AArch64FastISel.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- AArch6464FastISel.cpp - AArch64 FastISel implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the AArch64-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// AArch64GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "AArch64.h"
17#include "AArch64TargetMachine.h"
18#include "AArch64Subtarget.h"
19#include "MCTargetDesc/AArch64AddressingModes.h"
20#include "llvm/CodeGen/CallingConvLower.h"
21#include "llvm/CodeGen/FastISel.h"
22#include "llvm/CodeGen/FunctionLoweringInfo.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GetElementPtrTypeIterator.h"
32#include "llvm/IR/GlobalAlias.h"
33#include "llvm/IR/GlobalVariable.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
36#include "llvm/IR/Operator.h"
37#include "llvm/Support/CommandLine.h"
38using namespace llvm;
39
40namespace {
41
42class AArch64FastISel : public FastISel {
43
44  class Address {
45  public:
46    typedef enum {
47      RegBase,
48      FrameIndexBase
49    } BaseKind;
50
51  private:
52    BaseKind Kind;
53    union {
54      unsigned Reg;
55      int FI;
56    } Base;
57    int64_t Offset;
58
59  public:
60    Address() : Kind(RegBase), Offset(0) { Base.Reg = 0; }
61    void setKind(BaseKind K) { Kind = K; }
62    BaseKind getKind() const { return Kind; }
63    bool isRegBase() const { return Kind == RegBase; }
64    bool isFIBase() const { return Kind == FrameIndexBase; }
65    void setReg(unsigned Reg) {
66      assert(isRegBase() && "Invalid base register access!");
67      Base.Reg = Reg;
68    }
69    unsigned getReg() const {
70      assert(isRegBase() && "Invalid base register access!");
71      return Base.Reg;
72    }
73    void setFI(unsigned FI) {
74      assert(isFIBase() && "Invalid base frame index  access!");
75      Base.FI = FI;
76    }
77    unsigned getFI() const {
78      assert(isFIBase() && "Invalid base frame index access!");
79      return Base.FI;
80    }
81    void setOffset(int64_t O) { Offset = O; }
82    int64_t getOffset() { return Offset; }
83
84    bool isValid() { return isFIBase() || (isRegBase() && getReg() != 0); }
85  };
86
87  /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
88  /// make the right decision when generating code for different targets.
89  const AArch64Subtarget *Subtarget;
90  LLVMContext *Context;
91
92private:
93  // Selection routines.
94  bool SelectLoad(const Instruction *I);
95  bool SelectStore(const Instruction *I);
96  bool SelectBranch(const Instruction *I);
97  bool SelectIndirectBr(const Instruction *I);
98  bool SelectCmp(const Instruction *I);
99  bool SelectSelect(const Instruction *I);
100  bool SelectFPExt(const Instruction *I);
101  bool SelectFPTrunc(const Instruction *I);
102  bool SelectFPToInt(const Instruction *I, bool Signed);
103  bool SelectIntToFP(const Instruction *I, bool Signed);
104  bool SelectRem(const Instruction *I, unsigned ISDOpcode);
105  bool SelectCall(const Instruction *I, const char *IntrMemName);
106  bool SelectIntrinsicCall(const IntrinsicInst &I);
107  bool SelectRet(const Instruction *I);
108  bool SelectTrunc(const Instruction *I);
109  bool SelectIntExt(const Instruction *I);
110  bool SelectMul(const Instruction *I);
111
112  // Utility helper routines.
113  bool isTypeLegal(Type *Ty, MVT &VT);
114  bool isLoadStoreTypeLegal(Type *Ty, MVT &VT);
115  bool ComputeAddress(const Value *Obj, Address &Addr);
116  bool SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor,
117                       bool UseUnscaled);
118  void AddLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
119                            unsigned Flags, bool UseUnscaled);
120  bool IsMemCpySmall(uint64_t Len, unsigned Alignment);
121  bool TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
122                          unsigned Alignment);
123  // Emit functions.
124  bool EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt);
125  bool EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
126                bool UseUnscaled = false);
127  bool EmitStore(MVT VT, unsigned SrcReg, Address Addr,
128                 bool UseUnscaled = false);
129  unsigned EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
130  unsigned Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
131
132  unsigned AArch64MaterializeFP(const ConstantFP *CFP, MVT VT);
133  unsigned AArch64MaterializeGV(const GlobalValue *GV);
134
135  // Call handling routines.
136private:
137  CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
138  bool ProcessCallArgs(SmallVectorImpl<Value *> &Args,
139                       SmallVectorImpl<unsigned> &ArgRegs,
140                       SmallVectorImpl<MVT> &ArgVTs,
141                       SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
142                       SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC,
143                       unsigned &NumBytes);
144  bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
145                  const Instruction *I, CallingConv::ID CC, unsigned &NumBytes);
146
147public:
148  // Backend specific FastISel code.
149  unsigned TargetMaterializeAlloca(const AllocaInst *AI) override;
150  unsigned TargetMaterializeConstant(const Constant *C) override;
151
152  explicit AArch64FastISel(FunctionLoweringInfo &funcInfo,
153                         const TargetLibraryInfo *libInfo)
154      : FastISel(funcInfo, libInfo) {
155    Subtarget = &TM.getSubtarget<AArch64Subtarget>();
156    Context = &funcInfo.Fn->getContext();
157  }
158
159  bool TargetSelectInstruction(const Instruction *I) override;
160
161#include "AArch64GenFastISel.inc"
162};
163
164} // end anonymous namespace
165
166#include "AArch64GenCallingConv.inc"
167
168CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
169  if (CC == CallingConv::WebKit_JS)
170    return CC_AArch64_WebKit_JS;
171  return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS;
172}
173
174unsigned AArch64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
175  assert(TLI.getValueType(AI->getType(), true) == MVT::i64 &&
176         "Alloca should always return a pointer.");
177
178  // Don't handle dynamic allocas.
179  if (!FuncInfo.StaticAllocaMap.count(AI))
180    return 0;
181
182  DenseMap<const AllocaInst *, int>::iterator SI =
183      FuncInfo.StaticAllocaMap.find(AI);
184
185  if (SI != FuncInfo.StaticAllocaMap.end()) {
186    unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
187    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
188            ResultReg)
189        .addFrameIndex(SI->second)
190        .addImm(0)
191        .addImm(0);
192    return ResultReg;
193  }
194
195  return 0;
196}
197
198unsigned AArch64FastISel::AArch64MaterializeFP(const ConstantFP *CFP, MVT VT) {
199  if (VT != MVT::f32 && VT != MVT::f64)
200    return 0;
201
202  const APFloat Val = CFP->getValueAPF();
203  bool is64bit = (VT == MVT::f64);
204
205  // This checks to see if we can use FMOV instructions to materialize
206  // a constant, otherwise we have to materialize via the constant pool.
207  if (TLI.isFPImmLegal(Val, VT)) {
208    int Imm;
209    unsigned Opc;
210    if (is64bit) {
211      Imm = AArch64_AM::getFP64Imm(Val);
212      Opc = AArch64::FMOVDi;
213    } else {
214      Imm = AArch64_AM::getFP32Imm(Val);
215      Opc = AArch64::FMOVSi;
216    }
217    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
218    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
219        .addImm(Imm);
220    return ResultReg;
221  }
222
223  // Materialize via constant pool.  MachineConstantPool wants an explicit
224  // alignment.
225  unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
226  if (Align == 0)
227    Align = DL.getTypeAllocSize(CFP->getType());
228
229  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
230  unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
231  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
232          ADRPReg).addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGE);
233
234  unsigned Opc = is64bit ? AArch64::LDRDui : AArch64::LDRSui;
235  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
236  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
237      .addReg(ADRPReg)
238      .addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
239  return ResultReg;
240}
241
242unsigned AArch64FastISel::AArch64MaterializeGV(const GlobalValue *GV) {
243  // We can't handle thread-local variables quickly yet.
244  if (GV->isThreadLocal())
245    return 0;
246
247  // MachO still uses GOT for large code-model accesses, but ELF requires
248  // movz/movk sequences, which FastISel doesn't handle yet.
249  if (TM.getCodeModel() != CodeModel::Small && !Subtarget->isTargetMachO())
250    return 0;
251
252  unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM);
253
254  EVT DestEVT = TLI.getValueType(GV->getType(), true);
255  if (!DestEVT.isSimple())
256    return 0;
257
258  unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
259  unsigned ResultReg;
260
261  if (OpFlags & AArch64II::MO_GOT) {
262    // ADRP + LDRX
263    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
264            ADRPReg)
265        .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE);
266
267    ResultReg = createResultReg(&AArch64::GPR64RegClass);
268    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
269            ResultReg)
270        .addReg(ADRPReg)
271        .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
272                          AArch64II::MO_NC);
273  } else {
274    // ADRP + ADDX
275    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
276            ADRPReg).addGlobalAddress(GV, 0, AArch64II::MO_PAGE);
277
278    ResultReg = createResultReg(&AArch64::GPR64spRegClass);
279    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
280            ResultReg)
281        .addReg(ADRPReg)
282        .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC)
283        .addImm(0);
284  }
285  return ResultReg;
286}
287
288unsigned AArch64FastISel::TargetMaterializeConstant(const Constant *C) {
289  EVT CEVT = TLI.getValueType(C->getType(), true);
290
291  // Only handle simple types.
292  if (!CEVT.isSimple())
293    return 0;
294  MVT VT = CEVT.getSimpleVT();
295
296  // FIXME: Handle ConstantInt.
297  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
298    return AArch64MaterializeFP(CFP, VT);
299  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
300    return AArch64MaterializeGV(GV);
301
302  return 0;
303}
304
305// Computes the address to get to an object.
306bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
307  const User *U = nullptr;
308  unsigned Opcode = Instruction::UserOp1;
309  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
310    // Don't walk into other basic blocks unless the object is an alloca from
311    // another block, otherwise it may not have a virtual register assigned.
312    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
313        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
314      Opcode = I->getOpcode();
315      U = I;
316    }
317  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
318    Opcode = C->getOpcode();
319    U = C;
320  }
321
322  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
323    if (Ty->getAddressSpace() > 255)
324      // Fast instruction selection doesn't support the special
325      // address spaces.
326      return false;
327
328  switch (Opcode) {
329  default:
330    break;
331  case Instruction::BitCast: {
332    // Look through bitcasts.
333    return ComputeAddress(U->getOperand(0), Addr);
334  }
335  case Instruction::IntToPtr: {
336    // Look past no-op inttoptrs.
337    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
338      return ComputeAddress(U->getOperand(0), Addr);
339    break;
340  }
341  case Instruction::PtrToInt: {
342    // Look past no-op ptrtoints.
343    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
344      return ComputeAddress(U->getOperand(0), Addr);
345    break;
346  }
347  case Instruction::GetElementPtr: {
348    Address SavedAddr = Addr;
349    uint64_t TmpOffset = Addr.getOffset();
350
351    // Iterate through the GEP folding the constants into offsets where
352    // we can.
353    gep_type_iterator GTI = gep_type_begin(U);
354    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
355         ++i, ++GTI) {
356      const Value *Op = *i;
357      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
358        const StructLayout *SL = DL.getStructLayout(STy);
359        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
360        TmpOffset += SL->getElementOffset(Idx);
361      } else {
362        uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
363        for (;;) {
364          if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
365            // Constant-offset addressing.
366            TmpOffset += CI->getSExtValue() * S;
367            break;
368          }
369          if (canFoldAddIntoGEP(U, Op)) {
370            // A compatible add with a constant operand. Fold the constant.
371            ConstantInt *CI =
372                cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
373            TmpOffset += CI->getSExtValue() * S;
374            // Iterate on the other operand.
375            Op = cast<AddOperator>(Op)->getOperand(0);
376            continue;
377          }
378          // Unsupported
379          goto unsupported_gep;
380        }
381      }
382    }
383
384    // Try to grab the base operand now.
385    Addr.setOffset(TmpOffset);
386    if (ComputeAddress(U->getOperand(0), Addr))
387      return true;
388
389    // We failed, restore everything and try the other options.
390    Addr = SavedAddr;
391
392  unsupported_gep:
393    break;
394  }
395  case Instruction::Alloca: {
396    const AllocaInst *AI = cast<AllocaInst>(Obj);
397    DenseMap<const AllocaInst *, int>::iterator SI =
398        FuncInfo.StaticAllocaMap.find(AI);
399    if (SI != FuncInfo.StaticAllocaMap.end()) {
400      Addr.setKind(Address::FrameIndexBase);
401      Addr.setFI(SI->second);
402      return true;
403    }
404    break;
405  }
406  }
407
408  // Try to get this in a register if nothing else has worked.
409  if (!Addr.isValid())
410    Addr.setReg(getRegForValue(Obj));
411  return Addr.isValid();
412}
413
414bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
415  EVT evt = TLI.getValueType(Ty, true);
416
417  // Only handle simple types.
418  if (evt == MVT::Other || !evt.isSimple())
419    return false;
420  VT = evt.getSimpleVT();
421
422  // This is a legal type, but it's not something we handle in fast-isel.
423  if (VT == MVT::f128)
424    return false;
425
426  // Handle all other legal types, i.e. a register that will directly hold this
427  // value.
428  return TLI.isTypeLegal(VT);
429}
430
431bool AArch64FastISel::isLoadStoreTypeLegal(Type *Ty, MVT &VT) {
432  if (isTypeLegal(Ty, VT))
433    return true;
434
435  // If this is a type than can be sign or zero-extended to a basic operation
436  // go ahead and accept it now. For stores, this reflects truncation.
437  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
438    return true;
439
440  return false;
441}
442
443bool AArch64FastISel::SimplifyAddress(Address &Addr, MVT VT,
444                                      int64_t ScaleFactor, bool UseUnscaled) {
445  bool needsLowering = false;
446  int64_t Offset = Addr.getOffset();
447  switch (VT.SimpleTy) {
448  default:
449    return false;
450  case MVT::i1:
451  case MVT::i8:
452  case MVT::i16:
453  case MVT::i32:
454  case MVT::i64:
455  case MVT::f32:
456  case MVT::f64:
457    if (!UseUnscaled)
458      // Using scaled, 12-bit, unsigned immediate offsets.
459      needsLowering = ((Offset & 0xfff) != Offset);
460    else
461      // Using unscaled, 9-bit, signed immediate offsets.
462      needsLowering = (Offset > 256 || Offset < -256);
463    break;
464  }
465
466  //If this is a stack pointer and the offset needs to be simplified then put
467  // the alloca address into a register, set the base type back to register and
468  // continue. This should almost never happen.
469  if (needsLowering && Addr.getKind() == Address::FrameIndexBase) {
470    unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
471    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
472            ResultReg)
473        .addFrameIndex(Addr.getFI())
474        .addImm(0)
475        .addImm(0);
476    Addr.setKind(Address::RegBase);
477    Addr.setReg(ResultReg);
478  }
479
480  // Since the offset is too large for the load/store instruction get the
481  // reg+offset into a register.
482  if (needsLowering) {
483    uint64_t UnscaledOffset = Addr.getOffset() * ScaleFactor;
484    unsigned ResultReg = FastEmit_ri_(MVT::i64, ISD::ADD, Addr.getReg(), false,
485                                      UnscaledOffset, MVT::i64);
486    if (ResultReg == 0)
487      return false;
488    Addr.setReg(ResultReg);
489    Addr.setOffset(0);
490  }
491  return true;
492}
493
494void AArch64FastISel::AddLoadStoreOperands(Address &Addr,
495                                           const MachineInstrBuilder &MIB,
496                                           unsigned Flags, bool UseUnscaled) {
497  int64_t Offset = Addr.getOffset();
498  // Frame base works a bit differently. Handle it separately.
499  if (Addr.getKind() == Address::FrameIndexBase) {
500    int FI = Addr.getFI();
501    // FIXME: We shouldn't be using getObjectSize/getObjectAlignment.  The size
502    // and alignment should be based on the VT.
503    MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
504        MachinePointerInfo::getFixedStack(FI, Offset), Flags,
505        MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
506    // Now add the rest of the operands.
507    MIB.addFrameIndex(FI).addImm(Offset).addMemOperand(MMO);
508  } else {
509    // Now add the rest of the operands.
510    MIB.addReg(Addr.getReg());
511    MIB.addImm(Offset);
512  }
513}
514
515bool AArch64FastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
516                               bool UseUnscaled) {
517  // Negative offsets require unscaled, 9-bit, signed immediate offsets.
518  // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
519  if (!UseUnscaled && Addr.getOffset() < 0)
520    UseUnscaled = true;
521
522  unsigned Opc;
523  const TargetRegisterClass *RC;
524  bool VTIsi1 = false;
525  int64_t ScaleFactor = 0;
526  switch (VT.SimpleTy) {
527  default:
528    return false;
529  case MVT::i1:
530    VTIsi1 = true;
531  // Intentional fall-through.
532  case MVT::i8:
533    Opc = UseUnscaled ? AArch64::LDURBBi : AArch64::LDRBBui;
534    RC = &AArch64::GPR32RegClass;
535    ScaleFactor = 1;
536    break;
537  case MVT::i16:
538    Opc = UseUnscaled ? AArch64::LDURHHi : AArch64::LDRHHui;
539    RC = &AArch64::GPR32RegClass;
540    ScaleFactor = 2;
541    break;
542  case MVT::i32:
543    Opc = UseUnscaled ? AArch64::LDURWi : AArch64::LDRWui;
544    RC = &AArch64::GPR32RegClass;
545    ScaleFactor = 4;
546    break;
547  case MVT::i64:
548    Opc = UseUnscaled ? AArch64::LDURXi : AArch64::LDRXui;
549    RC = &AArch64::GPR64RegClass;
550    ScaleFactor = 8;
551    break;
552  case MVT::f32:
553    Opc = UseUnscaled ? AArch64::LDURSi : AArch64::LDRSui;
554    RC = TLI.getRegClassFor(VT);
555    ScaleFactor = 4;
556    break;
557  case MVT::f64:
558    Opc = UseUnscaled ? AArch64::LDURDi : AArch64::LDRDui;
559    RC = TLI.getRegClassFor(VT);
560    ScaleFactor = 8;
561    break;
562  }
563  // Scale the offset.
564  if (!UseUnscaled) {
565    int64_t Offset = Addr.getOffset();
566    if (Offset & (ScaleFactor - 1))
567      // Retry using an unscaled, 9-bit, signed immediate offset.
568      return EmitLoad(VT, ResultReg, Addr, /*UseUnscaled*/ true);
569
570    Addr.setOffset(Offset / ScaleFactor);
571  }
572
573  // Simplify this down to something we can handle.
574  if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
575    return false;
576
577  // Create the base instruction, then add the operands.
578  ResultReg = createResultReg(RC);
579  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
580                                    TII.get(Opc), ResultReg);
581  AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, UseUnscaled);
582
583  // Loading an i1 requires special handling.
584  if (VTIsi1) {
585    MRI.constrainRegClass(ResultReg, &AArch64::GPR32RegClass);
586    unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
587    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
588            ANDReg)
589        .addReg(ResultReg)
590        .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
591    ResultReg = ANDReg;
592  }
593  return true;
594}
595
596bool AArch64FastISel::SelectLoad(const Instruction *I) {
597  MVT VT;
598  // Verify we have a legal type before going any further.  Currently, we handle
599  // simple types that will directly fit in a register (i32/f32/i64/f64) or
600  // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
601  if (!isLoadStoreTypeLegal(I->getType(), VT) || cast<LoadInst>(I)->isAtomic())
602    return false;
603
604  // See if we can handle this address.
605  Address Addr;
606  if (!ComputeAddress(I->getOperand(0), Addr))
607    return false;
608
609  unsigned ResultReg;
610  if (!EmitLoad(VT, ResultReg, Addr))
611    return false;
612
613  UpdateValueMap(I, ResultReg);
614  return true;
615}
616
617bool AArch64FastISel::EmitStore(MVT VT, unsigned SrcReg, Address Addr,
618                                bool UseUnscaled) {
619  // Negative offsets require unscaled, 9-bit, signed immediate offsets.
620  // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
621  if (!UseUnscaled && Addr.getOffset() < 0)
622    UseUnscaled = true;
623
624  unsigned StrOpc;
625  bool VTIsi1 = false;
626  int64_t ScaleFactor = 0;
627  // Using scaled, 12-bit, unsigned immediate offsets.
628  switch (VT.SimpleTy) {
629  default:
630    return false;
631  case MVT::i1:
632    VTIsi1 = true;
633  case MVT::i8:
634    StrOpc = UseUnscaled ? AArch64::STURBBi : AArch64::STRBBui;
635    ScaleFactor = 1;
636    break;
637  case MVT::i16:
638    StrOpc = UseUnscaled ? AArch64::STURHHi : AArch64::STRHHui;
639    ScaleFactor = 2;
640    break;
641  case MVT::i32:
642    StrOpc = UseUnscaled ? AArch64::STURWi : AArch64::STRWui;
643    ScaleFactor = 4;
644    break;
645  case MVT::i64:
646    StrOpc = UseUnscaled ? AArch64::STURXi : AArch64::STRXui;
647    ScaleFactor = 8;
648    break;
649  case MVT::f32:
650    StrOpc = UseUnscaled ? AArch64::STURSi : AArch64::STRSui;
651    ScaleFactor = 4;
652    break;
653  case MVT::f64:
654    StrOpc = UseUnscaled ? AArch64::STURDi : AArch64::STRDui;
655    ScaleFactor = 8;
656    break;
657  }
658  // Scale the offset.
659  if (!UseUnscaled) {
660    int64_t Offset = Addr.getOffset();
661    if (Offset & (ScaleFactor - 1))
662      // Retry using an unscaled, 9-bit, signed immediate offset.
663      return EmitStore(VT, SrcReg, Addr, /*UseUnscaled*/ true);
664
665    Addr.setOffset(Offset / ScaleFactor);
666  }
667
668  // Simplify this down to something we can handle.
669  if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
670    return false;
671
672  // Storing an i1 requires special handling.
673  if (VTIsi1) {
674    MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
675    unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
676    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
677            ANDReg)
678        .addReg(SrcReg)
679        .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
680    SrcReg = ANDReg;
681  }
682  // Create the base instruction, then add the operands.
683  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
684                                    TII.get(StrOpc)).addReg(SrcReg);
685  AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, UseUnscaled);
686  return true;
687}
688
689bool AArch64FastISel::SelectStore(const Instruction *I) {
690  MVT VT;
691  Value *Op0 = I->getOperand(0);
692  // Verify we have a legal type before going any further.  Currently, we handle
693  // simple types that will directly fit in a register (i32/f32/i64/f64) or
694  // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
695  if (!isLoadStoreTypeLegal(Op0->getType(), VT) ||
696      cast<StoreInst>(I)->isAtomic())
697    return false;
698
699  // Get the value to be stored into a register.
700  unsigned SrcReg = getRegForValue(Op0);
701  if (SrcReg == 0)
702    return false;
703
704  // See if we can handle this address.
705  Address Addr;
706  if (!ComputeAddress(I->getOperand(1), Addr))
707    return false;
708
709  if (!EmitStore(VT, SrcReg, Addr))
710    return false;
711  return true;
712}
713
714static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
715  switch (Pred) {
716  case CmpInst::FCMP_ONE:
717  case CmpInst::FCMP_UEQ:
718  default:
719    // AL is our "false" for now. The other two need more compares.
720    return AArch64CC::AL;
721  case CmpInst::ICMP_EQ:
722  case CmpInst::FCMP_OEQ:
723    return AArch64CC::EQ;
724  case CmpInst::ICMP_SGT:
725  case CmpInst::FCMP_OGT:
726    return AArch64CC::GT;
727  case CmpInst::ICMP_SGE:
728  case CmpInst::FCMP_OGE:
729    return AArch64CC::GE;
730  case CmpInst::ICMP_UGT:
731  case CmpInst::FCMP_UGT:
732    return AArch64CC::HI;
733  case CmpInst::FCMP_OLT:
734    return AArch64CC::MI;
735  case CmpInst::ICMP_ULE:
736  case CmpInst::FCMP_OLE:
737    return AArch64CC::LS;
738  case CmpInst::FCMP_ORD:
739    return AArch64CC::VC;
740  case CmpInst::FCMP_UNO:
741    return AArch64CC::VS;
742  case CmpInst::FCMP_UGE:
743    return AArch64CC::PL;
744  case CmpInst::ICMP_SLT:
745  case CmpInst::FCMP_ULT:
746    return AArch64CC::LT;
747  case CmpInst::ICMP_SLE:
748  case CmpInst::FCMP_ULE:
749    return AArch64CC::LE;
750  case CmpInst::FCMP_UNE:
751  case CmpInst::ICMP_NE:
752    return AArch64CC::NE;
753  case CmpInst::ICMP_UGE:
754    return AArch64CC::HS;
755  case CmpInst::ICMP_ULT:
756    return AArch64CC::LO;
757  }
758}
759
760bool AArch64FastISel::SelectBranch(const Instruction *I) {
761  const BranchInst *BI = cast<BranchInst>(I);
762  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
763  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
764
765  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
766    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
767      // We may not handle every CC for now.
768      AArch64CC::CondCode CC = getCompareCC(CI->getPredicate());
769      if (CC == AArch64CC::AL)
770        return false;
771
772      // Emit the cmp.
773      if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
774        return false;
775
776      // Emit the branch.
777      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
778          .addImm(CC)
779          .addMBB(TBB);
780      FuncInfo.MBB->addSuccessor(TBB);
781
782      FastEmitBranch(FBB, DbgLoc);
783      return true;
784    }
785  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
786    MVT SrcVT;
787    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
788        (isLoadStoreTypeLegal(TI->getOperand(0)->getType(), SrcVT))) {
789      unsigned CondReg = getRegForValue(TI->getOperand(0));
790      if (CondReg == 0)
791        return false;
792
793      // Issue an extract_subreg to get the lower 32-bits.
794      if (SrcVT == MVT::i64)
795        CondReg = FastEmitInst_extractsubreg(MVT::i32, CondReg, /*Kill=*/true,
796                                             AArch64::sub_32);
797
798      MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass);
799      unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
800      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
801              TII.get(AArch64::ANDWri), ANDReg)
802          .addReg(CondReg)
803          .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
804      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
805              TII.get(AArch64::SUBSWri))
806          .addReg(ANDReg)
807          .addReg(ANDReg)
808          .addImm(0)
809          .addImm(0);
810
811      unsigned CC = AArch64CC::NE;
812      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
813        std::swap(TBB, FBB);
814        CC = AArch64CC::EQ;
815      }
816      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
817          .addImm(CC)
818          .addMBB(TBB);
819      FuncInfo.MBB->addSuccessor(TBB);
820      FastEmitBranch(FBB, DbgLoc);
821      return true;
822    }
823  } else if (const ConstantInt *CI =
824                 dyn_cast<ConstantInt>(BI->getCondition())) {
825    uint64_t Imm = CI->getZExtValue();
826    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
827    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B))
828        .addMBB(Target);
829    FuncInfo.MBB->addSuccessor(Target);
830    return true;
831  }
832
833  unsigned CondReg = getRegForValue(BI->getCondition());
834  if (CondReg == 0)
835    return false;
836
837  // We've been divorced from our compare!  Our block was split, and
838  // now our compare lives in a predecessor block.  We musn't
839  // re-compare here, as the children of the compare aren't guaranteed
840  // live across the block boundary (we *could* check for this).
841  // Regardless, the compare has been done in the predecessor block,
842  // and it left a value for us in a virtual register.  Ergo, we test
843  // the one-bit value left in the virtual register.
844  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri),
845          AArch64::WZR)
846      .addReg(CondReg)
847      .addImm(0)
848      .addImm(0);
849
850  unsigned CC = AArch64CC::NE;
851  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
852    std::swap(TBB, FBB);
853    CC = AArch64CC::EQ;
854  }
855
856  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
857      .addImm(CC)
858      .addMBB(TBB);
859  FuncInfo.MBB->addSuccessor(TBB);
860  FastEmitBranch(FBB, DbgLoc);
861  return true;
862}
863
864bool AArch64FastISel::SelectIndirectBr(const Instruction *I) {
865  const IndirectBrInst *BI = cast<IndirectBrInst>(I);
866  unsigned AddrReg = getRegForValue(BI->getOperand(0));
867  if (AddrReg == 0)
868    return false;
869
870  // Emit the indirect branch.
871  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BR))
872      .addReg(AddrReg);
873
874  // Make sure the CFG is up-to-date.
875  for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
876    FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[BI->getSuccessor(i)]);
877
878  return true;
879}
880
881bool AArch64FastISel::EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt) {
882  Type *Ty = Src1Value->getType();
883  EVT SrcEVT = TLI.getValueType(Ty, true);
884  if (!SrcEVT.isSimple())
885    return false;
886  MVT SrcVT = SrcEVT.getSimpleVT();
887
888  // Check to see if the 2nd operand is a constant that we can encode directly
889  // in the compare.
890  uint64_t Imm;
891  bool UseImm = false;
892  bool isNegativeImm = false;
893  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
894    if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
895        SrcVT == MVT::i8 || SrcVT == MVT::i1) {
896      const APInt &CIVal = ConstInt->getValue();
897
898      Imm = (isZExt) ? CIVal.getZExtValue() : CIVal.getSExtValue();
899      if (CIVal.isNegative()) {
900        isNegativeImm = true;
901        Imm = -Imm;
902      }
903      // FIXME: We can handle more immediates using shifts.
904      UseImm = ((Imm & 0xfff) == Imm);
905    }
906  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
907    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
908      if (ConstFP->isZero() && !ConstFP->isNegative())
909        UseImm = true;
910  }
911
912  unsigned ZReg;
913  unsigned CmpOpc;
914  bool isICmp = true;
915  bool needsExt = false;
916  switch (SrcVT.SimpleTy) {
917  default:
918    return false;
919  case MVT::i1:
920  case MVT::i8:
921  case MVT::i16:
922    needsExt = true;
923  // Intentional fall-through.
924  case MVT::i32:
925    ZReg = AArch64::WZR;
926    if (UseImm)
927      CmpOpc = isNegativeImm ? AArch64::ADDSWri : AArch64::SUBSWri;
928    else
929      CmpOpc = AArch64::SUBSWrr;
930    break;
931  case MVT::i64:
932    ZReg = AArch64::XZR;
933    if (UseImm)
934      CmpOpc = isNegativeImm ? AArch64::ADDSXri : AArch64::SUBSXri;
935    else
936      CmpOpc = AArch64::SUBSXrr;
937    break;
938  case MVT::f32:
939    isICmp = false;
940    CmpOpc = UseImm ? AArch64::FCMPSri : AArch64::FCMPSrr;
941    break;
942  case MVT::f64:
943    isICmp = false;
944    CmpOpc = UseImm ? AArch64::FCMPDri : AArch64::FCMPDrr;
945    break;
946  }
947
948  unsigned SrcReg1 = getRegForValue(Src1Value);
949  if (SrcReg1 == 0)
950    return false;
951
952  unsigned SrcReg2;
953  if (!UseImm) {
954    SrcReg2 = getRegForValue(Src2Value);
955    if (SrcReg2 == 0)
956      return false;
957  }
958
959  // We have i1, i8, or i16, we need to either zero extend or sign extend.
960  if (needsExt) {
961    SrcReg1 = EmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
962    if (SrcReg1 == 0)
963      return false;
964    if (!UseImm) {
965      SrcReg2 = EmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
966      if (SrcReg2 == 0)
967        return false;
968    }
969  }
970
971  if (isICmp) {
972    if (UseImm)
973      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
974          .addReg(ZReg)
975          .addReg(SrcReg1)
976          .addImm(Imm)
977          .addImm(0);
978    else
979      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
980          .addReg(ZReg)
981          .addReg(SrcReg1)
982          .addReg(SrcReg2);
983  } else {
984    if (UseImm)
985      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
986          .addReg(SrcReg1);
987    else
988      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
989          .addReg(SrcReg1)
990          .addReg(SrcReg2);
991  }
992  return true;
993}
994
995bool AArch64FastISel::SelectCmp(const Instruction *I) {
996  const CmpInst *CI = cast<CmpInst>(I);
997
998  // We may not handle every CC for now.
999  AArch64CC::CondCode CC = getCompareCC(CI->getPredicate());
1000  if (CC == AArch64CC::AL)
1001    return false;
1002
1003  // Emit the cmp.
1004  if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1005    return false;
1006
1007  // Now set a register based on the comparison.
1008  AArch64CC::CondCode invertedCC = getInvertedCondCode(CC);
1009  unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass);
1010  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
1011          ResultReg)
1012      .addReg(AArch64::WZR)
1013      .addReg(AArch64::WZR)
1014      .addImm(invertedCC);
1015
1016  UpdateValueMap(I, ResultReg);
1017  return true;
1018}
1019
1020bool AArch64FastISel::SelectSelect(const Instruction *I) {
1021  const SelectInst *SI = cast<SelectInst>(I);
1022
1023  EVT DestEVT = TLI.getValueType(SI->getType(), true);
1024  if (!DestEVT.isSimple())
1025    return false;
1026
1027  MVT DestVT = DestEVT.getSimpleVT();
1028  if (DestVT != MVT::i32 && DestVT != MVT::i64 && DestVT != MVT::f32 &&
1029      DestVT != MVT::f64)
1030    return false;
1031
1032  unsigned CondReg = getRegForValue(SI->getCondition());
1033  if (CondReg == 0)
1034    return false;
1035  unsigned TrueReg = getRegForValue(SI->getTrueValue());
1036  if (TrueReg == 0)
1037    return false;
1038  unsigned FalseReg = getRegForValue(SI->getFalseValue());
1039  if (FalseReg == 0)
1040    return false;
1041
1042
1043  MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass);
1044  unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
1045  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
1046          ANDReg)
1047      .addReg(CondReg)
1048      .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
1049
1050  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri))
1051      .addReg(ANDReg)
1052      .addReg(ANDReg)
1053      .addImm(0)
1054      .addImm(0);
1055
1056  unsigned SelectOpc;
1057  switch (DestVT.SimpleTy) {
1058  default:
1059    return false;
1060  case MVT::i32:
1061    SelectOpc = AArch64::CSELWr;
1062    break;
1063  case MVT::i64:
1064    SelectOpc = AArch64::CSELXr;
1065    break;
1066  case MVT::f32:
1067    SelectOpc = AArch64::FCSELSrrr;
1068    break;
1069  case MVT::f64:
1070    SelectOpc = AArch64::FCSELDrrr;
1071    break;
1072  }
1073
1074  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
1075  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SelectOpc),
1076          ResultReg)
1077      .addReg(TrueReg)
1078      .addReg(FalseReg)
1079      .addImm(AArch64CC::NE);
1080
1081  UpdateValueMap(I, ResultReg);
1082  return true;
1083}
1084
1085bool AArch64FastISel::SelectFPExt(const Instruction *I) {
1086  Value *V = I->getOperand(0);
1087  if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
1088    return false;
1089
1090  unsigned Op = getRegForValue(V);
1091  if (Op == 0)
1092    return false;
1093
1094  unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass);
1095  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr),
1096          ResultReg).addReg(Op);
1097  UpdateValueMap(I, ResultReg);
1098  return true;
1099}
1100
1101bool AArch64FastISel::SelectFPTrunc(const Instruction *I) {
1102  Value *V = I->getOperand(0);
1103  if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
1104    return false;
1105
1106  unsigned Op = getRegForValue(V);
1107  if (Op == 0)
1108    return false;
1109
1110  unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass);
1111  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr),
1112          ResultReg).addReg(Op);
1113  UpdateValueMap(I, ResultReg);
1114  return true;
1115}
1116
1117// FPToUI and FPToSI
1118bool AArch64FastISel::SelectFPToInt(const Instruction *I, bool Signed) {
1119  MVT DestVT;
1120  if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
1121    return false;
1122
1123  unsigned SrcReg = getRegForValue(I->getOperand(0));
1124  if (SrcReg == 0)
1125    return false;
1126
1127  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
1128  if (SrcVT == MVT::f128)
1129    return false;
1130
1131  unsigned Opc;
1132  if (SrcVT == MVT::f64) {
1133    if (Signed)
1134      Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr;
1135    else
1136      Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr;
1137  } else {
1138    if (Signed)
1139      Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr;
1140    else
1141      Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr;
1142  }
1143  unsigned ResultReg = createResultReg(
1144      DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
1145  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1146      .addReg(SrcReg);
1147  UpdateValueMap(I, ResultReg);
1148  return true;
1149}
1150
1151bool AArch64FastISel::SelectIntToFP(const Instruction *I, bool Signed) {
1152  MVT DestVT;
1153  if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
1154    return false;
1155  assert ((DestVT == MVT::f32 || DestVT == MVT::f64) &&
1156          "Unexpected value type.");
1157
1158  unsigned SrcReg = getRegForValue(I->getOperand(0));
1159  if (SrcReg == 0)
1160    return false;
1161
1162  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
1163
1164  // Handle sign-extension.
1165  if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
1166    SrcReg =
1167        EmitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
1168    if (SrcReg == 0)
1169      return false;
1170  }
1171
1172  MRI.constrainRegClass(SrcReg, SrcVT == MVT::i64 ? &AArch64::GPR64RegClass
1173                                                  : &AArch64::GPR32RegClass);
1174
1175  unsigned Opc;
1176  if (SrcVT == MVT::i64) {
1177    if (Signed)
1178      Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri;
1179    else
1180      Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri;
1181  } else {
1182    if (Signed)
1183      Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri;
1184    else
1185      Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri;
1186  }
1187
1188  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
1189  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1190      .addReg(SrcReg);
1191  UpdateValueMap(I, ResultReg);
1192  return true;
1193}
1194
1195bool AArch64FastISel::ProcessCallArgs(
1196    SmallVectorImpl<Value *> &Args, SmallVectorImpl<unsigned> &ArgRegs,
1197    SmallVectorImpl<MVT> &ArgVTs, SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1198    SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC,
1199    unsigned &NumBytes) {
1200  SmallVector<CCValAssign, 16> ArgLocs;
1201  CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
1202  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1203
1204  // Get a count of how many bytes are to be pushed on the stack.
1205  NumBytes = CCInfo.getNextStackOffset();
1206
1207  // Issue CALLSEQ_START
1208  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1209  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
1210      .addImm(NumBytes);
1211
1212  // Process the args.
1213  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1214    CCValAssign &VA = ArgLocs[i];
1215    unsigned Arg = ArgRegs[VA.getValNo()];
1216    MVT ArgVT = ArgVTs[VA.getValNo()];
1217
1218    // Handle arg promotion: SExt, ZExt, AExt.
1219    switch (VA.getLocInfo()) {
1220    case CCValAssign::Full:
1221      break;
1222    case CCValAssign::SExt: {
1223      MVT DestVT = VA.getLocVT();
1224      MVT SrcVT = ArgVT;
1225      Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ false);
1226      if (Arg == 0)
1227        return false;
1228      break;
1229    }
1230    case CCValAssign::AExt:
1231    // Intentional fall-through.
1232    case CCValAssign::ZExt: {
1233      MVT DestVT = VA.getLocVT();
1234      MVT SrcVT = ArgVT;
1235      Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ true);
1236      if (Arg == 0)
1237        return false;
1238      break;
1239    }
1240    default:
1241      llvm_unreachable("Unknown arg promotion!");
1242    }
1243
1244    // Now copy/store arg to correct locations.
1245    if (VA.isRegLoc() && !VA.needsCustom()) {
1246      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1247              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1248      RegArgs.push_back(VA.getLocReg());
1249    } else if (VA.needsCustom()) {
1250      // FIXME: Handle custom args.
1251      return false;
1252    } else {
1253      assert(VA.isMemLoc() && "Assuming store on stack.");
1254
1255      // Need to store on the stack.
1256      unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8;
1257
1258      unsigned BEAlign = 0;
1259      if (ArgSize < 8 && !Subtarget->isLittleEndian())
1260        BEAlign = 8 - ArgSize;
1261
1262      Address Addr;
1263      Addr.setKind(Address::RegBase);
1264      Addr.setReg(AArch64::SP);
1265      Addr.setOffset(VA.getLocMemOffset() + BEAlign);
1266
1267      if (!EmitStore(ArgVT, Arg, Addr))
1268        return false;
1269    }
1270  }
1271  return true;
1272}
1273
1274bool AArch64FastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1275                                 const Instruction *I, CallingConv::ID CC,
1276                                 unsigned &NumBytes) {
1277  // Issue CALLSEQ_END
1278  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1279  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
1280      .addImm(NumBytes)
1281      .addImm(0);
1282
1283  // Now the return value.
1284  if (RetVT != MVT::isVoid) {
1285    SmallVector<CCValAssign, 16> RVLocs;
1286    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
1287    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));
1288
1289    // Only handle a single return value.
1290    if (RVLocs.size() != 1)
1291      return false;
1292
1293    // Copy all of the result registers out of their specified physreg.
1294    MVT CopyVT = RVLocs[0].getValVT();
1295    unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1296    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1297            TII.get(TargetOpcode::COPY),
1298            ResultReg).addReg(RVLocs[0].getLocReg());
1299    UsedRegs.push_back(RVLocs[0].getLocReg());
1300
1301    // Finally update the result.
1302    UpdateValueMap(I, ResultReg);
1303  }
1304
1305  return true;
1306}
1307
1308bool AArch64FastISel::SelectCall(const Instruction *I,
1309                                 const char *IntrMemName = nullptr) {
1310  const CallInst *CI = cast<CallInst>(I);
1311  const Value *Callee = CI->getCalledValue();
1312
1313  // Don't handle inline asm or intrinsics.
1314  if (isa<InlineAsm>(Callee))
1315    return false;
1316
1317  // Only handle global variable Callees.
1318  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1319  if (!GV)
1320    return false;
1321
1322  // Check the calling convention.
1323  ImmutableCallSite CS(CI);
1324  CallingConv::ID CC = CS.getCallingConv();
1325
1326  // Let SDISel handle vararg functions.
1327  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1328  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1329  if (FTy->isVarArg())
1330    return false;
1331
1332  // Handle *simple* calls for now.
1333  MVT RetVT;
1334  Type *RetTy = I->getType();
1335  if (RetTy->isVoidTy())
1336    RetVT = MVT::isVoid;
1337  else if (!isTypeLegal(RetTy, RetVT))
1338    return false;
1339
1340  // Set up the argument vectors.
1341  SmallVector<Value *, 8> Args;
1342  SmallVector<unsigned, 8> ArgRegs;
1343  SmallVector<MVT, 8> ArgVTs;
1344  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1345  Args.reserve(CS.arg_size());
1346  ArgRegs.reserve(CS.arg_size());
1347  ArgVTs.reserve(CS.arg_size());
1348  ArgFlags.reserve(CS.arg_size());
1349
1350  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1351       i != e; ++i) {
1352    // If we're lowering a memory intrinsic instead of a regular call, skip the
1353    // last two arguments, which shouldn't be passed to the underlying function.
1354    if (IntrMemName && e - i <= 2)
1355      break;
1356
1357    unsigned Arg = getRegForValue(*i);
1358    if (Arg == 0)
1359      return false;
1360
1361    ISD::ArgFlagsTy Flags;
1362    unsigned AttrInd = i - CS.arg_begin() + 1;
1363    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1364      Flags.setSExt();
1365    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1366      Flags.setZExt();
1367
1368    // FIXME: Only handle *easy* calls for now.
1369    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1370        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1371        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1372        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1373      return false;
1374
1375    MVT ArgVT;
1376    Type *ArgTy = (*i)->getType();
1377    if (!isTypeLegal(ArgTy, ArgVT) &&
1378        !(ArgVT == MVT::i1 || ArgVT == MVT::i8 || ArgVT == MVT::i16))
1379      return false;
1380
1381    // We don't handle vector parameters yet.
1382    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1383      return false;
1384
1385    unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
1386    Flags.setOrigAlign(OriginalAlignment);
1387
1388    Args.push_back(*i);
1389    ArgRegs.push_back(Arg);
1390    ArgVTs.push_back(ArgVT);
1391    ArgFlags.push_back(Flags);
1392  }
1393
1394  // Handle the arguments now that we've gotten them.
1395  SmallVector<unsigned, 4> RegArgs;
1396  unsigned NumBytes;
1397  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1398    return false;
1399
1400  // Issue the call.
1401  MachineInstrBuilder MIB;
1402  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BL));
1403  if (!IntrMemName)
1404    MIB.addGlobalAddress(GV, 0, 0);
1405  else
1406    MIB.addExternalSymbol(IntrMemName, 0);
1407
1408  // Add implicit physical register uses to the call.
1409  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1410    MIB.addReg(RegArgs[i], RegState::Implicit);
1411
1412  // Add a register mask with the call-preserved registers.
1413  // Proper defs for return values will be added by setPhysRegsDeadExcept().
1414  MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
1415
1416  // Finish off the call including any return values.
1417  SmallVector<unsigned, 4> UsedRegs;
1418  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes))
1419    return false;
1420
1421  // Set all unused physreg defs as dead.
1422  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1423
1424  return true;
1425}
1426
1427bool AArch64FastISel::IsMemCpySmall(uint64_t Len, unsigned Alignment) {
1428  if (Alignment)
1429    return Len / Alignment <= 4;
1430  else
1431    return Len < 32;
1432}
1433
1434bool AArch64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src,
1435                                         uint64_t Len, unsigned Alignment) {
1436  // Make sure we don't bloat code by inlining very large memcpy's.
1437  if (!IsMemCpySmall(Len, Alignment))
1438    return false;
1439
1440  int64_t UnscaledOffset = 0;
1441  Address OrigDest = Dest;
1442  Address OrigSrc = Src;
1443
1444  while (Len) {
1445    MVT VT;
1446    if (!Alignment || Alignment >= 8) {
1447      if (Len >= 8)
1448        VT = MVT::i64;
1449      else if (Len >= 4)
1450        VT = MVT::i32;
1451      else if (Len >= 2)
1452        VT = MVT::i16;
1453      else {
1454        VT = MVT::i8;
1455      }
1456    } else {
1457      // Bound based on alignment.
1458      if (Len >= 4 && Alignment == 4)
1459        VT = MVT::i32;
1460      else if (Len >= 2 && Alignment == 2)
1461        VT = MVT::i16;
1462      else {
1463        VT = MVT::i8;
1464      }
1465    }
1466
1467    bool RV;
1468    unsigned ResultReg;
1469    RV = EmitLoad(VT, ResultReg, Src);
1470    if (!RV)
1471      return false;
1472
1473    RV = EmitStore(VT, ResultReg, Dest);
1474    if (!RV)
1475      return false;
1476
1477    int64_t Size = VT.getSizeInBits() / 8;
1478    Len -= Size;
1479    UnscaledOffset += Size;
1480
1481    // We need to recompute the unscaled offset for each iteration.
1482    Dest.setOffset(OrigDest.getOffset() + UnscaledOffset);
1483    Src.setOffset(OrigSrc.getOffset() + UnscaledOffset);
1484  }
1485
1486  return true;
1487}
1488
1489bool AArch64FastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
1490  // FIXME: Handle more intrinsics.
1491  switch (I.getIntrinsicID()) {
1492  default:
1493    return false;
1494  case Intrinsic::memcpy:
1495  case Intrinsic::memmove: {
1496    const MemTransferInst &MTI = cast<MemTransferInst>(I);
1497    // Don't handle volatile.
1498    if (MTI.isVolatile())
1499      return false;
1500
1501    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
1502    // we would emit dead code because we don't currently handle memmoves.
1503    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
1504    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
1505      // Small memcpy's are common enough that we want to do them without a call
1506      // if possible.
1507      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
1508      unsigned Alignment = MTI.getAlignment();
1509      if (IsMemCpySmall(Len, Alignment)) {
1510        Address Dest, Src;
1511        if (!ComputeAddress(MTI.getRawDest(), Dest) ||
1512            !ComputeAddress(MTI.getRawSource(), Src))
1513          return false;
1514        if (TryEmitSmallMemCpy(Dest, Src, Len, Alignment))
1515          return true;
1516      }
1517    }
1518
1519    if (!MTI.getLength()->getType()->isIntegerTy(64))
1520      return false;
1521
1522    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
1523      // Fast instruction selection doesn't support the special
1524      // address spaces.
1525      return false;
1526
1527    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
1528    return SelectCall(&I, IntrMemName);
1529  }
1530  case Intrinsic::memset: {
1531    const MemSetInst &MSI = cast<MemSetInst>(I);
1532    // Don't handle volatile.
1533    if (MSI.isVolatile())
1534      return false;
1535
1536    if (!MSI.getLength()->getType()->isIntegerTy(64))
1537      return false;
1538
1539    if (MSI.getDestAddressSpace() > 255)
1540      // Fast instruction selection doesn't support the special
1541      // address spaces.
1542      return false;
1543
1544    return SelectCall(&I, "memset");
1545  }
1546  case Intrinsic::trap: {
1547    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK))
1548        .addImm(1);
1549    return true;
1550  }
1551  }
1552  return false;
1553}
1554
1555bool AArch64FastISel::SelectRet(const Instruction *I) {
1556  const ReturnInst *Ret = cast<ReturnInst>(I);
1557  const Function &F = *I->getParent()->getParent();
1558
1559  if (!FuncInfo.CanLowerReturn)
1560    return false;
1561
1562  if (F.isVarArg())
1563    return false;
1564
1565  // Build a list of return value registers.
1566  SmallVector<unsigned, 4> RetRegs;
1567
1568  if (Ret->getNumOperands() > 0) {
1569    CallingConv::ID CC = F.getCallingConv();
1570    SmallVector<ISD::OutputArg, 4> Outs;
1571    GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
1572
1573    // Analyze operands of the call, assigning locations to each operand.
1574    SmallVector<CCValAssign, 16> ValLocs;
1575    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
1576                   I->getContext());
1577    CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
1578                                                     : RetCC_AArch64_AAPCS;
1579    CCInfo.AnalyzeReturn(Outs, RetCC);
1580
1581    // Only handle a single return value for now.
1582    if (ValLocs.size() != 1)
1583      return false;
1584
1585    CCValAssign &VA = ValLocs[0];
1586    const Value *RV = Ret->getOperand(0);
1587
1588    // Don't bother handling odd stuff for now.
1589    if (VA.getLocInfo() != CCValAssign::Full)
1590      return false;
1591    // Only handle register returns for now.
1592    if (!VA.isRegLoc())
1593      return false;
1594    unsigned Reg = getRegForValue(RV);
1595    if (Reg == 0)
1596      return false;
1597
1598    unsigned SrcReg = Reg + VA.getValNo();
1599    unsigned DestReg = VA.getLocReg();
1600    // Avoid a cross-class copy. This is very unlikely.
1601    if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1602      return false;
1603
1604    EVT RVEVT = TLI.getValueType(RV->getType());
1605    if (!RVEVT.isSimple())
1606      return false;
1607
1608    // Vectors (of > 1 lane) in big endian need tricky handling.
1609    if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1)
1610      return false;
1611
1612    MVT RVVT = RVEVT.getSimpleVT();
1613    if (RVVT == MVT::f128)
1614      return false;
1615    MVT DestVT = VA.getValVT();
1616    // Special handling for extended integers.
1617    if (RVVT != DestVT) {
1618      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1619        return false;
1620
1621      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1622        return false;
1623
1624      bool isZExt = Outs[0].Flags.isZExt();
1625      SrcReg = EmitIntExt(RVVT, SrcReg, DestVT, isZExt);
1626      if (SrcReg == 0)
1627        return false;
1628    }
1629
1630    // Make the copy.
1631    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1632            TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1633
1634    // Add register to return instruction.
1635    RetRegs.push_back(VA.getLocReg());
1636  }
1637
1638  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1639                                    TII.get(AArch64::RET_ReallyLR));
1640  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1641    MIB.addReg(RetRegs[i], RegState::Implicit);
1642  return true;
1643}
1644
1645bool AArch64FastISel::SelectTrunc(const Instruction *I) {
1646  Type *DestTy = I->getType();
1647  Value *Op = I->getOperand(0);
1648  Type *SrcTy = Op->getType();
1649
1650  EVT SrcEVT = TLI.getValueType(SrcTy, true);
1651  EVT DestEVT = TLI.getValueType(DestTy, true);
1652  if (!SrcEVT.isSimple())
1653    return false;
1654  if (!DestEVT.isSimple())
1655    return false;
1656
1657  MVT SrcVT = SrcEVT.getSimpleVT();
1658  MVT DestVT = DestEVT.getSimpleVT();
1659
1660  if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
1661      SrcVT != MVT::i8)
1662    return false;
1663  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 &&
1664      DestVT != MVT::i1)
1665    return false;
1666
1667  unsigned SrcReg = getRegForValue(Op);
1668  if (!SrcReg)
1669    return false;
1670
1671  // If we're truncating from i64 to a smaller non-legal type then generate an
1672  // AND.  Otherwise, we know the high bits are undefined and a truncate doesn't
1673  // generate any code.
1674  if (SrcVT == MVT::i64) {
1675    uint64_t Mask = 0;
1676    switch (DestVT.SimpleTy) {
1677    default:
1678      // Trunc i64 to i32 is handled by the target-independent fast-isel.
1679      return false;
1680    case MVT::i1:
1681      Mask = 0x1;
1682      break;
1683    case MVT::i8:
1684      Mask = 0xff;
1685      break;
1686    case MVT::i16:
1687      Mask = 0xffff;
1688      break;
1689    }
1690    // Issue an extract_subreg to get the lower 32-bits.
1691    unsigned Reg32 = FastEmitInst_extractsubreg(MVT::i32, SrcReg, /*Kill=*/true,
1692                                                AArch64::sub_32);
1693    MRI.constrainRegClass(Reg32, &AArch64::GPR32RegClass);
1694    // Create the AND instruction which performs the actual truncation.
1695    unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
1696    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
1697            ANDReg)
1698        .addReg(Reg32)
1699        .addImm(AArch64_AM::encodeLogicalImmediate(Mask, 32));
1700    SrcReg = ANDReg;
1701  }
1702
1703  UpdateValueMap(I, SrcReg);
1704  return true;
1705}
1706
1707unsigned AArch64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) {
1708  assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 ||
1709          DestVT == MVT::i64) &&
1710         "Unexpected value type.");
1711  // Handle i8 and i16 as i32.
1712  if (DestVT == MVT::i8 || DestVT == MVT::i16)
1713    DestVT = MVT::i32;
1714
1715  if (isZExt) {
1716    MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
1717    unsigned ResultReg = createResultReg(&AArch64::GPR32spRegClass);
1718    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
1719            ResultReg)
1720        .addReg(SrcReg)
1721        .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
1722
1723    if (DestVT == MVT::i64) {
1724      // We're ZExt i1 to i64.  The ANDWri Wd, Ws, #1 implicitly clears the
1725      // upper 32 bits.  Emit a SUBREG_TO_REG to extend from Wd to Xd.
1726      unsigned Reg64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1727      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1728              TII.get(AArch64::SUBREG_TO_REG), Reg64)
1729          .addImm(0)
1730          .addReg(ResultReg)
1731          .addImm(AArch64::sub_32);
1732      ResultReg = Reg64;
1733    }
1734    return ResultReg;
1735  } else {
1736    if (DestVT == MVT::i64) {
1737      // FIXME: We're SExt i1 to i64.
1738      return 0;
1739    }
1740    unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass);
1741    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SBFMWri),
1742            ResultReg)
1743        .addReg(SrcReg)
1744        .addImm(0)
1745        .addImm(0);
1746    return ResultReg;
1747  }
1748}
1749
1750unsigned AArch64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1751                                     bool isZExt) {
1752  assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?");
1753
1754  // FastISel does not have plumbing to deal with extensions where the SrcVT or
1755  // DestVT are odd things, so test to make sure that they are both types we can
1756  // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1757  // bail out to SelectionDAG.
1758  if (((DestVT != MVT::i8) && (DestVT != MVT::i16) &&
1759       (DestVT != MVT::i32) && (DestVT != MVT::i64)) ||
1760      ((SrcVT !=  MVT::i1) && (SrcVT !=  MVT::i8) &&
1761       (SrcVT !=  MVT::i16) && (SrcVT !=  MVT::i32)))
1762    return 0;
1763
1764  unsigned Opc;
1765  unsigned Imm = 0;
1766
1767  switch (SrcVT.SimpleTy) {
1768  default:
1769    return 0;
1770  case MVT::i1:
1771    return Emiti1Ext(SrcReg, DestVT, isZExt);
1772  case MVT::i8:
1773    if (DestVT == MVT::i64)
1774      Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
1775    else
1776      Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
1777    Imm = 7;
1778    break;
1779  case MVT::i16:
1780    if (DestVT == MVT::i64)
1781      Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
1782    else
1783      Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
1784    Imm = 15;
1785    break;
1786  case MVT::i32:
1787    assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?");
1788    Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
1789    Imm = 31;
1790    break;
1791  }
1792
1793  // Handle i8 and i16 as i32.
1794  if (DestVT == MVT::i8 || DestVT == MVT::i16)
1795    DestVT = MVT::i32;
1796  else if (DestVT == MVT::i64) {
1797    unsigned Src64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1798    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1799            TII.get(AArch64::SUBREG_TO_REG), Src64)
1800        .addImm(0)
1801        .addReg(SrcReg)
1802        .addImm(AArch64::sub_32);
1803    SrcReg = Src64;
1804  }
1805
1806  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
1807  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1808      .addReg(SrcReg)
1809      .addImm(0)
1810      .addImm(Imm);
1811
1812  return ResultReg;
1813}
1814
1815bool AArch64FastISel::SelectIntExt(const Instruction *I) {
1816  // On ARM, in general, integer casts don't involve legal types; this code
1817  // handles promotable integers.  The high bits for a type smaller than
1818  // the register size are assumed to be undefined.
1819  Type *DestTy = I->getType();
1820  Value *Src = I->getOperand(0);
1821  Type *SrcTy = Src->getType();
1822
1823  bool isZExt = isa<ZExtInst>(I);
1824  unsigned SrcReg = getRegForValue(Src);
1825  if (!SrcReg)
1826    return false;
1827
1828  EVT SrcEVT = TLI.getValueType(SrcTy, true);
1829  EVT DestEVT = TLI.getValueType(DestTy, true);
1830  if (!SrcEVT.isSimple())
1831    return false;
1832  if (!DestEVT.isSimple())
1833    return false;
1834
1835  MVT SrcVT = SrcEVT.getSimpleVT();
1836  MVT DestVT = DestEVT.getSimpleVT();
1837  unsigned ResultReg = EmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
1838  if (ResultReg == 0)
1839    return false;
1840  UpdateValueMap(I, ResultReg);
1841  return true;
1842}
1843
1844bool AArch64FastISel::SelectRem(const Instruction *I, unsigned ISDOpcode) {
1845  EVT DestEVT = TLI.getValueType(I->getType(), true);
1846  if (!DestEVT.isSimple())
1847    return false;
1848
1849  MVT DestVT = DestEVT.getSimpleVT();
1850  if (DestVT != MVT::i64 && DestVT != MVT::i32)
1851    return false;
1852
1853  unsigned DivOpc;
1854  bool is64bit = (DestVT == MVT::i64);
1855  switch (ISDOpcode) {
1856  default:
1857    return false;
1858  case ISD::SREM:
1859    DivOpc = is64bit ? AArch64::SDIVXr : AArch64::SDIVWr;
1860    break;
1861  case ISD::UREM:
1862    DivOpc = is64bit ? AArch64::UDIVXr : AArch64::UDIVWr;
1863    break;
1864  }
1865  unsigned MSubOpc = is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr;
1866  unsigned Src0Reg = getRegForValue(I->getOperand(0));
1867  if (!Src0Reg)
1868    return false;
1869
1870  unsigned Src1Reg = getRegForValue(I->getOperand(1));
1871  if (!Src1Reg)
1872    return false;
1873
1874  unsigned QuotReg = createResultReg(TLI.getRegClassFor(DestVT));
1875  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(DivOpc), QuotReg)
1876      .addReg(Src0Reg)
1877      .addReg(Src1Reg);
1878  // The remainder is computed as numerator - (quotient * denominator) using the
1879  // MSUB instruction.
1880  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
1881  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MSubOpc), ResultReg)
1882      .addReg(QuotReg)
1883      .addReg(Src1Reg)
1884      .addReg(Src0Reg);
1885  UpdateValueMap(I, ResultReg);
1886  return true;
1887}
1888
1889bool AArch64FastISel::SelectMul(const Instruction *I) {
1890  EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType(), true);
1891  if (!SrcEVT.isSimple())
1892    return false;
1893  MVT SrcVT = SrcEVT.getSimpleVT();
1894
1895  // Must be simple value type.  Don't handle vectors.
1896  if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
1897      SrcVT != MVT::i8)
1898    return false;
1899
1900  unsigned Opc;
1901  unsigned ZReg;
1902  switch (SrcVT.SimpleTy) {
1903  default:
1904    return false;
1905  case MVT::i8:
1906  case MVT::i16:
1907  case MVT::i32:
1908    ZReg = AArch64::WZR;
1909    Opc = AArch64::MADDWrrr;
1910    SrcVT = MVT::i32;
1911    break;
1912  case MVT::i64:
1913    ZReg = AArch64::XZR;
1914    Opc = AArch64::MADDXrrr;
1915    break;
1916  }
1917
1918  unsigned Src0Reg = getRegForValue(I->getOperand(0));
1919  if (!Src0Reg)
1920    return false;
1921
1922  unsigned Src1Reg = getRegForValue(I->getOperand(1));
1923  if (!Src1Reg)
1924    return false;
1925
1926  // Create the base instruction, then add the operands.
1927  unsigned ResultReg = createResultReg(TLI.getRegClassFor(SrcVT));
1928  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1929      .addReg(Src0Reg)
1930      .addReg(Src1Reg)
1931      .addReg(ZReg);
1932  UpdateValueMap(I, ResultReg);
1933  return true;
1934}
1935
1936bool AArch64FastISel::TargetSelectInstruction(const Instruction *I) {
1937  switch (I->getOpcode()) {
1938  default:
1939    break;
1940  case Instruction::Load:
1941    return SelectLoad(I);
1942  case Instruction::Store:
1943    return SelectStore(I);
1944  case Instruction::Br:
1945    return SelectBranch(I);
1946  case Instruction::IndirectBr:
1947    return SelectIndirectBr(I);
1948  case Instruction::FCmp:
1949  case Instruction::ICmp:
1950    return SelectCmp(I);
1951  case Instruction::Select:
1952    return SelectSelect(I);
1953  case Instruction::FPExt:
1954    return SelectFPExt(I);
1955  case Instruction::FPTrunc:
1956    return SelectFPTrunc(I);
1957  case Instruction::FPToSI:
1958    return SelectFPToInt(I, /*Signed=*/true);
1959  case Instruction::FPToUI:
1960    return SelectFPToInt(I, /*Signed=*/false);
1961  case Instruction::SIToFP:
1962    return SelectIntToFP(I, /*Signed=*/true);
1963  case Instruction::UIToFP:
1964    return SelectIntToFP(I, /*Signed=*/false);
1965  case Instruction::SRem:
1966    return SelectRem(I, ISD::SREM);
1967  case Instruction::URem:
1968    return SelectRem(I, ISD::UREM);
1969  case Instruction::Call:
1970    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1971      return SelectIntrinsicCall(*II);
1972    return SelectCall(I);
1973  case Instruction::Ret:
1974    return SelectRet(I);
1975  case Instruction::Trunc:
1976    return SelectTrunc(I);
1977  case Instruction::ZExt:
1978  case Instruction::SExt:
1979    return SelectIntExt(I);
1980  case Instruction::Mul:
1981    // FIXME: This really should be handled by the target-independent selector.
1982    return SelectMul(I);
1983  }
1984  return false;
1985  // Silence warnings.
1986  (void)&CC_AArch64_DarwinPCS_VarArg;
1987}
1988
1989namespace llvm {
1990llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &funcInfo,
1991                                        const TargetLibraryInfo *libInfo) {
1992  return new AArch64FastISel(funcInfo, libInfo);
1993}
1994}
1995