:
173  /// The important (marker) instructions.
174  MachineInstr *StartInst, *LastInst, *KillInst;
175  /// The index, from the start of the basic block, that each marker
176  /// appears. These are stored so we can do quick interval tests.
177  unsigned StartInstIdx, LastInstIdx, KillInstIdx;
178  /// All instructions in the chain.
179  std::set<MachineInstr*> Insts;
180  /// True if KillInst cannot be modified. If this is true,
181  /// we cannot change LastInst's outgoing register.
182  /// This will be true for tied values and regmasks.
183  bool KillIsImmutable;
184  /// The "color" of LastInst. This will be the preferred chain color,
185  /// as changing intermediate nodes is easy but changing the last
186  /// instruction can be more tricky.
187  Color LastColor;
188
189  Chain(MachineInstr *MI, unsigned Idx, Color C)
190      : StartInst(MI), LastInst(MI), KillInst(nullptr),
191        StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
192        LastColor(C) {
193    Insts.insert(MI);
194  }
195
196  /// Add a new instruction into the chain. The instruction's dest operand
197  /// has the given color.
198  void add(MachineInstr *MI, unsigned Idx, Color C) {
199    LastInst = MI;
200    LastInstIdx = Idx;
201    LastColor = C;
202    assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
203           "Chain: broken invariant. A Chain can only be killed after its last "
204           "def");
205
206    Insts.insert(MI);
207  }
208
209  /// Return true if MI is a member of the chain.
210  bool contains(MachineInstr *MI) { return Insts.count(MI) > 0; }
211
212  /// Return the number of instructions in the chain.
213  unsigned size() const {
214    return Insts.size();
215  }
216
217  /// Inform the chain that its last active register (the dest register of
218  /// LastInst) is killed by MI with no intervening uses or defs.
219  void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
220    KillInst = MI;
221    KillInstIdx = Idx;
222    KillIsImmutable = Immutable;
223    assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
224           "Chain: broken invariant. A Chain can only be killed after its last "
225           "def");
226  }
227
228  /// Return the first instruction in the chain.
229  MachineInstr *getStart() const { return StartInst; }
230  /// Return the last instruction in the chain.
231  MachineInstr *getLast() const { return LastInst; }
232  /// Return the "kill" instruction (as set with setKill()) or NULL.
233  MachineInstr *getKill() const { return KillInst; }
234  /// Return an instruction that can be used as an iterator for the end
235  /// of the chain. This is the maximum of KillInst (if set) and LastInst.
236  MachineBasicBlock::iterator getEnd() const {
237    return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
238  }
239
240  /// Can the Kill instruction (assuming one exists) be modified?
241  bool isKillImmutable() const { return KillIsImmutable; }
242
243  /// Return the preferred color of this chain.
244  Color getPreferredColor() {
245    if (OverrideBalance != 0)
246      return OverrideBalance == 1 ? Color::Even : Color::Odd;
247    return LastColor;
248  }
249
250  /// Return true if this chain (StartInst..KillInst) overlaps with Other.
251  bool rangeOverlapsWith(const Chain &Other) const {
252    unsigned End = KillInst ? KillInstIdx : LastInstIdx;
253    unsigned OtherEnd = Other.KillInst ?
254      Other.KillInstIdx : Other.LastInstIdx;
255
256    return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
257  }
258
259  /// Return true if this chain starts before Other.
260  bool startsBefore(Chain *Other) {
261    return StartInstIdx < Other->StartInstIdx;
262  }
263
264  /// Return true if the group will require a fixup MOV at the end.
265  bool requiresFixup() const {
266    return (getKill() && isKillImmutable()) || !getKill();
267  }
268
269  /// Return a simple string representation of the chain.
270  std::string str() const {
271    std::string S;
272    raw_string_ostream OS(S);
273
274    OS << "{";
275    StartInst->print(OS, NULL, true);
276    OS << " -> ";
277    LastInst->print(OS, NULL, true);
278    if (KillInst) {
279      OS << " (kill @ ";
280      KillInst->print(OS, NULL, true);
281      OS << ")";
282    }
283    OS << "}";
284
285    return OS.str();
286  }
287
288};
289
290} // end anonymous namespace
291
292//===----------------------------------------------------------------------===//
293
294bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
295  bool Changed = false;
296  DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
297
298  const TargetMachine &TM = F.getTarget();
299  MRI = &F.getRegInfo();
300  TRI = F.getRegInfo().getTargetRegisterInfo();
301  TII = TM.getSubtarget<AArch64Subtarget>().getInstrInfo();
302  RCI.runOnMachineFunction(F);
303
304  for (auto &MBB : F) {
305    Changed |= runOnBasicBlock(MBB);
306  }
307
308  return Changed;
309}
310
311bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
312  bool Changed = false;
313  DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n");
314
315  // First, scan the basic block producing a set of chains.
316
317  // The currently "active" chains - chains that can be added to and haven't
318  // been killed yet. This is keyed by register - all chains can only have one
319  // "link" register between each inst in the chain.
320  std::map<unsigned, Chain*> ActiveChains;
321  std::set<std::unique_ptr<Chain>> AllChains;
322  unsigned Idx = 0;
323  for (auto &MI : MBB)
324    scanInstruction(&MI, Idx++, ActiveChains, AllChains);
325
326  DEBUG(dbgs() << "Scan complete, "<< AllChains.size() << " chains created.\n");
327
328  // Group the chains into disjoint sets based on their liveness range. This is
329  // a poor-man's version of graph coloring. Ideally we'd create an interference
330  // graph and perform full-on graph coloring on that, but;
331  //   (a) That's rather heavyweight for only two colors.
332  //   (b) We expect multiple disjoint interference regions - in practice the live
333  //       range of chains is quite small and they are clustered between loads
334  //       and stores.
335  EquivalenceClasses<Chain*> EC;
336  for (auto &I : AllChains)
337    EC.insert(I.get());
338
339  for (auto &I : AllChains)
340    for (auto &J : AllChains)
341      if (I != J && I->rangeOverlapsWith(*J))
342        EC.unionSets(I.get(), J.get());
343  DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
344
345  // Now we assume that every member of an equivalence class interferes
346  // with every other member of that class, and with no members of other classes.
347
348  // Convert the EquivalenceClasses to a simpler set of sets.
349  std::vector<std::vector<Chain*> > V;
350  for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
351    std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
352    if (Cs.empty()) continue;
353    V.push_back(Cs);
354  }
355
356  // Now we have a set of sets, order them by start address so
357  // we can iterate over them sequentially.
358  std::sort(V.begin(), V.end(),
359            [](const std::vector<Chain*> &A,
360               const std::vector<Chain*> &B) {
361      return A.front()->startsBefore(B.front());
362    });
363
364  // As we only have two colors, we can track the global (BB-level) balance of
365  // odds versus evens. We aim to keep this near zero to keep both execution
366  // units fed.
367  // Positive means we're even-heavy, negative we're odd-heavy.
368  //
369  // FIXME: If chains have interdependencies, for example:
370  //   mul r0, r1, r2
371  //   mul r3, r0, r1
372  // We do not model this and may color each one differently, assuming we'll
373  // get ILP when we obviously can't. This hasn't been seen to be a problem
374  // in practice so far, so we simplify the algorithm by ignoring it.
375  int Parity = 0;
376
377  for (auto &I : V)
378    Changed |= colorChainSet(I, MBB, Parity);
379
380  return Changed;
381}
382
383Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
384                                                  std::vector<Chain*> &L) {
385  if (L.empty())
386    return nullptr;
387
388  // We try and get the best candidate from L to color next, given that our
389  // preferred color is "PreferredColor". L is ordered from larger to smaller
390  // chains. It is beneficial to color the large chains before the small chains,
391  // but if we can't find a chain of the maximum length with the preferred color,
392  // we fuzz the size and look for slightly smaller chains before giving up and
393  // returning a chain that must be recolored.
394
395  // FIXME: Does this need to be configurable?
396  const unsigned SizeFuzz = 1;
397  unsigned MinSize = L.front()->size() - SizeFuzz;
398  for (auto I = L.begin(), E = L.end(); I != E; ++I) {
399    if ((*I)->size() <= MinSize) {
400      // We've gone past the size limit. Return the previous item.
401      Chain *Ch = *--I;
402      L.erase(I);
403      return Ch;
404    }
405
406    if ((*I)->getPreferredColor() == PreferredColor) {
407      Chain *Ch = *I;
408      L.erase(I);
409      return Ch;
410    }
411  }
412
413  // Bailout case - just return the first item.
414  Chain *Ch = L.front();
415  L.erase(L.begin());
416  return Ch;
417}
418
419bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
420                                              MachineBasicBlock &MBB,
421                                              int &Parity) {
422  bool Changed = false;
423  DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
424
425  // Sort by descending size order so that we allocate the most important
426  // sets first.
427  // Tie-break equivalent sizes by sorting chains requiring fixups before
428  // those without fixups. The logic here is that we should look at the
429  // chains that we cannot change before we look at those we can,
430  // so the parity counter is updated and we know what color we should
431  // change them to!
432  std::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) {
433      if (G1->size() != G2->size())
434        return G1->size() > G2->size();
435      return G1->requiresFixup() > G2->requiresFixup();
436    });
437
438  Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
439  while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
440    // Start off by assuming we'll color to our own preferred color.
441    Color C = PreferredColor;
442    if (Parity == 0)
443      // But if we really don't care, use the chain's preferred color.
444      C = G->getPreferredColor();
445
446    DEBUG(dbgs() << " - Parity=" << Parity << ", Color="
447          << ColorNames[(int)C] << "\n");
448
449    // If we'll need a fixup FMOV, don't bother. Testing has shown that this
450    // happens infrequently and when it does it has at least a 50% chance of
451    // slowing code down instead of speeding it up.
452    if (G->requiresFixup() && C != G->getPreferredColor()) {
453      C = G->getPreferredColor();
454      DEBUG(dbgs() << " - " << G->str() << " - not worthwhile changing; "
455            "color remains " << ColorNames[(int)C] << "\n");
456    }
457
458    Changed |= colorChain(G, C, MBB);
459
460    Parity += (C == Color::Even) ? G->size() : -G->size();
461    PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
462  }
463
464  return Changed;
465}
466
467int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
468                                                MachineBasicBlock &MBB) {
469  RegScavenger RS;
470  RS.enterBasicBlock(&MBB);
471  RS.forward(MachineBasicBlock::iterator(G->getStart()));
472
473  // Can we find an appropriate register that is available throughout the life
474  // of the chain?
475  unsigned RegClassID = G->getStart()->getDesc().OpInfo[0].RegClass;
476  BitVector AvailableRegs = RS.getRegsAvailable(TRI->getRegClass(RegClassID));
477  for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
478       I != E; ++I) {
479    RS.forward(I);
480    AvailableRegs &= RS.getRegsAvailable(TRI->getRegClass(RegClassID));
481
482    // Remove any registers clobbered by a regmask.
483    for (auto J : I->operands()) {
484      if (J.isRegMask())
485        AvailableRegs.clearBitsNotInMask(J.getRegMask());
486    }
487  }
488
489  // Make sure we allocate in-order, to get the cheapest registers first.
490  auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
491  for (auto Reg : Ord) {
492    if (!AvailableRegs[Reg])
493      continue;
494    if ((C == Color::Even && (Reg % 2) == 0) ||
495        (C == Color::Odd && (Reg % 2) == 1))
496      return Reg;
497  }
498
499  return -1;
500}
501
502bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
503                                           MachineBasicBlock &MBB) {
504  bool Changed = false;
505  DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
506        << ColorNames[(int)C] << ")\n");
507
508  // Try and obtain a free register of the right class. Without a register
509  // to play with we cannot continue.
510  int Reg = scavengeRegister(G, C, MBB);
511  if (Reg == -1) {
512    DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
513    return false;
514  }
515  DEBUG(dbgs() << " - Scavenged register: " << TRI->getName(Reg) << "\n");
516
517  std::map<unsigned, unsigned> Substs;
518  for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
519       I != E; ++I) {
520    if (!G->contains(I) &&
521        (&*I != G->getKill() || G->isKillImmutable()))
522      continue;
523
524    // I is a member of G, or I is a mutable instruction that kills G.
525
526    std::vector<unsigned> ToErase;
527    for (auto &U : I->operands()) {
528      if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
529        unsigned OrigReg = U.getReg();
530        U.setReg(Substs[OrigReg]);
531        if (U.isKill())
532          // Don't erase straight away, because there may be other operands
533          // that also reference this substitution!
534          ToErase.push_back(OrigReg);
535      } else if (U.isRegMask()) {
536        for (auto J : Substs) {
537          if (U.clobbersPhysReg(J.first))
538            ToErase.push_back(J.first);
539        }
540      }
541    }
542    // Now it's safe to remove the substs identified earlier.
543    for (auto J : ToErase)
544      Substs.erase(J);
545
546    // Only change the def if this isn't the last instruction.
547    if (&*I != G->getKill()) {
548      MachineOperand &MO = I->getOperand(0);
549
550      bool Change = TransformAll || getColor(MO.getReg()) != C;
551      if (G->requiresFixup() && &*I == G->getLast())
552        Change = false;
553
554      if (Change) {
555        Substs[MO.getReg()] = Reg;
556        MO.setReg(Reg);
557        MRI->setPhysRegUsed(Reg);
558
559        Changed = true;
560      }
561    }
562  }
563  assert(Substs.size() == 0 && "No substitutions should be left active!");
564
565  if (G->getKill()) {
566    DEBUG(dbgs() << " - Kill instruction seen.\n");
567  } else {
568    // We didn't have a kill instruction, but we didn't seem to need to change
569    // the destination register anyway.
570    DEBUG(dbgs() << " - Destination register not changed.\n");
571  }
572  return Changed;
573}
574
575void AArch64A57FPLoadBalancing::
576scanInstruction(MachineInstr *MI, unsigned Idx,
577                std::map<unsigned, Chain*> &ActiveChains,
578                std::set<std::unique_ptr<Chain>> &AllChains) {
579  // Inspect "MI", updating ActiveChains and AllChains.
580
581  if (isMul(MI)) {
582
583    for (auto &I : MI->uses())
584      maybeKillChain(I, Idx, ActiveChains);
585    for (auto &I : MI->defs())
586      maybeKillChain(I, Idx, ActiveChains);
587
588    // Create a new chain. Multiplies don't require forwarding so can go on any
589    // unit.
590    unsigned DestReg = MI->getOperand(0).getReg();
591
592    DEBUG(dbgs() << "New chain started for register "
593          << TRI->getName(DestReg) << " at " << *MI);
594
595    auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
596    ActiveChains[DestReg] = G.get();
597    AllChains.insert(std::move(G));
598
599  } else if (isMla(MI)) {
600
601    // It is beneficial to keep MLAs on the same functional unit as their
602    // accumulator operand.
603    unsigned DestReg  = MI->getOperand(0).getReg();
604    unsigned AccumReg = MI->getOperand(3).getReg();
605
606    maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
607    maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
608    if (DestReg != AccumReg)
609      maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
610
611    if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
612      DEBUG(dbgs() << "Chain found for accumulator register "
613            << TRI->getName(AccumReg) << " in MI " << *MI);
614
615      // For simplicity we only chain together sequences of MULs/MLAs where the
616      // accumulator register is killed on each instruction. This means we don't
617      // need to track other uses of the registers we want to rewrite.
618      //
619      // FIXME: We could extend to handle the non-kill cases for more coverage.
620      if (MI->getOperand(3).isKill()) {
621        // Add to chain.
622        DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
623        ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
624        // Handle cases where the destination is not the same as the accumulator.
625        if (DestReg != AccumReg) {
626          ActiveChains[DestReg] = ActiveChains[AccumReg];
627          ActiveChains.erase(AccumReg);
628        }
629        return;
630      }
631
632      DEBUG(dbgs() << "Cannot add to chain because accumulator operand wasn't "
633            << "marked <kill>!\n");
634      maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
635    }
636
637    DEBUG(dbgs() << "Creating new chain for dest register "
638          << TRI->getName(DestReg) << "\n");
639    auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
640    ActiveChains[DestReg] = G.get();
641    AllChains.insert(std::move(G));
642
643  } else {
644
645    // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
646    // lists.
647    for (auto &I : MI->uses())
648      maybeKillChain(I, Idx, ActiveChains);
649    for (auto &I : MI->defs())
650      maybeKillChain(I, Idx, ActiveChains);
651
652  }
653}
654
655void AArch64A57FPLoadBalancing::
656maybeKillChain(MachineOperand &MO, unsigned Idx,
657               std::map<unsigned, Chain*> &ActiveChains) {
658  // Given an operand and the set of active chains (keyed by register),
659  // determine if a chain should be ended and remove from ActiveChains.
660  MachineInstr *MI = MO.getParent();
661
662  if (MO.isReg()) {
663
664    // If this is a KILL of a current chain, record it.
665    if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
666      DEBUG(dbgs() << "Kill seen for chain " << TRI->getName(MO.getReg())
667            << "\n");
668      ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
669    }
670    ActiveChains.erase(MO.getReg());
671
672  } else if (MO.isRegMask()) {
673
674    for (auto I = ActiveChains.begin(), E = ActiveChains.end();
675         I != E;) {
676      if (MO.clobbersPhysReg(I->first)) {
677        DEBUG(dbgs() << "Kill (regmask) seen for chain "
678              << TRI->getName(I->first) << "\n");
679        I->second->setKill(MI, Idx, /*Immutable=*/true);
680        ActiveChains.erase(I++);
681      } else
682        ++I;
683    }
684
685  }
686}
687
688Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
689  if ((TRI->getEncodingValue(Reg) % 2) == 0)
690    return Color::Even;
691  else
692    return Color::Odd;
693}
694
695// Factory function used by AArch64TargetMachine to add the pass to the passmanager.
696FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
697  return new AArch64A57FPLoadBalancing();
698}
699