AArch64ISelLowering.cpp revision 50721a7a8e3c7094a828e29e7697ea52855c6542
1//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
15#include "AArch64PerfectShuffle.h"
16#include "AArch64Subtarget.h"
17#include "AArch64MachineFunctionInfo.h"
18#include "AArch64TargetMachine.h"
19#include "AArch64TargetObjectFile.h"
20#include "MCTargetDesc/AArch64AddressingModes.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/Type.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Target/TargetOptions.h"
34using namespace llvm;
35
36#define DEBUG_TYPE "aarch64-lower"
37
38STATISTIC(NumTailCalls, "Number of tail calls");
39STATISTIC(NumShiftInserts, "Number of vector shift inserts");
40
41enum AlignMode {
42  StrictAlign,
43  NoStrictAlign
44};
45
46static cl::opt<AlignMode>
47Align(cl::desc("Load/store alignment support"),
48      cl::Hidden, cl::init(NoStrictAlign),
49      cl::values(
50          clEnumValN(StrictAlign,   "aarch64-strict-align",
51                     "Disallow all unaligned memory accesses"),
52          clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
53                     "Allow unaligned memory accesses"),
54          clEnumValEnd));
55
56// Place holder until extr generation is tested fully.
57static cl::opt<bool>
58EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
59                          cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
60                          cl::init(true));
61
62static cl::opt<bool>
63EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
64                         cl::desc("Allow AArch64 SLI/SRI formation"),
65                         cl::init(false));
66
67//===----------------------------------------------------------------------===//
68// AArch64 Lowering public interface.
69//===----------------------------------------------------------------------===//
70static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
71  if (TT.isOSBinFormatMachO())
72    return new AArch64_MachoTargetObjectFile();
73
74  return new AArch64_ELFTargetObjectFile();
75}
76
77AArch64TargetLowering::AArch64TargetLowering(TargetMachine &TM)
78    : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
79  Subtarget = &TM.getSubtarget<AArch64Subtarget>();
80
81  // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
82  // we have to make something up. Arbitrarily, choose ZeroOrOne.
83  setBooleanContents(ZeroOrOneBooleanContent);
84  // When comparing vectors the result sets the different elements in the
85  // vector to all-one or all-zero.
86  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
87
88  // Set up the register classes.
89  addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
90  addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
91
92  if (Subtarget->hasFPARMv8()) {
93    addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
94    addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
95    addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
96    addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
97  }
98
99  if (Subtarget->hasNEON()) {
100    addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
101    addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
102    // Someone set us up the NEON.
103    addDRTypeForNEON(MVT::v2f32);
104    addDRTypeForNEON(MVT::v8i8);
105    addDRTypeForNEON(MVT::v4i16);
106    addDRTypeForNEON(MVT::v2i32);
107    addDRTypeForNEON(MVT::v1i64);
108    addDRTypeForNEON(MVT::v1f64);
109
110    addQRTypeForNEON(MVT::v4f32);
111    addQRTypeForNEON(MVT::v2f64);
112    addQRTypeForNEON(MVT::v16i8);
113    addQRTypeForNEON(MVT::v8i16);
114    addQRTypeForNEON(MVT::v4i32);
115    addQRTypeForNEON(MVT::v2i64);
116  }
117
118  // Compute derived properties from the register classes
119  computeRegisterProperties();
120
121  // Provide all sorts of operation actions
122  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
123  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
124  setOperationAction(ISD::SETCC, MVT::i32, Custom);
125  setOperationAction(ISD::SETCC, MVT::i64, Custom);
126  setOperationAction(ISD::SETCC, MVT::f32, Custom);
127  setOperationAction(ISD::SETCC, MVT::f64, Custom);
128  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
129  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
130  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
131  setOperationAction(ISD::BR_CC, MVT::f32, Custom);
132  setOperationAction(ISD::BR_CC, MVT::f64, Custom);
133  setOperationAction(ISD::SELECT, MVT::i32, Custom);
134  setOperationAction(ISD::SELECT, MVT::i64, Custom);
135  setOperationAction(ISD::SELECT, MVT::f32, Custom);
136  setOperationAction(ISD::SELECT, MVT::f64, Custom);
137  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
138  setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
139  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
140  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
141  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
142  setOperationAction(ISD::JumpTable, MVT::i64, Custom);
143
144  setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
145  setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
146  setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
147
148  setOperationAction(ISD::FREM, MVT::f32, Expand);
149  setOperationAction(ISD::FREM, MVT::f64, Expand);
150  setOperationAction(ISD::FREM, MVT::f80, Expand);
151
152  // Custom lowering hooks are needed for XOR
153  // to fold it into CSINC/CSINV.
154  setOperationAction(ISD::XOR, MVT::i32, Custom);
155  setOperationAction(ISD::XOR, MVT::i64, Custom);
156
157  // Virtually no operation on f128 is legal, but LLVM can't expand them when
158  // there's a valid register class, so we need custom operations in most cases.
159  setOperationAction(ISD::FABS, MVT::f128, Expand);
160  setOperationAction(ISD::FADD, MVT::f128, Custom);
161  setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
162  setOperationAction(ISD::FCOS, MVT::f128, Expand);
163  setOperationAction(ISD::FDIV, MVT::f128, Custom);
164  setOperationAction(ISD::FMA, MVT::f128, Expand);
165  setOperationAction(ISD::FMUL, MVT::f128, Custom);
166  setOperationAction(ISD::FNEG, MVT::f128, Expand);
167  setOperationAction(ISD::FPOW, MVT::f128, Expand);
168  setOperationAction(ISD::FREM, MVT::f128, Expand);
169  setOperationAction(ISD::FRINT, MVT::f128, Expand);
170  setOperationAction(ISD::FSIN, MVT::f128, Expand);
171  setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
172  setOperationAction(ISD::FSQRT, MVT::f128, Expand);
173  setOperationAction(ISD::FSUB, MVT::f128, Custom);
174  setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
175  setOperationAction(ISD::SETCC, MVT::f128, Custom);
176  setOperationAction(ISD::BR_CC, MVT::f128, Custom);
177  setOperationAction(ISD::SELECT, MVT::f128, Custom);
178  setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
179  setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
180
181  // Lowering for many of the conversions is actually specified by the non-f128
182  // type. The LowerXXX function will be trivial when f128 isn't involved.
183  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
184  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
185  setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
186  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
187  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
188  setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
189  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
190  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
191  setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
192  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
193  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
194  setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
195  setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
196  setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
197
198  // Variable arguments.
199  setOperationAction(ISD::VASTART, MVT::Other, Custom);
200  setOperationAction(ISD::VAARG, MVT::Other, Custom);
201  setOperationAction(ISD::VACOPY, MVT::Other, Custom);
202  setOperationAction(ISD::VAEND, MVT::Other, Expand);
203
204  // Variable-sized objects.
205  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
206  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
207  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
208
209  // Exception handling.
210  // FIXME: These are guesses. Has this been defined yet?
211  setExceptionPointerRegister(AArch64::X0);
212  setExceptionSelectorRegister(AArch64::X1);
213
214  // Constant pool entries
215  setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
216
217  // BlockAddress
218  setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
219
220  // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
221  setOperationAction(ISD::ADDC, MVT::i32, Custom);
222  setOperationAction(ISD::ADDE, MVT::i32, Custom);
223  setOperationAction(ISD::SUBC, MVT::i32, Custom);
224  setOperationAction(ISD::SUBE, MVT::i32, Custom);
225  setOperationAction(ISD::ADDC, MVT::i64, Custom);
226  setOperationAction(ISD::ADDE, MVT::i64, Custom);
227  setOperationAction(ISD::SUBC, MVT::i64, Custom);
228  setOperationAction(ISD::SUBE, MVT::i64, Custom);
229
230  // AArch64 lacks both left-rotate and popcount instructions.
231  setOperationAction(ISD::ROTL, MVT::i32, Expand);
232  setOperationAction(ISD::ROTL, MVT::i64, Expand);
233
234  // AArch64 doesn't have {U|S}MUL_LOHI.
235  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
236  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
237
238
239  // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
240  // counterparts, which AArch64 supports directly.
241  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
242  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
243  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
244  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
245
246  setOperationAction(ISD::CTPOP, MVT::i32, Custom);
247  setOperationAction(ISD::CTPOP, MVT::i64, Custom);
248
249  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
250  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
251  setOperationAction(ISD::SREM, MVT::i32, Expand);
252  setOperationAction(ISD::SREM, MVT::i64, Expand);
253  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
254  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
255  setOperationAction(ISD::UREM, MVT::i32, Expand);
256  setOperationAction(ISD::UREM, MVT::i64, Expand);
257
258  // Custom lower Add/Sub/Mul with overflow.
259  setOperationAction(ISD::SADDO, MVT::i32, Custom);
260  setOperationAction(ISD::SADDO, MVT::i64, Custom);
261  setOperationAction(ISD::UADDO, MVT::i32, Custom);
262  setOperationAction(ISD::UADDO, MVT::i64, Custom);
263  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
264  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
265  setOperationAction(ISD::USUBO, MVT::i32, Custom);
266  setOperationAction(ISD::USUBO, MVT::i64, Custom);
267  setOperationAction(ISD::SMULO, MVT::i32, Custom);
268  setOperationAction(ISD::SMULO, MVT::i64, Custom);
269  setOperationAction(ISD::UMULO, MVT::i32, Custom);
270  setOperationAction(ISD::UMULO, MVT::i64, Custom);
271
272  setOperationAction(ISD::FSIN, MVT::f32, Expand);
273  setOperationAction(ISD::FSIN, MVT::f64, Expand);
274  setOperationAction(ISD::FCOS, MVT::f32, Expand);
275  setOperationAction(ISD::FCOS, MVT::f64, Expand);
276  setOperationAction(ISD::FPOW, MVT::f32, Expand);
277  setOperationAction(ISD::FPOW, MVT::f64, Expand);
278  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
279  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
280
281  // AArch64 has implementations of a lot of rounding-like FP operations.
282  static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
283  for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
284    MVT Ty = RoundingTypes[I];
285    setOperationAction(ISD::FFLOOR, Ty, Legal);
286    setOperationAction(ISD::FNEARBYINT, Ty, Legal);
287    setOperationAction(ISD::FCEIL, Ty, Legal);
288    setOperationAction(ISD::FRINT, Ty, Legal);
289    setOperationAction(ISD::FTRUNC, Ty, Legal);
290    setOperationAction(ISD::FROUND, Ty, Legal);
291  }
292
293  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
294
295  if (Subtarget->isTargetMachO()) {
296    // For iOS, we don't want to the normal expansion of a libcall to
297    // sincos. We want to issue a libcall to __sincos_stret to avoid memory
298    // traffic.
299    setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
300    setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
301  } else {
302    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
303    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
304  }
305
306  // AArch64 does not have floating-point extending loads, i1 sign-extending
307  // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
308  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
309  setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
310  setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
311  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
312  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
313  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
314  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
315  setTruncStoreAction(MVT::f128, MVT::f80, Expand);
316  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
317  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
318  setTruncStoreAction(MVT::f128, MVT::f16, Expand);
319  // Indexed loads and stores are supported.
320  for (unsigned im = (unsigned)ISD::PRE_INC;
321       im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
322    setIndexedLoadAction(im, MVT::i8, Legal);
323    setIndexedLoadAction(im, MVT::i16, Legal);
324    setIndexedLoadAction(im, MVT::i32, Legal);
325    setIndexedLoadAction(im, MVT::i64, Legal);
326    setIndexedLoadAction(im, MVT::f64, Legal);
327    setIndexedLoadAction(im, MVT::f32, Legal);
328    setIndexedStoreAction(im, MVT::i8, Legal);
329    setIndexedStoreAction(im, MVT::i16, Legal);
330    setIndexedStoreAction(im, MVT::i32, Legal);
331    setIndexedStoreAction(im, MVT::i64, Legal);
332    setIndexedStoreAction(im, MVT::f64, Legal);
333    setIndexedStoreAction(im, MVT::f32, Legal);
334  }
335
336  // Trap.
337  setOperationAction(ISD::TRAP, MVT::Other, Legal);
338
339  // We combine OR nodes for bitfield operations.
340  setTargetDAGCombine(ISD::OR);
341
342  // Vector add and sub nodes may conceal a high-half opportunity.
343  // Also, try to fold ADD into CSINC/CSINV..
344  setTargetDAGCombine(ISD::ADD);
345  setTargetDAGCombine(ISD::SUB);
346
347  setTargetDAGCombine(ISD::XOR);
348  setTargetDAGCombine(ISD::SINT_TO_FP);
349  setTargetDAGCombine(ISD::UINT_TO_FP);
350
351  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
352
353  setTargetDAGCombine(ISD::ANY_EXTEND);
354  setTargetDAGCombine(ISD::ZERO_EXTEND);
355  setTargetDAGCombine(ISD::SIGN_EXTEND);
356  setTargetDAGCombine(ISD::BITCAST);
357  setTargetDAGCombine(ISD::CONCAT_VECTORS);
358  setTargetDAGCombine(ISD::STORE);
359
360  setTargetDAGCombine(ISD::MUL);
361
362  setTargetDAGCombine(ISD::SELECT);
363  setTargetDAGCombine(ISD::VSELECT);
364
365  setTargetDAGCombine(ISD::INTRINSIC_VOID);
366  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
367  setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
368
369  MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
370  MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
371  MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
372
373  setStackPointerRegisterToSaveRestore(AArch64::SP);
374
375  setSchedulingPreference(Sched::Hybrid);
376
377  // Enable TBZ/TBNZ
378  MaskAndBranchFoldingIsLegal = true;
379
380  setMinFunctionAlignment(2);
381
382  RequireStrictAlign = (Align == StrictAlign);
383
384  setHasExtractBitsInsn(true);
385
386  if (Subtarget->hasNEON()) {
387    // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
388    // silliness like this:
389    setOperationAction(ISD::FABS, MVT::v1f64, Expand);
390    setOperationAction(ISD::FADD, MVT::v1f64, Expand);
391    setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
392    setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
393    setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
394    setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
395    setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
396    setOperationAction(ISD::FMA, MVT::v1f64, Expand);
397    setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
398    setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
399    setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
400    setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
401    setOperationAction(ISD::FREM, MVT::v1f64, Expand);
402    setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
403    setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
404    setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
405    setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
406    setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
407    setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
408    setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
409    setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
410    setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
411    setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
412    setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
413    setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
414
415    setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
416    setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
417    setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
418    setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
419    setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
420
421    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
422
423    // AArch64 doesn't have a direct vector ->f32 conversion instructions for
424    // elements smaller than i32, so promote the input to i32 first.
425    setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
426    setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
427    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
428    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
429    // Similarly, there is no direct i32 -> f64 vector conversion instruction.
430    setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
431    setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
432    setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
433    setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
434
435    // AArch64 doesn't have MUL.2d:
436    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
437    setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
438    setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
439    // Likewise, narrowing and extending vector loads/stores aren't handled
440    // directly.
441    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
442         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
443
444      setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
445                         Expand);
446
447      setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
448      setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
449      setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
450      setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
451
452      setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
453
454      for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
455           InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
456        setTruncStoreAction((MVT::SimpleValueType)VT,
457                            (MVT::SimpleValueType)InnerVT, Expand);
458      setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
459      setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
460      setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
461    }
462
463    // AArch64 has implementations of a lot of rounding-like FP operations.
464    static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 };
465    for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) {
466      MVT Ty = RoundingVecTypes[I];
467      setOperationAction(ISD::FFLOOR, Ty, Legal);
468      setOperationAction(ISD::FNEARBYINT, Ty, Legal);
469      setOperationAction(ISD::FCEIL, Ty, Legal);
470      setOperationAction(ISD::FRINT, Ty, Legal);
471      setOperationAction(ISD::FTRUNC, Ty, Legal);
472      setOperationAction(ISD::FROUND, Ty, Legal);
473    }
474  }
475
476  // Prefer likely predicted branches to selects on out-of-order cores.
477  if (Subtarget->isCortexA57())
478    PredictableSelectIsExpensive = true;
479}
480
481void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
482  if (VT == MVT::v2f32) {
483    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
484    AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
485
486    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
487    AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
488  } else if (VT == MVT::v2f64 || VT == MVT::v4f32) {
489    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
490    AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
491
492    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
493    AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
494  }
495
496  // Mark vector float intrinsics as expand.
497  if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
498    setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
499    setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
500    setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
501    setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
502    setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
503    setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
504    setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
505    setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
506    setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
507  }
508
509  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
510  setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
511  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
512  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
513  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
514  setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
515  setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
516  setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
517  setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
518  setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
519  setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
520  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
521
522  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
523  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
524  setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
525  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
526
527  // CNT supports only B element sizes.
528  if (VT != MVT::v8i8 && VT != MVT::v16i8)
529    setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
530
531  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
532  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
533  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
534  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
535  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
536
537  setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
538  setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
539
540  if (Subtarget->isLittleEndian()) {
541    for (unsigned im = (unsigned)ISD::PRE_INC;
542         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
543      setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
544      setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
545    }
546  }
547}
548
549void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
550  addRegisterClass(VT, &AArch64::FPR64RegClass);
551  addTypeForNEON(VT, MVT::v2i32);
552}
553
554void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
555  addRegisterClass(VT, &AArch64::FPR128RegClass);
556  addTypeForNEON(VT, MVT::v4i32);
557}
558
559EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
560  if (!VT.isVector())
561    return MVT::i32;
562  return VT.changeVectorElementTypeToInteger();
563}
564
565/// computeKnownBitsForTargetNode - Determine which of the bits specified in
566/// Mask are known to be either zero or one and return them in the
567/// KnownZero/KnownOne bitsets.
568void AArch64TargetLowering::computeKnownBitsForTargetNode(
569    const SDValue Op, APInt &KnownZero, APInt &KnownOne,
570    const SelectionDAG &DAG, unsigned Depth) const {
571  switch (Op.getOpcode()) {
572  default:
573    break;
574  case AArch64ISD::CSEL: {
575    APInt KnownZero2, KnownOne2;
576    DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
577    DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
578    KnownZero &= KnownZero2;
579    KnownOne &= KnownOne2;
580    break;
581  }
582  case ISD::INTRINSIC_W_CHAIN: {
583   ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
584    Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
585    switch (IntID) {
586    default: return;
587    case Intrinsic::aarch64_ldaxr:
588    case Intrinsic::aarch64_ldxr: {
589      unsigned BitWidth = KnownOne.getBitWidth();
590      EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
591      unsigned MemBits = VT.getScalarType().getSizeInBits();
592      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
593      return;
594    }
595    }
596    break;
597  }
598  case ISD::INTRINSIC_WO_CHAIN:
599  case ISD::INTRINSIC_VOID: {
600    unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
601    switch (IntNo) {
602    default:
603      break;
604    case Intrinsic::aarch64_neon_umaxv:
605    case Intrinsic::aarch64_neon_uminv: {
606      // Figure out the datatype of the vector operand. The UMINV instruction
607      // will zero extend the result, so we can mark as known zero all the
608      // bits larger than the element datatype. 32-bit or larget doesn't need
609      // this as those are legal types and will be handled by isel directly.
610      MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
611      unsigned BitWidth = KnownZero.getBitWidth();
612      if (VT == MVT::v8i8 || VT == MVT::v16i8) {
613        assert(BitWidth >= 8 && "Unexpected width!");
614        APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
615        KnownZero |= Mask;
616      } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
617        assert(BitWidth >= 16 && "Unexpected width!");
618        APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
619        KnownZero |= Mask;
620      }
621      break;
622    } break;
623    }
624  }
625  }
626}
627
628MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
629  return MVT::i64;
630}
631
632unsigned AArch64TargetLowering::getMaximalGlobalOffset() const {
633  // FIXME: On AArch64, this depends on the type.
634  // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes().
635  // and the offset has to be a multiple of the related size in bytes.
636  return 4095;
637}
638
639FastISel *
640AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
641                                      const TargetLibraryInfo *libInfo) const {
642  return AArch64::createFastISel(funcInfo, libInfo);
643}
644
645const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
646  switch (Opcode) {
647  default:
648    return nullptr;
649  case AArch64ISD::CALL:              return "AArch64ISD::CALL";
650  case AArch64ISD::ADRP:              return "AArch64ISD::ADRP";
651  case AArch64ISD::ADDlow:            return "AArch64ISD::ADDlow";
652  case AArch64ISD::LOADgot:           return "AArch64ISD::LOADgot";
653  case AArch64ISD::RET_FLAG:          return "AArch64ISD::RET_FLAG";
654  case AArch64ISD::BRCOND:            return "AArch64ISD::BRCOND";
655  case AArch64ISD::CSEL:              return "AArch64ISD::CSEL";
656  case AArch64ISD::FCSEL:             return "AArch64ISD::FCSEL";
657  case AArch64ISD::CSINV:             return "AArch64ISD::CSINV";
658  case AArch64ISD::CSNEG:             return "AArch64ISD::CSNEG";
659  case AArch64ISD::CSINC:             return "AArch64ISD::CSINC";
660  case AArch64ISD::THREAD_POINTER:    return "AArch64ISD::THREAD_POINTER";
661  case AArch64ISD::TLSDESC_CALL:      return "AArch64ISD::TLSDESC_CALL";
662  case AArch64ISD::ADC:               return "AArch64ISD::ADC";
663  case AArch64ISD::SBC:               return "AArch64ISD::SBC";
664  case AArch64ISD::ADDS:              return "AArch64ISD::ADDS";
665  case AArch64ISD::SUBS:              return "AArch64ISD::SUBS";
666  case AArch64ISD::ADCS:              return "AArch64ISD::ADCS";
667  case AArch64ISD::SBCS:              return "AArch64ISD::SBCS";
668  case AArch64ISD::ANDS:              return "AArch64ISD::ANDS";
669  case AArch64ISD::FCMP:              return "AArch64ISD::FCMP";
670  case AArch64ISD::FMIN:              return "AArch64ISD::FMIN";
671  case AArch64ISD::FMAX:              return "AArch64ISD::FMAX";
672  case AArch64ISD::DUP:               return "AArch64ISD::DUP";
673  case AArch64ISD::DUPLANE8:          return "AArch64ISD::DUPLANE8";
674  case AArch64ISD::DUPLANE16:         return "AArch64ISD::DUPLANE16";
675  case AArch64ISD::DUPLANE32:         return "AArch64ISD::DUPLANE32";
676  case AArch64ISD::DUPLANE64:         return "AArch64ISD::DUPLANE64";
677  case AArch64ISD::MOVI:              return "AArch64ISD::MOVI";
678  case AArch64ISD::MOVIshift:         return "AArch64ISD::MOVIshift";
679  case AArch64ISD::MOVIedit:          return "AArch64ISD::MOVIedit";
680  case AArch64ISD::MOVImsl:           return "AArch64ISD::MOVImsl";
681  case AArch64ISD::FMOV:              return "AArch64ISD::FMOV";
682  case AArch64ISD::MVNIshift:         return "AArch64ISD::MVNIshift";
683  case AArch64ISD::MVNImsl:           return "AArch64ISD::MVNImsl";
684  case AArch64ISD::BICi:              return "AArch64ISD::BICi";
685  case AArch64ISD::ORRi:              return "AArch64ISD::ORRi";
686  case AArch64ISD::BSL:               return "AArch64ISD::BSL";
687  case AArch64ISD::NEG:               return "AArch64ISD::NEG";
688  case AArch64ISD::EXTR:              return "AArch64ISD::EXTR";
689  case AArch64ISD::ZIP1:              return "AArch64ISD::ZIP1";
690  case AArch64ISD::ZIP2:              return "AArch64ISD::ZIP2";
691  case AArch64ISD::UZP1:              return "AArch64ISD::UZP1";
692  case AArch64ISD::UZP2:              return "AArch64ISD::UZP2";
693  case AArch64ISD::TRN1:              return "AArch64ISD::TRN1";
694  case AArch64ISD::TRN2:              return "AArch64ISD::TRN2";
695  case AArch64ISD::REV16:             return "AArch64ISD::REV16";
696  case AArch64ISD::REV32:             return "AArch64ISD::REV32";
697  case AArch64ISD::REV64:             return "AArch64ISD::REV64";
698  case AArch64ISD::EXT:               return "AArch64ISD::EXT";
699  case AArch64ISD::VSHL:              return "AArch64ISD::VSHL";
700  case AArch64ISD::VLSHR:             return "AArch64ISD::VLSHR";
701  case AArch64ISD::VASHR:             return "AArch64ISD::VASHR";
702  case AArch64ISD::CMEQ:              return "AArch64ISD::CMEQ";
703  case AArch64ISD::CMGE:              return "AArch64ISD::CMGE";
704  case AArch64ISD::CMGT:              return "AArch64ISD::CMGT";
705  case AArch64ISD::CMHI:              return "AArch64ISD::CMHI";
706  case AArch64ISD::CMHS:              return "AArch64ISD::CMHS";
707  case AArch64ISD::FCMEQ:             return "AArch64ISD::FCMEQ";
708  case AArch64ISD::FCMGE:             return "AArch64ISD::FCMGE";
709  case AArch64ISD::FCMGT:             return "AArch64ISD::FCMGT";
710  case AArch64ISD::CMEQz:             return "AArch64ISD::CMEQz";
711  case AArch64ISD::CMGEz:             return "AArch64ISD::CMGEz";
712  case AArch64ISD::CMGTz:             return "AArch64ISD::CMGTz";
713  case AArch64ISD::CMLEz:             return "AArch64ISD::CMLEz";
714  case AArch64ISD::CMLTz:             return "AArch64ISD::CMLTz";
715  case AArch64ISD::FCMEQz:            return "AArch64ISD::FCMEQz";
716  case AArch64ISD::FCMGEz:            return "AArch64ISD::FCMGEz";
717  case AArch64ISD::FCMGTz:            return "AArch64ISD::FCMGTz";
718  case AArch64ISD::FCMLEz:            return "AArch64ISD::FCMLEz";
719  case AArch64ISD::FCMLTz:            return "AArch64ISD::FCMLTz";
720  case AArch64ISD::NOT:               return "AArch64ISD::NOT";
721  case AArch64ISD::BIT:               return "AArch64ISD::BIT";
722  case AArch64ISD::CBZ:               return "AArch64ISD::CBZ";
723  case AArch64ISD::CBNZ:              return "AArch64ISD::CBNZ";
724  case AArch64ISD::TBZ:               return "AArch64ISD::TBZ";
725  case AArch64ISD::TBNZ:              return "AArch64ISD::TBNZ";
726  case AArch64ISD::TC_RETURN:         return "AArch64ISD::TC_RETURN";
727  case AArch64ISD::SITOF:             return "AArch64ISD::SITOF";
728  case AArch64ISD::UITOF:             return "AArch64ISD::UITOF";
729  case AArch64ISD::SQSHL_I:           return "AArch64ISD::SQSHL_I";
730  case AArch64ISD::UQSHL_I:           return "AArch64ISD::UQSHL_I";
731  case AArch64ISD::SRSHR_I:           return "AArch64ISD::SRSHR_I";
732  case AArch64ISD::URSHR_I:           return "AArch64ISD::URSHR_I";
733  case AArch64ISD::SQSHLU_I:          return "AArch64ISD::SQSHLU_I";
734  case AArch64ISD::WrapperLarge:      return "AArch64ISD::WrapperLarge";
735  case AArch64ISD::LD2post:           return "AArch64ISD::LD2post";
736  case AArch64ISD::LD3post:           return "AArch64ISD::LD3post";
737  case AArch64ISD::LD4post:           return "AArch64ISD::LD4post";
738  case AArch64ISD::ST2post:           return "AArch64ISD::ST2post";
739  case AArch64ISD::ST3post:           return "AArch64ISD::ST3post";
740  case AArch64ISD::ST4post:           return "AArch64ISD::ST4post";
741  case AArch64ISD::LD1x2post:         return "AArch64ISD::LD1x2post";
742  case AArch64ISD::LD1x3post:         return "AArch64ISD::LD1x3post";
743  case AArch64ISD::LD1x4post:         return "AArch64ISD::LD1x4post";
744  case AArch64ISD::ST1x2post:         return "AArch64ISD::ST1x2post";
745  case AArch64ISD::ST1x3post:         return "AArch64ISD::ST1x3post";
746  case AArch64ISD::ST1x4post:         return "AArch64ISD::ST1x4post";
747  case AArch64ISD::LD1DUPpost:        return "AArch64ISD::LD1DUPpost";
748  case AArch64ISD::LD2DUPpost:        return "AArch64ISD::LD2DUPpost";
749  case AArch64ISD::LD3DUPpost:        return "AArch64ISD::LD3DUPpost";
750  case AArch64ISD::LD4DUPpost:        return "AArch64ISD::LD4DUPpost";
751  case AArch64ISD::LD1LANEpost:       return "AArch64ISD::LD1LANEpost";
752  case AArch64ISD::LD2LANEpost:       return "AArch64ISD::LD2LANEpost";
753  case AArch64ISD::LD3LANEpost:       return "AArch64ISD::LD3LANEpost";
754  case AArch64ISD::LD4LANEpost:       return "AArch64ISD::LD4LANEpost";
755  case AArch64ISD::ST2LANEpost:       return "AArch64ISD::ST2LANEpost";
756  case AArch64ISD::ST3LANEpost:       return "AArch64ISD::ST3LANEpost";
757  case AArch64ISD::ST4LANEpost:       return "AArch64ISD::ST4LANEpost";
758  }
759}
760
761MachineBasicBlock *
762AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
763                                    MachineBasicBlock *MBB) const {
764  // We materialise the F128CSEL pseudo-instruction as some control flow and a
765  // phi node:
766
767  // OrigBB:
768  //     [... previous instrs leading to comparison ...]
769  //     b.ne TrueBB
770  //     b EndBB
771  // TrueBB:
772  //     ; Fallthrough
773  // EndBB:
774  //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
775
776  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
777  MachineFunction *MF = MBB->getParent();
778  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
779  DebugLoc DL = MI->getDebugLoc();
780  MachineFunction::iterator It = MBB;
781  ++It;
782
783  unsigned DestReg = MI->getOperand(0).getReg();
784  unsigned IfTrueReg = MI->getOperand(1).getReg();
785  unsigned IfFalseReg = MI->getOperand(2).getReg();
786  unsigned CondCode = MI->getOperand(3).getImm();
787  bool NZCVKilled = MI->getOperand(4).isKill();
788
789  MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
790  MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
791  MF->insert(It, TrueBB);
792  MF->insert(It, EndBB);
793
794  // Transfer rest of current basic-block to EndBB
795  EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
796                MBB->end());
797  EndBB->transferSuccessorsAndUpdatePHIs(MBB);
798
799  BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
800  BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
801  MBB->addSuccessor(TrueBB);
802  MBB->addSuccessor(EndBB);
803
804  // TrueBB falls through to the end.
805  TrueBB->addSuccessor(EndBB);
806
807  if (!NZCVKilled) {
808    TrueBB->addLiveIn(AArch64::NZCV);
809    EndBB->addLiveIn(AArch64::NZCV);
810  }
811
812  BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
813      .addReg(IfTrueReg)
814      .addMBB(TrueBB)
815      .addReg(IfFalseReg)
816      .addMBB(MBB);
817
818  MI->eraseFromParent();
819  return EndBB;
820}
821
822MachineBasicBlock *
823AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
824                                                 MachineBasicBlock *BB) const {
825  switch (MI->getOpcode()) {
826  default:
827#ifndef NDEBUG
828    MI->dump();
829#endif
830    llvm_unreachable("Unexpected instruction for custom inserter!");
831
832  case AArch64::F128CSEL:
833    return EmitF128CSEL(MI, BB);
834
835  case TargetOpcode::STACKMAP:
836  case TargetOpcode::PATCHPOINT:
837    return emitPatchPoint(MI, BB);
838  }
839}
840
841//===----------------------------------------------------------------------===//
842// AArch64 Lowering private implementation.
843//===----------------------------------------------------------------------===//
844
845//===----------------------------------------------------------------------===//
846// Lowering Code
847//===----------------------------------------------------------------------===//
848
849/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
850/// CC
851static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
852  switch (CC) {
853  default:
854    llvm_unreachable("Unknown condition code!");
855  case ISD::SETNE:
856    return AArch64CC::NE;
857  case ISD::SETEQ:
858    return AArch64CC::EQ;
859  case ISD::SETGT:
860    return AArch64CC::GT;
861  case ISD::SETGE:
862    return AArch64CC::GE;
863  case ISD::SETLT:
864    return AArch64CC::LT;
865  case ISD::SETLE:
866    return AArch64CC::LE;
867  case ISD::SETUGT:
868    return AArch64CC::HI;
869  case ISD::SETUGE:
870    return AArch64CC::HS;
871  case ISD::SETULT:
872    return AArch64CC::LO;
873  case ISD::SETULE:
874    return AArch64CC::LS;
875  }
876}
877
878/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
879static void changeFPCCToAArch64CC(ISD::CondCode CC,
880                                  AArch64CC::CondCode &CondCode,
881                                  AArch64CC::CondCode &CondCode2) {
882  CondCode2 = AArch64CC::AL;
883  switch (CC) {
884  default:
885    llvm_unreachable("Unknown FP condition!");
886  case ISD::SETEQ:
887  case ISD::SETOEQ:
888    CondCode = AArch64CC::EQ;
889    break;
890  case ISD::SETGT:
891  case ISD::SETOGT:
892    CondCode = AArch64CC::GT;
893    break;
894  case ISD::SETGE:
895  case ISD::SETOGE:
896    CondCode = AArch64CC::GE;
897    break;
898  case ISD::SETOLT:
899    CondCode = AArch64CC::MI;
900    break;
901  case ISD::SETOLE:
902    CondCode = AArch64CC::LS;
903    break;
904  case ISD::SETONE:
905    CondCode = AArch64CC::MI;
906    CondCode2 = AArch64CC::GT;
907    break;
908  case ISD::SETO:
909    CondCode = AArch64CC::VC;
910    break;
911  case ISD::SETUO:
912    CondCode = AArch64CC::VS;
913    break;
914  case ISD::SETUEQ:
915    CondCode = AArch64CC::EQ;
916    CondCode2 = AArch64CC::VS;
917    break;
918  case ISD::SETUGT:
919    CondCode = AArch64CC::HI;
920    break;
921  case ISD::SETUGE:
922    CondCode = AArch64CC::PL;
923    break;
924  case ISD::SETLT:
925  case ISD::SETULT:
926    CondCode = AArch64CC::LT;
927    break;
928  case ISD::SETLE:
929  case ISD::SETULE:
930    CondCode = AArch64CC::LE;
931    break;
932  case ISD::SETNE:
933  case ISD::SETUNE:
934    CondCode = AArch64CC::NE;
935    break;
936  }
937}
938
939/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
940/// CC usable with the vector instructions. Fewer operations are available
941/// without a real NZCV register, so we have to use less efficient combinations
942/// to get the same effect.
943static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
944                                        AArch64CC::CondCode &CondCode,
945                                        AArch64CC::CondCode &CondCode2,
946                                        bool &Invert) {
947  Invert = false;
948  switch (CC) {
949  default:
950    // Mostly the scalar mappings work fine.
951    changeFPCCToAArch64CC(CC, CondCode, CondCode2);
952    break;
953  case ISD::SETUO:
954    Invert = true; // Fallthrough
955  case ISD::SETO:
956    CondCode = AArch64CC::MI;
957    CondCode2 = AArch64CC::GE;
958    break;
959  case ISD::SETUEQ:
960  case ISD::SETULT:
961  case ISD::SETULE:
962  case ISD::SETUGT:
963  case ISD::SETUGE:
964    // All of the compare-mask comparisons are ordered, but we can switch
965    // between the two by a double inversion. E.g. ULE == !OGT.
966    Invert = true;
967    changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
968    break;
969  }
970}
971
972static bool isLegalArithImmed(uint64_t C) {
973  // Matches AArch64DAGToDAGISel::SelectArithImmed().
974  return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
975}
976
977static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
978                              SDLoc dl, SelectionDAG &DAG) {
979  EVT VT = LHS.getValueType();
980
981  if (VT.isFloatingPoint())
982    return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
983
984  // The CMP instruction is just an alias for SUBS, and representing it as
985  // SUBS means that it's possible to get CSE with subtract operations.
986  // A later phase can perform the optimization of setting the destination
987  // register to WZR/XZR if it ends up being unused.
988  unsigned Opcode = AArch64ISD::SUBS;
989
990  if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
991      cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
992      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
993    // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
994    // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
995    // can be set differently by this operation. It comes down to whether
996    // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
997    // everything is fine. If not then the optimization is wrong. Thus general
998    // comparisons are only valid if op2 != 0.
999
1000    // So, finally, the only LLVM-native comparisons that don't mention C and V
1001    // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1002    // the absence of information about op2.
1003    Opcode = AArch64ISD::ADDS;
1004    RHS = RHS.getOperand(1);
1005  } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1006             cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1007             !isUnsignedIntSetCC(CC)) {
1008    // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1009    // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1010    // of the signed comparisons.
1011    Opcode = AArch64ISD::ANDS;
1012    RHS = LHS.getOperand(1);
1013    LHS = LHS.getOperand(0);
1014  }
1015
1016  return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
1017      .getValue(1);
1018}
1019
1020static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1021                             SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
1022  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1023    EVT VT = RHS.getValueType();
1024    uint64_t C = RHSC->getZExtValue();
1025    if (!isLegalArithImmed(C)) {
1026      // Constant does not fit, try adjusting it by one?
1027      switch (CC) {
1028      default:
1029        break;
1030      case ISD::SETLT:
1031      case ISD::SETGE:
1032        if ((VT == MVT::i32 && C != 0x80000000 &&
1033             isLegalArithImmed((uint32_t)(C - 1))) ||
1034            (VT == MVT::i64 && C != 0x80000000ULL &&
1035             isLegalArithImmed(C - 1ULL))) {
1036          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1037          C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1038          RHS = DAG.getConstant(C, VT);
1039        }
1040        break;
1041      case ISD::SETULT:
1042      case ISD::SETUGE:
1043        if ((VT == MVT::i32 && C != 0 &&
1044             isLegalArithImmed((uint32_t)(C - 1))) ||
1045            (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1046          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1047          C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1048          RHS = DAG.getConstant(C, VT);
1049        }
1050        break;
1051      case ISD::SETLE:
1052      case ISD::SETGT:
1053        if ((VT == MVT::i32 && C != 0x7fffffff &&
1054             isLegalArithImmed((uint32_t)(C + 1))) ||
1055            (VT == MVT::i64 && C != 0x7ffffffffffffffULL &&
1056             isLegalArithImmed(C + 1ULL))) {
1057          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1058          C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1059          RHS = DAG.getConstant(C, VT);
1060        }
1061        break;
1062      case ISD::SETULE:
1063      case ISD::SETUGT:
1064        if ((VT == MVT::i32 && C != 0xffffffff &&
1065             isLegalArithImmed((uint32_t)(C + 1))) ||
1066            (VT == MVT::i64 && C != 0xfffffffffffffffULL &&
1067             isLegalArithImmed(C + 1ULL))) {
1068          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1069          C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1070          RHS = DAG.getConstant(C, VT);
1071        }
1072        break;
1073      }
1074    }
1075  }
1076
1077  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1078  AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
1079  AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1080  return Cmp;
1081}
1082
1083static std::pair<SDValue, SDValue>
1084getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1085  assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1086         "Unsupported value type");
1087  SDValue Value, Overflow;
1088  SDLoc DL(Op);
1089  SDValue LHS = Op.getOperand(0);
1090  SDValue RHS = Op.getOperand(1);
1091  unsigned Opc = 0;
1092  switch (Op.getOpcode()) {
1093  default:
1094    llvm_unreachable("Unknown overflow instruction!");
1095  case ISD::SADDO:
1096    Opc = AArch64ISD::ADDS;
1097    CC = AArch64CC::VS;
1098    break;
1099  case ISD::UADDO:
1100    Opc = AArch64ISD::ADDS;
1101    CC = AArch64CC::HS;
1102    break;
1103  case ISD::SSUBO:
1104    Opc = AArch64ISD::SUBS;
1105    CC = AArch64CC::VS;
1106    break;
1107  case ISD::USUBO:
1108    Opc = AArch64ISD::SUBS;
1109    CC = AArch64CC::LO;
1110    break;
1111  // Multiply needs a little bit extra work.
1112  case ISD::SMULO:
1113  case ISD::UMULO: {
1114    CC = AArch64CC::NE;
1115    bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
1116    if (Op.getValueType() == MVT::i32) {
1117      unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1118      // For a 32 bit multiply with overflow check we want the instruction
1119      // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1120      // need to generate the following pattern:
1121      // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1122      LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1123      RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1124      SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1125      SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1126                                DAG.getConstant(0, MVT::i64));
1127      // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1128      // operation. We need to clear out the upper 32 bits, because we used a
1129      // widening multiply that wrote all 64 bits. In the end this should be a
1130      // noop.
1131      Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1132      if (IsSigned) {
1133        // The signed overflow check requires more than just a simple check for
1134        // any bit set in the upper 32 bits of the result. These bits could be
1135        // just the sign bits of a negative number. To perform the overflow
1136        // check we have to arithmetic shift right the 32nd bit of the result by
1137        // 31 bits. Then we compare the result to the upper 32 bits.
1138        SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1139                                        DAG.getConstant(32, MVT::i64));
1140        UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1141        SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1142                                        DAG.getConstant(31, MVT::i64));
1143        // It is important that LowerBits is last, otherwise the arithmetic
1144        // shift will not be folded into the compare (SUBS).
1145        SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1146        Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1147                       .getValue(1);
1148      } else {
1149        // The overflow check for unsigned multiply is easy. We only need to
1150        // check if any of the upper 32 bits are set. This can be done with a
1151        // CMP (shifted register). For that we need to generate the following
1152        // pattern:
1153        // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1154        SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1155                                        DAG.getConstant(32, MVT::i64));
1156        SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1157        Overflow =
1158            DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1159                        UpperBits).getValue(1);
1160      }
1161      break;
1162    }
1163    assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1164    // For the 64 bit multiply
1165    Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1166    if (IsSigned) {
1167      SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1168      SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1169                                      DAG.getConstant(63, MVT::i64));
1170      // It is important that LowerBits is last, otherwise the arithmetic
1171      // shift will not be folded into the compare (SUBS).
1172      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1173      Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1174                     .getValue(1);
1175    } else {
1176      SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1177      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1178      Overflow =
1179          DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1180                      UpperBits).getValue(1);
1181    }
1182    break;
1183  }
1184  } // switch (...)
1185
1186  if (Opc) {
1187    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1188
1189    // Emit the AArch64 operation with overflow check.
1190    Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1191    Overflow = Value.getValue(1);
1192  }
1193  return std::make_pair(Value, Overflow);
1194}
1195
1196SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1197                                             RTLIB::Libcall Call) const {
1198  SmallVector<SDValue, 2> Ops;
1199  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1200    Ops.push_back(Op.getOperand(i));
1201
1202  return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1203                     SDLoc(Op)).first;
1204}
1205
1206static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1207  SDValue Sel = Op.getOperand(0);
1208  SDValue Other = Op.getOperand(1);
1209
1210  // If neither operand is a SELECT_CC, give up.
1211  if (Sel.getOpcode() != ISD::SELECT_CC)
1212    std::swap(Sel, Other);
1213  if (Sel.getOpcode() != ISD::SELECT_CC)
1214    return Op;
1215
1216  // The folding we want to perform is:
1217  // (xor x, (select_cc a, b, cc, 0, -1) )
1218  //   -->
1219  // (csel x, (xor x, -1), cc ...)
1220  //
1221  // The latter will get matched to a CSINV instruction.
1222
1223  ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1224  SDValue LHS = Sel.getOperand(0);
1225  SDValue RHS = Sel.getOperand(1);
1226  SDValue TVal = Sel.getOperand(2);
1227  SDValue FVal = Sel.getOperand(3);
1228  SDLoc dl(Sel);
1229
1230  // FIXME: This could be generalized to non-integer comparisons.
1231  if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1232    return Op;
1233
1234  ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1235  ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1236
1237  // The the values aren't constants, this isn't the pattern we're looking for.
1238  if (!CFVal || !CTVal)
1239    return Op;
1240
1241  // We can commute the SELECT_CC by inverting the condition.  This
1242  // might be needed to make this fit into a CSINV pattern.
1243  if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1244    std::swap(TVal, FVal);
1245    std::swap(CTVal, CFVal);
1246    CC = ISD::getSetCCInverse(CC, true);
1247  }
1248
1249  // If the constants line up, perform the transform!
1250  if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1251    SDValue CCVal;
1252    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1253
1254    FVal = Other;
1255    TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1256                       DAG.getConstant(-1ULL, Other.getValueType()));
1257
1258    return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1259                       CCVal, Cmp);
1260  }
1261
1262  return Op;
1263}
1264
1265static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1266  EVT VT = Op.getValueType();
1267
1268  // Let legalize expand this if it isn't a legal type yet.
1269  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1270    return SDValue();
1271
1272  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1273
1274  unsigned Opc;
1275  bool ExtraOp = false;
1276  switch (Op.getOpcode()) {
1277  default:
1278    llvm_unreachable("Invalid code");
1279  case ISD::ADDC:
1280    Opc = AArch64ISD::ADDS;
1281    break;
1282  case ISD::SUBC:
1283    Opc = AArch64ISD::SUBS;
1284    break;
1285  case ISD::ADDE:
1286    Opc = AArch64ISD::ADCS;
1287    ExtraOp = true;
1288    break;
1289  case ISD::SUBE:
1290    Opc = AArch64ISD::SBCS;
1291    ExtraOp = true;
1292    break;
1293  }
1294
1295  if (!ExtraOp)
1296    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1297  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1298                     Op.getOperand(2));
1299}
1300
1301static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1302  // Let legalize expand this if it isn't a legal type yet.
1303  if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1304    return SDValue();
1305
1306  AArch64CC::CondCode CC;
1307  // The actual operation that sets the overflow or carry flag.
1308  SDValue Value, Overflow;
1309  std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1310
1311  // We use 0 and 1 as false and true values.
1312  SDValue TVal = DAG.getConstant(1, MVT::i32);
1313  SDValue FVal = DAG.getConstant(0, MVT::i32);
1314
1315  // We use an inverted condition, because the conditional select is inverted
1316  // too. This will allow it to be selected to a single instruction:
1317  // CSINC Wd, WZR, WZR, invert(cond).
1318  SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
1319  Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
1320                         CCVal, Overflow);
1321
1322  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1323  return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
1324}
1325
1326// Prefetch operands are:
1327// 1: Address to prefetch
1328// 2: bool isWrite
1329// 3: int locality (0 = no locality ... 3 = extreme locality)
1330// 4: bool isDataCache
1331static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1332  SDLoc DL(Op);
1333  unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1334  unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
1335  // The data thing is not used.
1336  // unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
1337
1338  bool IsStream = !Locality;
1339  // When the locality number is set
1340  if (Locality) {
1341    // The front-end should have filtered out the out-of-range values
1342    assert(Locality <= 3 && "Prefetch locality out-of-range");
1343    // The locality degree is the opposite of the cache speed.
1344    // Put the number the other way around.
1345    // The encoding starts at 0 for level 1
1346    Locality = 3 - Locality;
1347  }
1348
1349  // built the mask value encoding the expected behavior.
1350  unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit
1351                   (Locality << 1) |    // Cache level bits
1352                   (unsigned)IsStream;  // Stream bit
1353  return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1354                     DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
1355}
1356
1357SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1358                                              SelectionDAG &DAG) const {
1359  assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1360
1361  RTLIB::Libcall LC;
1362  LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1363
1364  return LowerF128Call(Op, DAG, LC);
1365}
1366
1367SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1368                                             SelectionDAG &DAG) const {
1369  if (Op.getOperand(0).getValueType() != MVT::f128) {
1370    // It's legal except when f128 is involved
1371    return Op;
1372  }
1373
1374  RTLIB::Libcall LC;
1375  LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1376
1377  // FP_ROUND node has a second operand indicating whether it is known to be
1378  // precise. That doesn't take part in the LibCall so we can't directly use
1379  // LowerF128Call.
1380  SDValue SrcVal = Op.getOperand(0);
1381  return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1382                     /*isSigned*/ false, SDLoc(Op)).first;
1383}
1384
1385static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1386  // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1387  // Any additional optimization in this function should be recorded
1388  // in the cost tables.
1389  EVT InVT = Op.getOperand(0).getValueType();
1390  EVT VT = Op.getValueType();
1391
1392  if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1393    SDLoc dl(Op);
1394    SDValue Cv =
1395        DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1396                    Op.getOperand(0));
1397    return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
1398  }
1399
1400  if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1401    SDLoc dl(Op);
1402    SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v2f64, Op.getOperand(0));
1403    return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1404  }
1405
1406  // Type changing conversions are illegal.
1407  return Op;
1408}
1409
1410SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1411                                              SelectionDAG &DAG) const {
1412  if (Op.getOperand(0).getValueType().isVector())
1413    return LowerVectorFP_TO_INT(Op, DAG);
1414
1415  if (Op.getOperand(0).getValueType() != MVT::f128) {
1416    // It's legal except when f128 is involved
1417    return Op;
1418  }
1419
1420  RTLIB::Libcall LC;
1421  if (Op.getOpcode() == ISD::FP_TO_SINT)
1422    LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1423  else
1424    LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1425
1426  SmallVector<SDValue, 2> Ops;
1427  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1428    Ops.push_back(Op.getOperand(i));
1429
1430  return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1431                     SDLoc(Op)).first;
1432}
1433
1434static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1435  // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1436  // Any additional optimization in this function should be recorded
1437  // in the cost tables.
1438  EVT VT = Op.getValueType();
1439  SDLoc dl(Op);
1440  SDValue In = Op.getOperand(0);
1441  EVT InVT = In.getValueType();
1442
1443  if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1444    MVT CastVT =
1445        MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1446                         InVT.getVectorNumElements());
1447    In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
1448    return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0));
1449  }
1450
1451  if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1452    unsigned CastOpc =
1453        Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1454    EVT CastVT = VT.changeVectorElementTypeToInteger();
1455    In = DAG.getNode(CastOpc, dl, CastVT, In);
1456    return DAG.getNode(Op.getOpcode(), dl, VT, In);
1457  }
1458
1459  return Op;
1460}
1461
1462SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1463                                            SelectionDAG &DAG) const {
1464  if (Op.getValueType().isVector())
1465    return LowerVectorINT_TO_FP(Op, DAG);
1466
1467  // i128 conversions are libcalls.
1468  if (Op.getOperand(0).getValueType() == MVT::i128)
1469    return SDValue();
1470
1471  // Other conversions are legal, unless it's to the completely software-based
1472  // fp128.
1473  if (Op.getValueType() != MVT::f128)
1474    return Op;
1475
1476  RTLIB::Libcall LC;
1477  if (Op.getOpcode() == ISD::SINT_TO_FP)
1478    LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1479  else
1480    LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1481
1482  return LowerF128Call(Op, DAG, LC);
1483}
1484
1485SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1486                                            SelectionDAG &DAG) const {
1487  // For iOS, we want to call an alternative entry point: __sincos_stret,
1488  // which returns the values in two S / D registers.
1489  SDLoc dl(Op);
1490  SDValue Arg = Op.getOperand(0);
1491  EVT ArgVT = Arg.getValueType();
1492  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1493
1494  ArgListTy Args;
1495  ArgListEntry Entry;
1496
1497  Entry.Node = Arg;
1498  Entry.Ty = ArgTy;
1499  Entry.isSExt = false;
1500  Entry.isZExt = false;
1501  Args.push_back(Entry);
1502
1503  const char *LibcallName =
1504      (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1505  SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
1506
1507  StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
1508  TargetLowering::CallLoweringInfo CLI(DAG);
1509  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
1510    .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
1511
1512  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1513  return CallResult.first;
1514}
1515
1516SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
1517                                              SelectionDAG &DAG) const {
1518  switch (Op.getOpcode()) {
1519  default:
1520    llvm_unreachable("unimplemented operand");
1521    return SDValue();
1522  case ISD::GlobalAddress:
1523    return LowerGlobalAddress(Op, DAG);
1524  case ISD::GlobalTLSAddress:
1525    return LowerGlobalTLSAddress(Op, DAG);
1526  case ISD::SETCC:
1527    return LowerSETCC(Op, DAG);
1528  case ISD::BR_CC:
1529    return LowerBR_CC(Op, DAG);
1530  case ISD::SELECT:
1531    return LowerSELECT(Op, DAG);
1532  case ISD::SELECT_CC:
1533    return LowerSELECT_CC(Op, DAG);
1534  case ISD::JumpTable:
1535    return LowerJumpTable(Op, DAG);
1536  case ISD::ConstantPool:
1537    return LowerConstantPool(Op, DAG);
1538  case ISD::BlockAddress:
1539    return LowerBlockAddress(Op, DAG);
1540  case ISD::VASTART:
1541    return LowerVASTART(Op, DAG);
1542  case ISD::VACOPY:
1543    return LowerVACOPY(Op, DAG);
1544  case ISD::VAARG:
1545    return LowerVAARG(Op, DAG);
1546  case ISD::ADDC:
1547  case ISD::ADDE:
1548  case ISD::SUBC:
1549  case ISD::SUBE:
1550    return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1551  case ISD::SADDO:
1552  case ISD::UADDO:
1553  case ISD::SSUBO:
1554  case ISD::USUBO:
1555  case ISD::SMULO:
1556  case ISD::UMULO:
1557    return LowerXALUO(Op, DAG);
1558  case ISD::FADD:
1559    return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
1560  case ISD::FSUB:
1561    return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
1562  case ISD::FMUL:
1563    return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
1564  case ISD::FDIV:
1565    return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
1566  case ISD::FP_ROUND:
1567    return LowerFP_ROUND(Op, DAG);
1568  case ISD::FP_EXTEND:
1569    return LowerFP_EXTEND(Op, DAG);
1570  case ISD::FRAMEADDR:
1571    return LowerFRAMEADDR(Op, DAG);
1572  case ISD::RETURNADDR:
1573    return LowerRETURNADDR(Op, DAG);
1574  case ISD::INSERT_VECTOR_ELT:
1575    return LowerINSERT_VECTOR_ELT(Op, DAG);
1576  case ISD::EXTRACT_VECTOR_ELT:
1577    return LowerEXTRACT_VECTOR_ELT(Op, DAG);
1578  case ISD::BUILD_VECTOR:
1579    return LowerBUILD_VECTOR(Op, DAG);
1580  case ISD::VECTOR_SHUFFLE:
1581    return LowerVECTOR_SHUFFLE(Op, DAG);
1582  case ISD::EXTRACT_SUBVECTOR:
1583    return LowerEXTRACT_SUBVECTOR(Op, DAG);
1584  case ISD::SRA:
1585  case ISD::SRL:
1586  case ISD::SHL:
1587    return LowerVectorSRA_SRL_SHL(Op, DAG);
1588  case ISD::SHL_PARTS:
1589    return LowerShiftLeftParts(Op, DAG);
1590  case ISD::SRL_PARTS:
1591  case ISD::SRA_PARTS:
1592    return LowerShiftRightParts(Op, DAG);
1593  case ISD::CTPOP:
1594    return LowerCTPOP(Op, DAG);
1595  case ISD::FCOPYSIGN:
1596    return LowerFCOPYSIGN(Op, DAG);
1597  case ISD::AND:
1598    return LowerVectorAND(Op, DAG);
1599  case ISD::OR:
1600    return LowerVectorOR(Op, DAG);
1601  case ISD::XOR:
1602    return LowerXOR(Op, DAG);
1603  case ISD::PREFETCH:
1604    return LowerPREFETCH(Op, DAG);
1605  case ISD::SINT_TO_FP:
1606  case ISD::UINT_TO_FP:
1607    return LowerINT_TO_FP(Op, DAG);
1608  case ISD::FP_TO_SINT:
1609  case ISD::FP_TO_UINT:
1610    return LowerFP_TO_INT(Op, DAG);
1611  case ISD::FSINCOS:
1612    return LowerFSINCOS(Op, DAG);
1613  }
1614}
1615
1616/// getFunctionAlignment - Return the Log2 alignment of this function.
1617unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
1618  return 2;
1619}
1620
1621//===----------------------------------------------------------------------===//
1622//                      Calling Convention Implementation
1623//===----------------------------------------------------------------------===//
1624
1625#include "AArch64GenCallingConv.inc"
1626
1627/// Selects the correct CCAssignFn for a the given CallingConvention
1628/// value.
1629CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1630                                                     bool IsVarArg) const {
1631  switch (CC) {
1632  default:
1633    llvm_unreachable("Unsupported calling convention.");
1634  case CallingConv::WebKit_JS:
1635    return CC_AArch64_WebKit_JS;
1636  case CallingConv::C:
1637  case CallingConv::Fast:
1638    if (!Subtarget->isTargetDarwin())
1639      return CC_AArch64_AAPCS;
1640    return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
1641  }
1642}
1643
1644SDValue AArch64TargetLowering::LowerFormalArguments(
1645    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1646    const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
1647    SmallVectorImpl<SDValue> &InVals) const {
1648  MachineFunction &MF = DAG.getMachineFunction();
1649  MachineFrameInfo *MFI = MF.getFrameInfo();
1650
1651  // Assign locations to all of the incoming arguments.
1652  SmallVector<CCValAssign, 16> ArgLocs;
1653  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1654                 getTargetMachine(), ArgLocs, *DAG.getContext());
1655
1656  // At this point, Ins[].VT may already be promoted to i32. To correctly
1657  // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
1658  // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
1659  // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
1660  // we use a special version of AnalyzeFormalArguments to pass in ValVT and
1661  // LocVT.
1662  unsigned NumArgs = Ins.size();
1663  Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
1664  unsigned CurArgIdx = 0;
1665  for (unsigned i = 0; i != NumArgs; ++i) {
1666    MVT ValVT = Ins[i].VT;
1667    std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx);
1668    CurArgIdx = Ins[i].OrigArgIndex;
1669
1670    // Get type of the original argument.
1671    EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
1672    MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
1673    // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
1674    if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
1675      ValVT = MVT::i8;
1676    else if (ActualMVT == MVT::i16)
1677      ValVT = MVT::i16;
1678
1679    CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
1680    bool Res =
1681        AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
1682    assert(!Res && "Call operand has unhandled type");
1683    (void)Res;
1684  }
1685  assert(ArgLocs.size() == Ins.size());
1686  SmallVector<SDValue, 16> ArgValues;
1687  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1688    CCValAssign &VA = ArgLocs[i];
1689
1690    if (Ins[i].Flags.isByVal()) {
1691      // Byval is used for HFAs in the PCS, but the system should work in a
1692      // non-compliant manner for larger structs.
1693      EVT PtrTy = getPointerTy();
1694      int Size = Ins[i].Flags.getByValSize();
1695      unsigned NumRegs = (Size + 7) / 8;
1696
1697      // FIXME: This works on big-endian for composite byvals, which are the common
1698      // case. It should also work for fundamental types too.
1699      unsigned FrameIdx =
1700        MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
1701      SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
1702      InVals.push_back(FrameIdxN);
1703
1704      continue;
1705    }
1706
1707    if (VA.isRegLoc()) {
1708      // Arguments stored in registers.
1709      EVT RegVT = VA.getLocVT();
1710
1711      SDValue ArgValue;
1712      const TargetRegisterClass *RC;
1713
1714      if (RegVT == MVT::i32)
1715        RC = &AArch64::GPR32RegClass;
1716      else if (RegVT == MVT::i64)
1717        RC = &AArch64::GPR64RegClass;
1718      else if (RegVT == MVT::f32)
1719        RC = &AArch64::FPR32RegClass;
1720      else if (RegVT == MVT::f64 || RegVT.is64BitVector())
1721        RC = &AArch64::FPR64RegClass;
1722      else if (RegVT == MVT::f128 || RegVT.is128BitVector())
1723        RC = &AArch64::FPR128RegClass;
1724      else
1725        llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
1726
1727      // Transform the arguments in physical registers into virtual ones.
1728      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1729      ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
1730
1731      // If this is an 8, 16 or 32-bit value, it is really passed promoted
1732      // to 64 bits.  Insert an assert[sz]ext to capture this, then
1733      // truncate to the right size.
1734      switch (VA.getLocInfo()) {
1735      default:
1736        llvm_unreachable("Unknown loc info!");
1737      case CCValAssign::Full:
1738        break;
1739      case CCValAssign::BCvt:
1740        ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
1741        break;
1742      case CCValAssign::AExt:
1743      case CCValAssign::SExt:
1744      case CCValAssign::ZExt:
1745        // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
1746        // nodes after our lowering.
1747        assert(RegVT == Ins[i].VT && "incorrect register location selected");
1748        break;
1749      }
1750
1751      InVals.push_back(ArgValue);
1752
1753    } else { // VA.isRegLoc()
1754      assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
1755      unsigned ArgOffset = VA.getLocMemOffset();
1756      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1757
1758      uint32_t BEAlign = 0;
1759      if (ArgSize < 8 && !Subtarget->isLittleEndian())
1760        BEAlign = 8 - ArgSize;
1761
1762      int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
1763
1764      // Create load nodes to retrieve arguments from the stack.
1765      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1766      SDValue ArgValue;
1767
1768      // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1769      ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1770      MVT MemVT = VA.getValVT();
1771
1772      switch (VA.getLocInfo()) {
1773      default:
1774        break;
1775      case CCValAssign::BCvt:
1776        MemVT = VA.getLocVT();
1777        break;
1778      case CCValAssign::SExt:
1779        ExtType = ISD::SEXTLOAD;
1780        break;
1781      case CCValAssign::ZExt:
1782        ExtType = ISD::ZEXTLOAD;
1783        break;
1784      case CCValAssign::AExt:
1785        ExtType = ISD::EXTLOAD;
1786        break;
1787      }
1788
1789      ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
1790                                MachinePointerInfo::getFixedStack(FI),
1791                                MemVT, false, false, false, nullptr);
1792
1793      InVals.push_back(ArgValue);
1794    }
1795  }
1796
1797  // varargs
1798  if (isVarArg) {
1799    if (!Subtarget->isTargetDarwin()) {
1800      // The AAPCS variadic function ABI is identical to the non-variadic
1801      // one. As a result there may be more arguments in registers and we should
1802      // save them for future reference.
1803      saveVarArgRegisters(CCInfo, DAG, DL, Chain);
1804    }
1805
1806    AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1807    // This will point to the next argument passed via stack.
1808    unsigned StackOffset = CCInfo.getNextStackOffset();
1809    // We currently pass all varargs at 8-byte alignment.
1810    StackOffset = ((StackOffset + 7) & ~7);
1811    AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
1812  }
1813
1814  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
1815  unsigned StackArgSize = CCInfo.getNextStackOffset();
1816  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1817  if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
1818    // This is a non-standard ABI so by fiat I say we're allowed to make full
1819    // use of the stack area to be popped, which must be aligned to 16 bytes in
1820    // any case:
1821    StackArgSize = RoundUpToAlignment(StackArgSize, 16);
1822
1823    // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
1824    // a multiple of 16.
1825    FuncInfo->setArgumentStackToRestore(StackArgSize);
1826
1827    // This realignment carries over to the available bytes below. Our own
1828    // callers will guarantee the space is free by giving an aligned value to
1829    // CALLSEQ_START.
1830  }
1831  // Even if we're not expected to free up the space, it's useful to know how
1832  // much is there while considering tail calls (because we can reuse it).
1833  FuncInfo->setBytesInStackArgArea(StackArgSize);
1834
1835  return Chain;
1836}
1837
1838void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
1839                                                SelectionDAG &DAG, SDLoc DL,
1840                                                SDValue &Chain) const {
1841  MachineFunction &MF = DAG.getMachineFunction();
1842  MachineFrameInfo *MFI = MF.getFrameInfo();
1843  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
1844
1845  SmallVector<SDValue, 8> MemOps;
1846
1847  static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
1848                                          AArch64::X3, AArch64::X4, AArch64::X5,
1849                                          AArch64::X6, AArch64::X7 };
1850  static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
1851  unsigned FirstVariadicGPR =
1852      CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs);
1853
1854  unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
1855  int GPRIdx = 0;
1856  if (GPRSaveSize != 0) {
1857    GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
1858
1859    SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
1860
1861    for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
1862      unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
1863      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
1864      SDValue Store =
1865          DAG.getStore(Val.getValue(1), DL, Val, FIN,
1866                       MachinePointerInfo::getStack(i * 8), false, false, 0);
1867      MemOps.push_back(Store);
1868      FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
1869                        DAG.getConstant(8, getPointerTy()));
1870    }
1871  }
1872  FuncInfo->setVarArgsGPRIndex(GPRIdx);
1873  FuncInfo->setVarArgsGPRSize(GPRSaveSize);
1874
1875  if (Subtarget->hasFPARMv8()) {
1876    static const MCPhysReg FPRArgRegs[] = {
1877        AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
1878        AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
1879    static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
1880    unsigned FirstVariadicFPR =
1881        CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs);
1882
1883    unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
1884    int FPRIdx = 0;
1885    if (FPRSaveSize != 0) {
1886      FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
1887
1888      SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
1889
1890      for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
1891        unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
1892        SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
1893
1894        SDValue Store =
1895            DAG.getStore(Val.getValue(1), DL, Val, FIN,
1896                         MachinePointerInfo::getStack(i * 16), false, false, 0);
1897        MemOps.push_back(Store);
1898        FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
1899                          DAG.getConstant(16, getPointerTy()));
1900      }
1901    }
1902    FuncInfo->setVarArgsFPRIndex(FPRIdx);
1903    FuncInfo->setVarArgsFPRSize(FPRSaveSize);
1904  }
1905
1906  if (!MemOps.empty()) {
1907    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1908  }
1909}
1910
1911/// LowerCallResult - Lower the result values of a call into the
1912/// appropriate copies out of appropriate physical registers.
1913SDValue AArch64TargetLowering::LowerCallResult(
1914    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1915    const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
1916    SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1917    SDValue ThisVal) const {
1918  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
1919                          ? RetCC_AArch64_WebKit_JS
1920                          : RetCC_AArch64_AAPCS;
1921  // Assign locations to each value returned by this call.
1922  SmallVector<CCValAssign, 16> RVLocs;
1923  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1924                 getTargetMachine(), RVLocs, *DAG.getContext());
1925  CCInfo.AnalyzeCallResult(Ins, RetCC);
1926
1927  // Copy all of the result registers out of their specified physreg.
1928  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1929    CCValAssign VA = RVLocs[i];
1930
1931    // Pass 'this' value directly from the argument to return value, to avoid
1932    // reg unit interference
1933    if (i == 0 && isThisReturn) {
1934      assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
1935             "unexpected return calling convention register assignment");
1936      InVals.push_back(ThisVal);
1937      continue;
1938    }
1939
1940    SDValue Val =
1941        DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
1942    Chain = Val.getValue(1);
1943    InFlag = Val.getValue(2);
1944
1945    switch (VA.getLocInfo()) {
1946    default:
1947      llvm_unreachable("Unknown loc info!");
1948    case CCValAssign::Full:
1949      break;
1950    case CCValAssign::BCvt:
1951      Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1952      break;
1953    }
1954
1955    InVals.push_back(Val);
1956  }
1957
1958  return Chain;
1959}
1960
1961bool AArch64TargetLowering::isEligibleForTailCallOptimization(
1962    SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
1963    bool isCalleeStructRet, bool isCallerStructRet,
1964    const SmallVectorImpl<ISD::OutputArg> &Outs,
1965    const SmallVectorImpl<SDValue> &OutVals,
1966    const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
1967  // For CallingConv::C this function knows whether the ABI needs
1968  // changing. That's not true for other conventions so they will have to opt in
1969  // manually.
1970  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1971    return false;
1972
1973  const MachineFunction &MF = DAG.getMachineFunction();
1974  const Function *CallerF = MF.getFunction();
1975  CallingConv::ID CallerCC = CallerF->getCallingConv();
1976  bool CCMatch = CallerCC == CalleeCC;
1977
1978  // Byval parameters hand the function a pointer directly into the stack area
1979  // we want to reuse during a tail call. Working around this *is* possible (see
1980  // X86) but less efficient and uglier in LowerCall.
1981  for (Function::const_arg_iterator i = CallerF->arg_begin(),
1982                                    e = CallerF->arg_end();
1983       i != e; ++i)
1984    if (i->hasByValAttr())
1985      return false;
1986
1987  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
1988    if (IsTailCallConvention(CalleeCC) && CCMatch)
1989      return true;
1990    return false;
1991  }
1992
1993  // Now we search for cases where we can use a tail call without changing the
1994  // ABI. Sibcall is used in some places (particularly gcc) to refer to this
1995  // concept.
1996
1997  // I want anyone implementing a new calling convention to think long and hard
1998  // about this assert.
1999  assert((!isVarArg || CalleeCC == CallingConv::C) &&
2000         "Unexpected variadic calling convention");
2001
2002  if (isVarArg && !Outs.empty()) {
2003    // At least two cases here: if caller is fastcc then we can't have any
2004    // memory arguments (we'd be expected to clean up the stack afterwards). If
2005    // caller is C then we could potentially use its argument area.
2006
2007    // FIXME: for now we take the most conservative of these in both cases:
2008    // disallow all variadic memory operands.
2009    SmallVector<CCValAssign, 16> ArgLocs;
2010    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2011                   getTargetMachine(), ArgLocs, *DAG.getContext());
2012
2013    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2014    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2015      if (!ArgLocs[i].isRegLoc())
2016        return false;
2017  }
2018
2019  // If the calling conventions do not match, then we'd better make sure the
2020  // results are returned in the same way as what the caller expects.
2021  if (!CCMatch) {
2022    SmallVector<CCValAssign, 16> RVLocs1;
2023    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2024                    getTargetMachine(), RVLocs1, *DAG.getContext());
2025    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2026
2027    SmallVector<CCValAssign, 16> RVLocs2;
2028    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2029                    getTargetMachine(), RVLocs2, *DAG.getContext());
2030    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2031
2032    if (RVLocs1.size() != RVLocs2.size())
2033      return false;
2034    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2035      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2036        return false;
2037      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2038        return false;
2039      if (RVLocs1[i].isRegLoc()) {
2040        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2041          return false;
2042      } else {
2043        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2044          return false;
2045      }
2046    }
2047  }
2048
2049  // Nothing more to check if the callee is taking no arguments
2050  if (Outs.empty())
2051    return true;
2052
2053  SmallVector<CCValAssign, 16> ArgLocs;
2054  CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2055                 getTargetMachine(), ArgLocs, *DAG.getContext());
2056
2057  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2058
2059  const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2060
2061  // If the stack arguments for this call would fit into our own save area then
2062  // the call can be made tail.
2063  return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2064}
2065
2066SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2067                                                   SelectionDAG &DAG,
2068                                                   MachineFrameInfo *MFI,
2069                                                   int ClobberedFI) const {
2070  SmallVector<SDValue, 8> ArgChains;
2071  int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2072  int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2073
2074  // Include the original chain at the beginning of the list. When this is
2075  // used by target LowerCall hooks, this helps legalize find the
2076  // CALLSEQ_BEGIN node.
2077  ArgChains.push_back(Chain);
2078
2079  // Add a chain value for each stack argument corresponding
2080  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2081                            UE = DAG.getEntryNode().getNode()->use_end();
2082       U != UE; ++U)
2083    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2084      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2085        if (FI->getIndex() < 0) {
2086          int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2087          int64_t InLastByte = InFirstByte;
2088          InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2089
2090          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2091              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2092            ArgChains.push_back(SDValue(L, 1));
2093        }
2094
2095  // Build a tokenfactor for all the chains.
2096  return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2097}
2098
2099bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2100                                                   bool TailCallOpt) const {
2101  return CallCC == CallingConv::Fast && TailCallOpt;
2102}
2103
2104bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2105  return CallCC == CallingConv::Fast;
2106}
2107
2108/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2109/// and add input and output parameter nodes.
2110SDValue
2111AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2112                                 SmallVectorImpl<SDValue> &InVals) const {
2113  SelectionDAG &DAG = CLI.DAG;
2114  SDLoc &DL = CLI.DL;
2115  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2116  SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2117  SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2118  SDValue Chain = CLI.Chain;
2119  SDValue Callee = CLI.Callee;
2120  bool &IsTailCall = CLI.IsTailCall;
2121  CallingConv::ID CallConv = CLI.CallConv;
2122  bool IsVarArg = CLI.IsVarArg;
2123
2124  MachineFunction &MF = DAG.getMachineFunction();
2125  bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2126  bool IsThisReturn = false;
2127
2128  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2129  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2130  bool IsSibCall = false;
2131
2132  if (IsTailCall) {
2133    // Check if it's really possible to do a tail call.
2134    IsTailCall = isEligibleForTailCallOptimization(
2135        Callee, CallConv, IsVarArg, IsStructRet,
2136        MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2137    if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2138      report_fatal_error("failed to perform tail call elimination on a call "
2139                         "site marked musttail");
2140
2141    // A sibling call is one where we're under the usual C ABI and not planning
2142    // to change that but can still do a tail call:
2143    if (!TailCallOpt && IsTailCall)
2144      IsSibCall = true;
2145
2146    if (IsTailCall)
2147      ++NumTailCalls;
2148  }
2149
2150  // Analyze operands of the call, assigning locations to each operand.
2151  SmallVector<CCValAssign, 16> ArgLocs;
2152  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2153                 getTargetMachine(), ArgLocs, *DAG.getContext());
2154
2155  if (IsVarArg) {
2156    // Handle fixed and variable vector arguments differently.
2157    // Variable vector arguments always go into memory.
2158    unsigned NumArgs = Outs.size();
2159
2160    for (unsigned i = 0; i != NumArgs; ++i) {
2161      MVT ArgVT = Outs[i].VT;
2162      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2163      CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2164                                               /*IsVarArg=*/ !Outs[i].IsFixed);
2165      bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2166      assert(!Res && "Call operand has unhandled type");
2167      (void)Res;
2168    }
2169  } else {
2170    // At this point, Outs[].VT may already be promoted to i32. To correctly
2171    // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2172    // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2173    // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2174    // we use a special version of AnalyzeCallOperands to pass in ValVT and
2175    // LocVT.
2176    unsigned NumArgs = Outs.size();
2177    for (unsigned i = 0; i != NumArgs; ++i) {
2178      MVT ValVT = Outs[i].VT;
2179      // Get type of the original argument.
2180      EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2181                                  /*AllowUnknown*/ true);
2182      MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2183      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2184      // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2185      if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2186        ValVT = MVT::i8;
2187      else if (ActualMVT == MVT::i16)
2188        ValVT = MVT::i16;
2189
2190      CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2191      bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
2192      assert(!Res && "Call operand has unhandled type");
2193      (void)Res;
2194    }
2195  }
2196
2197  // Get a count of how many bytes are to be pushed on the stack.
2198  unsigned NumBytes = CCInfo.getNextStackOffset();
2199
2200  if (IsSibCall) {
2201    // Since we're not changing the ABI to make this a tail call, the memory
2202    // operands are already available in the caller's incoming argument space.
2203    NumBytes = 0;
2204  }
2205
2206  // FPDiff is the byte offset of the call's argument area from the callee's.
2207  // Stores to callee stack arguments will be placed in FixedStackSlots offset
2208  // by this amount for a tail call. In a sibling call it must be 0 because the
2209  // caller will deallocate the entire stack and the callee still expects its
2210  // arguments to begin at SP+0. Completely unused for non-tail calls.
2211  int FPDiff = 0;
2212
2213  if (IsTailCall && !IsSibCall) {
2214    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2215
2216    // Since callee will pop argument stack as a tail call, we must keep the
2217    // popped size 16-byte aligned.
2218    NumBytes = RoundUpToAlignment(NumBytes, 16);
2219
2220    // FPDiff will be negative if this tail call requires more space than we
2221    // would automatically have in our incoming argument space. Positive if we
2222    // can actually shrink the stack.
2223    FPDiff = NumReusableBytes - NumBytes;
2224
2225    // The stack pointer must be 16-byte aligned at all times it's used for a
2226    // memory operation, which in practice means at *all* times and in
2227    // particular across call boundaries. Therefore our own arguments started at
2228    // a 16-byte aligned SP and the delta applied for the tail call should
2229    // satisfy the same constraint.
2230    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2231  }
2232
2233  // Adjust the stack pointer for the new arguments...
2234  // These operations are automatically eliminated by the prolog/epilog pass
2235  if (!IsSibCall)
2236    Chain =
2237        DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
2238
2239  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
2240
2241  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2242  SmallVector<SDValue, 8> MemOpChains;
2243
2244  // Walk the register/memloc assignments, inserting copies/loads.
2245  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2246       ++i, ++realArgIdx) {
2247    CCValAssign &VA = ArgLocs[i];
2248    SDValue Arg = OutVals[realArgIdx];
2249    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2250
2251    // Promote the value if needed.
2252    switch (VA.getLocInfo()) {
2253    default:
2254      llvm_unreachable("Unknown loc info!");
2255    case CCValAssign::Full:
2256      break;
2257    case CCValAssign::SExt:
2258      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2259      break;
2260    case CCValAssign::ZExt:
2261      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2262      break;
2263    case CCValAssign::AExt:
2264      if (Outs[realArgIdx].ArgVT == MVT::i1) {
2265        // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2266        Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2267        Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2268      }
2269      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2270      break;
2271    case CCValAssign::BCvt:
2272      Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2273      break;
2274    case CCValAssign::FPExt:
2275      Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2276      break;
2277    }
2278
2279    if (VA.isRegLoc()) {
2280      if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2281        assert(VA.getLocVT() == MVT::i64 &&
2282               "unexpected calling convention register assignment");
2283        assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2284               "unexpected use of 'returned'");
2285        IsThisReturn = true;
2286      }
2287      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2288    } else {
2289      assert(VA.isMemLoc());
2290
2291      SDValue DstAddr;
2292      MachinePointerInfo DstInfo;
2293
2294      // FIXME: This works on big-endian for composite byvals, which are the
2295      // common case. It should also work for fundamental types too.
2296      uint32_t BEAlign = 0;
2297      unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
2298                                        : VA.getLocVT().getSizeInBits();
2299      OpSize = (OpSize + 7) / 8;
2300      if (!Subtarget->isLittleEndian() && !Flags.isByVal()) {
2301        if (OpSize < 8)
2302          BEAlign = 8 - OpSize;
2303      }
2304      unsigned LocMemOffset = VA.getLocMemOffset();
2305      int32_t Offset = LocMemOffset + BEAlign;
2306      SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2307      PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2308
2309      if (IsTailCall) {
2310        Offset = Offset + FPDiff;
2311        int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2312
2313        DstAddr = DAG.getFrameIndex(FI, getPointerTy());
2314        DstInfo = MachinePointerInfo::getFixedStack(FI);
2315
2316        // Make sure any stack arguments overlapping with where we're storing
2317        // are loaded before this eventual operation. Otherwise they'll be
2318        // clobbered.
2319        Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2320      } else {
2321        SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2322
2323        DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2324        DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2325      }
2326
2327      if (Outs[i].Flags.isByVal()) {
2328        SDValue SizeNode =
2329            DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
2330        SDValue Cpy = DAG.getMemcpy(
2331            Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2332            /*isVolatile = */ false,
2333            /*alwaysInline = */ false, DstInfo, MachinePointerInfo());
2334
2335        MemOpChains.push_back(Cpy);
2336      } else {
2337        // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
2338        // promoted to a legal register type i32, we should truncate Arg back to
2339        // i1/i8/i16.
2340        if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
2341            VA.getValVT() == MVT::i16)
2342          Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
2343
2344        SDValue Store =
2345            DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
2346        MemOpChains.push_back(Store);
2347      }
2348    }
2349  }
2350
2351  if (!MemOpChains.empty())
2352    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2353
2354  // Build a sequence of copy-to-reg nodes chained together with token chain
2355  // and flag operands which copy the outgoing args into the appropriate regs.
2356  SDValue InFlag;
2357  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2358    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
2359                             RegsToPass[i].second, InFlag);
2360    InFlag = Chain.getValue(1);
2361  }
2362
2363  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2364  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2365  // node so that legalize doesn't hack it.
2366  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
2367      Subtarget->isTargetMachO()) {
2368    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2369      const GlobalValue *GV = G->getGlobal();
2370      bool InternalLinkage = GV->hasInternalLinkage();
2371      if (InternalLinkage)
2372        Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2373      else {
2374        Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
2375                                            AArch64II::MO_GOT);
2376        Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2377      }
2378    } else if (ExternalSymbolSDNode *S =
2379                   dyn_cast<ExternalSymbolSDNode>(Callee)) {
2380      const char *Sym = S->getSymbol();
2381      Callee =
2382          DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
2383      Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2384    }
2385  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2386    const GlobalValue *GV = G->getGlobal();
2387    Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2388  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2389    const char *Sym = S->getSymbol();
2390    Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
2391  }
2392
2393  // We don't usually want to end the call-sequence here because we would tidy
2394  // the frame up *after* the call, however in the ABI-changing tail-call case
2395  // we've carefully laid out the parameters so that when sp is reset they'll be
2396  // in the correct location.
2397  if (IsTailCall && !IsSibCall) {
2398    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2399                               DAG.getIntPtrConstant(0, true), InFlag, DL);
2400    InFlag = Chain.getValue(1);
2401  }
2402
2403  std::vector<SDValue> Ops;
2404  Ops.push_back(Chain);
2405  Ops.push_back(Callee);
2406
2407  if (IsTailCall) {
2408    // Each tail call may have to adjust the stack by a different amount, so
2409    // this information must travel along with the operation for eventual
2410    // consumption by emitEpilogue.
2411    Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
2412  }
2413
2414  // Add argument registers to the end of the list so that they are known live
2415  // into the call.
2416  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2417    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2418                                  RegsToPass[i].second.getValueType()));
2419
2420  // Add a register mask operand representing the call-preserved registers.
2421  const uint32_t *Mask;
2422  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2423  const AArch64RegisterInfo *ARI =
2424      static_cast<const AArch64RegisterInfo *>(TRI);
2425  if (IsThisReturn) {
2426    // For 'this' returns, use the X0-preserving mask if applicable
2427    Mask = ARI->getThisReturnPreservedMask(CallConv);
2428    if (!Mask) {
2429      IsThisReturn = false;
2430      Mask = ARI->getCallPreservedMask(CallConv);
2431    }
2432  } else
2433    Mask = ARI->getCallPreservedMask(CallConv);
2434
2435  assert(Mask && "Missing call preserved mask for calling convention");
2436  Ops.push_back(DAG.getRegisterMask(Mask));
2437
2438  if (InFlag.getNode())
2439    Ops.push_back(InFlag);
2440
2441  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2442
2443  // If we're doing a tall call, use a TC_RETURN here rather than an
2444  // actual call instruction.
2445  if (IsTailCall)
2446    return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
2447
2448  // Returns a chain and a flag for retval copy to use.
2449  Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
2450  InFlag = Chain.getValue(1);
2451
2452  uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
2453                                ? RoundUpToAlignment(NumBytes, 16)
2454                                : 0;
2455
2456  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2457                             DAG.getIntPtrConstant(CalleePopBytes, true),
2458                             InFlag, DL);
2459  if (!Ins.empty())
2460    InFlag = Chain.getValue(1);
2461
2462  // Handle result values, copying them out of physregs into vregs that we
2463  // return.
2464  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2465                         InVals, IsThisReturn,
2466                         IsThisReturn ? OutVals[0] : SDValue());
2467}
2468
2469bool AArch64TargetLowering::CanLowerReturn(
2470    CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2471    const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2472  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2473                          ? RetCC_AArch64_WebKit_JS
2474                          : RetCC_AArch64_AAPCS;
2475  SmallVector<CCValAssign, 16> RVLocs;
2476  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
2477  return CCInfo.CheckReturn(Outs, RetCC);
2478}
2479
2480SDValue
2481AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2482                                   bool isVarArg,
2483                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2484                                   const SmallVectorImpl<SDValue> &OutVals,
2485                                   SDLoc DL, SelectionDAG &DAG) const {
2486  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2487                          ? RetCC_AArch64_WebKit_JS
2488                          : RetCC_AArch64_AAPCS;
2489  SmallVector<CCValAssign, 16> RVLocs;
2490  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2491                 getTargetMachine(), RVLocs, *DAG.getContext());
2492  CCInfo.AnalyzeReturn(Outs, RetCC);
2493
2494  // Copy the result values into the output registers.
2495  SDValue Flag;
2496  SmallVector<SDValue, 4> RetOps(1, Chain);
2497  for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
2498       ++i, ++realRVLocIdx) {
2499    CCValAssign &VA = RVLocs[i];
2500    assert(VA.isRegLoc() && "Can only return in registers!");
2501    SDValue Arg = OutVals[realRVLocIdx];
2502
2503    switch (VA.getLocInfo()) {
2504    default:
2505      llvm_unreachable("Unknown loc info!");
2506    case CCValAssign::Full:
2507      if (Outs[i].ArgVT == MVT::i1) {
2508        // AAPCS requires i1 to be zero-extended to i8 by the producer of the
2509        // value. This is strictly redundant on Darwin (which uses "zeroext
2510        // i1"), but will be optimised out before ISel.
2511        Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2512        Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2513      }
2514      break;
2515    case CCValAssign::BCvt:
2516      Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2517      break;
2518    }
2519
2520    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2521    Flag = Chain.getValue(1);
2522    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2523  }
2524
2525  RetOps[0] = Chain; // Update chain.
2526
2527  // Add the flag if we have it.
2528  if (Flag.getNode())
2529    RetOps.push_back(Flag);
2530
2531  return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
2532}
2533
2534//===----------------------------------------------------------------------===//
2535//  Other Lowering Code
2536//===----------------------------------------------------------------------===//
2537
2538SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
2539                                                  SelectionDAG &DAG) const {
2540  EVT PtrVT = getPointerTy();
2541  SDLoc DL(Op);
2542  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2543  unsigned char OpFlags =
2544      Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
2545
2546  assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
2547         "unexpected offset in global node");
2548
2549  // This also catched the large code model case for Darwin.
2550  if ((OpFlags & AArch64II::MO_GOT) != 0) {
2551    SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2552    // FIXME: Once remat is capable of dealing with instructions with register
2553    // operands, expand this into two nodes instead of using a wrapper node.
2554    return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
2555  }
2556
2557  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2558    const unsigned char MO_NC = AArch64II::MO_NC;
2559    return DAG.getNode(
2560        AArch64ISD::WrapperLarge, DL, PtrVT,
2561        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
2562        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
2563        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
2564        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
2565  } else {
2566    // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
2567    // the only correct model on Darwin.
2568    SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2569                                            OpFlags | AArch64II::MO_PAGE);
2570    unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2571    SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
2572
2573    SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2574    return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2575  }
2576}
2577
2578/// \brief Convert a TLS address reference into the correct sequence of loads
2579/// and calls to compute the variable's address (for Darwin, currently) and
2580/// return an SDValue containing the final node.
2581
2582/// Darwin only has one TLS scheme which must be capable of dealing with the
2583/// fully general situation, in the worst case. This means:
2584///     + "extern __thread" declaration.
2585///     + Defined in a possibly unknown dynamic library.
2586///
2587/// The general system is that each __thread variable has a [3 x i64] descriptor
2588/// which contains information used by the runtime to calculate the address. The
2589/// only part of this the compiler needs to know about is the first xword, which
2590/// contains a function pointer that must be called with the address of the
2591/// entire descriptor in "x0".
2592///
2593/// Since this descriptor may be in a different unit, in general even the
2594/// descriptor must be accessed via an indirect load. The "ideal" code sequence
2595/// is:
2596///     adrp x0, _var@TLVPPAGE
2597///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor
2598///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor,
2599///                                      ; the function pointer
2600///     blr x1                           ; Uses descriptor address in x0
2601///     ; Address of _var is now in x0.
2602///
2603/// If the address of _var's descriptor *is* known to the linker, then it can
2604/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
2605/// a slight efficiency gain.
2606SDValue
2607AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
2608                                                   SelectionDAG &DAG) const {
2609  assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
2610
2611  SDLoc DL(Op);
2612  MVT PtrVT = getPointerTy();
2613  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2614
2615  SDValue TLVPAddr =
2616      DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2617  SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
2618
2619  // The first entry in the descriptor is a function pointer that we must call
2620  // to obtain the address of the variable.
2621  SDValue Chain = DAG.getEntryNode();
2622  SDValue FuncTLVGet =
2623      DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
2624                  false, true, true, 8);
2625  Chain = FuncTLVGet.getValue(1);
2626
2627  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2628  MFI->setAdjustsStack(true);
2629
2630  // TLS calls preserve all registers except those that absolutely must be
2631  // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
2632  // silly).
2633  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2634  const AArch64RegisterInfo *ARI =
2635      static_cast<const AArch64RegisterInfo *>(TRI);
2636  const uint32_t *Mask = ARI->getTLSCallPreservedMask();
2637
2638  // Finally, we can make the call. This is just a degenerate version of a
2639  // normal AArch64 call node: x0 takes the address of the descriptor, and
2640  // returns the address of the variable in this thread.
2641  Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
2642  Chain =
2643      DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2644                  Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
2645                  DAG.getRegisterMask(Mask), Chain.getValue(1));
2646  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
2647}
2648
2649/// When accessing thread-local variables under either the general-dynamic or
2650/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
2651/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
2652/// is a function pointer to carry out the resolution. This function takes the
2653/// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All
2654/// other registers (except LR, NZCV) are preserved.
2655///
2656/// Thus, the ideal call sequence on AArch64 is:
2657///
2658///     adrp x0, :tlsdesc:thread_var
2659///     ldr x8, [x0, :tlsdesc_lo12:thread_var]
2660///     add x0, x0, :tlsdesc_lo12:thread_var
2661///     .tlsdesccall thread_var
2662///     blr x8
2663///     (TPIDR_EL0 offset now in x0).
2664///
2665/// The ".tlsdesccall" directive instructs the assembler to insert a particular
2666/// relocation to help the linker relax this sequence if it turns out to be too
2667/// conservative.
2668///
2669/// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this
2670/// is harmless.
2671SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
2672                                                   SDValue DescAddr, SDLoc DL,
2673                                                   SelectionDAG &DAG) const {
2674  EVT PtrVT = getPointerTy();
2675
2676  // The function we need to call is simply the first entry in the GOT for this
2677  // descriptor, load it in preparation.
2678  SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr);
2679
2680  // TLS calls preserve all registers except those that absolutely must be
2681  // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
2682  // silly).
2683  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2684  const AArch64RegisterInfo *ARI =
2685      static_cast<const AArch64RegisterInfo *>(TRI);
2686  const uint32_t *Mask = ARI->getTLSCallPreservedMask();
2687
2688  // The function takes only one argument: the address of the descriptor itself
2689  // in X0.
2690  SDValue Glue, Chain;
2691  Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
2692  Glue = Chain.getValue(1);
2693
2694  // We're now ready to populate the argument list, as with a normal call:
2695  SmallVector<SDValue, 6> Ops;
2696  Ops.push_back(Chain);
2697  Ops.push_back(Func);
2698  Ops.push_back(SymAddr);
2699  Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
2700  Ops.push_back(DAG.getRegisterMask(Mask));
2701  Ops.push_back(Glue);
2702
2703  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2704  Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops);
2705  Glue = Chain.getValue(1);
2706
2707  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
2708}
2709
2710SDValue
2711AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
2712                                                SelectionDAG &DAG) const {
2713  assert(Subtarget->isTargetELF() && "This function expects an ELF target");
2714  assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
2715         "ELF TLS only supported in small memory model");
2716  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2717
2718  TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
2719
2720  SDValue TPOff;
2721  EVT PtrVT = getPointerTy();
2722  SDLoc DL(Op);
2723  const GlobalValue *GV = GA->getGlobal();
2724
2725  SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
2726
2727  if (Model == TLSModel::LocalExec) {
2728    SDValue HiVar = DAG.getTargetGlobalAddress(
2729        GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
2730    SDValue LoVar = DAG.getTargetGlobalAddress(
2731        GV, DL, PtrVT, 0,
2732        AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
2733
2734    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
2735                                       DAG.getTargetConstant(16, MVT::i32)),
2736                    0);
2737    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
2738                                       DAG.getTargetConstant(0, MVT::i32)),
2739                    0);
2740  } else if (Model == TLSModel::InitialExec) {
2741    TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2742    TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
2743  } else if (Model == TLSModel::LocalDynamic) {
2744    // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2745    // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2746    // the beginning of the module's TLS region, followed by a DTPREL offset
2747    // calculation.
2748
2749    // These accesses will need deduplicating if there's more than one.
2750    AArch64FunctionInfo *MFI =
2751        DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
2752    MFI->incNumLocalDynamicTLSAccesses();
2753
2754    // Accesses used in this sequence go via the TLS descriptor which lives in
2755    // the GOT. Prepare an address we can use to handle this.
2756    SDValue HiDesc = DAG.getTargetExternalSymbol(
2757        "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE);
2758    SDValue LoDesc = DAG.getTargetExternalSymbol(
2759        "_TLS_MODULE_BASE_", PtrVT,
2760        AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2761
2762    // First argument to the descriptor call is the address of the descriptor
2763    // itself.
2764    SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
2765    DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
2766
2767    // The call needs a relocation too for linker relaxation. It doesn't make
2768    // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
2769    // the address.
2770    SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2771                                                  AArch64II::MO_TLS);
2772
2773    // Now we can calculate the offset from TPIDR_EL0 to this module's
2774    // thread-local area.
2775    TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
2776
2777    // Now use :dtprel_whatever: operations to calculate this variable's offset
2778    // in its thread-storage area.
2779    SDValue HiVar = DAG.getTargetGlobalAddress(
2780        GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
2781    SDValue LoVar = DAG.getTargetGlobalAddress(
2782        GV, DL, MVT::i64, 0,
2783        AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
2784
2785    SDValue DTPOff =
2786        SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
2787                                   DAG.getTargetConstant(16, MVT::i32)),
2788                0);
2789    DTPOff =
2790        SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar,
2791                                   DAG.getTargetConstant(0, MVT::i32)),
2792                0);
2793
2794    TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff);
2795  } else if (Model == TLSModel::GeneralDynamic) {
2796    // Accesses used in this sequence go via the TLS descriptor which lives in
2797    // the GOT. Prepare an address we can use to handle this.
2798    SDValue HiDesc = DAG.getTargetGlobalAddress(
2799        GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE);
2800    SDValue LoDesc = DAG.getTargetGlobalAddress(
2801        GV, DL, PtrVT, 0,
2802        AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2803
2804    // First argument to the descriptor call is the address of the descriptor
2805    // itself.
2806    SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
2807    DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
2808
2809    // The call needs a relocation too for linker relaxation. It doesn't make
2810    // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
2811    // the address.
2812    SDValue SymAddr =
2813        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2814
2815    // Finally we can make a call to calculate the offset from tpidr_el0.
2816    TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
2817  } else
2818    llvm_unreachable("Unsupported ELF TLS access model");
2819
2820  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
2821}
2822
2823SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
2824                                                     SelectionDAG &DAG) const {
2825  if (Subtarget->isTargetDarwin())
2826    return LowerDarwinGlobalTLSAddress(Op, DAG);
2827  else if (Subtarget->isTargetELF())
2828    return LowerELFGlobalTLSAddress(Op, DAG);
2829
2830  llvm_unreachable("Unexpected platform trying to use TLS");
2831}
2832SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2833  SDValue Chain = Op.getOperand(0);
2834  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2835  SDValue LHS = Op.getOperand(2);
2836  SDValue RHS = Op.getOperand(3);
2837  SDValue Dest = Op.getOperand(4);
2838  SDLoc dl(Op);
2839
2840  // Handle f128 first, since lowering it will result in comparing the return
2841  // value of a libcall against zero, which is just what the rest of LowerBR_CC
2842  // is expecting to deal with.
2843  if (LHS.getValueType() == MVT::f128) {
2844    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2845
2846    // If softenSetCCOperands returned a scalar, we need to compare the result
2847    // against zero to select between true and false values.
2848    if (!RHS.getNode()) {
2849      RHS = DAG.getConstant(0, LHS.getValueType());
2850      CC = ISD::SETNE;
2851    }
2852  }
2853
2854  // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
2855  // instruction.
2856  unsigned Opc = LHS.getOpcode();
2857  if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
2858      cast<ConstantSDNode>(RHS)->isOne() &&
2859      (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2860       Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
2861    assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
2862           "Unexpected condition code.");
2863    // Only lower legal XALUO ops.
2864    if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
2865      return SDValue();
2866
2867    // The actual operation with overflow check.
2868    AArch64CC::CondCode OFCC;
2869    SDValue Value, Overflow;
2870    std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
2871
2872    if (CC == ISD::SETNE)
2873      OFCC = getInvertedCondCode(OFCC);
2874    SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
2875
2876    return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest,
2877                       CCVal, Overflow);
2878  }
2879
2880  if (LHS.getValueType().isInteger()) {
2881    assert((LHS.getValueType() == RHS.getValueType()) &&
2882           (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
2883
2884    // If the RHS of the comparison is zero, we can potentially fold this
2885    // to a specialized branch.
2886    const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
2887    if (RHSC && RHSC->getZExtValue() == 0) {
2888      if (CC == ISD::SETEQ) {
2889        // See if we can use a TBZ to fold in an AND as well.
2890        // TBZ has a smaller branch displacement than CBZ.  If the offset is
2891        // out of bounds, a late MI-layer pass rewrites branches.
2892        // 403.gcc is an example that hits this case.
2893        if (LHS.getOpcode() == ISD::AND &&
2894            isa<ConstantSDNode>(LHS.getOperand(1)) &&
2895            isPowerOf2_64(LHS.getConstantOperandVal(1))) {
2896          SDValue Test = LHS.getOperand(0);
2897          uint64_t Mask = LHS.getConstantOperandVal(1);
2898
2899          // TBZ only operates on i64's, but the ext should be free.
2900          if (Test.getValueType() == MVT::i32)
2901            Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
2902
2903          return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
2904                             DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
2905        }
2906
2907        return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
2908      } else if (CC == ISD::SETNE) {
2909        // See if we can use a TBZ to fold in an AND as well.
2910        // TBZ has a smaller branch displacement than CBZ.  If the offset is
2911        // out of bounds, a late MI-layer pass rewrites branches.
2912        // 403.gcc is an example that hits this case.
2913        if (LHS.getOpcode() == ISD::AND &&
2914            isa<ConstantSDNode>(LHS.getOperand(1)) &&
2915            isPowerOf2_64(LHS.getConstantOperandVal(1))) {
2916          SDValue Test = LHS.getOperand(0);
2917          uint64_t Mask = LHS.getConstantOperandVal(1);
2918
2919          // TBNZ only operates on i64's, but the ext should be free.
2920          if (Test.getValueType() == MVT::i32)
2921            Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
2922
2923          return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
2924                             DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
2925        }
2926
2927        return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
2928      }
2929    }
2930
2931    SDValue CCVal;
2932    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
2933    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
2934                       Cmp);
2935  }
2936
2937  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2938
2939  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
2940  // clean.  Some of them require two branches to implement.
2941  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
2942  AArch64CC::CondCode CC1, CC2;
2943  changeFPCCToAArch64CC(CC, CC1, CC2);
2944  SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
2945  SDValue BR1 =
2946      DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
2947  if (CC2 != AArch64CC::AL) {
2948    SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
2949    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
2950                       Cmp);
2951  }
2952
2953  return BR1;
2954}
2955
2956SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
2957                                              SelectionDAG &DAG) const {
2958  EVT VT = Op.getValueType();
2959  SDLoc DL(Op);
2960
2961  SDValue In1 = Op.getOperand(0);
2962  SDValue In2 = Op.getOperand(1);
2963  EVT SrcVT = In2.getValueType();
2964  if (SrcVT != VT) {
2965    if (SrcVT == MVT::f32 && VT == MVT::f64)
2966      In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
2967    else if (SrcVT == MVT::f64 && VT == MVT::f32)
2968      In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
2969    else
2970      // FIXME: Src type is different, bail out for now. Can VT really be a
2971      // vector type?
2972      return SDValue();
2973  }
2974
2975  EVT VecVT;
2976  EVT EltVT;
2977  SDValue EltMask, VecVal1, VecVal2;
2978  if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
2979    EltVT = MVT::i32;
2980    VecVT = MVT::v4i32;
2981    EltMask = DAG.getConstant(0x80000000ULL, EltVT);
2982
2983    if (!VT.isVector()) {
2984      VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
2985                                          DAG.getUNDEF(VecVT), In1);
2986      VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
2987                                          DAG.getUNDEF(VecVT), In2);
2988    } else {
2989      VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
2990      VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
2991    }
2992  } else if (VT == MVT::f64 || VT == MVT::v2f64) {
2993    EltVT = MVT::i64;
2994    VecVT = MVT::v2i64;
2995
2996    // We want to materialize a mask with the the high bit set, but the AdvSIMD
2997    // immediate moves cannot materialize that in a single instruction for
2998    // 64-bit elements. Instead, materialize zero and then negate it.
2999    EltMask = DAG.getConstant(0, EltVT);
3000
3001    if (!VT.isVector()) {
3002      VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3003                                          DAG.getUNDEF(VecVT), In1);
3004      VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3005                                          DAG.getUNDEF(VecVT), In2);
3006    } else {
3007      VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3008      VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3009    }
3010  } else {
3011    llvm_unreachable("Invalid type for copysign!");
3012  }
3013
3014  std::vector<SDValue> BuildVectorOps;
3015  for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i)
3016    BuildVectorOps.push_back(EltMask);
3017
3018  SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps);
3019
3020  // If we couldn't materialize the mask above, then the mask vector will be
3021  // the zero vector, and we need to negate it here.
3022  if (VT == MVT::f64 || VT == MVT::v2f64) {
3023    BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3024    BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3025    BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3026  }
3027
3028  SDValue Sel =
3029      DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3030
3031  if (VT == MVT::f32)
3032    return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3033  else if (VT == MVT::f64)
3034    return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3035  else
3036    return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3037}
3038
3039SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
3040  if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
3041          AttributeSet::FunctionIndex, Attribute::NoImplicitFloat))
3042    return SDValue();
3043
3044  // While there is no integer popcount instruction, it can
3045  // be more efficiently lowered to the following sequence that uses
3046  // AdvSIMD registers/instructions as long as the copies to/from
3047  // the AdvSIMD registers are cheap.
3048  //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
3049  //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
3050  //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
3051  //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
3052  SDValue Val = Op.getOperand(0);
3053  SDLoc DL(Op);
3054  EVT VT = Op.getValueType();
3055  SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8);
3056
3057  SDValue VecVal;
3058  if (VT == MVT::i32) {
3059    VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
3060    VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec,
3061                                       VecVal);
3062  } else {
3063    VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
3064  }
3065
3066  SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal);
3067  SDValue UaddLV = DAG.getNode(
3068      ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3069      DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
3070
3071  if (VT == MVT::i64)
3072    UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3073  return UaddLV;
3074}
3075
3076SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3077
3078  if (Op.getValueType().isVector())
3079    return LowerVSETCC(Op, DAG);
3080
3081  SDValue LHS = Op.getOperand(0);
3082  SDValue RHS = Op.getOperand(1);
3083  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3084  SDLoc dl(Op);
3085
3086  // We chose ZeroOrOneBooleanContents, so use zero and one.
3087  EVT VT = Op.getValueType();
3088  SDValue TVal = DAG.getConstant(1, VT);
3089  SDValue FVal = DAG.getConstant(0, VT);
3090
3091  // Handle f128 first, since one possible outcome is a normal integer
3092  // comparison which gets picked up by the next if statement.
3093  if (LHS.getValueType() == MVT::f128) {
3094    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3095
3096    // If softenSetCCOperands returned a scalar, use it.
3097    if (!RHS.getNode()) {
3098      assert(LHS.getValueType() == Op.getValueType() &&
3099             "Unexpected setcc expansion!");
3100      return LHS;
3101    }
3102  }
3103
3104  if (LHS.getValueType().isInteger()) {
3105    SDValue CCVal;
3106    SDValue Cmp =
3107        getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3108
3109    // Note that we inverted the condition above, so we reverse the order of
3110    // the true and false operands here.  This will allow the setcc to be
3111    // matched to a single CSINC instruction.
3112    return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3113  }
3114
3115  // Now we know we're dealing with FP values.
3116  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3117
3118  // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
3119  // and do the comparison.
3120  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3121
3122  AArch64CC::CondCode CC1, CC2;
3123  changeFPCCToAArch64CC(CC, CC1, CC2);
3124  if (CC2 == AArch64CC::AL) {
3125    changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3126    SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3127
3128    // Note that we inverted the condition above, so we reverse the order of
3129    // the true and false operands here.  This will allow the setcc to be
3130    // matched to a single CSINC instruction.
3131    return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3132  } else {
3133    // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3134    // totally clean.  Some of them require two CSELs to implement.  As is in
3135    // this case, we emit the first CSEL and then emit a second using the output
3136    // of the first as the RHS.  We're effectively OR'ing the two CC's together.
3137
3138    // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3139    SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3140    SDValue CS1 =
3141        DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3142
3143    SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3144    return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3145  }
3146}
3147
3148/// A SELECT_CC operation is really some kind of max or min if both values being
3149/// compared are, in some sense, equal to the results in either case. However,
3150/// it is permissible to compare f32 values and produce directly extended f64
3151/// values.
3152///
3153/// Extending the comparison operands would also be allowed, but is less likely
3154/// to happen in practice since their use is right here. Note that truncate
3155/// operations would *not* be semantically equivalent.
3156static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3157  if (Cmp == Result)
3158    return true;
3159
3160  ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3161  ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3162  if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3163      Result.getValueType() == MVT::f64) {
3164    bool Lossy;
3165    APFloat CmpVal = CCmp->getValueAPF();
3166    CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3167    return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3168  }
3169
3170  return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3171}
3172
3173SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3174                                           SelectionDAG &DAG) const {
3175  SDValue CC = Op->getOperand(0);
3176  SDValue TVal = Op->getOperand(1);
3177  SDValue FVal = Op->getOperand(2);
3178  SDLoc DL(Op);
3179
3180  unsigned Opc = CC.getOpcode();
3181  // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3182  // instruction.
3183  if (CC.getResNo() == 1 &&
3184      (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3185       Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3186    // Only lower legal XALUO ops.
3187    if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
3188      return SDValue();
3189
3190    AArch64CC::CondCode OFCC;
3191    SDValue Value, Overflow;
3192    std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
3193    SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3194
3195    return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
3196                       CCVal, Overflow);
3197  }
3198
3199  if (CC.getOpcode() == ISD::SETCC)
3200    return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
3201                           cast<CondCodeSDNode>(CC.getOperand(2))->get());
3202  else
3203    return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
3204                           FVal, ISD::SETNE);
3205}
3206
3207SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3208                                              SelectionDAG &DAG) const {
3209  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3210  SDValue LHS = Op.getOperand(0);
3211  SDValue RHS = Op.getOperand(1);
3212  SDValue TVal = Op.getOperand(2);
3213  SDValue FVal = Op.getOperand(3);
3214  SDLoc dl(Op);
3215
3216  // Handle f128 first, because it will result in a comparison of some RTLIB
3217  // call result against zero.
3218  if (LHS.getValueType() == MVT::f128) {
3219    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3220
3221    // If softenSetCCOperands returned a scalar, we need to compare the result
3222    // against zero to select between true and false values.
3223    if (!RHS.getNode()) {
3224      RHS = DAG.getConstant(0, LHS.getValueType());
3225      CC = ISD::SETNE;
3226    }
3227  }
3228
3229  // Handle integers first.
3230  if (LHS.getValueType().isInteger()) {
3231    assert((LHS.getValueType() == RHS.getValueType()) &&
3232           (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3233
3234    unsigned Opcode = AArch64ISD::CSEL;
3235
3236    // If both the TVal and the FVal are constants, see if we can swap them in
3237    // order to for a CSINV or CSINC out of them.
3238    ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3239    ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3240
3241    if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3242      std::swap(TVal, FVal);
3243      std::swap(CTVal, CFVal);
3244      CC = ISD::getSetCCInverse(CC, true);
3245    } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3246      std::swap(TVal, FVal);
3247      std::swap(CTVal, CFVal);
3248      CC = ISD::getSetCCInverse(CC, true);
3249    } else if (TVal.getOpcode() == ISD::XOR) {
3250      // If TVal is a NOT we want to swap TVal and FVal so that we can match
3251      // with a CSINV rather than a CSEL.
3252      ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3253
3254      if (CVal && CVal->isAllOnesValue()) {
3255        std::swap(TVal, FVal);
3256        std::swap(CTVal, CFVal);
3257        CC = ISD::getSetCCInverse(CC, true);
3258      }
3259    } else if (TVal.getOpcode() == ISD::SUB) {
3260      // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3261      // that we can match with a CSNEG rather than a CSEL.
3262      ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3263
3264      if (CVal && CVal->isNullValue()) {
3265        std::swap(TVal, FVal);
3266        std::swap(CTVal, CFVal);
3267        CC = ISD::getSetCCInverse(CC, true);
3268      }
3269    } else if (CTVal && CFVal) {
3270      const int64_t TrueVal = CTVal->getSExtValue();
3271      const int64_t FalseVal = CFVal->getSExtValue();
3272      bool Swap = false;
3273
3274      // If both TVal and FVal are constants, see if FVal is the
3275      // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3276      // instead of a CSEL in that case.
3277      if (TrueVal == ~FalseVal) {
3278        Opcode = AArch64ISD::CSINV;
3279      } else if (TrueVal == -FalseVal) {
3280        Opcode = AArch64ISD::CSNEG;
3281      } else if (TVal.getValueType() == MVT::i32) {
3282        // If our operands are only 32-bit wide, make sure we use 32-bit
3283        // arithmetic for the check whether we can use CSINC. This ensures that
3284        // the addition in the check will wrap around properly in case there is
3285        // an overflow (which would not be the case if we do the check with
3286        // 64-bit arithmetic).
3287        const uint32_t TrueVal32 = CTVal->getZExtValue();
3288        const uint32_t FalseVal32 = CFVal->getZExtValue();
3289
3290        if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3291          Opcode = AArch64ISD::CSINC;
3292
3293          if (TrueVal32 > FalseVal32) {
3294            Swap = true;
3295          }
3296        }
3297        // 64-bit check whether we can use CSINC.
3298      } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3299        Opcode = AArch64ISD::CSINC;
3300
3301        if (TrueVal > FalseVal) {
3302          Swap = true;
3303        }
3304      }
3305
3306      // Swap TVal and FVal if necessary.
3307      if (Swap) {
3308        std::swap(TVal, FVal);
3309        std::swap(CTVal, CFVal);
3310        CC = ISD::getSetCCInverse(CC, true);
3311      }
3312
3313      if (Opcode != AArch64ISD::CSEL) {
3314        // Drop FVal since we can get its value by simply inverting/negating
3315        // TVal.
3316        FVal = TVal;
3317      }
3318    }
3319
3320    SDValue CCVal;
3321    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3322
3323    EVT VT = Op.getValueType();
3324    return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3325  }
3326
3327  // Now we know we're dealing with FP values.
3328  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3329  assert(LHS.getValueType() == RHS.getValueType());
3330  EVT VT = Op.getValueType();
3331
3332  // Try to match this select into a max/min operation, which have dedicated
3333  // opcode in the instruction set.
3334  // FIXME: This is not correct in the presence of NaNs, so we only enable this
3335  // in no-NaNs mode.
3336  if (getTargetMachine().Options.NoNaNsFPMath) {
3337    SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
3338    if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
3339        selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
3340      CC = ISD::getSetCCSwappedOperands(CC);
3341      std::swap(MinMaxLHS, MinMaxRHS);
3342    }
3343
3344    if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
3345        selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
3346      switch (CC) {
3347      default:
3348        break;
3349      case ISD::SETGT:
3350      case ISD::SETGE:
3351      case ISD::SETUGT:
3352      case ISD::SETUGE:
3353      case ISD::SETOGT:
3354      case ISD::SETOGE:
3355        return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
3356        break;
3357      case ISD::SETLT:
3358      case ISD::SETLE:
3359      case ISD::SETULT:
3360      case ISD::SETULE:
3361      case ISD::SETOLT:
3362      case ISD::SETOLE:
3363        return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
3364        break;
3365      }
3366    }
3367  }
3368
3369  // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
3370  // and do the comparison.
3371  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3372
3373  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3374  // clean.  Some of them require two CSELs to implement.
3375  AArch64CC::CondCode CC1, CC2;
3376  changeFPCCToAArch64CC(CC, CC1, CC2);
3377  SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3378  SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3379
3380  // If we need a second CSEL, emit it, using the output of the first as the
3381  // RHS.  We're effectively OR'ing the two CC's together.
3382  if (CC2 != AArch64CC::AL) {
3383    SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3384    return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3385  }
3386
3387  // Otherwise, return the output of the first CSEL.
3388  return CS1;
3389}
3390
3391SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
3392                                              SelectionDAG &DAG) const {
3393  // Jump table entries as PC relative offsets. No additional tweaking
3394  // is necessary here. Just get the address of the jump table.
3395  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3396  EVT PtrVT = getPointerTy();
3397  SDLoc DL(Op);
3398
3399  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3400      !Subtarget->isTargetMachO()) {
3401    const unsigned char MO_NC = AArch64II::MO_NC;
3402    return DAG.getNode(
3403        AArch64ISD::WrapperLarge, DL, PtrVT,
3404        DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
3405        DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
3406        DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
3407        DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3408                               AArch64II::MO_G0 | MO_NC));
3409  }
3410
3411  SDValue Hi =
3412      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
3413  SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3414                                      AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3415  SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3416  return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3417}
3418
3419SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
3420                                                 SelectionDAG &DAG) const {
3421  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3422  EVT PtrVT = getPointerTy();
3423  SDLoc DL(Op);
3424
3425  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3426    // Use the GOT for the large code model on iOS.
3427    if (Subtarget->isTargetMachO()) {
3428      SDValue GotAddr = DAG.getTargetConstantPool(
3429          CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3430          AArch64II::MO_GOT);
3431      return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3432    }
3433
3434    const unsigned char MO_NC = AArch64II::MO_NC;
3435    return DAG.getNode(
3436        AArch64ISD::WrapperLarge, DL, PtrVT,
3437        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3438                                  CP->getOffset(), AArch64II::MO_G3),
3439        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3440                                  CP->getOffset(), AArch64II::MO_G2 | MO_NC),
3441        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3442                                  CP->getOffset(), AArch64II::MO_G1 | MO_NC),
3443        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3444                                  CP->getOffset(), AArch64II::MO_G0 | MO_NC));
3445  } else {
3446    // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
3447    // ELF, the only valid one on Darwin.
3448    SDValue Hi =
3449        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3450                                  CP->getOffset(), AArch64II::MO_PAGE);
3451    SDValue Lo = DAG.getTargetConstantPool(
3452        CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3453        AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3454
3455    SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3456    return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3457  }
3458}
3459
3460SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
3461                                               SelectionDAG &DAG) const {
3462  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3463  EVT PtrVT = getPointerTy();
3464  SDLoc DL(Op);
3465  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3466      !Subtarget->isTargetMachO()) {
3467    const unsigned char MO_NC = AArch64II::MO_NC;
3468    return DAG.getNode(
3469        AArch64ISD::WrapperLarge, DL, PtrVT,
3470        DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
3471        DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3472        DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3473        DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3474  } else {
3475    SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
3476    SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
3477                                                             AArch64II::MO_NC);
3478    SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3479    return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3480  }
3481}
3482
3483SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
3484                                                 SelectionDAG &DAG) const {
3485  AArch64FunctionInfo *FuncInfo =
3486      DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3487
3488  SDLoc DL(Op);
3489  SDValue FR =
3490      DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3491  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3492  return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3493                      MachinePointerInfo(SV), false, false, 0);
3494}
3495
3496SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
3497                                                SelectionDAG &DAG) const {
3498  // The layout of the va_list struct is specified in the AArch64 Procedure Call
3499  // Standard, section B.3.
3500  MachineFunction &MF = DAG.getMachineFunction();
3501  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3502  SDLoc DL(Op);
3503
3504  SDValue Chain = Op.getOperand(0);
3505  SDValue VAList = Op.getOperand(1);
3506  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3507  SmallVector<SDValue, 4> MemOps;
3508
3509  // void *__stack at offset 0
3510  SDValue Stack =
3511      DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3512  MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
3513                                MachinePointerInfo(SV), false, false, 8));
3514
3515  // void *__gr_top at offset 8
3516  int GPRSize = FuncInfo->getVarArgsGPRSize();
3517  if (GPRSize > 0) {
3518    SDValue GRTop, GRTopAddr;
3519
3520    GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3521                            DAG.getConstant(8, getPointerTy()));
3522
3523    GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
3524    GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
3525                        DAG.getConstant(GPRSize, getPointerTy()));
3526
3527    MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
3528                                  MachinePointerInfo(SV, 8), false, false, 8));
3529  }
3530
3531  // void *__vr_top at offset 16
3532  int FPRSize = FuncInfo->getVarArgsFPRSize();
3533  if (FPRSize > 0) {
3534    SDValue VRTop, VRTopAddr;
3535    VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3536                            DAG.getConstant(16, getPointerTy()));
3537
3538    VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
3539    VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
3540                        DAG.getConstant(FPRSize, getPointerTy()));
3541
3542    MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
3543                                  MachinePointerInfo(SV, 16), false, false, 8));
3544  }
3545
3546  // int __gr_offs at offset 24
3547  SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3548                                   DAG.getConstant(24, getPointerTy()));
3549  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
3550                                GROffsAddr, MachinePointerInfo(SV, 24), false,
3551                                false, 4));
3552
3553  // int __vr_offs at offset 28
3554  SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3555                                   DAG.getConstant(28, getPointerTy()));
3556  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
3557                                VROffsAddr, MachinePointerInfo(SV, 28), false,
3558                                false, 4));
3559
3560  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3561}
3562
3563SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
3564                                            SelectionDAG &DAG) const {
3565  return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
3566                                     : LowerAAPCS_VASTART(Op, DAG);
3567}
3568
3569SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
3570                                           SelectionDAG &DAG) const {
3571  // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
3572  // pointer.
3573  unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
3574  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3575  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3576
3577  return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
3578                       Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
3579                       8, false, false, MachinePointerInfo(DestSV),
3580                       MachinePointerInfo(SrcSV));
3581}
3582
3583SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3584  assert(Subtarget->isTargetDarwin() &&
3585         "automatic va_arg instruction only works on Darwin");
3586
3587  const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3588  EVT VT = Op.getValueType();
3589  SDLoc DL(Op);
3590  SDValue Chain = Op.getOperand(0);
3591  SDValue Addr = Op.getOperand(1);
3592  unsigned Align = Op.getConstantOperandVal(3);
3593
3594  SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
3595                               MachinePointerInfo(V), false, false, false, 0);
3596  Chain = VAList.getValue(1);
3597
3598  if (Align > 8) {
3599    assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
3600    VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3601                         DAG.getConstant(Align - 1, getPointerTy()));
3602    VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
3603                         DAG.getConstant(-(int64_t)Align, getPointerTy()));
3604  }
3605
3606  Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
3607  uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
3608
3609  // Scalar integer and FP values smaller than 64 bits are implicitly extended
3610  // up to 64 bits.  At the very least, we have to increase the striding of the
3611  // vaargs list to match this, and for FP values we need to introduce
3612  // FP_ROUND nodes as well.
3613  if (VT.isInteger() && !VT.isVector())
3614    ArgSize = 8;
3615  bool NeedFPTrunc = false;
3616  if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
3617    ArgSize = 8;
3618    NeedFPTrunc = true;
3619  }
3620
3621  // Increment the pointer, VAList, to the next vaarg
3622  SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3623                               DAG.getConstant(ArgSize, getPointerTy()));
3624  // Store the incremented VAList to the legalized pointer
3625  SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
3626                                 false, false, 0);
3627
3628  // Load the actual argument out of the pointer VAList
3629  if (NeedFPTrunc) {
3630    // Load the value as an f64.
3631    SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
3632                                 MachinePointerInfo(), false, false, false, 0);
3633    // Round the value down to an f32.
3634    SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
3635                                   DAG.getIntPtrConstant(1));
3636    SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
3637    // Merge the rounded value with the chain output of the load.
3638    return DAG.getMergeValues(Ops, DL);
3639  }
3640
3641  return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
3642                     false, false, 0);
3643}
3644
3645SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
3646                                              SelectionDAG &DAG) const {
3647  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3648  MFI->setFrameAddressIsTaken(true);
3649
3650  EVT VT = Op.getValueType();
3651  SDLoc DL(Op);
3652  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3653  SDValue FrameAddr =
3654      DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
3655  while (Depth--)
3656    FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
3657                            MachinePointerInfo(), false, false, false, 0);
3658  return FrameAddr;
3659}
3660
3661// FIXME? Maybe this could be a TableGen attribute on some registers and
3662// this table could be generated automatically from RegInfo.
3663unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
3664                                                  EVT VT) const {
3665  unsigned Reg = StringSwitch<unsigned>(RegName)
3666                       .Case("sp", AArch64::SP)
3667                       .Default(0);
3668  if (Reg)
3669    return Reg;
3670  report_fatal_error("Invalid register name global variable");
3671}
3672
3673SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
3674                                               SelectionDAG &DAG) const {
3675  MachineFunction &MF = DAG.getMachineFunction();
3676  MachineFrameInfo *MFI = MF.getFrameInfo();
3677  MFI->setReturnAddressIsTaken(true);
3678
3679  EVT VT = Op.getValueType();
3680  SDLoc DL(Op);
3681  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3682  if (Depth) {
3683    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3684    SDValue Offset = DAG.getConstant(8, getPointerTy());
3685    return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3686                       DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3687                       MachinePointerInfo(), false, false, false, 0);
3688  }
3689
3690  // Return LR, which contains the return address. Mark it an implicit live-in.
3691  unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
3692  return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
3693}
3694
3695/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3696/// i64 values and take a 2 x i64 value to shift plus a shift amount.
3697SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
3698                                                    SelectionDAG &DAG) const {
3699  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3700  EVT VT = Op.getValueType();
3701  unsigned VTBits = VT.getSizeInBits();
3702  SDLoc dl(Op);
3703  SDValue ShOpLo = Op.getOperand(0);
3704  SDValue ShOpHi = Op.getOperand(1);
3705  SDValue ShAmt = Op.getOperand(2);
3706  SDValue ARMcc;
3707  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3708
3709  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3710
3711  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
3712                                 DAG.getConstant(VTBits, MVT::i64), ShAmt);
3713  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3714  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
3715                                   DAG.getConstant(VTBits, MVT::i64));
3716  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3717
3718  SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
3719                               ISD::SETGE, dl, DAG);
3720  SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
3721
3722  SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3723  SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3724  SDValue Lo =
3725      DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
3726
3727  // AArch64 shifts larger than the register width are wrapped rather than
3728  // clamped, so we can't just emit "hi >> x".
3729  SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3730  SDValue TrueValHi = Opc == ISD::SRA
3731                          ? DAG.getNode(Opc, dl, VT, ShOpHi,
3732                                        DAG.getConstant(VTBits - 1, MVT::i64))
3733                          : DAG.getConstant(0, VT);
3734  SDValue Hi =
3735      DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
3736
3737  SDValue Ops[2] = { Lo, Hi };
3738  return DAG.getMergeValues(Ops, dl);
3739}
3740
3741/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3742/// i64 values and take a 2 x i64 value to shift plus a shift amount.
3743SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
3744                                                 SelectionDAG &DAG) const {
3745  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3746  EVT VT = Op.getValueType();
3747  unsigned VTBits = VT.getSizeInBits();
3748  SDLoc dl(Op);
3749  SDValue ShOpLo = Op.getOperand(0);
3750  SDValue ShOpHi = Op.getOperand(1);
3751  SDValue ShAmt = Op.getOperand(2);
3752  SDValue ARMcc;
3753
3754  assert(Op.getOpcode() == ISD::SHL_PARTS);
3755  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
3756                                 DAG.getConstant(VTBits, MVT::i64), ShAmt);
3757  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3758  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
3759                                   DAG.getConstant(VTBits, MVT::i64));
3760  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3761  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3762
3763  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3764
3765  SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
3766                               ISD::SETGE, dl, DAG);
3767  SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
3768  SDValue Hi =
3769      DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
3770
3771  // AArch64 shifts of larger than register sizes are wrapped rather than
3772  // clamped, so we can't just emit "lo << a" if a is too big.
3773  SDValue TrueValLo = DAG.getConstant(0, VT);
3774  SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3775  SDValue Lo =
3776      DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
3777
3778  SDValue Ops[2] = { Lo, Hi };
3779  return DAG.getMergeValues(Ops, dl);
3780}
3781
3782bool AArch64TargetLowering::isOffsetFoldingLegal(
3783    const GlobalAddressSDNode *GA) const {
3784  // The AArch64 target doesn't support folding offsets into global addresses.
3785  return false;
3786}
3787
3788bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3789  // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
3790  // FIXME: We should be able to handle f128 as well with a clever lowering.
3791  if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
3792    return true;
3793
3794  if (VT == MVT::f64)
3795    return AArch64_AM::getFP64Imm(Imm) != -1;
3796  else if (VT == MVT::f32)
3797    return AArch64_AM::getFP32Imm(Imm) != -1;
3798  return false;
3799}
3800
3801//===----------------------------------------------------------------------===//
3802//                          AArch64 Optimization Hooks
3803//===----------------------------------------------------------------------===//
3804
3805//===----------------------------------------------------------------------===//
3806//                          AArch64 Inline Assembly Support
3807//===----------------------------------------------------------------------===//
3808
3809// Table of Constraints
3810// TODO: This is the current set of constraints supported by ARM for the
3811// compiler, not all of them may make sense, e.g. S may be difficult to support.
3812//
3813// r - A general register
3814// w - An FP/SIMD register of some size in the range v0-v31
3815// x - An FP/SIMD register of some size in the range v0-v15
3816// I - Constant that can be used with an ADD instruction
3817// J - Constant that can be used with a SUB instruction
3818// K - Constant that can be used with a 32-bit logical instruction
3819// L - Constant that can be used with a 64-bit logical instruction
3820// M - Constant that can be used as a 32-bit MOV immediate
3821// N - Constant that can be used as a 64-bit MOV immediate
3822// Q - A memory reference with base register and no offset
3823// S - A symbolic address
3824// Y - Floating point constant zero
3825// Z - Integer constant zero
3826//
3827//   Note that general register operands will be output using their 64-bit x
3828// register name, whatever the size of the variable, unless the asm operand
3829// is prefixed by the %w modifier. Floating-point and SIMD register operands
3830// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
3831// %q modifier.
3832
3833/// getConstraintType - Given a constraint letter, return the type of
3834/// constraint it is for this target.
3835AArch64TargetLowering::ConstraintType
3836AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
3837  if (Constraint.size() == 1) {
3838    switch (Constraint[0]) {
3839    default:
3840      break;
3841    case 'z':
3842      return C_Other;
3843    case 'x':
3844    case 'w':
3845      return C_RegisterClass;
3846    // An address with a single base register. Due to the way we
3847    // currently handle addresses it is the same as 'r'.
3848    case 'Q':
3849      return C_Memory;
3850    }
3851  }
3852  return TargetLowering::getConstraintType(Constraint);
3853}
3854
3855/// Examine constraint type and operand type and determine a weight value.
3856/// This object must already have been set up with the operand type
3857/// and the current alternative constraint selected.
3858TargetLowering::ConstraintWeight
3859AArch64TargetLowering::getSingleConstraintMatchWeight(
3860    AsmOperandInfo &info, const char *constraint) const {
3861  ConstraintWeight weight = CW_Invalid;
3862  Value *CallOperandVal = info.CallOperandVal;
3863  // If we don't have a value, we can't do a match,
3864  // but allow it at the lowest weight.
3865  if (!CallOperandVal)
3866    return CW_Default;
3867  Type *type = CallOperandVal->getType();
3868  // Look at the constraint type.
3869  switch (*constraint) {
3870  default:
3871    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3872    break;
3873  case 'x':
3874  case 'w':
3875    if (type->isFloatingPointTy() || type->isVectorTy())
3876      weight = CW_Register;
3877    break;
3878  case 'z':
3879    weight = CW_Constant;
3880    break;
3881  }
3882  return weight;
3883}
3884
3885std::pair<unsigned, const TargetRegisterClass *>
3886AArch64TargetLowering::getRegForInlineAsmConstraint(
3887    const std::string &Constraint, MVT VT) const {
3888  if (Constraint.size() == 1) {
3889    switch (Constraint[0]) {
3890    case 'r':
3891      if (VT.getSizeInBits() == 64)
3892        return std::make_pair(0U, &AArch64::GPR64commonRegClass);
3893      return std::make_pair(0U, &AArch64::GPR32commonRegClass);
3894    case 'w':
3895      if (VT == MVT::f32)
3896        return std::make_pair(0U, &AArch64::FPR32RegClass);
3897      if (VT.getSizeInBits() == 64)
3898        return std::make_pair(0U, &AArch64::FPR64RegClass);
3899      if (VT.getSizeInBits() == 128)
3900        return std::make_pair(0U, &AArch64::FPR128RegClass);
3901      break;
3902    // The instructions that this constraint is designed for can
3903    // only take 128-bit registers so just use that regclass.
3904    case 'x':
3905      if (VT.getSizeInBits() == 128)
3906        return std::make_pair(0U, &AArch64::FPR128_loRegClass);
3907      break;
3908    }
3909  }
3910  if (StringRef("{cc}").equals_lower(Constraint))
3911    return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
3912
3913  // Use the default implementation in TargetLowering to convert the register
3914  // constraint into a member of a register class.
3915  std::pair<unsigned, const TargetRegisterClass *> Res;
3916  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3917
3918  // Not found as a standard register?
3919  if (!Res.second) {
3920    unsigned Size = Constraint.size();
3921    if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
3922        tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
3923      const std::string Reg =
3924          std::string(&Constraint[2], &Constraint[Size - 1]);
3925      int RegNo = atoi(Reg.c_str());
3926      if (RegNo >= 0 && RegNo <= 31) {
3927        // v0 - v31 are aliases of q0 - q31.
3928        // By default we'll emit v0-v31 for this unless there's a modifier where
3929        // we'll emit the correct register as well.
3930        Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
3931        Res.second = &AArch64::FPR128RegClass;
3932      }
3933    }
3934  }
3935
3936  return Res;
3937}
3938
3939/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3940/// vector.  If it is invalid, don't add anything to Ops.
3941void AArch64TargetLowering::LowerAsmOperandForConstraint(
3942    SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
3943    SelectionDAG &DAG) const {
3944  SDValue Result;
3945
3946  // Currently only support length 1 constraints.
3947  if (Constraint.length() != 1)
3948    return;
3949
3950  char ConstraintLetter = Constraint[0];
3951  switch (ConstraintLetter) {
3952  default:
3953    break;
3954
3955  // This set of constraints deal with valid constants for various instructions.
3956  // Validate and return a target constant for them if we can.
3957  case 'z': {
3958    // 'z' maps to xzr or wzr so it needs an input of 0.
3959    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3960    if (!C || C->getZExtValue() != 0)
3961      return;
3962
3963    if (Op.getValueType() == MVT::i64)
3964      Result = DAG.getRegister(AArch64::XZR, MVT::i64);
3965    else
3966      Result = DAG.getRegister(AArch64::WZR, MVT::i32);
3967    break;
3968  }
3969
3970  case 'I':
3971  case 'J':
3972  case 'K':
3973  case 'L':
3974  case 'M':
3975  case 'N':
3976    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3977    if (!C)
3978      return;
3979
3980    // Grab the value and do some validation.
3981    uint64_t CVal = C->getZExtValue();
3982    switch (ConstraintLetter) {
3983    // The I constraint applies only to simple ADD or SUB immediate operands:
3984    // i.e. 0 to 4095 with optional shift by 12
3985    // The J constraint applies only to ADD or SUB immediates that would be
3986    // valid when negated, i.e. if [an add pattern] were to be output as a SUB
3987    // instruction [or vice versa], in other words -1 to -4095 with optional
3988    // left shift by 12.
3989    case 'I':
3990      if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
3991        break;
3992      return;
3993    case 'J': {
3994      uint64_t NVal = -C->getSExtValue();
3995      if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal))
3996        break;
3997      return;
3998    }
3999    // The K and L constraints apply *only* to logical immediates, including
4000    // what used to be the MOVI alias for ORR (though the MOVI alias has now
4001    // been removed and MOV should be used). So these constraints have to
4002    // distinguish between bit patterns that are valid 32-bit or 64-bit
4003    // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4004    // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4005    // versa.
4006    case 'K':
4007      if (AArch64_AM::isLogicalImmediate(CVal, 32))
4008        break;
4009      return;
4010    case 'L':
4011      if (AArch64_AM::isLogicalImmediate(CVal, 64))
4012        break;
4013      return;
4014    // The M and N constraints are a superset of K and L respectively, for use
4015    // with the MOV (immediate) alias. As well as the logical immediates they
4016    // also match 32 or 64-bit immediates that can be loaded either using a
4017    // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4018    // (M) or 64-bit 0x1234000000000000 (N) etc.
4019    // As a note some of this code is liberally stolen from the asm parser.
4020    case 'M': {
4021      if (!isUInt<32>(CVal))
4022        return;
4023      if (AArch64_AM::isLogicalImmediate(CVal, 32))
4024        break;
4025      if ((CVal & 0xFFFF) == CVal)
4026        break;
4027      if ((CVal & 0xFFFF0000ULL) == CVal)
4028        break;
4029      uint64_t NCVal = ~(uint32_t)CVal;
4030      if ((NCVal & 0xFFFFULL) == NCVal)
4031        break;
4032      if ((NCVal & 0xFFFF0000ULL) == NCVal)
4033        break;
4034      return;
4035    }
4036    case 'N': {
4037      if (AArch64_AM::isLogicalImmediate(CVal, 64))
4038        break;
4039      if ((CVal & 0xFFFFULL) == CVal)
4040        break;
4041      if ((CVal & 0xFFFF0000ULL) == CVal)
4042        break;
4043      if ((CVal & 0xFFFF00000000ULL) == CVal)
4044        break;
4045      if ((CVal & 0xFFFF000000000000ULL) == CVal)
4046        break;
4047      uint64_t NCVal = ~CVal;
4048      if ((NCVal & 0xFFFFULL) == NCVal)
4049        break;
4050      if ((NCVal & 0xFFFF0000ULL) == NCVal)
4051        break;
4052      if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4053        break;
4054      if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4055        break;
4056      return;
4057    }
4058    default:
4059      return;
4060    }
4061
4062    // All assembler immediates are 64-bit integers.
4063    Result = DAG.getTargetConstant(CVal, MVT::i64);
4064    break;
4065  }
4066
4067  if (Result.getNode()) {
4068    Ops.push_back(Result);
4069    return;
4070  }
4071
4072  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4073}
4074
4075//===----------------------------------------------------------------------===//
4076//                     AArch64 Advanced SIMD Support
4077//===----------------------------------------------------------------------===//
4078
4079/// WidenVector - Given a value in the V64 register class, produce the
4080/// equivalent value in the V128 register class.
4081static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4082  EVT VT = V64Reg.getValueType();
4083  unsigned NarrowSize = VT.getVectorNumElements();
4084  MVT EltTy = VT.getVectorElementType().getSimpleVT();
4085  MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4086  SDLoc DL(V64Reg);
4087
4088  return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4089                     V64Reg, DAG.getConstant(0, MVT::i32));
4090}
4091
4092/// getExtFactor - Determine the adjustment factor for the position when
4093/// generating an "extract from vector registers" instruction.
4094static unsigned getExtFactor(SDValue &V) {
4095  EVT EltType = V.getValueType().getVectorElementType();
4096  return EltType.getSizeInBits() / 8;
4097}
4098
4099/// NarrowVector - Given a value in the V128 register class, produce the
4100/// equivalent value in the V64 register class.
4101static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4102  EVT VT = V128Reg.getValueType();
4103  unsigned WideSize = VT.getVectorNumElements();
4104  MVT EltTy = VT.getVectorElementType().getSimpleVT();
4105  MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4106  SDLoc DL(V128Reg);
4107
4108  return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4109}
4110
4111// Gather data to see if the operation can be modelled as a
4112// shuffle in combination with VEXTs.
4113SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4114                                                  SelectionDAG &DAG) const {
4115  assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
4116  SDLoc dl(Op);
4117  EVT VT = Op.getValueType();
4118  unsigned NumElts = VT.getVectorNumElements();
4119
4120  SmallVector<SDValue, 2> SourceVecs;
4121  SmallVector<unsigned, 2> MinElts;
4122  SmallVector<unsigned, 2> MaxElts;
4123
4124  for (unsigned i = 0; i < NumElts; ++i) {
4125    SDValue V = Op.getOperand(i);
4126    if (V.getOpcode() == ISD::UNDEF)
4127      continue;
4128    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4129      // A shuffle can only come from building a vector from various
4130      // elements of other vectors.
4131      return SDValue();
4132    }
4133
4134    // Record this extraction against the appropriate vector if possible...
4135    SDValue SourceVec = V.getOperand(0);
4136    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4137    bool FoundSource = false;
4138    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4139      if (SourceVecs[j] == SourceVec) {
4140        if (MinElts[j] > EltNo)
4141          MinElts[j] = EltNo;
4142        if (MaxElts[j] < EltNo)
4143          MaxElts[j] = EltNo;
4144        FoundSource = true;
4145        break;
4146      }
4147    }
4148
4149    // Or record a new source if not...
4150    if (!FoundSource) {
4151      SourceVecs.push_back(SourceVec);
4152      MinElts.push_back(EltNo);
4153      MaxElts.push_back(EltNo);
4154    }
4155  }
4156
4157  // Currently only do something sane when at most two source vectors
4158  // involved.
4159  if (SourceVecs.size() > 2)
4160    return SDValue();
4161
4162  SDValue ShuffleSrcs[2] = { DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4163  int VEXTOffsets[2] = { 0, 0 };
4164  int OffsetMultipliers[2] = { 1, 1 };
4165
4166  // This loop extracts the usage patterns of the source vectors
4167  // and prepares appropriate SDValues for a shuffle if possible.
4168  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4169    unsigned NumSrcElts = SourceVecs[i].getValueType().getVectorNumElements();
4170    SDValue CurSource = SourceVecs[i];
4171    if (SourceVecs[i].getValueType().getVectorElementType() !=
4172        VT.getVectorElementType()) {
4173      // It may hit this case if SourceVecs[i] is AssertSext/AssertZext.
4174      // Then bitcast it to the vector which holds asserted element type,
4175      // and record the multiplier of element width between SourceVecs and
4176      // Build_vector which is needed to extract the correct lanes later.
4177      EVT CastVT =
4178          EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4179                           SourceVecs[i].getValueSizeInBits() /
4180                               VT.getVectorElementType().getSizeInBits());
4181
4182      CurSource = DAG.getNode(ISD::BITCAST, dl, CastVT, SourceVecs[i]);
4183      OffsetMultipliers[i] = CastVT.getVectorNumElements() / NumSrcElts;
4184      NumSrcElts *= OffsetMultipliers[i];
4185      MaxElts[i] *= OffsetMultipliers[i];
4186      MinElts[i] *= OffsetMultipliers[i];
4187    }
4188
4189    if (CurSource.getValueType() == VT) {
4190      // No VEXT necessary
4191      ShuffleSrcs[i] = CurSource;
4192      VEXTOffsets[i] = 0;
4193      continue;
4194    } else if (NumSrcElts < NumElts) {
4195      // We can pad out the smaller vector for free, so if it's part of a
4196      // shuffle...
4197      ShuffleSrcs[i] = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, CurSource,
4198                                   DAG.getUNDEF(CurSource.getValueType()));
4199      continue;
4200    }
4201
4202    // Since only 64-bit and 128-bit vectors are legal on ARM and
4203    // we've eliminated the other cases...
4204    assert(NumSrcElts == 2 * NumElts &&
4205           "unexpected vector sizes in ReconstructShuffle");
4206
4207    if (MaxElts[i] - MinElts[i] >= NumElts) {
4208      // Span too large for a VEXT to cope
4209      return SDValue();
4210    }
4211
4212    if (MinElts[i] >= NumElts) {
4213      // The extraction can just take the second half
4214      VEXTOffsets[i] = NumElts;
4215      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource,
4216                                   DAG.getIntPtrConstant(NumElts));
4217    } else if (MaxElts[i] < NumElts) {
4218      // The extraction can just take the first half
4219      VEXTOffsets[i] = 0;
4220      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource,
4221                                   DAG.getIntPtrConstant(0));
4222    } else {
4223      // An actual VEXT is needed
4224      VEXTOffsets[i] = MinElts[i];
4225      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource,
4226                                     DAG.getIntPtrConstant(0));
4227      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource,
4228                                     DAG.getIntPtrConstant(NumElts));
4229      unsigned Imm = VEXTOffsets[i] * getExtFactor(VEXTSrc1);
4230      ShuffleSrcs[i] = DAG.getNode(AArch64ISD::EXT, dl, VT, VEXTSrc1, VEXTSrc2,
4231                                   DAG.getConstant(Imm, MVT::i32));
4232    }
4233  }
4234
4235  SmallVector<int, 8> Mask;
4236
4237  for (unsigned i = 0; i < NumElts; ++i) {
4238    SDValue Entry = Op.getOperand(i);
4239    if (Entry.getOpcode() == ISD::UNDEF) {
4240      Mask.push_back(-1);
4241      continue;
4242    }
4243
4244    SDValue ExtractVec = Entry.getOperand(0);
4245    int ExtractElt =
4246        cast<ConstantSDNode>(Op.getOperand(i).getOperand(1))->getSExtValue();
4247    if (ExtractVec == SourceVecs[0]) {
4248      Mask.push_back(ExtractElt * OffsetMultipliers[0] - VEXTOffsets[0]);
4249    } else {
4250      Mask.push_back(ExtractElt * OffsetMultipliers[1] + NumElts -
4251                     VEXTOffsets[1]);
4252    }
4253  }
4254
4255  // Final check before we try to produce nonsense...
4256  if (isShuffleMaskLegal(Mask, VT))
4257    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4258                                &Mask[0]);
4259
4260  return SDValue();
4261}
4262
4263// check if an EXT instruction can handle the shuffle mask when the
4264// vector sources of the shuffle are the same.
4265static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4266  unsigned NumElts = VT.getVectorNumElements();
4267
4268  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
4269  if (M[0] < 0)
4270    return false;
4271
4272  Imm = M[0];
4273
4274  // If this is a VEXT shuffle, the immediate value is the index of the first
4275  // element.  The other shuffle indices must be the successive elements after
4276  // the first one.
4277  unsigned ExpectedElt = Imm;
4278  for (unsigned i = 1; i < NumElts; ++i) {
4279    // Increment the expected index.  If it wraps around, just follow it
4280    // back to index zero and keep going.
4281    ++ExpectedElt;
4282    if (ExpectedElt == NumElts)
4283      ExpectedElt = 0;
4284
4285    if (M[i] < 0)
4286      continue; // ignore UNDEF indices
4287    if (ExpectedElt != static_cast<unsigned>(M[i]))
4288      return false;
4289  }
4290
4291  return true;
4292}
4293
4294// check if an EXT instruction can handle the shuffle mask when the
4295// vector sources of the shuffle are different.
4296static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4297                      unsigned &Imm) {
4298  // Look for the first non-undef element.
4299  const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4300      [](int Elt) {return Elt >= 0;});
4301
4302  // Benefit form APInt to handle overflow when calculating expected element.
4303  unsigned NumElts = VT.getVectorNumElements();
4304  unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4305  APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4306  // The following shuffle indices must be the successive elements after the
4307  // first real element.
4308  const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4309      [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4310  if (FirstWrongElt != M.end())
4311    return false;
4312
4313  // The index of an EXT is the first element if it is not UNDEF.
4314  // Watch out for the beginning UNDEFs. The EXT index should be the expected
4315  // value of the first element.  E.g.
4316  // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4317  // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4318  // ExpectedElt is the last mask index plus 1.
4319  Imm = ExpectedElt.getZExtValue();
4320
4321  // There are two difference cases requiring to reverse input vectors.
4322  // For example, for vector <4 x i32> we have the following cases,
4323  // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
4324  // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
4325  // For both cases, we finally use mask <5, 6, 7, 0>, which requires
4326  // to reverse two input vectors.
4327  if (Imm < NumElts)
4328    ReverseEXT = true;
4329  else
4330    Imm -= NumElts;
4331
4332  return true;
4333}
4334
4335/// isREVMask - Check if a vector shuffle corresponds to a REV
4336/// instruction with the specified blocksize.  (The order of the elements
4337/// within each block of the vector is reversed.)
4338static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4339  assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4340         "Only possible block sizes for REV are: 16, 32, 64");
4341
4342  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4343  if (EltSz == 64)
4344    return false;
4345
4346  unsigned NumElts = VT.getVectorNumElements();
4347  unsigned BlockElts = M[0] + 1;
4348  // If the first shuffle index is UNDEF, be optimistic.
4349  if (M[0] < 0)
4350    BlockElts = BlockSize / EltSz;
4351
4352  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4353    return false;
4354
4355  for (unsigned i = 0; i < NumElts; ++i) {
4356    if (M[i] < 0)
4357      continue; // ignore UNDEF indices
4358    if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4359      return false;
4360  }
4361
4362  return true;
4363}
4364
4365static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4366  unsigned NumElts = VT.getVectorNumElements();
4367  WhichResult = (M[0] == 0 ? 0 : 1);
4368  unsigned Idx = WhichResult * NumElts / 2;
4369  for (unsigned i = 0; i != NumElts; i += 2) {
4370    if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4371        (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
4372      return false;
4373    Idx += 1;
4374  }
4375
4376  return true;
4377}
4378
4379static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4380  unsigned NumElts = VT.getVectorNumElements();
4381  WhichResult = (M[0] == 0 ? 0 : 1);
4382  for (unsigned i = 0; i != NumElts; ++i) {
4383    if (M[i] < 0)
4384      continue; // ignore UNDEF indices
4385    if ((unsigned)M[i] != 2 * i + WhichResult)
4386      return false;
4387  }
4388
4389  return true;
4390}
4391
4392static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4393  unsigned NumElts = VT.getVectorNumElements();
4394  WhichResult = (M[0] == 0 ? 0 : 1);
4395  for (unsigned i = 0; i < NumElts; i += 2) {
4396    if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4397        (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
4398      return false;
4399  }
4400  return true;
4401}
4402
4403/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
4404/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4405/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4406static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4407  unsigned NumElts = VT.getVectorNumElements();
4408  WhichResult = (M[0] == 0 ? 0 : 1);
4409  unsigned Idx = WhichResult * NumElts / 2;
4410  for (unsigned i = 0; i != NumElts; i += 2) {
4411    if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4412        (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
4413      return false;
4414    Idx += 1;
4415  }
4416
4417  return true;
4418}
4419
4420/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
4421/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4422/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4423static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4424  unsigned Half = VT.getVectorNumElements() / 2;
4425  WhichResult = (M[0] == 0 ? 0 : 1);
4426  for (unsigned j = 0; j != 2; ++j) {
4427    unsigned Idx = WhichResult;
4428    for (unsigned i = 0; i != Half; ++i) {
4429      int MIdx = M[i + j * Half];
4430      if (MIdx >= 0 && (unsigned)MIdx != Idx)
4431        return false;
4432      Idx += 2;
4433    }
4434  }
4435
4436  return true;
4437}
4438
4439/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
4440/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4441/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4442static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4443  unsigned NumElts = VT.getVectorNumElements();
4444  WhichResult = (M[0] == 0 ? 0 : 1);
4445  for (unsigned i = 0; i < NumElts; i += 2) {
4446    if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4447        (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
4448      return false;
4449  }
4450  return true;
4451}
4452
4453static bool isINSMask(ArrayRef<int> M, int NumInputElements,
4454                      bool &DstIsLeft, int &Anomaly) {
4455  if (M.size() != static_cast<size_t>(NumInputElements))
4456    return false;
4457
4458  int NumLHSMatch = 0, NumRHSMatch = 0;
4459  int LastLHSMismatch = -1, LastRHSMismatch = -1;
4460
4461  for (int i = 0; i < NumInputElements; ++i) {
4462    if (M[i] == -1) {
4463      ++NumLHSMatch;
4464      ++NumRHSMatch;
4465      continue;
4466    }
4467
4468    if (M[i] == i)
4469      ++NumLHSMatch;
4470    else
4471      LastLHSMismatch = i;
4472
4473    if (M[i] == i + NumInputElements)
4474      ++NumRHSMatch;
4475    else
4476      LastRHSMismatch = i;
4477  }
4478
4479  if (NumLHSMatch == NumInputElements - 1) {
4480    DstIsLeft = true;
4481    Anomaly = LastLHSMismatch;
4482    return true;
4483  } else if (NumRHSMatch == NumInputElements - 1) {
4484    DstIsLeft = false;
4485    Anomaly = LastRHSMismatch;
4486    return true;
4487  }
4488
4489  return false;
4490}
4491
4492static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
4493  if (VT.getSizeInBits() != 128)
4494    return false;
4495
4496  unsigned NumElts = VT.getVectorNumElements();
4497
4498  for (int I = 0, E = NumElts / 2; I != E; I++) {
4499    if (Mask[I] != I)
4500      return false;
4501  }
4502
4503  int Offset = NumElts / 2;
4504  for (int I = NumElts / 2, E = NumElts; I != E; I++) {
4505    if (Mask[I] != I + SplitLHS * Offset)
4506      return false;
4507  }
4508
4509  return true;
4510}
4511
4512static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
4513  SDLoc DL(Op);
4514  EVT VT = Op.getValueType();
4515  SDValue V0 = Op.getOperand(0);
4516  SDValue V1 = Op.getOperand(1);
4517  ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
4518
4519  if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
4520      VT.getVectorElementType() != V1.getValueType().getVectorElementType())
4521    return SDValue();
4522
4523  bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
4524
4525  if (!isConcatMask(Mask, VT, SplitV0))
4526    return SDValue();
4527
4528  EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4529                                VT.getVectorNumElements() / 2);
4530  if (SplitV0) {
4531    V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
4532                     DAG.getConstant(0, MVT::i64));
4533  }
4534  if (V1.getValueType().getSizeInBits() == 128) {
4535    V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
4536                     DAG.getConstant(0, MVT::i64));
4537  }
4538  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
4539}
4540
4541/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4542/// the specified operations to build the shuffle.
4543static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4544                                      SDValue RHS, SelectionDAG &DAG,
4545                                      SDLoc dl) {
4546  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4547  unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
4548  unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
4549
4550  enum {
4551    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4552    OP_VREV,
4553    OP_VDUP0,
4554    OP_VDUP1,
4555    OP_VDUP2,
4556    OP_VDUP3,
4557    OP_VEXT1,
4558    OP_VEXT2,
4559    OP_VEXT3,
4560    OP_VUZPL, // VUZP, left result
4561    OP_VUZPR, // VUZP, right result
4562    OP_VZIPL, // VZIP, left result
4563    OP_VZIPR, // VZIP, right result
4564    OP_VTRNL, // VTRN, left result
4565    OP_VTRNR  // VTRN, right result
4566  };
4567
4568  if (OpNum == OP_COPY) {
4569    if (LHSID == (1 * 9 + 2) * 9 + 3)
4570      return LHS;
4571    assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
4572    return RHS;
4573  }
4574
4575  SDValue OpLHS, OpRHS;
4576  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4577  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4578  EVT VT = OpLHS.getValueType();
4579
4580  switch (OpNum) {
4581  default:
4582    llvm_unreachable("Unknown shuffle opcode!");
4583  case OP_VREV:
4584    // VREV divides the vector in half and swaps within the half.
4585    if (VT.getVectorElementType() == MVT::i32 ||
4586        VT.getVectorElementType() == MVT::f32)
4587      return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
4588    // vrev <4 x i16> -> REV32
4589    if (VT.getVectorElementType() == MVT::i16)
4590      return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
4591    // vrev <4 x i8> -> REV16
4592    assert(VT.getVectorElementType() == MVT::i8);
4593    return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
4594  case OP_VDUP0:
4595  case OP_VDUP1:
4596  case OP_VDUP2:
4597  case OP_VDUP3: {
4598    EVT EltTy = VT.getVectorElementType();
4599    unsigned Opcode;
4600    if (EltTy == MVT::i8)
4601      Opcode = AArch64ISD::DUPLANE8;
4602    else if (EltTy == MVT::i16)
4603      Opcode = AArch64ISD::DUPLANE16;
4604    else if (EltTy == MVT::i32 || EltTy == MVT::f32)
4605      Opcode = AArch64ISD::DUPLANE32;
4606    else if (EltTy == MVT::i64 || EltTy == MVT::f64)
4607      Opcode = AArch64ISD::DUPLANE64;
4608    else
4609      llvm_unreachable("Invalid vector element type?");
4610
4611    if (VT.getSizeInBits() == 64)
4612      OpLHS = WidenVector(OpLHS, DAG);
4613    SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
4614    return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
4615  }
4616  case OP_VEXT1:
4617  case OP_VEXT2:
4618  case OP_VEXT3: {
4619    unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
4620    return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
4621                       DAG.getConstant(Imm, MVT::i32));
4622  }
4623  case OP_VUZPL:
4624    return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
4625                       OpRHS);
4626  case OP_VUZPR:
4627    return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
4628                       OpRHS);
4629  case OP_VZIPL:
4630    return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
4631                       OpRHS);
4632  case OP_VZIPR:
4633    return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
4634                       OpRHS);
4635  case OP_VTRNL:
4636    return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
4637                       OpRHS);
4638  case OP_VTRNR:
4639    return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
4640                       OpRHS);
4641  }
4642}
4643
4644static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
4645                           SelectionDAG &DAG) {
4646  // Check to see if we can use the TBL instruction.
4647  SDValue V1 = Op.getOperand(0);
4648  SDValue V2 = Op.getOperand(1);
4649  SDLoc DL(Op);
4650
4651  EVT EltVT = Op.getValueType().getVectorElementType();
4652  unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
4653
4654  SmallVector<SDValue, 8> TBLMask;
4655  for (int Val : ShuffleMask) {
4656    for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
4657      unsigned Offset = Byte + Val * BytesPerElt;
4658      TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
4659    }
4660  }
4661
4662  MVT IndexVT = MVT::v8i8;
4663  unsigned IndexLen = 8;
4664  if (Op.getValueType().getSizeInBits() == 128) {
4665    IndexVT = MVT::v16i8;
4666    IndexLen = 16;
4667  }
4668
4669  SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
4670  SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
4671
4672  SDValue Shuffle;
4673  if (V2.getNode()->getOpcode() == ISD::UNDEF) {
4674    if (IndexLen == 8)
4675      V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
4676    Shuffle = DAG.getNode(
4677        ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4678        DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
4679        DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4680                    makeArrayRef(TBLMask.data(), IndexLen)));
4681  } else {
4682    if (IndexLen == 8) {
4683      V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
4684      Shuffle = DAG.getNode(
4685          ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4686          DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
4687          DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4688                      makeArrayRef(TBLMask.data(), IndexLen)));
4689    } else {
4690      // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
4691      // cannot currently represent the register constraints on the input
4692      // table registers.
4693      //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
4694      //                   DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4695      //                               &TBLMask[0], IndexLen));
4696      Shuffle = DAG.getNode(
4697          ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4698          DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
4699          DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4700                      makeArrayRef(TBLMask.data(), IndexLen)));
4701    }
4702  }
4703  return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
4704}
4705
4706static unsigned getDUPLANEOp(EVT EltType) {
4707  if (EltType == MVT::i8)
4708    return AArch64ISD::DUPLANE8;
4709  if (EltType == MVT::i16)
4710    return AArch64ISD::DUPLANE16;
4711  if (EltType == MVT::i32 || EltType == MVT::f32)
4712    return AArch64ISD::DUPLANE32;
4713  if (EltType == MVT::i64 || EltType == MVT::f64)
4714    return AArch64ISD::DUPLANE64;
4715
4716  llvm_unreachable("Invalid vector element type?");
4717}
4718
4719SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4720                                                   SelectionDAG &DAG) const {
4721  SDLoc dl(Op);
4722  EVT VT = Op.getValueType();
4723
4724  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4725
4726  // Convert shuffles that are directly supported on NEON to target-specific
4727  // DAG nodes, instead of keeping them as shuffles and matching them again
4728  // during code selection.  This is more efficient and avoids the possibility
4729  // of inconsistencies between legalization and selection.
4730  ArrayRef<int> ShuffleMask = SVN->getMask();
4731
4732  SDValue V1 = Op.getOperand(0);
4733  SDValue V2 = Op.getOperand(1);
4734
4735  if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
4736                                       V1.getValueType().getSimpleVT())) {
4737    int Lane = SVN->getSplatIndex();
4738    // If this is undef splat, generate it via "just" vdup, if possible.
4739    if (Lane == -1)
4740      Lane = 0;
4741
4742    if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
4743      return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
4744                         V1.getOperand(0));
4745    // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
4746    // constant. If so, we can just reference the lane's definition directly.
4747    if (V1.getOpcode() == ISD::BUILD_VECTOR &&
4748        !isa<ConstantSDNode>(V1.getOperand(Lane)))
4749      return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
4750
4751    // Otherwise, duplicate from the lane of the input vector.
4752    unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
4753
4754    // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
4755    // to make a vector of the same size as this SHUFFLE. We can ignore the
4756    // extract entirely, and canonicalise the concat using WidenVector.
4757    if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
4758      Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
4759      V1 = V1.getOperand(0);
4760    } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
4761      unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
4762      Lane -= Idx * VT.getVectorNumElements() / 2;
4763      V1 = WidenVector(V1.getOperand(Idx), DAG);
4764    } else if (VT.getSizeInBits() == 64)
4765      V1 = WidenVector(V1, DAG);
4766
4767    return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
4768  }
4769
4770  if (isREVMask(ShuffleMask, VT, 64))
4771    return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
4772  if (isREVMask(ShuffleMask, VT, 32))
4773    return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
4774  if (isREVMask(ShuffleMask, VT, 16))
4775    return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
4776
4777  bool ReverseEXT = false;
4778  unsigned Imm;
4779  if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
4780    if (ReverseEXT)
4781      std::swap(V1, V2);
4782    Imm *= getExtFactor(V1);
4783    return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
4784                       DAG.getConstant(Imm, MVT::i32));
4785  } else if (V2->getOpcode() == ISD::UNDEF &&
4786             isSingletonEXTMask(ShuffleMask, VT, Imm)) {
4787    Imm *= getExtFactor(V1);
4788    return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
4789                       DAG.getConstant(Imm, MVT::i32));
4790  }
4791
4792  unsigned WhichResult;
4793  if (isZIPMask(ShuffleMask, VT, WhichResult)) {
4794    unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
4795    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
4796  }
4797  if (isUZPMask(ShuffleMask, VT, WhichResult)) {
4798    unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
4799    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
4800  }
4801  if (isTRNMask(ShuffleMask, VT, WhichResult)) {
4802    unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
4803    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
4804  }
4805
4806  if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
4807    unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
4808    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
4809  }
4810  if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
4811    unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
4812    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
4813  }
4814  if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
4815    unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
4816    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
4817  }
4818
4819  SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
4820  if (Concat.getNode())
4821    return Concat;
4822
4823  bool DstIsLeft;
4824  int Anomaly;
4825  int NumInputElements = V1.getValueType().getVectorNumElements();
4826  if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
4827    SDValue DstVec = DstIsLeft ? V1 : V2;
4828    SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
4829
4830    SDValue SrcVec = V1;
4831    int SrcLane = ShuffleMask[Anomaly];
4832    if (SrcLane >= NumInputElements) {
4833      SrcVec = V2;
4834      SrcLane -= VT.getVectorNumElements();
4835    }
4836    SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
4837
4838    EVT ScalarVT = VT.getVectorElementType();
4839    if (ScalarVT.getSizeInBits() < 32)
4840      ScalarVT = MVT::i32;
4841
4842    return DAG.getNode(
4843        ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
4844        DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
4845        DstLaneV);
4846  }
4847
4848  // If the shuffle is not directly supported and it has 4 elements, use
4849  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4850  unsigned NumElts = VT.getVectorNumElements();
4851  if (NumElts == 4) {
4852    unsigned PFIndexes[4];
4853    for (unsigned i = 0; i != 4; ++i) {
4854      if (ShuffleMask[i] < 0)
4855        PFIndexes[i] = 8;
4856      else
4857        PFIndexes[i] = ShuffleMask[i];
4858    }
4859
4860    // Compute the index in the perfect shuffle table.
4861    unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
4862                            PFIndexes[2] * 9 + PFIndexes[3];
4863    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4864    unsigned Cost = (PFEntry >> 30);
4865
4866    if (Cost <= 4)
4867      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4868  }
4869
4870  return GenerateTBL(Op, ShuffleMask, DAG);
4871}
4872
4873static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
4874                               APInt &UndefBits) {
4875  EVT VT = BVN->getValueType(0);
4876  APInt SplatBits, SplatUndef;
4877  unsigned SplatBitSize;
4878  bool HasAnyUndefs;
4879  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4880    unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
4881
4882    for (unsigned i = 0; i < NumSplats; ++i) {
4883      CnstBits <<= SplatBitSize;
4884      UndefBits <<= SplatBitSize;
4885      CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
4886      UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
4887    }
4888
4889    return true;
4890  }
4891
4892  return false;
4893}
4894
4895SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
4896                                              SelectionDAG &DAG) const {
4897  BuildVectorSDNode *BVN =
4898      dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
4899  SDValue LHS = Op.getOperand(0);
4900  SDLoc dl(Op);
4901  EVT VT = Op.getValueType();
4902
4903  if (!BVN)
4904    return Op;
4905
4906  APInt CnstBits(VT.getSizeInBits(), 0);
4907  APInt UndefBits(VT.getSizeInBits(), 0);
4908  if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
4909    // We only have BIC vector immediate instruction, which is and-not.
4910    CnstBits = ~CnstBits;
4911
4912    // We make use of a little bit of goto ickiness in order to avoid having to
4913    // duplicate the immediate matching logic for the undef toggled case.
4914    bool SecondTry = false;
4915  AttemptModImm:
4916
4917    if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
4918      CnstBits = CnstBits.zextOrTrunc(64);
4919      uint64_t CnstVal = CnstBits.getZExtValue();
4920
4921      if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
4922        CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
4923        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
4924        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4925                                  DAG.getConstant(CnstVal, MVT::i32),
4926                                  DAG.getConstant(0, MVT::i32));
4927        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4928      }
4929
4930      if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
4931        CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
4932        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
4933        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4934                                  DAG.getConstant(CnstVal, MVT::i32),
4935                                  DAG.getConstant(8, MVT::i32));
4936        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4937      }
4938
4939      if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
4940        CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
4941        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
4942        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4943                                  DAG.getConstant(CnstVal, MVT::i32),
4944                                  DAG.getConstant(16, MVT::i32));
4945        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4946      }
4947
4948      if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
4949        CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
4950        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
4951        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4952                                  DAG.getConstant(CnstVal, MVT::i32),
4953                                  DAG.getConstant(24, MVT::i32));
4954        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4955      }
4956
4957      if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
4958        CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
4959        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
4960        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4961                                  DAG.getConstant(CnstVal, MVT::i32),
4962                                  DAG.getConstant(0, MVT::i32));
4963        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4964      }
4965
4966      if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
4967        CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
4968        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
4969        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4970                                  DAG.getConstant(CnstVal, MVT::i32),
4971                                  DAG.getConstant(8, MVT::i32));
4972        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4973      }
4974    }
4975
4976    if (SecondTry)
4977      goto FailedModImm;
4978    SecondTry = true;
4979    CnstBits = ~UndefBits;
4980    goto AttemptModImm;
4981  }
4982
4983// We can always fall back to a non-immediate AND.
4984FailedModImm:
4985  return Op;
4986}
4987
4988// Specialized code to quickly find if PotentialBVec is a BuildVector that
4989// consists of only the same constant int value, returned in reference arg
4990// ConstVal
4991static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
4992                                     uint64_t &ConstVal) {
4993  BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
4994  if (!Bvec)
4995    return false;
4996  ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
4997  if (!FirstElt)
4998    return false;
4999  EVT VT = Bvec->getValueType(0);
5000  unsigned NumElts = VT.getVectorNumElements();
5001  for (unsigned i = 1; i < NumElts; ++i)
5002    if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5003      return false;
5004  ConstVal = FirstElt->getZExtValue();
5005  return true;
5006}
5007
5008static unsigned getIntrinsicID(const SDNode *N) {
5009  unsigned Opcode = N->getOpcode();
5010  switch (Opcode) {
5011  default:
5012    return Intrinsic::not_intrinsic;
5013  case ISD::INTRINSIC_WO_CHAIN: {
5014    unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5015    if (IID < Intrinsic::num_intrinsics)
5016      return IID;
5017    return Intrinsic::not_intrinsic;
5018  }
5019  }
5020}
5021
5022// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5023// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5024// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5025// Also, logical shift right -> sri, with the same structure.
5026static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5027  EVT VT = N->getValueType(0);
5028
5029  if (!VT.isVector())
5030    return SDValue();
5031
5032  SDLoc DL(N);
5033
5034  // Is the first op an AND?
5035  const SDValue And = N->getOperand(0);
5036  if (And.getOpcode() != ISD::AND)
5037    return SDValue();
5038
5039  // Is the second op an shl or lshr?
5040  SDValue Shift = N->getOperand(1);
5041  // This will have been turned into: AArch64ISD::VSHL vector, #shift
5042  // or AArch64ISD::VLSHR vector, #shift
5043  unsigned ShiftOpc = Shift.getOpcode();
5044  if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5045    return SDValue();
5046  bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5047
5048  // Is the shift amount constant?
5049  ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5050  if (!C2node)
5051    return SDValue();
5052
5053  // Is the and mask vector all constant?
5054  uint64_t C1;
5055  if (!isAllConstantBuildVector(And.getOperand(1), C1))
5056    return SDValue();
5057
5058  // Is C1 == ~C2, taking into account how much one can shift elements of a
5059  // particular size?
5060  uint64_t C2 = C2node->getZExtValue();
5061  unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5062  if (C2 > ElemSizeInBits)
5063    return SDValue();
5064  unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5065  if ((C1 & ElemMask) != (~C2 & ElemMask))
5066    return SDValue();
5067
5068  SDValue X = And.getOperand(0);
5069  SDValue Y = Shift.getOperand(0);
5070
5071  unsigned Intrin =
5072      IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5073  SDValue ResultSLI =
5074      DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5075                  DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
5076
5077  DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5078  DEBUG(N->dump(&DAG));
5079  DEBUG(dbgs() << "into: \n");
5080  DEBUG(ResultSLI->dump(&DAG));
5081
5082  ++NumShiftInserts;
5083  return ResultSLI;
5084}
5085
5086SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5087                                             SelectionDAG &DAG) const {
5088  // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5089  if (EnableAArch64SlrGeneration) {
5090    SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5091    if (Res.getNode())
5092      return Res;
5093  }
5094
5095  BuildVectorSDNode *BVN =
5096      dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5097  SDValue LHS = Op.getOperand(1);
5098  SDLoc dl(Op);
5099  EVT VT = Op.getValueType();
5100
5101  // OR commutes, so try swapping the operands.
5102  if (!BVN) {
5103    LHS = Op.getOperand(0);
5104    BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5105  }
5106  if (!BVN)
5107    return Op;
5108
5109  APInt CnstBits(VT.getSizeInBits(), 0);
5110  APInt UndefBits(VT.getSizeInBits(), 0);
5111  if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5112    // We make use of a little bit of goto ickiness in order to avoid having to
5113    // duplicate the immediate matching logic for the undef toggled case.
5114    bool SecondTry = false;
5115  AttemptModImm:
5116
5117    if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5118      CnstBits = CnstBits.zextOrTrunc(64);
5119      uint64_t CnstVal = CnstBits.getZExtValue();
5120
5121      if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5122        CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5123        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5124        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5125                                  DAG.getConstant(CnstVal, MVT::i32),
5126                                  DAG.getConstant(0, MVT::i32));
5127        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5128      }
5129
5130      if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5131        CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5132        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5133        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5134                                  DAG.getConstant(CnstVal, MVT::i32),
5135                                  DAG.getConstant(8, MVT::i32));
5136        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5137      }
5138
5139      if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5140        CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5141        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5142        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5143                                  DAG.getConstant(CnstVal, MVT::i32),
5144                                  DAG.getConstant(16, MVT::i32));
5145        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5146      }
5147
5148      if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5149        CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5150        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5151        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5152                                  DAG.getConstant(CnstVal, MVT::i32),
5153                                  DAG.getConstant(24, MVT::i32));
5154        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5155      }
5156
5157      if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5158        CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5159        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5160        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5161                                  DAG.getConstant(CnstVal, MVT::i32),
5162                                  DAG.getConstant(0, MVT::i32));
5163        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5164      }
5165
5166      if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5167        CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5168        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5169        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5170                                  DAG.getConstant(CnstVal, MVT::i32),
5171                                  DAG.getConstant(8, MVT::i32));
5172        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5173      }
5174    }
5175
5176    if (SecondTry)
5177      goto FailedModImm;
5178    SecondTry = true;
5179    CnstBits = UndefBits;
5180    goto AttemptModImm;
5181  }
5182
5183// We can always fall back to a non-immediate OR.
5184FailedModImm:
5185  return Op;
5186}
5187
5188// Normalize the operands of BUILD_VECTOR. The value of constant operands will
5189// be truncated to fit element width.
5190static SDValue NormalizeBuildVector(SDValue Op,
5191                                    SelectionDAG &DAG) {
5192  assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
5193  SDLoc dl(Op);
5194  EVT VT = Op.getValueType();
5195  EVT EltTy= VT.getVectorElementType();
5196
5197  if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5198    return Op;
5199
5200  SmallVector<SDValue, 16> Ops;
5201  for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
5202    SDValue Lane = Op.getOperand(I);
5203    if (Lane.getOpcode() == ISD::Constant) {
5204      APInt LowBits(EltTy.getSizeInBits(),
5205                    cast<ConstantSDNode>(Lane)->getZExtValue());
5206      Lane = DAG.getConstant(LowBits.getZExtValue(), MVT::i32);
5207    }
5208    Ops.push_back(Lane);
5209  }
5210  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5211}
5212
5213SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5214                                                 SelectionDAG &DAG) const {
5215  SDLoc dl(Op);
5216  EVT VT = Op.getValueType();
5217  Op = NormalizeBuildVector(Op, DAG);
5218  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
5219
5220  APInt CnstBits(VT.getSizeInBits(), 0);
5221  APInt UndefBits(VT.getSizeInBits(), 0);
5222  if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5223    // We make use of a little bit of goto ickiness in order to avoid having to
5224    // duplicate the immediate matching logic for the undef toggled case.
5225    bool SecondTry = false;
5226  AttemptModImm:
5227
5228    if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5229      CnstBits = CnstBits.zextOrTrunc(64);
5230      uint64_t CnstVal = CnstBits.getZExtValue();
5231
5232      // Certain magic vector constants (used to express things like NOT
5233      // and NEG) are passed through unmodified.  This allows codegen patterns
5234      // for these operations to match.  Special-purpose patterns will lower
5235      // these immediates to MOVIs if it proves necessary.
5236      if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5237        return Op;
5238
5239      // The many faces of MOVI...
5240      if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5241        CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5242        if (VT.getSizeInBits() == 128) {
5243          SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
5244                                    DAG.getConstant(CnstVal, MVT::i32));
5245          return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5246        }
5247
5248        // Support the V64 version via subregister insertion.
5249        SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
5250                                  DAG.getConstant(CnstVal, MVT::i32));
5251        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5252      }
5253
5254      if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5255        CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5256        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5257        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5258                                  DAG.getConstant(CnstVal, MVT::i32),
5259                                  DAG.getConstant(0, MVT::i32));
5260        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5261      }
5262
5263      if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5264        CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5265        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5266        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5267                                  DAG.getConstant(CnstVal, MVT::i32),
5268                                  DAG.getConstant(8, MVT::i32));
5269        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5270      }
5271
5272      if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5273        CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5274        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5275        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5276                                  DAG.getConstant(CnstVal, MVT::i32),
5277                                  DAG.getConstant(16, MVT::i32));
5278        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5279      }
5280
5281      if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5282        CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5283        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5284        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5285                                  DAG.getConstant(CnstVal, MVT::i32),
5286                                  DAG.getConstant(24, MVT::i32));
5287        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5288      }
5289
5290      if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5291        CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5292        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5293        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5294                                  DAG.getConstant(CnstVal, MVT::i32),
5295                                  DAG.getConstant(0, MVT::i32));
5296        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5297      }
5298
5299      if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5300        CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5301        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5302        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5303                                  DAG.getConstant(CnstVal, MVT::i32),
5304                                  DAG.getConstant(8, MVT::i32));
5305        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5306      }
5307
5308      if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5309        CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5310        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5311        SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5312                                  DAG.getConstant(CnstVal, MVT::i32),
5313                                  DAG.getConstant(264, MVT::i32));
5314        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5315      }
5316
5317      if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5318        CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5319        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5320        SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5321                                  DAG.getConstant(CnstVal, MVT::i32),
5322                                  DAG.getConstant(272, MVT::i32));
5323        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5324      }
5325
5326      if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
5327        CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
5328        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
5329        SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
5330                                  DAG.getConstant(CnstVal, MVT::i32));
5331        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5332      }
5333
5334      // The few faces of FMOV...
5335      if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
5336        CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
5337        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
5338        SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
5339                                  DAG.getConstant(CnstVal, MVT::i32));
5340        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5341      }
5342
5343      if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
5344          VT.getSizeInBits() == 128) {
5345        CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
5346        SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
5347                                  DAG.getConstant(CnstVal, MVT::i32));
5348        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5349      }
5350
5351      // The many faces of MVNI...
5352      CnstVal = ~CnstVal;
5353      if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5354        CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5355        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5356        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5357                                  DAG.getConstant(CnstVal, MVT::i32),
5358                                  DAG.getConstant(0, MVT::i32));
5359        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5360      }
5361
5362      if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5363        CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5364        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5365        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5366                                  DAG.getConstant(CnstVal, MVT::i32),
5367                                  DAG.getConstant(8, MVT::i32));
5368        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5369      }
5370
5371      if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5372        CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5373        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5374        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5375                                  DAG.getConstant(CnstVal, MVT::i32),
5376                                  DAG.getConstant(16, MVT::i32));
5377        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5378      }
5379
5380      if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5381        CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5382        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5383        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5384                                  DAG.getConstant(CnstVal, MVT::i32),
5385                                  DAG.getConstant(24, MVT::i32));
5386        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5387      }
5388
5389      if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5390        CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5391        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5392        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5393                                  DAG.getConstant(CnstVal, MVT::i32),
5394                                  DAG.getConstant(0, MVT::i32));
5395        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5396      }
5397
5398      if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5399        CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5400        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5401        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5402                                  DAG.getConstant(CnstVal, MVT::i32),
5403                                  DAG.getConstant(8, MVT::i32));
5404        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5405      }
5406
5407      if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5408        CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5409        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5410        SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5411                                  DAG.getConstant(CnstVal, MVT::i32),
5412                                  DAG.getConstant(264, MVT::i32));
5413        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5414      }
5415
5416      if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5417        CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5418        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5419        SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5420                                  DAG.getConstant(CnstVal, MVT::i32),
5421                                  DAG.getConstant(272, MVT::i32));
5422        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5423      }
5424    }
5425
5426    if (SecondTry)
5427      goto FailedModImm;
5428    SecondTry = true;
5429    CnstBits = UndefBits;
5430    goto AttemptModImm;
5431  }
5432FailedModImm:
5433
5434  // Scan through the operands to find some interesting properties we can
5435  // exploit:
5436  //   1) If only one value is used, we can use a DUP, or
5437  //   2) if only the low element is not undef, we can just insert that, or
5438  //   3) if only one constant value is used (w/ some non-constant lanes),
5439  //      we can splat the constant value into the whole vector then fill
5440  //      in the non-constant lanes.
5441  //   4) FIXME: If different constant values are used, but we can intelligently
5442  //             select the values we'll be overwriting for the non-constant
5443  //             lanes such that we can directly materialize the vector
5444  //             some other way (MOVI, e.g.), we can be sneaky.
5445  unsigned NumElts = VT.getVectorNumElements();
5446  bool isOnlyLowElement = true;
5447  bool usesOnlyOneValue = true;
5448  bool usesOnlyOneConstantValue = true;
5449  bool isConstant = true;
5450  unsigned NumConstantLanes = 0;
5451  SDValue Value;
5452  SDValue ConstantValue;
5453  for (unsigned i = 0; i < NumElts; ++i) {
5454    SDValue V = Op.getOperand(i);
5455    if (V.getOpcode() == ISD::UNDEF)
5456      continue;
5457    if (i > 0)
5458      isOnlyLowElement = false;
5459    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5460      isConstant = false;
5461
5462    if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
5463      ++NumConstantLanes;
5464      if (!ConstantValue.getNode())
5465        ConstantValue = V;
5466      else if (ConstantValue != V)
5467        usesOnlyOneConstantValue = false;
5468    }
5469
5470    if (!Value.getNode())
5471      Value = V;
5472    else if (V != Value)
5473      usesOnlyOneValue = false;
5474  }
5475
5476  if (!Value.getNode())
5477    return DAG.getUNDEF(VT);
5478
5479  if (isOnlyLowElement)
5480    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5481
5482  // Use DUP for non-constant splats.  For f32 constant splats, reduce to
5483  // i32 and try again.
5484  if (usesOnlyOneValue) {
5485    if (!isConstant) {
5486      if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5487          Value.getValueType() != VT)
5488        return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
5489
5490      // This is actually a DUPLANExx operation, which keeps everything vectory.
5491
5492      // DUPLANE works on 128-bit vectors, widen it if necessary.
5493      SDValue Lane = Value.getOperand(1);
5494      Value = Value.getOperand(0);
5495      if (Value.getValueType().getSizeInBits() == 64)
5496        Value = WidenVector(Value, DAG);
5497
5498      unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
5499      return DAG.getNode(Opcode, dl, VT, Value, Lane);
5500    }
5501
5502    if (VT.getVectorElementType().isFloatingPoint()) {
5503      SmallVector<SDValue, 8> Ops;
5504      MVT NewType =
5505          (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5506      for (unsigned i = 0; i < NumElts; ++i)
5507        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
5508      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
5509      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5510      Val = LowerBUILD_VECTOR(Val, DAG);
5511      if (Val.getNode())
5512        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5513    }
5514  }
5515
5516  // If there was only one constant value used and for more than one lane,
5517  // start by splatting that value, then replace the non-constant lanes. This
5518  // is better than the default, which will perform a separate initialization
5519  // for each lane.
5520  if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
5521    SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
5522    // Now insert the non-constant lanes.
5523    for (unsigned i = 0; i < NumElts; ++i) {
5524      SDValue V = Op.getOperand(i);
5525      SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5526      if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
5527        // Note that type legalization likely mucked about with the VT of the
5528        // source operand, so we may have to convert it here before inserting.
5529        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
5530      }
5531    }
5532    return Val;
5533  }
5534
5535  // If all elements are constants and the case above didn't get hit, fall back
5536  // to the default expansion, which will generate a load from the constant
5537  // pool.
5538  if (isConstant)
5539    return SDValue();
5540
5541  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5542  if (NumElts >= 4) {
5543    SDValue shuffle = ReconstructShuffle(Op, DAG);
5544    if (shuffle != SDValue())
5545      return shuffle;
5546  }
5547
5548  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5549  // know the default expansion would otherwise fall back on something even
5550  // worse. For a vector with one or two non-undef values, that's
5551  // scalar_to_vector for the elements followed by a shuffle (provided the
5552  // shuffle is valid for the target) and materialization element by element
5553  // on the stack followed by a load for everything else.
5554  if (!isConstant && !usesOnlyOneValue) {
5555    SDValue Vec = DAG.getUNDEF(VT);
5556    SDValue Op0 = Op.getOperand(0);
5557    unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
5558    unsigned i = 0;
5559    // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
5560    // a) Avoid a RMW dependency on the full vector register, and
5561    // b) Allow the register coalescer to fold away the copy if the
5562    //    value is already in an S or D register.
5563    if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
5564      unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
5565      MachineSDNode *N =
5566          DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
5567                             DAG.getTargetConstant(SubIdx, MVT::i32));
5568      Vec = SDValue(N, 0);
5569      ++i;
5570    }
5571    for (; i < NumElts; ++i) {
5572      SDValue V = Op.getOperand(i);
5573      if (V.getOpcode() == ISD::UNDEF)
5574        continue;
5575      SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5576      Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
5577    }
5578    return Vec;
5579  }
5580
5581  // Just use the default expansion. We failed to find a better alternative.
5582  return SDValue();
5583}
5584
5585SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
5586                                                      SelectionDAG &DAG) const {
5587  assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
5588
5589  // Check for non-constant lane.
5590  if (!isa<ConstantSDNode>(Op.getOperand(2)))
5591    return SDValue();
5592
5593  EVT VT = Op.getOperand(0).getValueType();
5594
5595  // Insertion/extraction are legal for V128 types.
5596  if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
5597      VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
5598    return Op;
5599
5600  if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
5601      VT != MVT::v1i64 && VT != MVT::v2f32)
5602    return SDValue();
5603
5604  // For V64 types, we perform insertion by expanding the value
5605  // to a V128 type and perform the insertion on that.
5606  SDLoc DL(Op);
5607  SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
5608  EVT WideTy = WideVec.getValueType();
5609
5610  SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
5611                             Op.getOperand(1), Op.getOperand(2));
5612  // Re-narrow the resultant vector.
5613  return NarrowVector(Node, DAG);
5614}
5615
5616SDValue
5617AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5618                                               SelectionDAG &DAG) const {
5619  assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
5620
5621  // Check for non-constant lane.
5622  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5623    return SDValue();
5624
5625  EVT VT = Op.getOperand(0).getValueType();
5626
5627  // Insertion/extraction are legal for V128 types.
5628  if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
5629      VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
5630    return Op;
5631
5632  if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
5633      VT != MVT::v1i64 && VT != MVT::v2f32)
5634    return SDValue();
5635
5636  // For V64 types, we perform extraction by expanding the value
5637  // to a V128 type and perform the extraction on that.
5638  SDLoc DL(Op);
5639  SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
5640  EVT WideTy = WideVec.getValueType();
5641
5642  EVT ExtrTy = WideTy.getVectorElementType();
5643  if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
5644    ExtrTy = MVT::i32;
5645
5646  // For extractions, we just return the result directly.
5647  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
5648                     Op.getOperand(1));
5649}
5650
5651SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
5652                                                      SelectionDAG &DAG) const {
5653  EVT VT = Op.getOperand(0).getValueType();
5654  SDLoc dl(Op);
5655  // Just in case...
5656  if (!VT.isVector())
5657    return SDValue();
5658
5659  ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5660  if (!Cst)
5661    return SDValue();
5662  unsigned Val = Cst->getZExtValue();
5663
5664  unsigned Size = Op.getValueType().getSizeInBits();
5665  if (Val == 0) {
5666    switch (Size) {
5667    case 8:
5668      return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
5669                                        Op.getOperand(0));
5670    case 16:
5671      return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
5672                                        Op.getOperand(0));
5673    case 32:
5674      return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
5675                                        Op.getOperand(0));
5676    case 64:
5677      return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
5678                                        Op.getOperand(0));
5679    default:
5680      llvm_unreachable("Unexpected vector type in extract_subvector!");
5681    }
5682  }
5683  // If this is extracting the upper 64-bits of a 128-bit vector, we match
5684  // that directly.
5685  if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
5686    return Op;
5687
5688  return SDValue();
5689}
5690
5691bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
5692                                               EVT VT) const {
5693  if (VT.getVectorNumElements() == 4 &&
5694      (VT.is128BitVector() || VT.is64BitVector())) {
5695    unsigned PFIndexes[4];
5696    for (unsigned i = 0; i != 4; ++i) {
5697      if (M[i] < 0)
5698        PFIndexes[i] = 8;
5699      else
5700        PFIndexes[i] = M[i];
5701    }
5702
5703    // Compute the index in the perfect shuffle table.
5704    unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5705                            PFIndexes[2] * 9 + PFIndexes[3];
5706    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5707    unsigned Cost = (PFEntry >> 30);
5708
5709    if (Cost <= 4)
5710      return true;
5711  }
5712
5713  bool DummyBool;
5714  int DummyInt;
5715  unsigned DummyUnsigned;
5716
5717  return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
5718          isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
5719          isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
5720          // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
5721          isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
5722          isZIPMask(M, VT, DummyUnsigned) ||
5723          isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
5724          isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
5725          isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
5726          isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
5727          isConcatMask(M, VT, VT.getSizeInBits() == 128));
5728}
5729
5730/// getVShiftImm - Check if this is a valid build_vector for the immediate
5731/// operand of a vector shift operation, where all the elements of the
5732/// build_vector must have the same constant integer value.
5733static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
5734  // Ignore bit_converts.
5735  while (Op.getOpcode() == ISD::BITCAST)
5736    Op = Op.getOperand(0);
5737  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5738  APInt SplatBits, SplatUndef;
5739  unsigned SplatBitSize;
5740  bool HasAnyUndefs;
5741  if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
5742                                    HasAnyUndefs, ElementBits) ||
5743      SplatBitSize > ElementBits)
5744    return false;
5745  Cnt = SplatBits.getSExtValue();
5746  return true;
5747}
5748
5749/// isVShiftLImm - Check if this is a valid build_vector for the immediate
5750/// operand of a vector shift left operation.  That value must be in the range:
5751///   0 <= Value < ElementBits for a left shift; or
5752///   0 <= Value <= ElementBits for a long left shift.
5753static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
5754  assert(VT.isVector() && "vector shift count is not a vector type");
5755  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5756  if (!getVShiftImm(Op, ElementBits, Cnt))
5757    return false;
5758  return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
5759}
5760
5761/// isVShiftRImm - Check if this is a valid build_vector for the immediate
5762/// operand of a vector shift right operation.  For a shift opcode, the value
5763/// is positive, but for an intrinsic the value count must be negative. The
5764/// absolute value must be in the range:
5765///   1 <= |Value| <= ElementBits for a right shift; or
5766///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
5767static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
5768                         int64_t &Cnt) {
5769  assert(VT.isVector() && "vector shift count is not a vector type");
5770  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5771  if (!getVShiftImm(Op, ElementBits, Cnt))
5772    return false;
5773  if (isIntrinsic)
5774    Cnt = -Cnt;
5775  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
5776}
5777
5778SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
5779                                                      SelectionDAG &DAG) const {
5780  EVT VT = Op.getValueType();
5781  SDLoc DL(Op);
5782  int64_t Cnt;
5783
5784  if (!Op.getOperand(1).getValueType().isVector())
5785    return Op;
5786  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5787
5788  switch (Op.getOpcode()) {
5789  default:
5790    llvm_unreachable("unexpected shift opcode");
5791
5792  case ISD::SHL:
5793    if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
5794      return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
5795                         DAG.getConstant(Cnt, MVT::i32));
5796    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5797                       DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
5798                       Op.getOperand(0), Op.getOperand(1));
5799  case ISD::SRA:
5800  case ISD::SRL:
5801    // Right shift immediate
5802    if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
5803        Cnt < EltSize) {
5804      unsigned Opc =
5805          (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
5806      return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
5807                         DAG.getConstant(Cnt, MVT::i32));
5808    }
5809
5810    // Right shift register.  Note, there is not a shift right register
5811    // instruction, but the shift left register instruction takes a signed
5812    // value, where negative numbers specify a right shift.
5813    unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
5814                                                : Intrinsic::aarch64_neon_ushl;
5815    // negate the shift amount
5816    SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
5817    SDValue NegShiftLeft =
5818        DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5819                    DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
5820    return NegShiftLeft;
5821  }
5822
5823  return SDValue();
5824}
5825
5826static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
5827                                    AArch64CC::CondCode CC, bool NoNans, EVT VT,
5828                                    SDLoc dl, SelectionDAG &DAG) {
5829  EVT SrcVT = LHS.getValueType();
5830
5831  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
5832  APInt CnstBits(VT.getSizeInBits(), 0);
5833  APInt UndefBits(VT.getSizeInBits(), 0);
5834  bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
5835  bool IsZero = IsCnst && (CnstBits == 0);
5836
5837  if (SrcVT.getVectorElementType().isFloatingPoint()) {
5838    switch (CC) {
5839    default:
5840      return SDValue();
5841    case AArch64CC::NE: {
5842      SDValue Fcmeq;
5843      if (IsZero)
5844        Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
5845      else
5846        Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
5847      return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
5848    }
5849    case AArch64CC::EQ:
5850      if (IsZero)
5851        return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
5852      return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
5853    case AArch64CC::GE:
5854      if (IsZero)
5855        return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
5856      return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
5857    case AArch64CC::GT:
5858      if (IsZero)
5859        return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
5860      return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
5861    case AArch64CC::LS:
5862      if (IsZero)
5863        return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
5864      return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
5865    case AArch64CC::LT:
5866      if (!NoNans)
5867        return SDValue();
5868    // If we ignore NaNs then we can use to the MI implementation.
5869    // Fallthrough.
5870    case AArch64CC::MI:
5871      if (IsZero)
5872        return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
5873      return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
5874    }
5875  }
5876
5877  switch (CC) {
5878  default:
5879    return SDValue();
5880  case AArch64CC::NE: {
5881    SDValue Cmeq;
5882    if (IsZero)
5883      Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
5884    else
5885      Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
5886    return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
5887  }
5888  case AArch64CC::EQ:
5889    if (IsZero)
5890      return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
5891    return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
5892  case AArch64CC::GE:
5893    if (IsZero)
5894      return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
5895    return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
5896  case AArch64CC::GT:
5897    if (IsZero)
5898      return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
5899    return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
5900  case AArch64CC::LE:
5901    if (IsZero)
5902      return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
5903    return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
5904  case AArch64CC::LS:
5905    return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
5906  case AArch64CC::LO:
5907    return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
5908  case AArch64CC::LT:
5909    if (IsZero)
5910      return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
5911    return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
5912  case AArch64CC::HI:
5913    return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
5914  case AArch64CC::HS:
5915    return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
5916  }
5917}
5918
5919SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
5920                                           SelectionDAG &DAG) const {
5921  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5922  SDValue LHS = Op.getOperand(0);
5923  SDValue RHS = Op.getOperand(1);
5924  SDLoc dl(Op);
5925
5926  if (LHS.getValueType().getVectorElementType().isInteger()) {
5927    assert(LHS.getValueType() == RHS.getValueType());
5928    AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
5929    return EmitVectorComparison(LHS, RHS, AArch64CC, false, Op.getValueType(),
5930                                dl, DAG);
5931  }
5932
5933  assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
5934         LHS.getValueType().getVectorElementType() == MVT::f64);
5935
5936  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
5937  // clean.  Some of them require two branches to implement.
5938  AArch64CC::CondCode CC1, CC2;
5939  bool ShouldInvert;
5940  changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
5941
5942  bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
5943  SDValue Cmp =
5944      EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG);
5945  if (!Cmp.getNode())
5946    return SDValue();
5947
5948  if (CC2 != AArch64CC::AL) {
5949    SDValue Cmp2 =
5950        EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG);
5951    if (!Cmp2.getNode())
5952      return SDValue();
5953
5954    Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2);
5955  }
5956
5957  if (ShouldInvert)
5958    return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
5959
5960  return Cmp;
5961}
5962
5963/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
5964/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
5965/// specified in the intrinsic calls.
5966bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
5967                                               const CallInst &I,
5968                                               unsigned Intrinsic) const {
5969  switch (Intrinsic) {
5970  case Intrinsic::aarch64_neon_ld2:
5971  case Intrinsic::aarch64_neon_ld3:
5972  case Intrinsic::aarch64_neon_ld4:
5973  case Intrinsic::aarch64_neon_ld1x2:
5974  case Intrinsic::aarch64_neon_ld1x3:
5975  case Intrinsic::aarch64_neon_ld1x4:
5976  case Intrinsic::aarch64_neon_ld2lane:
5977  case Intrinsic::aarch64_neon_ld3lane:
5978  case Intrinsic::aarch64_neon_ld4lane:
5979  case Intrinsic::aarch64_neon_ld2r:
5980  case Intrinsic::aarch64_neon_ld3r:
5981  case Intrinsic::aarch64_neon_ld4r: {
5982    Info.opc = ISD::INTRINSIC_W_CHAIN;
5983    // Conservatively set memVT to the entire set of vectors loaded.
5984    uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
5985    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5986    Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
5987    Info.offset = 0;
5988    Info.align = 0;
5989    Info.vol = false; // volatile loads with NEON intrinsics not supported
5990    Info.readMem = true;
5991    Info.writeMem = false;
5992    return true;
5993  }
5994  case Intrinsic::aarch64_neon_st2:
5995  case Intrinsic::aarch64_neon_st3:
5996  case Intrinsic::aarch64_neon_st4:
5997  case Intrinsic::aarch64_neon_st1x2:
5998  case Intrinsic::aarch64_neon_st1x3:
5999  case Intrinsic::aarch64_neon_st1x4:
6000  case Intrinsic::aarch64_neon_st2lane:
6001  case Intrinsic::aarch64_neon_st3lane:
6002  case Intrinsic::aarch64_neon_st4lane: {
6003    Info.opc = ISD::INTRINSIC_VOID;
6004    // Conservatively set memVT to the entire set of vectors stored.
6005    unsigned NumElts = 0;
6006    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6007      Type *ArgTy = I.getArgOperand(ArgI)->getType();
6008      if (!ArgTy->isVectorTy())
6009        break;
6010      NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
6011    }
6012    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6013    Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6014    Info.offset = 0;
6015    Info.align = 0;
6016    Info.vol = false; // volatile stores with NEON intrinsics not supported
6017    Info.readMem = false;
6018    Info.writeMem = true;
6019    return true;
6020  }
6021  case Intrinsic::aarch64_ldaxr:
6022  case Intrinsic::aarch64_ldxr: {
6023    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6024    Info.opc = ISD::INTRINSIC_W_CHAIN;
6025    Info.memVT = MVT::getVT(PtrTy->getElementType());
6026    Info.ptrVal = I.getArgOperand(0);
6027    Info.offset = 0;
6028    Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6029    Info.vol = true;
6030    Info.readMem = true;
6031    Info.writeMem = false;
6032    return true;
6033  }
6034  case Intrinsic::aarch64_stlxr:
6035  case Intrinsic::aarch64_stxr: {
6036    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6037    Info.opc = ISD::INTRINSIC_W_CHAIN;
6038    Info.memVT = MVT::getVT(PtrTy->getElementType());
6039    Info.ptrVal = I.getArgOperand(1);
6040    Info.offset = 0;
6041    Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6042    Info.vol = true;
6043    Info.readMem = false;
6044    Info.writeMem = true;
6045    return true;
6046  }
6047  case Intrinsic::aarch64_ldaxp:
6048  case Intrinsic::aarch64_ldxp: {
6049    Info.opc = ISD::INTRINSIC_W_CHAIN;
6050    Info.memVT = MVT::i128;
6051    Info.ptrVal = I.getArgOperand(0);
6052    Info.offset = 0;
6053    Info.align = 16;
6054    Info.vol = true;
6055    Info.readMem = true;
6056    Info.writeMem = false;
6057    return true;
6058  }
6059  case Intrinsic::aarch64_stlxp:
6060  case Intrinsic::aarch64_stxp: {
6061    Info.opc = ISD::INTRINSIC_W_CHAIN;
6062    Info.memVT = MVT::i128;
6063    Info.ptrVal = I.getArgOperand(2);
6064    Info.offset = 0;
6065    Info.align = 16;
6066    Info.vol = true;
6067    Info.readMem = false;
6068    Info.writeMem = true;
6069    return true;
6070  }
6071  default:
6072    break;
6073  }
6074
6075  return false;
6076}
6077
6078// Truncations from 64-bit GPR to 32-bit GPR is free.
6079bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6080  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6081    return false;
6082  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6083  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6084  return NumBits1 > NumBits2;
6085}
6086bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
6087  if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
6088    return false;
6089  unsigned NumBits1 = VT1.getSizeInBits();
6090  unsigned NumBits2 = VT2.getSizeInBits();
6091  return NumBits1 > NumBits2;
6092}
6093
6094// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6095// 64-bit GPR.
6096bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6097  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6098    return false;
6099  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6100  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6101  return NumBits1 == 32 && NumBits2 == 64;
6102}
6103bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
6104  if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
6105    return false;
6106  unsigned NumBits1 = VT1.getSizeInBits();
6107  unsigned NumBits2 = VT2.getSizeInBits();
6108  return NumBits1 == 32 && NumBits2 == 64;
6109}
6110
6111bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6112  EVT VT1 = Val.getValueType();
6113  if (isZExtFree(VT1, VT2)) {
6114    return true;
6115  }
6116
6117  if (Val.getOpcode() != ISD::LOAD)
6118    return false;
6119
6120  // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
6121  return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6122          VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6123          VT1.getSizeInBits() <= 32);
6124}
6125
6126bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6127                                          unsigned &RequiredAligment) const {
6128  if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6129    return false;
6130  // Cyclone supports unaligned accesses.
6131  RequiredAligment = 0;
6132  unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6133  return NumBits == 32 || NumBits == 64;
6134}
6135
6136bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6137                                          unsigned &RequiredAligment) const {
6138  if (!LoadedType.isSimple() ||
6139      (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6140    return false;
6141  // Cyclone supports unaligned accesses.
6142  RequiredAligment = 0;
6143  unsigned NumBits = LoadedType.getSizeInBits();
6144  return NumBits == 32 || NumBits == 64;
6145}
6146
6147static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
6148                       unsigned AlignCheck) {
6149  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
6150          (DstAlign == 0 || DstAlign % AlignCheck == 0));
6151}
6152
6153EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
6154                                               unsigned SrcAlign, bool IsMemset,
6155                                               bool ZeroMemset,
6156                                               bool MemcpyStrSrc,
6157                                               MachineFunction &MF) const {
6158  // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
6159  // instruction to materialize the v2i64 zero and one store (with restrictive
6160  // addressing mode). Just do two i64 store of zero-registers.
6161  bool Fast;
6162  const Function *F = MF.getFunction();
6163  if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
6164      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
6165                                       Attribute::NoImplicitFloat) &&
6166      (memOpAlign(SrcAlign, DstAlign, 16) ||
6167       (allowsUnalignedMemoryAccesses(MVT::f128, 0, &Fast) && Fast)))
6168    return MVT::f128;
6169
6170  return Size >= 8 ? MVT::i64 : MVT::i32;
6171}
6172
6173// 12-bit optionally shifted immediates are legal for adds.
6174bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
6175  if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
6176    return true;
6177  return false;
6178}
6179
6180// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
6181// immediates is the same as for an add or a sub.
6182bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
6183  if (Immed < 0)
6184    Immed *= -1;
6185  return isLegalAddImmediate(Immed);
6186}
6187
6188/// isLegalAddressingMode - Return true if the addressing mode represented
6189/// by AM is legal for this target, for a load/store of the specified type.
6190bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6191                                                  Type *Ty) const {
6192  // AArch64 has five basic addressing modes:
6193  //  reg
6194  //  reg + 9-bit signed offset
6195  //  reg + SIZE_IN_BYTES * 12-bit unsigned offset
6196  //  reg1 + reg2
6197  //  reg + SIZE_IN_BYTES * reg
6198
6199  // No global is ever allowed as a base.
6200  if (AM.BaseGV)
6201    return false;
6202
6203  // No reg+reg+imm addressing.
6204  if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
6205    return false;
6206
6207  // check reg + imm case:
6208  // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
6209  uint64_t NumBytes = 0;
6210  if (Ty->isSized()) {
6211    uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
6212    NumBytes = NumBits / 8;
6213    if (!isPowerOf2_64(NumBits))
6214      NumBytes = 0;
6215  }
6216
6217  if (!AM.Scale) {
6218    int64_t Offset = AM.BaseOffs;
6219
6220    // 9-bit signed offset
6221    if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
6222      return true;
6223
6224    // 12-bit unsigned offset
6225    unsigned shift = Log2_64(NumBytes);
6226    if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
6227        // Must be a multiple of NumBytes (NumBytes is a power of 2)
6228        (Offset >> shift) << shift == Offset)
6229      return true;
6230    return false;
6231  }
6232
6233  // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
6234
6235  if (!AM.Scale || AM.Scale == 1 ||
6236      (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
6237    return true;
6238  return false;
6239}
6240
6241int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
6242                                                Type *Ty) const {
6243  // Scaling factors are not free at all.
6244  // Operands                     | Rt Latency
6245  // -------------------------------------------
6246  // Rt, [Xn, Xm]                 | 4
6247  // -------------------------------------------
6248  // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
6249  // Rt, [Xn, Wm, <extend> #imm]  |
6250  if (isLegalAddressingMode(AM, Ty))
6251    // Scale represents reg2 * scale, thus account for 1 if
6252    // it is not equal to 0 or 1.
6253    return AM.Scale != 0 && AM.Scale != 1;
6254  return -1;
6255}
6256
6257bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
6258  VT = VT.getScalarType();
6259
6260  if (!VT.isSimple())
6261    return false;
6262
6263  switch (VT.getSimpleVT().SimpleTy) {
6264  case MVT::f32:
6265  case MVT::f64:
6266    return true;
6267  default:
6268    break;
6269  }
6270
6271  return false;
6272}
6273
6274const MCPhysReg *
6275AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
6276  // LR is a callee-save register, but we must treat it as clobbered by any call
6277  // site. Hence we include LR in the scratch registers, which are in turn added
6278  // as implicit-defs for stackmaps and patchpoints.
6279  static const MCPhysReg ScratchRegs[] = {
6280    AArch64::X16, AArch64::X17, AArch64::LR, 0
6281  };
6282  return ScratchRegs;
6283}
6284
6285bool
6286AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
6287  EVT VT = N->getValueType(0);
6288    // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
6289    // it with shift to let it be lowered to UBFX.
6290  if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
6291      isa<ConstantSDNode>(N->getOperand(1))) {
6292    uint64_t TruncMask = N->getConstantOperandVal(1);
6293    if (isMask_64(TruncMask) &&
6294      N->getOperand(0).getOpcode() == ISD::SRL &&
6295      isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
6296      return false;
6297  }
6298  return true;
6299}
6300
6301bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
6302                                                              Type *Ty) const {
6303  assert(Ty->isIntegerTy());
6304
6305  unsigned BitSize = Ty->getPrimitiveSizeInBits();
6306  if (BitSize == 0)
6307    return false;
6308
6309  int64_t Val = Imm.getSExtValue();
6310  if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
6311    return true;
6312
6313  if ((int64_t)Val < 0)
6314    Val = ~Val;
6315  if (BitSize == 32)
6316    Val &= (1LL << 32) - 1;
6317
6318  unsigned LZ = countLeadingZeros((uint64_t)Val);
6319  unsigned Shift = (63 - LZ) / 16;
6320  // MOVZ is free so return true for one or fewer MOVK.
6321  return (Shift < 3) ? true : false;
6322}
6323
6324// Generate SUBS and CSEL for integer abs.
6325static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
6326  EVT VT = N->getValueType(0);
6327
6328  SDValue N0 = N->getOperand(0);
6329  SDValue N1 = N->getOperand(1);
6330  SDLoc DL(N);
6331
6332  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
6333  // and change it to SUB and CSEL.
6334  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
6335      N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
6336      N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
6337    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
6338      if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
6339        SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
6340                                  N0.getOperand(0));
6341        // Generate SUBS & CSEL.
6342        SDValue Cmp =
6343            DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
6344                        N0.getOperand(0), DAG.getConstant(0, VT));
6345        return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
6346                           DAG.getConstant(AArch64CC::PL, MVT::i32),
6347                           SDValue(Cmp.getNode(), 1));
6348      }
6349  return SDValue();
6350}
6351
6352// performXorCombine - Attempts to handle integer ABS.
6353static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
6354                                 TargetLowering::DAGCombinerInfo &DCI,
6355                                 const AArch64Subtarget *Subtarget) {
6356  if (DCI.isBeforeLegalizeOps())
6357    return SDValue();
6358
6359  return performIntegerAbsCombine(N, DAG);
6360}
6361
6362static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
6363                                 TargetLowering::DAGCombinerInfo &DCI,
6364                                 const AArch64Subtarget *Subtarget) {
6365  if (DCI.isBeforeLegalizeOps())
6366    return SDValue();
6367
6368  // Multiplication of a power of two plus/minus one can be done more
6369  // cheaply as as shift+add/sub. For now, this is true unilaterally. If
6370  // future CPUs have a cheaper MADD instruction, this may need to be
6371  // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
6372  // 64-bit is 5 cycles, so this is always a win.
6373  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6374    APInt Value = C->getAPIntValue();
6375    EVT VT = N->getValueType(0);
6376    if (Value.isNonNegative()) {
6377      // (mul x, 2^N + 1) => (add (shl x, N), x)
6378      APInt VM1 = Value - 1;
6379      if (VM1.isPowerOf2()) {
6380        SDValue ShiftedVal =
6381            DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6382                        DAG.getConstant(VM1.logBase2(), MVT::i64));
6383        return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal,
6384                           N->getOperand(0));
6385      }
6386      // (mul x, 2^N - 1) => (sub (shl x, N), x)
6387      APInt VP1 = Value + 1;
6388      if (VP1.isPowerOf2()) {
6389        SDValue ShiftedVal =
6390            DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6391                        DAG.getConstant(VP1.logBase2(), MVT::i64));
6392        return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal,
6393                           N->getOperand(0));
6394      }
6395    } else {
6396      // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
6397      APInt VNM1 = -Value - 1;
6398      if (VNM1.isPowerOf2()) {
6399        SDValue ShiftedVal =
6400            DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6401                        DAG.getConstant(VNM1.logBase2(), MVT::i64));
6402        SDValue Add =
6403            DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
6404        return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), Add);
6405      }
6406      // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6407      APInt VNP1 = -Value + 1;
6408      if (VNP1.isPowerOf2()) {
6409        SDValue ShiftedVal =
6410            DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6411                        DAG.getConstant(VNP1.logBase2(), MVT::i64));
6412        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N->getOperand(0),
6413                           ShiftedVal);
6414      }
6415    }
6416  }
6417  return SDValue();
6418}
6419
6420static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) {
6421  EVT VT = N->getValueType(0);
6422  if (VT != MVT::f32 && VT != MVT::f64)
6423    return SDValue();
6424  // Only optimize when the source and destination types have the same width.
6425  if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
6426    return SDValue();
6427
6428  // If the result of an integer load is only used by an integer-to-float
6429  // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
6430  // This eliminates an "integer-to-vector-move UOP and improve throughput.
6431  SDValue N0 = N->getOperand(0);
6432  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6433      // Do not change the width of a volatile load.
6434      !cast<LoadSDNode>(N0)->isVolatile()) {
6435    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6436    SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
6437                               LN0->getPointerInfo(), LN0->isVolatile(),
6438                               LN0->isNonTemporal(), LN0->isInvariant(),
6439                               LN0->getAlignment());
6440
6441    // Make sure successors of the original load stay after it by updating them
6442    // to use the new Chain.
6443    DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
6444
6445    unsigned Opcode =
6446        (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
6447    return DAG.getNode(Opcode, SDLoc(N), VT, Load);
6448  }
6449
6450  return SDValue();
6451}
6452
6453/// An EXTR instruction is made up of two shifts, ORed together. This helper
6454/// searches for and classifies those shifts.
6455static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
6456                         bool &FromHi) {
6457  if (N.getOpcode() == ISD::SHL)
6458    FromHi = false;
6459  else if (N.getOpcode() == ISD::SRL)
6460    FromHi = true;
6461  else
6462    return false;
6463
6464  if (!isa<ConstantSDNode>(N.getOperand(1)))
6465    return false;
6466
6467  ShiftAmount = N->getConstantOperandVal(1);
6468  Src = N->getOperand(0);
6469  return true;
6470}
6471
6472/// EXTR instruction extracts a contiguous chunk of bits from two existing
6473/// registers viewed as a high/low pair. This function looks for the pattern:
6474/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
6475/// EXTR. Can't quite be done in TableGen because the two immediates aren't
6476/// independent.
6477static SDValue tryCombineToEXTR(SDNode *N,
6478                                TargetLowering::DAGCombinerInfo &DCI) {
6479  SelectionDAG &DAG = DCI.DAG;
6480  SDLoc DL(N);
6481  EVT VT = N->getValueType(0);
6482
6483  assert(N->getOpcode() == ISD::OR && "Unexpected root");
6484
6485  if (VT != MVT::i32 && VT != MVT::i64)
6486    return SDValue();
6487
6488  SDValue LHS;
6489  uint32_t ShiftLHS = 0;
6490  bool LHSFromHi = 0;
6491  if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
6492    return SDValue();
6493
6494  SDValue RHS;
6495  uint32_t ShiftRHS = 0;
6496  bool RHSFromHi = 0;
6497  if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
6498    return SDValue();
6499
6500  // If they're both trying to come from the high part of the register, they're
6501  // not really an EXTR.
6502  if (LHSFromHi == RHSFromHi)
6503    return SDValue();
6504
6505  if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
6506    return SDValue();
6507
6508  if (LHSFromHi) {
6509    std::swap(LHS, RHS);
6510    std::swap(ShiftLHS, ShiftRHS);
6511  }
6512
6513  return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
6514                     DAG.getConstant(ShiftRHS, MVT::i64));
6515}
6516
6517static SDValue tryCombineToBSL(SDNode *N,
6518                                TargetLowering::DAGCombinerInfo &DCI) {
6519  EVT VT = N->getValueType(0);
6520  SelectionDAG &DAG = DCI.DAG;
6521  SDLoc DL(N);
6522
6523  if (!VT.isVector())
6524    return SDValue();
6525
6526  SDValue N0 = N->getOperand(0);
6527  if (N0.getOpcode() != ISD::AND)
6528    return SDValue();
6529
6530  SDValue N1 = N->getOperand(1);
6531  if (N1.getOpcode() != ISD::AND)
6532    return SDValue();
6533
6534  // We only have to look for constant vectors here since the general, variable
6535  // case can be handled in TableGen.
6536  unsigned Bits = VT.getVectorElementType().getSizeInBits();
6537  uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
6538  for (int i = 1; i >= 0; --i)
6539    for (int j = 1; j >= 0; --j) {
6540      BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
6541      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
6542      if (!BVN0 || !BVN1)
6543        continue;
6544
6545      bool FoundMatch = true;
6546      for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
6547        ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
6548        ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
6549        if (!CN0 || !CN1 ||
6550            CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
6551          FoundMatch = false;
6552          break;
6553        }
6554      }
6555
6556      if (FoundMatch)
6557        return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
6558                           N0->getOperand(1 - i), N1->getOperand(1 - j));
6559    }
6560
6561  return SDValue();
6562}
6563
6564static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
6565                                const AArch64Subtarget *Subtarget) {
6566  // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
6567  if (!EnableAArch64ExtrGeneration)
6568    return SDValue();
6569  SelectionDAG &DAG = DCI.DAG;
6570  EVT VT = N->getValueType(0);
6571
6572  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6573    return SDValue();
6574
6575  SDValue Res = tryCombineToEXTR(N, DCI);
6576  if (Res.getNode())
6577    return Res;
6578
6579  Res = tryCombineToBSL(N, DCI);
6580  if (Res.getNode())
6581    return Res;
6582
6583  return SDValue();
6584}
6585
6586static SDValue performBitcastCombine(SDNode *N,
6587                                     TargetLowering::DAGCombinerInfo &DCI,
6588                                     SelectionDAG &DAG) {
6589  // Wait 'til after everything is legalized to try this. That way we have
6590  // legal vector types and such.
6591  if (DCI.isBeforeLegalizeOps())
6592    return SDValue();
6593
6594  // Remove extraneous bitcasts around an extract_subvector.
6595  // For example,
6596  //    (v4i16 (bitconvert
6597  //             (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
6598  //  becomes
6599  //    (extract_subvector ((v8i16 ...), (i64 4)))
6600
6601  // Only interested in 64-bit vectors as the ultimate result.
6602  EVT VT = N->getValueType(0);
6603  if (!VT.isVector())
6604    return SDValue();
6605  if (VT.getSimpleVT().getSizeInBits() != 64)
6606    return SDValue();
6607  // Is the operand an extract_subvector starting at the beginning or halfway
6608  // point of the vector? A low half may also come through as an
6609  // EXTRACT_SUBREG, so look for that, too.
6610  SDValue Op0 = N->getOperand(0);
6611  if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
6612      !(Op0->isMachineOpcode() &&
6613        Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
6614    return SDValue();
6615  uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
6616  if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
6617    if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
6618      return SDValue();
6619  } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
6620    if (idx != AArch64::dsub)
6621      return SDValue();
6622    // The dsub reference is equivalent to a lane zero subvector reference.
6623    idx = 0;
6624  }
6625  // Look through the bitcast of the input to the extract.
6626  if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
6627    return SDValue();
6628  SDValue Source = Op0->getOperand(0)->getOperand(0);
6629  // If the source type has twice the number of elements as our destination
6630  // type, we know this is an extract of the high or low half of the vector.
6631  EVT SVT = Source->getValueType(0);
6632  if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
6633    return SDValue();
6634
6635  DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
6636
6637  // Create the simplified form to just extract the low or high half of the
6638  // vector directly rather than bothering with the bitcasts.
6639  SDLoc dl(N);
6640  unsigned NumElements = VT.getVectorNumElements();
6641  if (idx) {
6642    SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
6643    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
6644  } else {
6645    SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
6646    return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
6647                                      Source, SubReg),
6648                   0);
6649  }
6650}
6651
6652static SDValue performConcatVectorsCombine(SDNode *N,
6653                                           TargetLowering::DAGCombinerInfo &DCI,
6654                                           SelectionDAG &DAG) {
6655  // Wait 'til after everything is legalized to try this. That way we have
6656  // legal vector types and such.
6657  if (DCI.isBeforeLegalizeOps())
6658    return SDValue();
6659
6660  SDLoc dl(N);
6661  EVT VT = N->getValueType(0);
6662
6663  // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
6664  // splat. The indexed instructions are going to be expecting a DUPLANE64, so
6665  // canonicalise to that.
6666  if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
6667    assert(VT.getVectorElementType().getSizeInBits() == 64);
6668    return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT,
6669                       WidenVector(N->getOperand(0), DAG),
6670                       DAG.getConstant(0, MVT::i64));
6671  }
6672
6673  // Canonicalise concat_vectors so that the right-hand vector has as few
6674  // bit-casts as possible before its real operation. The primary matching
6675  // destination for these operations will be the narrowing "2" instructions,
6676  // which depend on the operation being performed on this right-hand vector.
6677  // For example,
6678  //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS))))
6679  // becomes
6680  //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
6681
6682  SDValue Op1 = N->getOperand(1);
6683  if (Op1->getOpcode() != ISD::BITCAST)
6684    return SDValue();
6685  SDValue RHS = Op1->getOperand(0);
6686  MVT RHSTy = RHS.getValueType().getSimpleVT();
6687  // If the RHS is not a vector, this is not the pattern we're looking for.
6688  if (!RHSTy.isVector())
6689    return SDValue();
6690
6691  DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
6692
6693  MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
6694                                  RHSTy.getVectorNumElements() * 2);
6695  return DAG.getNode(
6696      ISD::BITCAST, dl, VT,
6697      DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
6698                  DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
6699}
6700
6701static SDValue tryCombineFixedPointConvert(SDNode *N,
6702                                           TargetLowering::DAGCombinerInfo &DCI,
6703                                           SelectionDAG &DAG) {
6704  // Wait 'til after everything is legalized to try this. That way we have
6705  // legal vector types and such.
6706  if (DCI.isBeforeLegalizeOps())
6707    return SDValue();
6708  // Transform a scalar conversion of a value from a lane extract into a
6709  // lane extract of a vector conversion. E.g., from foo1 to foo2:
6710  // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
6711  // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
6712  //
6713  // The second form interacts better with instruction selection and the
6714  // register allocator to avoid cross-class register copies that aren't
6715  // coalescable due to a lane reference.
6716
6717  // Check the operand and see if it originates from a lane extract.
6718  SDValue Op1 = N->getOperand(1);
6719  if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6720    // Yep, no additional predication needed. Perform the transform.
6721    SDValue IID = N->getOperand(0);
6722    SDValue Shift = N->getOperand(2);
6723    SDValue Vec = Op1.getOperand(0);
6724    SDValue Lane = Op1.getOperand(1);
6725    EVT ResTy = N->getValueType(0);
6726    EVT VecResTy;
6727    SDLoc DL(N);
6728
6729    // The vector width should be 128 bits by the time we get here, even
6730    // if it started as 64 bits (the extract_vector handling will have
6731    // done so).
6732    assert(Vec.getValueType().getSizeInBits() == 128 &&
6733           "unexpected vector size on extract_vector_elt!");
6734    if (Vec.getValueType() == MVT::v4i32)
6735      VecResTy = MVT::v4f32;
6736    else if (Vec.getValueType() == MVT::v2i64)
6737      VecResTy = MVT::v2f64;
6738    else
6739      llvm_unreachable("unexpected vector type!");
6740
6741    SDValue Convert =
6742        DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
6743    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
6744  }
6745  return SDValue();
6746}
6747
6748// AArch64 high-vector "long" operations are formed by performing the non-high
6749// version on an extract_subvector of each operand which gets the high half:
6750//
6751//  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
6752//
6753// However, there are cases which don't have an extract_high explicitly, but
6754// have another operation that can be made compatible with one for free. For
6755// example:
6756//
6757//  (dupv64 scalar) --> (extract_high (dup128 scalar))
6758//
6759// This routine does the actual conversion of such DUPs, once outer routines
6760// have determined that everything else is in order.
6761static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
6762  // We can handle most types of duplicate, but the lane ones have an extra
6763  // operand saying *which* lane, so we need to know.
6764  bool IsDUPLANE;
6765  switch (N.getOpcode()) {
6766  case AArch64ISD::DUP:
6767    IsDUPLANE = false;
6768    break;
6769  case AArch64ISD::DUPLANE8:
6770  case AArch64ISD::DUPLANE16:
6771  case AArch64ISD::DUPLANE32:
6772  case AArch64ISD::DUPLANE64:
6773    IsDUPLANE = true;
6774    break;
6775  default:
6776    return SDValue();
6777  }
6778
6779  MVT NarrowTy = N.getSimpleValueType();
6780  if (!NarrowTy.is64BitVector())
6781    return SDValue();
6782
6783  MVT ElementTy = NarrowTy.getVectorElementType();
6784  unsigned NumElems = NarrowTy.getVectorNumElements();
6785  MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
6786
6787  SDValue NewDUP;
6788  if (IsDUPLANE)
6789    NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
6790                         N.getOperand(1));
6791  else
6792    NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
6793
6794  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
6795                     NewDUP, DAG.getConstant(NumElems, MVT::i64));
6796}
6797
6798static bool isEssentiallyExtractSubvector(SDValue N) {
6799  if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
6800    return true;
6801
6802  return N.getOpcode() == ISD::BITCAST &&
6803         N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
6804}
6805
6806/// \brief Helper structure to keep track of ISD::SET_CC operands.
6807struct GenericSetCCInfo {
6808  const SDValue *Opnd0;
6809  const SDValue *Opnd1;
6810  ISD::CondCode CC;
6811};
6812
6813/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
6814struct AArch64SetCCInfo {
6815  const SDValue *Cmp;
6816  AArch64CC::CondCode CC;
6817};
6818
6819/// \brief Helper structure to keep track of SetCC information.
6820union SetCCInfo {
6821  GenericSetCCInfo Generic;
6822  AArch64SetCCInfo AArch64;
6823};
6824
6825/// \brief Helper structure to be able to read SetCC information.  If set to
6826/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
6827/// GenericSetCCInfo.
6828struct SetCCInfoAndKind {
6829  SetCCInfo Info;
6830  bool IsAArch64;
6831};
6832
6833/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
6834/// an
6835/// AArch64 lowered one.
6836/// \p SetCCInfo is filled accordingly.
6837/// \post SetCCInfo is meanginfull only when this function returns true.
6838/// \return True when Op is a kind of SET_CC operation.
6839static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
6840  // If this is a setcc, this is straight forward.
6841  if (Op.getOpcode() == ISD::SETCC) {
6842    SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
6843    SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
6844    SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6845    SetCCInfo.IsAArch64 = false;
6846    return true;
6847  }
6848  // Otherwise, check if this is a matching csel instruction.
6849  // In other words:
6850  // - csel 1, 0, cc
6851  // - csel 0, 1, !cc
6852  if (Op.getOpcode() != AArch64ISD::CSEL)
6853    return false;
6854  // Set the information about the operands.
6855  // TODO: we want the operands of the Cmp not the csel
6856  SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
6857  SetCCInfo.IsAArch64 = true;
6858  SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
6859      cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
6860
6861  // Check that the operands matches the constraints:
6862  // (1) Both operands must be constants.
6863  // (2) One must be 1 and the other must be 0.
6864  ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
6865  ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6866
6867  // Check (1).
6868  if (!TValue || !FValue)
6869    return false;
6870
6871  // Check (2).
6872  if (!TValue->isOne()) {
6873    // Update the comparison when we are interested in !cc.
6874    std::swap(TValue, FValue);
6875    SetCCInfo.Info.AArch64.CC =
6876        AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
6877  }
6878  return TValue->isOne() && FValue->isNullValue();
6879}
6880
6881// Returns true if Op is setcc or zext of setcc.
6882static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
6883  if (isSetCC(Op, Info))
6884    return true;
6885  return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
6886    isSetCC(Op->getOperand(0), Info));
6887}
6888
6889// The folding we want to perform is:
6890// (add x, [zext] (setcc cc ...) )
6891//   -->
6892// (csel x, (add x, 1), !cc ...)
6893//
6894// The latter will get matched to a CSINC instruction.
6895static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
6896  assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
6897  SDValue LHS = Op->getOperand(0);
6898  SDValue RHS = Op->getOperand(1);
6899  SetCCInfoAndKind InfoAndKind;
6900
6901  // If neither operand is a SET_CC, give up.
6902  if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
6903    std::swap(LHS, RHS);
6904    if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
6905      return SDValue();
6906  }
6907
6908  // FIXME: This could be generatized to work for FP comparisons.
6909  EVT CmpVT = InfoAndKind.IsAArch64
6910                  ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
6911                  : InfoAndKind.Info.Generic.Opnd0->getValueType();
6912  if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
6913    return SDValue();
6914
6915  SDValue CCVal;
6916  SDValue Cmp;
6917  SDLoc dl(Op);
6918  if (InfoAndKind.IsAArch64) {
6919    CCVal = DAG.getConstant(
6920        AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
6921    Cmp = *InfoAndKind.Info.AArch64.Cmp;
6922  } else
6923    Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
6924                      *InfoAndKind.Info.Generic.Opnd1,
6925                      ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
6926                      CCVal, DAG, dl);
6927
6928  EVT VT = Op->getValueType(0);
6929  LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
6930  return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
6931}
6932
6933// The basic add/sub long vector instructions have variants with "2" on the end
6934// which act on the high-half of their inputs. They are normally matched by
6935// patterns like:
6936//
6937// (add (zeroext (extract_high LHS)),
6938//      (zeroext (extract_high RHS)))
6939// -> uaddl2 vD, vN, vM
6940//
6941// However, if one of the extracts is something like a duplicate, this
6942// instruction can still be used profitably. This function puts the DAG into a
6943// more appropriate form for those patterns to trigger.
6944static SDValue performAddSubLongCombine(SDNode *N,
6945                                        TargetLowering::DAGCombinerInfo &DCI,
6946                                        SelectionDAG &DAG) {
6947  if (DCI.isBeforeLegalizeOps())
6948    return SDValue();
6949
6950  MVT VT = N->getSimpleValueType(0);
6951  if (!VT.is128BitVector()) {
6952    if (N->getOpcode() == ISD::ADD)
6953      return performSetccAddFolding(N, DAG);
6954    return SDValue();
6955  }
6956
6957  // Make sure both branches are extended in the same way.
6958  SDValue LHS = N->getOperand(0);
6959  SDValue RHS = N->getOperand(1);
6960  if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
6961       LHS.getOpcode() != ISD::SIGN_EXTEND) ||
6962      LHS.getOpcode() != RHS.getOpcode())
6963    return SDValue();
6964
6965  unsigned ExtType = LHS.getOpcode();
6966
6967  // It's not worth doing if at least one of the inputs isn't already an
6968  // extract, but we don't know which it'll be so we have to try both.
6969  if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
6970    RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
6971    if (!RHS.getNode())
6972      return SDValue();
6973
6974    RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
6975  } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
6976    LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
6977    if (!LHS.getNode())
6978      return SDValue();
6979
6980    LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
6981  }
6982
6983  return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
6984}
6985
6986// Massage DAGs which we can use the high-half "long" operations on into
6987// something isel will recognize better. E.g.
6988//
6989// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
6990//   (aarch64_neon_umull (extract_high (v2i64 vec)))
6991//                     (extract_high (v2i64 (dup128 scalar)))))
6992//
6993static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
6994                                       TargetLowering::DAGCombinerInfo &DCI,
6995                                       SelectionDAG &DAG) {
6996  if (DCI.isBeforeLegalizeOps())
6997    return SDValue();
6998
6999  SDValue LHS = N->getOperand(1);
7000  SDValue RHS = N->getOperand(2);
7001  assert(LHS.getValueType().is64BitVector() &&
7002         RHS.getValueType().is64BitVector() &&
7003         "unexpected shape for long operation");
7004
7005  // Either node could be a DUP, but it's not worth doing both of them (you'd
7006  // just as well use the non-high version) so look for a corresponding extract
7007  // operation on the other "wing".
7008  if (isEssentiallyExtractSubvector(LHS)) {
7009    RHS = tryExtendDUPToExtractHigh(RHS, DAG);
7010    if (!RHS.getNode())
7011      return SDValue();
7012  } else if (isEssentiallyExtractSubvector(RHS)) {
7013    LHS = tryExtendDUPToExtractHigh(LHS, DAG);
7014    if (!LHS.getNode())
7015      return SDValue();
7016  }
7017
7018  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
7019                     N->getOperand(0), LHS, RHS);
7020}
7021
7022static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
7023  MVT ElemTy = N->getSimpleValueType(0).getScalarType();
7024  unsigned ElemBits = ElemTy.getSizeInBits();
7025
7026  int64_t ShiftAmount;
7027  if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
7028    APInt SplatValue, SplatUndef;
7029    unsigned SplatBitSize;
7030    bool HasAnyUndefs;
7031    if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
7032                              HasAnyUndefs, ElemBits) ||
7033        SplatBitSize != ElemBits)
7034      return SDValue();
7035
7036    ShiftAmount = SplatValue.getSExtValue();
7037  } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
7038    ShiftAmount = CVN->getSExtValue();
7039  } else
7040    return SDValue();
7041
7042  unsigned Opcode;
7043  bool IsRightShift;
7044  switch (IID) {
7045  default:
7046    llvm_unreachable("Unknown shift intrinsic");
7047  case Intrinsic::aarch64_neon_sqshl:
7048    Opcode = AArch64ISD::SQSHL_I;
7049    IsRightShift = false;
7050    break;
7051  case Intrinsic::aarch64_neon_uqshl:
7052    Opcode = AArch64ISD::UQSHL_I;
7053    IsRightShift = false;
7054    break;
7055  case Intrinsic::aarch64_neon_srshl:
7056    Opcode = AArch64ISD::SRSHR_I;
7057    IsRightShift = true;
7058    break;
7059  case Intrinsic::aarch64_neon_urshl:
7060    Opcode = AArch64ISD::URSHR_I;
7061    IsRightShift = true;
7062    break;
7063  case Intrinsic::aarch64_neon_sqshlu:
7064    Opcode = AArch64ISD::SQSHLU_I;
7065    IsRightShift = false;
7066    break;
7067  }
7068
7069  if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
7070    return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7071                       DAG.getConstant(-ShiftAmount, MVT::i32));
7072  else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits)
7073    return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7074                       DAG.getConstant(ShiftAmount, MVT::i32));
7075
7076  return SDValue();
7077}
7078
7079// The CRC32[BH] instructions ignore the high bits of their data operand. Since
7080// the intrinsics must be legal and take an i32, this means there's almost
7081// certainly going to be a zext in the DAG which we can eliminate.
7082static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
7083  SDValue AndN = N->getOperand(2);
7084  if (AndN.getOpcode() != ISD::AND)
7085    return SDValue();
7086
7087  ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
7088  if (!CMask || CMask->getZExtValue() != Mask)
7089    return SDValue();
7090
7091  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
7092                     N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
7093}
7094
7095static SDValue performIntrinsicCombine(SDNode *N,
7096                                       TargetLowering::DAGCombinerInfo &DCI,
7097                                       const AArch64Subtarget *Subtarget) {
7098  SelectionDAG &DAG = DCI.DAG;
7099  unsigned IID = getIntrinsicID(N);
7100  switch (IID) {
7101  default:
7102    break;
7103  case Intrinsic::aarch64_neon_vcvtfxs2fp:
7104  case Intrinsic::aarch64_neon_vcvtfxu2fp:
7105    return tryCombineFixedPointConvert(N, DCI, DAG);
7106    break;
7107  case Intrinsic::aarch64_neon_fmax:
7108    return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
7109                       N->getOperand(1), N->getOperand(2));
7110  case Intrinsic::aarch64_neon_fmin:
7111    return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
7112                       N->getOperand(1), N->getOperand(2));
7113  case Intrinsic::aarch64_neon_smull:
7114  case Intrinsic::aarch64_neon_umull:
7115  case Intrinsic::aarch64_neon_pmull:
7116  case Intrinsic::aarch64_neon_sqdmull:
7117    return tryCombineLongOpWithDup(IID, N, DCI, DAG);
7118  case Intrinsic::aarch64_neon_sqshl:
7119  case Intrinsic::aarch64_neon_uqshl:
7120  case Intrinsic::aarch64_neon_sqshlu:
7121  case Intrinsic::aarch64_neon_srshl:
7122  case Intrinsic::aarch64_neon_urshl:
7123    return tryCombineShiftImm(IID, N, DAG);
7124  case Intrinsic::aarch64_crc32b:
7125  case Intrinsic::aarch64_crc32cb:
7126    return tryCombineCRC32(0xff, N, DAG);
7127  case Intrinsic::aarch64_crc32h:
7128  case Intrinsic::aarch64_crc32ch:
7129    return tryCombineCRC32(0xffff, N, DAG);
7130  }
7131  return SDValue();
7132}
7133
7134static SDValue performExtendCombine(SDNode *N,
7135                                    TargetLowering::DAGCombinerInfo &DCI,
7136                                    SelectionDAG &DAG) {
7137  // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
7138  // we can convert that DUP into another extract_high (of a bigger DUP), which
7139  // helps the backend to decide that an sabdl2 would be useful, saving a real
7140  // extract_high operation.
7141  if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
7142      N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
7143    SDNode *ABDNode = N->getOperand(0).getNode();
7144    unsigned IID = getIntrinsicID(ABDNode);
7145    if (IID == Intrinsic::aarch64_neon_sabd ||
7146        IID == Intrinsic::aarch64_neon_uabd) {
7147      SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
7148      if (!NewABD.getNode())
7149        return SDValue();
7150
7151      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
7152                         NewABD);
7153    }
7154  }
7155
7156  // This is effectively a custom type legalization for AArch64.
7157  //
7158  // Type legalization will split an extend of a small, legal, type to a larger
7159  // illegal type by first splitting the destination type, often creating
7160  // illegal source types, which then get legalized in isel-confusing ways,
7161  // leading to really terrible codegen. E.g.,
7162  //   %result = v8i32 sext v8i8 %value
7163  // becomes
7164  //   %losrc = extract_subreg %value, ...
7165  //   %hisrc = extract_subreg %value, ...
7166  //   %lo = v4i32 sext v4i8 %losrc
7167  //   %hi = v4i32 sext v4i8 %hisrc
7168  // Things go rapidly downhill from there.
7169  //
7170  // For AArch64, the [sz]ext vector instructions can only go up one element
7171  // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
7172  // take two instructions.
7173  //
7174  // This implies that the most efficient way to do the extend from v8i8
7175  // to two v4i32 values is to first extend the v8i8 to v8i16, then do
7176  // the normal splitting to happen for the v8i16->v8i32.
7177
7178  // This is pre-legalization to catch some cases where the default
7179  // type legalization will create ill-tempered code.
7180  if (!DCI.isBeforeLegalizeOps())
7181    return SDValue();
7182
7183  // We're only interested in cleaning things up for non-legal vector types
7184  // here. If both the source and destination are legal, things will just
7185  // work naturally without any fiddling.
7186  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7187  EVT ResVT = N->getValueType(0);
7188  if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
7189    return SDValue();
7190  // If the vector type isn't a simple VT, it's beyond the scope of what
7191  // we're  worried about here. Let legalization do its thing and hope for
7192  // the best.
7193  if (!ResVT.isSimple())
7194    return SDValue();
7195
7196  SDValue Src = N->getOperand(0);
7197  MVT SrcVT = Src->getValueType(0).getSimpleVT();
7198  // If the source VT is a 64-bit vector, we can play games and get the
7199  // better results we want.
7200  if (SrcVT.getSizeInBits() != 64)
7201    return SDValue();
7202
7203  unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
7204  unsigned ElementCount = SrcVT.getVectorNumElements();
7205  SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
7206  SDLoc DL(N);
7207  Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
7208
7209  // Now split the rest of the operation into two halves, each with a 64
7210  // bit source.
7211  EVT LoVT, HiVT;
7212  SDValue Lo, Hi;
7213  unsigned NumElements = ResVT.getVectorNumElements();
7214  assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7215  LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
7216                                 ResVT.getVectorElementType(), NumElements / 2);
7217
7218  EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
7219                               LoVT.getVectorNumElements());
7220  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
7221                   DAG.getIntPtrConstant(0));
7222  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
7223                   DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
7224  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
7225  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
7226
7227  // Now combine the parts back together so we still have a single result
7228  // like the combiner expects.
7229  return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
7230}
7231
7232/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
7233/// value. The load store optimizer pass will merge them to store pair stores.
7234/// This has better performance than a splat of the scalar followed by a split
7235/// vector store. Even if the stores are not merged it is four stores vs a dup,
7236/// followed by an ext.b and two stores.
7237static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
7238  SDValue StVal = St->getValue();
7239  EVT VT = StVal.getValueType();
7240
7241  // Don't replace floating point stores, they possibly won't be transformed to
7242  // stp because of the store pair suppress pass.
7243  if (VT.isFloatingPoint())
7244    return SDValue();
7245
7246  // Check for insert vector elements.
7247  if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
7248    return SDValue();
7249
7250  // We can express a splat as store pair(s) for 2 or 4 elements.
7251  unsigned NumVecElts = VT.getVectorNumElements();
7252  if (NumVecElts != 4 && NumVecElts != 2)
7253    return SDValue();
7254  SDValue SplatVal = StVal.getOperand(1);
7255  unsigned RemainInsertElts = NumVecElts - 1;
7256
7257  // Check that this is a splat.
7258  while (--RemainInsertElts) {
7259    SDValue NextInsertElt = StVal.getOperand(0);
7260    if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
7261      return SDValue();
7262    if (NextInsertElt.getOperand(1) != SplatVal)
7263      return SDValue();
7264    StVal = NextInsertElt;
7265  }
7266  unsigned OrigAlignment = St->getAlignment();
7267  unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
7268  unsigned Alignment = std::min(OrigAlignment, EltOffset);
7269
7270  // Create scalar stores. This is at least as good as the code sequence for a
7271  // split unaligned store wich is a dup.s, ext.b, and two stores.
7272  // Most of the time the three stores should be replaced by store pair
7273  // instructions (stp).
7274  SDLoc DL(St);
7275  SDValue BasePtr = St->getBasePtr();
7276  SDValue NewST1 =
7277      DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
7278                   St->isVolatile(), St->isNonTemporal(), St->getAlignment());
7279
7280  unsigned Offset = EltOffset;
7281  while (--NumVecElts) {
7282    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7283                                    DAG.getConstant(Offset, MVT::i64));
7284    NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
7285                          St->getPointerInfo(), St->isVolatile(),
7286                          St->isNonTemporal(), Alignment);
7287    Offset += EltOffset;
7288  }
7289  return NewST1;
7290}
7291
7292static SDValue performSTORECombine(SDNode *N,
7293                                   TargetLowering::DAGCombinerInfo &DCI,
7294                                   SelectionDAG &DAG,
7295                                   const AArch64Subtarget *Subtarget) {
7296  if (!DCI.isBeforeLegalize())
7297    return SDValue();
7298
7299  StoreSDNode *S = cast<StoreSDNode>(N);
7300  if (S->isVolatile())
7301    return SDValue();
7302
7303  // Cyclone has bad performance on unaligned 16B stores when crossing line and
7304  // page boundries. We want to split such stores.
7305  if (!Subtarget->isCyclone())
7306    return SDValue();
7307
7308  // Don't split at Oz.
7309  MachineFunction &MF = DAG.getMachineFunction();
7310  bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute(
7311      AttributeSet::FunctionIndex, Attribute::MinSize);
7312  if (IsMinSize)
7313    return SDValue();
7314
7315  SDValue StVal = S->getValue();
7316  EVT VT = StVal.getValueType();
7317
7318  // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
7319  // those up regresses performance on micro-benchmarks and olden/bh.
7320  if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
7321    return SDValue();
7322
7323  // Split unaligned 16B stores. They are terrible for performance.
7324  // Don't split stores with alignment of 1 or 2. Code that uses clang vector
7325  // extensions can use this to mark that it does not want splitting to happen
7326  // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
7327  // eliminating alignment hazards is only 1 in 8 for alignment of 2.
7328  if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
7329      S->getAlignment() <= 2)
7330    return SDValue();
7331
7332  // If we get a splat of a scalar convert this vector store to a store of
7333  // scalars. They will be merged into store pairs thereby removing two
7334  // instructions.
7335  SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
7336  if (ReplacedSplat != SDValue())
7337    return ReplacedSplat;
7338
7339  SDLoc DL(S);
7340  unsigned NumElts = VT.getVectorNumElements() / 2;
7341  // Split VT into two.
7342  EVT HalfVT =
7343      EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
7344  SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
7345                                   DAG.getIntPtrConstant(0));
7346  SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
7347                                   DAG.getIntPtrConstant(NumElts));
7348  SDValue BasePtr = S->getBasePtr();
7349  SDValue NewST1 =
7350      DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
7351                   S->isVolatile(), S->isNonTemporal(), S->getAlignment());
7352  SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7353                                  DAG.getConstant(8, MVT::i64));
7354  return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
7355                      S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
7356                      S->getAlignment());
7357}
7358
7359/// Target-specific DAG combine function for post-increment LD1 (lane) and
7360/// post-increment LD1R.
7361static SDValue performPostLD1Combine(SDNode *N,
7362                                     TargetLowering::DAGCombinerInfo &DCI,
7363                                     bool IsLaneOp) {
7364  if (DCI.isBeforeLegalizeOps())
7365    return SDValue();
7366
7367  SelectionDAG &DAG = DCI.DAG;
7368  EVT VT = N->getValueType(0);
7369
7370  unsigned LoadIdx = IsLaneOp ? 1 : 0;
7371  SDNode *LD = N->getOperand(LoadIdx).getNode();
7372  // If it is not LOAD, can not do such combine.
7373  if (LD->getOpcode() != ISD::LOAD)
7374    return SDValue();
7375
7376  LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
7377  EVT MemVT = LoadSDN->getMemoryVT();
7378  // Check if memory operand is the same type as the vector element.
7379  if (MemVT != VT.getVectorElementType())
7380    return SDValue();
7381
7382  // Check if there are other uses. If so, do not combine as it will introduce
7383  // an extra load.
7384  for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
7385       ++UI) {
7386    if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
7387      continue;
7388    if (*UI != N)
7389      return SDValue();
7390  }
7391
7392  SDValue Addr = LD->getOperand(1);
7393  SDValue Vector = N->getOperand(0);
7394  // Search for a use of the address operand that is an increment.
7395  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
7396       Addr.getNode()->use_end(); UI != UE; ++UI) {
7397    SDNode *User = *UI;
7398    if (User->getOpcode() != ISD::ADD
7399        || UI.getUse().getResNo() != Addr.getResNo())
7400      continue;
7401
7402    // Check that the add is independent of the load.  Otherwise, folding it
7403    // would create a cycle.
7404    if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
7405      continue;
7406    // Also check that add is not used in the vector operand.  This would also
7407    // create a cycle.
7408    if (User->isPredecessorOf(Vector.getNode()))
7409      continue;
7410
7411    // If the increment is a constant, it must match the memory ref size.
7412    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7413    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7414      uint32_t IncVal = CInc->getZExtValue();
7415      unsigned NumBytes = VT.getScalarSizeInBits() / 8;
7416      if (IncVal != NumBytes)
7417        continue;
7418      Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7419    }
7420
7421    SmallVector<SDValue, 8> Ops;
7422    Ops.push_back(LD->getOperand(0));  // Chain
7423    if (IsLaneOp) {
7424      Ops.push_back(Vector);           // The vector to be inserted
7425      Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
7426    }
7427    Ops.push_back(Addr);
7428    Ops.push_back(Inc);
7429
7430    EVT Tys[3] = { VT, MVT::i64, MVT::Other };
7431    SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, 3));
7432    unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
7433    SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
7434                                           MemVT,
7435                                           LoadSDN->getMemOperand());
7436
7437    // Update the uses.
7438    std::vector<SDValue> NewResults;
7439    NewResults.push_back(SDValue(LD, 0));             // The result of load
7440    NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
7441    DCI.CombineTo(LD, NewResults);
7442    DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result
7443    DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register
7444
7445    break;
7446  }
7447  return SDValue();
7448}
7449
7450/// Target-specific DAG combine function for NEON load/store intrinsics
7451/// to merge base address updates.
7452static SDValue performNEONPostLDSTCombine(SDNode *N,
7453                                          TargetLowering::DAGCombinerInfo &DCI,
7454                                          SelectionDAG &DAG) {
7455  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7456    return SDValue();
7457
7458  unsigned AddrOpIdx = N->getNumOperands() - 1;
7459  SDValue Addr = N->getOperand(AddrOpIdx);
7460
7461  // Search for a use of the address operand that is an increment.
7462  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7463       UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7464    SDNode *User = *UI;
7465    if (User->getOpcode() != ISD::ADD ||
7466        UI.getUse().getResNo() != Addr.getResNo())
7467      continue;
7468
7469    // Check that the add is independent of the load/store.  Otherwise, folding
7470    // it would create a cycle.
7471    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7472      continue;
7473
7474    // Find the new opcode for the updating load/store.
7475    bool IsStore = false;
7476    bool IsLaneOp = false;
7477    bool IsDupOp = false;
7478    unsigned NewOpc = 0;
7479    unsigned NumVecs = 0;
7480    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7481    switch (IntNo) {
7482    default: llvm_unreachable("unexpected intrinsic for Neon base update");
7483    case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post;
7484      NumVecs = 2; break;
7485    case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post;
7486      NumVecs = 3; break;
7487    case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post;
7488      NumVecs = 4; break;
7489    case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post;
7490      NumVecs = 2; IsStore = true; break;
7491    case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post;
7492      NumVecs = 3; IsStore = true; break;
7493    case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post;
7494      NumVecs = 4; IsStore = true; break;
7495    case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post;
7496      NumVecs = 2; break;
7497    case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post;
7498      NumVecs = 3; break;
7499    case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post;
7500      NumVecs = 4; break;
7501    case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post;
7502      NumVecs = 2; IsStore = true; break;
7503    case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post;
7504      NumVecs = 3; IsStore = true; break;
7505    case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post;
7506      NumVecs = 4; IsStore = true; break;
7507    case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost;
7508      NumVecs = 2; IsDupOp = true; break;
7509    case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost;
7510      NumVecs = 3; IsDupOp = true; break;
7511    case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost;
7512      NumVecs = 4; IsDupOp = true; break;
7513    case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost;
7514      NumVecs = 2; IsLaneOp = true; break;
7515    case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost;
7516      NumVecs = 3; IsLaneOp = true; break;
7517    case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost;
7518      NumVecs = 4; IsLaneOp = true; break;
7519    case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost;
7520      NumVecs = 2; IsStore = true; IsLaneOp = true; break;
7521    case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost;
7522      NumVecs = 3; IsStore = true; IsLaneOp = true; break;
7523    case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost;
7524      NumVecs = 4; IsStore = true; IsLaneOp = true; break;
7525    }
7526
7527    EVT VecTy;
7528    if (IsStore)
7529      VecTy = N->getOperand(2).getValueType();
7530    else
7531      VecTy = N->getValueType(0);
7532
7533    // If the increment is a constant, it must match the memory ref size.
7534    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7535    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7536      uint32_t IncVal = CInc->getZExtValue();
7537      unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7538      if (IsLaneOp || IsDupOp)
7539        NumBytes /= VecTy.getVectorNumElements();
7540      if (IncVal != NumBytes)
7541        continue;
7542      Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7543    }
7544    SmallVector<SDValue, 8> Ops;
7545    Ops.push_back(N->getOperand(0)); // Incoming chain
7546    // Load lane and store have vector list as input.
7547    if (IsLaneOp || IsStore)
7548      for (unsigned i = 2; i < AddrOpIdx; ++i)
7549        Ops.push_back(N->getOperand(i));
7550    Ops.push_back(Addr); // Base register
7551    Ops.push_back(Inc);
7552
7553    // Return Types.
7554    EVT Tys[6];
7555    unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
7556    unsigned n;
7557    for (n = 0; n < NumResultVecs; ++n)
7558      Tys[n] = VecTy;
7559    Tys[n++] = MVT::i64;  // Type of write back register
7560    Tys[n] = MVT::Other;  // Type of the chain
7561    SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs + 2));
7562
7563    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7564    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
7565                                           MemInt->getMemoryVT(),
7566                                           MemInt->getMemOperand());
7567
7568    // Update the uses.
7569    std::vector<SDValue> NewResults;
7570    for (unsigned i = 0; i < NumResultVecs; ++i) {
7571      NewResults.push_back(SDValue(UpdN.getNode(), i));
7572    }
7573    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
7574    DCI.CombineTo(N, NewResults);
7575    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7576
7577    break;
7578  }
7579  return SDValue();
7580}
7581
7582// Optimize compare with zero and branch.
7583static SDValue performBRCONDCombine(SDNode *N,
7584                                    TargetLowering::DAGCombinerInfo &DCI,
7585                                    SelectionDAG &DAG) {
7586  SDValue Chain = N->getOperand(0);
7587  SDValue Dest = N->getOperand(1);
7588  SDValue CCVal = N->getOperand(2);
7589  SDValue Cmp = N->getOperand(3);
7590
7591  assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
7592  unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
7593  if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
7594    return SDValue();
7595
7596  unsigned CmpOpc = Cmp.getOpcode();
7597  if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
7598    return SDValue();
7599
7600  // Only attempt folding if there is only one use of the flag and no use of the
7601  // value.
7602  if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
7603    return SDValue();
7604
7605  SDValue LHS = Cmp.getOperand(0);
7606  SDValue RHS = Cmp.getOperand(1);
7607
7608  assert(LHS.getValueType() == RHS.getValueType() &&
7609         "Expected the value type to be the same for both operands!");
7610  if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
7611    return SDValue();
7612
7613  if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
7614    std::swap(LHS, RHS);
7615
7616  if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
7617    return SDValue();
7618
7619  if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
7620      LHS.getOpcode() == ISD::SRL)
7621    return SDValue();
7622
7623  // Fold the compare into the branch instruction.
7624  SDValue BR;
7625  if (CC == AArch64CC::EQ)
7626    BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
7627  else
7628    BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
7629
7630  // Do not add new nodes to DAG combiner worklist.
7631  DCI.CombineTo(N, BR, false);
7632
7633  return SDValue();
7634}
7635
7636// vselect (v1i1 setcc) ->
7637//     vselect (v1iXX setcc)  (XX is the size of the compared operand type)
7638// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
7639// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
7640// such VSELECT.
7641static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
7642  SDValue N0 = N->getOperand(0);
7643  EVT CCVT = N0.getValueType();
7644
7645  if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
7646      CCVT.getVectorElementType() != MVT::i1)
7647    return SDValue();
7648
7649  EVT ResVT = N->getValueType(0);
7650  EVT CmpVT = N0.getOperand(0).getValueType();
7651  // Only combine when the result type is of the same size as the compared
7652  // operands.
7653  if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
7654    return SDValue();
7655
7656  SDValue IfTrue = N->getOperand(1);
7657  SDValue IfFalse = N->getOperand(2);
7658  SDValue SetCC =
7659      DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
7660                   N0.getOperand(0), N0.getOperand(1),
7661                   cast<CondCodeSDNode>(N0.getOperand(2))->get());
7662  return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
7663                     IfTrue, IfFalse);
7664}
7665
7666/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
7667/// the compare-mask instructions rather than going via NZCV, even if LHS and
7668/// RHS are really scalar. This replaces any scalar setcc in the above pattern
7669/// with a vector one followed by a DUP shuffle on the result.
7670static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
7671  SDValue N0 = N->getOperand(0);
7672  EVT ResVT = N->getValueType(0);
7673
7674  if (!N->getOperand(1).getValueType().isVector())
7675    return SDValue();
7676
7677  if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
7678    return SDValue();
7679
7680  SDLoc DL(N0);
7681
7682  EVT SrcVT = N0.getOperand(0).getValueType();
7683  SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT,
7684                           ResVT.getSizeInBits() / SrcVT.getSizeInBits());
7685  EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
7686
7687  // First perform a vector comparison, where lane 0 is the one we're interested
7688  // in.
7689  SDValue LHS =
7690      DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
7691  SDValue RHS =
7692      DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
7693  SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
7694
7695  // Now duplicate the comparison mask we want across all other lanes.
7696  SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
7697  SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
7698  Mask = DAG.getNode(ISD::BITCAST, DL, ResVT.changeVectorElementTypeToInteger(),
7699                     Mask);
7700
7701  return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
7702}
7703
7704SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
7705                                                 DAGCombinerInfo &DCI) const {
7706  SelectionDAG &DAG = DCI.DAG;
7707  switch (N->getOpcode()) {
7708  default:
7709    break;
7710  case ISD::ADD:
7711  case ISD::SUB:
7712    return performAddSubLongCombine(N, DCI, DAG);
7713  case ISD::XOR:
7714    return performXorCombine(N, DAG, DCI, Subtarget);
7715  case ISD::MUL:
7716    return performMulCombine(N, DAG, DCI, Subtarget);
7717  case ISD::SINT_TO_FP:
7718  case ISD::UINT_TO_FP:
7719    return performIntToFpCombine(N, DAG);
7720  case ISD::OR:
7721    return performORCombine(N, DCI, Subtarget);
7722  case ISD::INTRINSIC_WO_CHAIN:
7723    return performIntrinsicCombine(N, DCI, Subtarget);
7724  case ISD::ANY_EXTEND:
7725  case ISD::ZERO_EXTEND:
7726  case ISD::SIGN_EXTEND:
7727    return performExtendCombine(N, DCI, DAG);
7728  case ISD::BITCAST:
7729    return performBitcastCombine(N, DCI, DAG);
7730  case ISD::CONCAT_VECTORS:
7731    return performConcatVectorsCombine(N, DCI, DAG);
7732  case ISD::SELECT:
7733    return performSelectCombine(N, DAG);
7734  case ISD::VSELECT:
7735    return performVSelectCombine(N, DCI.DAG);
7736  case ISD::STORE:
7737    return performSTORECombine(N, DCI, DAG, Subtarget);
7738  case AArch64ISD::BRCOND:
7739    return performBRCONDCombine(N, DCI, DAG);
7740  case AArch64ISD::DUP:
7741    return performPostLD1Combine(N, DCI, false);
7742  case ISD::INSERT_VECTOR_ELT:
7743    return performPostLD1Combine(N, DCI, true);
7744  case ISD::INTRINSIC_VOID:
7745  case ISD::INTRINSIC_W_CHAIN:
7746    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
7747    case Intrinsic::aarch64_neon_ld2:
7748    case Intrinsic::aarch64_neon_ld3:
7749    case Intrinsic::aarch64_neon_ld4:
7750    case Intrinsic::aarch64_neon_ld1x2:
7751    case Intrinsic::aarch64_neon_ld1x3:
7752    case Intrinsic::aarch64_neon_ld1x4:
7753    case Intrinsic::aarch64_neon_ld2lane:
7754    case Intrinsic::aarch64_neon_ld3lane:
7755    case Intrinsic::aarch64_neon_ld4lane:
7756    case Intrinsic::aarch64_neon_ld2r:
7757    case Intrinsic::aarch64_neon_ld3r:
7758    case Intrinsic::aarch64_neon_ld4r:
7759    case Intrinsic::aarch64_neon_st2:
7760    case Intrinsic::aarch64_neon_st3:
7761    case Intrinsic::aarch64_neon_st4:
7762    case Intrinsic::aarch64_neon_st1x2:
7763    case Intrinsic::aarch64_neon_st1x3:
7764    case Intrinsic::aarch64_neon_st1x4:
7765    case Intrinsic::aarch64_neon_st2lane:
7766    case Intrinsic::aarch64_neon_st3lane:
7767    case Intrinsic::aarch64_neon_st4lane:
7768      return performNEONPostLDSTCombine(N, DCI, DAG);
7769    default:
7770      break;
7771    }
7772  }
7773  return SDValue();
7774}
7775
7776// Check if the return value is used as only a return value, as otherwise
7777// we can't perform a tail-call. In particular, we need to check for
7778// target ISD nodes that are returns and any other "odd" constructs
7779// that the generic analysis code won't necessarily catch.
7780bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
7781                                               SDValue &Chain) const {
7782  if (N->getNumValues() != 1)
7783    return false;
7784  if (!N->hasNUsesOfValue(1, 0))
7785    return false;
7786
7787  SDValue TCChain = Chain;
7788  SDNode *Copy = *N->use_begin();
7789  if (Copy->getOpcode() == ISD::CopyToReg) {
7790    // If the copy has a glue operand, we conservatively assume it isn't safe to
7791    // perform a tail call.
7792    if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
7793        MVT::Glue)
7794      return false;
7795    TCChain = Copy->getOperand(0);
7796  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
7797    return false;
7798
7799  bool HasRet = false;
7800  for (SDNode *Node : Copy->uses()) {
7801    if (Node->getOpcode() != AArch64ISD::RET_FLAG)
7802      return false;
7803    HasRet = true;
7804  }
7805
7806  if (!HasRet)
7807    return false;
7808
7809  Chain = TCChain;
7810  return true;
7811}
7812
7813// Return whether the an instruction can potentially be optimized to a tail
7814// call. This will cause the optimizers to attempt to move, or duplicate,
7815// return instructions to help enable tail call optimizations for this
7816// instruction.
7817bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
7818  if (!CI->isTailCall())
7819    return false;
7820
7821  return true;
7822}
7823
7824bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
7825                                                   SDValue &Offset,
7826                                                   ISD::MemIndexedMode &AM,
7827                                                   bool &IsInc,
7828                                                   SelectionDAG &DAG) const {
7829  if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
7830    return false;
7831
7832  Base = Op->getOperand(0);
7833  // All of the indexed addressing mode instructions take a signed
7834  // 9 bit immediate offset.
7835  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
7836    int64_t RHSC = (int64_t)RHS->getZExtValue();
7837    if (RHSC >= 256 || RHSC <= -256)
7838      return false;
7839    IsInc = (Op->getOpcode() == ISD::ADD);
7840    Offset = Op->getOperand(1);
7841    return true;
7842  }
7843  return false;
7844}
7845
7846bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
7847                                                      SDValue &Offset,
7848                                                      ISD::MemIndexedMode &AM,
7849                                                      SelectionDAG &DAG) const {
7850  EVT VT;
7851  SDValue Ptr;
7852  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7853    VT = LD->getMemoryVT();
7854    Ptr = LD->getBasePtr();
7855  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7856    VT = ST->getMemoryVT();
7857    Ptr = ST->getBasePtr();
7858  } else
7859    return false;
7860
7861  bool IsInc;
7862  if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
7863    return false;
7864  AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
7865  return true;
7866}
7867
7868bool AArch64TargetLowering::getPostIndexedAddressParts(
7869    SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
7870    ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
7871  EVT VT;
7872  SDValue Ptr;
7873  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7874    VT = LD->getMemoryVT();
7875    Ptr = LD->getBasePtr();
7876  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7877    VT = ST->getMemoryVT();
7878    Ptr = ST->getBasePtr();
7879  } else
7880    return false;
7881
7882  bool IsInc;
7883  if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
7884    return false;
7885  // Post-indexing updates the base, so it's not a valid transform
7886  // if that's not the same as the load's pointer.
7887  if (Ptr != Base)
7888    return false;
7889  AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
7890  return true;
7891}
7892
7893void AArch64TargetLowering::ReplaceNodeResults(
7894    SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
7895  switch (N->getOpcode()) {
7896  default:
7897    llvm_unreachable("Don't know how to custom expand this");
7898  case ISD::FP_TO_UINT:
7899  case ISD::FP_TO_SINT:
7900    assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
7901    // Let normal code take care of it by not adding anything to Results.
7902    return;
7903  }
7904}
7905
7906bool AArch64TargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const {
7907  // Loads and stores less than 128-bits are already atomic; ones above that
7908  // are doomed anyway, so defer to the default libcall and blame the OS when
7909  // things go wrong:
7910  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
7911    return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128;
7912  else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
7913    return LI->getType()->getPrimitiveSizeInBits() == 128;
7914
7915  // For the real atomic operations, we have ldxr/stxr up to 128 bits.
7916  return Inst->getType()->getPrimitiveSizeInBits() <= 128;
7917}
7918
7919TargetLoweringBase::LegalizeTypeAction
7920AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
7921  MVT SVT = VT.getSimpleVT();
7922  // During type legalization, we prefer to widen v1i8, v1i16, v1i32  to v8i8,
7923  // v4i16, v2i32 instead of to promote.
7924  if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
7925      || SVT == MVT::v1f32)
7926    return TypeWidenVector;
7927
7928  return TargetLoweringBase::getPreferredVectorAction(VT);
7929}
7930
7931Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
7932                                             AtomicOrdering Ord) const {
7933  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
7934  Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
7935  bool IsAcquire =
7936      Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent;
7937
7938  // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
7939  // intrinsic must return {i64, i64} and we have to recombine them into a
7940  // single i128 here.
7941  if (ValTy->getPrimitiveSizeInBits() == 128) {
7942    Intrinsic::ID Int =
7943        IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
7944    Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
7945
7946    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
7947    Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
7948
7949    Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
7950    Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
7951    Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
7952    Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
7953    return Builder.CreateOr(
7954        Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
7955  }
7956
7957  Type *Tys[] = { Addr->getType() };
7958  Intrinsic::ID Int =
7959      IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
7960  Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
7961
7962  return Builder.CreateTruncOrBitCast(
7963      Builder.CreateCall(Ldxr, Addr),
7964      cast<PointerType>(Addr->getType())->getElementType());
7965}
7966
7967Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
7968                                                   Value *Val, Value *Addr,
7969                                                   AtomicOrdering Ord) const {
7970  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
7971  bool IsRelease =
7972      Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent;
7973
7974  // Since the intrinsics must have legal type, the i128 intrinsics take two
7975  // parameters: "i64, i64". We must marshal Val into the appropriate form
7976  // before the call.
7977  if (Val->getType()->getPrimitiveSizeInBits() == 128) {
7978    Intrinsic::ID Int =
7979        IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
7980    Function *Stxr = Intrinsic::getDeclaration(M, Int);
7981    Type *Int64Ty = Type::getInt64Ty(M->getContext());
7982
7983    Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
7984    Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
7985    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
7986    return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
7987  }
7988
7989  Intrinsic::ID Int =
7990      IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
7991  Type *Tys[] = { Addr->getType() };
7992  Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
7993
7994  return Builder.CreateCall2(
7995      Stxr, Builder.CreateZExtOrBitCast(
7996                Val, Stxr->getFunctionType()->getParamType(0)),
7997      Addr);
7998}
7999