AArch64ISelLowering.cpp revision 863c7b48a6672f7074b2e69683fe4259c8c31bd7
1//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AArch64 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "aarch64-isel"
16#include "AArch64.h"
17#include "AArch64ISelLowering.h"
18#include "AArch64MachineFunctionInfo.h"
19#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "Utils/AArch64BaseInfo.h"
22#include "llvm/CodeGen/Analysis.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28#include "llvm/IR/CallingConv.h"
29
30using namespace llvm;
31
32static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
33  const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
34
35  if (Subtarget->isTargetLinux())
36    return new AArch64LinuxTargetObjectFile();
37  if (Subtarget->isTargetELF())
38    return new TargetLoweringObjectFileELF();
39  llvm_unreachable("unknown subtarget type");
40}
41
42AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
43  : TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) {
44
45  const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
46
47  // SIMD compares set the entire lane's bits to 1
48  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
49
50  // Scalar register <-> type mapping
51  addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
52  addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
53
54  if (Subtarget->hasFPARMv8()) {
55    addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
56    addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
57    addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
58    addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
59  }
60
61  if (Subtarget->hasNEON()) {
62    // And the vectors
63    addRegisterClass(MVT::v1i8,  &AArch64::FPR8RegClass);
64    addRegisterClass(MVT::v1i16, &AArch64::FPR16RegClass);
65    addRegisterClass(MVT::v1i32, &AArch64::FPR32RegClass);
66    addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
67    addRegisterClass(MVT::v1f32, &AArch64::FPR32RegClass);
68    addRegisterClass(MVT::v1f64, &AArch64::FPR64RegClass);
69    addRegisterClass(MVT::v8i8,  &AArch64::FPR64RegClass);
70    addRegisterClass(MVT::v4i16, &AArch64::FPR64RegClass);
71    addRegisterClass(MVT::v2i32, &AArch64::FPR64RegClass);
72    addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
73    addRegisterClass(MVT::v2f32, &AArch64::FPR64RegClass);
74    addRegisterClass(MVT::v16i8, &AArch64::FPR128RegClass);
75    addRegisterClass(MVT::v8i16, &AArch64::FPR128RegClass);
76    addRegisterClass(MVT::v4i32, &AArch64::FPR128RegClass);
77    addRegisterClass(MVT::v2i64, &AArch64::FPR128RegClass);
78    addRegisterClass(MVT::v4f32, &AArch64::FPR128RegClass);
79    addRegisterClass(MVT::v2f64, &AArch64::FPR128RegClass);
80  }
81
82  computeRegisterProperties();
83
84  // We combine OR nodes for bitfield and NEON BSL operations.
85  setTargetDAGCombine(ISD::OR);
86
87  setTargetDAGCombine(ISD::AND);
88  setTargetDAGCombine(ISD::SRA);
89  setTargetDAGCombine(ISD::SRL);
90  setTargetDAGCombine(ISD::SHL);
91
92  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
93  setTargetDAGCombine(ISD::INTRINSIC_VOID);
94  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
95
96  // AArch64 does not have i1 loads, or much of anything for i1 really.
97  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
98  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
99  setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
100
101  setStackPointerRegisterToSaveRestore(AArch64::XSP);
102  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
103  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
104  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
105
106  // We'll lower globals to wrappers for selection.
107  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
108  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
109
110  // A64 instructions have the comparison predicate attached to the user of the
111  // result, but having a separate comparison is valuable for matching.
112  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
113  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
114  setOperationAction(ISD::BR_CC, MVT::f32, Custom);
115  setOperationAction(ISD::BR_CC, MVT::f64, Custom);
116
117  setOperationAction(ISD::SELECT, MVT::i32, Custom);
118  setOperationAction(ISD::SELECT, MVT::i64, Custom);
119  setOperationAction(ISD::SELECT, MVT::f32, Custom);
120  setOperationAction(ISD::SELECT, MVT::f64, Custom);
121
122  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
123  setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
124  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
125  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
126
127  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
128
129  setOperationAction(ISD::SETCC, MVT::i32, Custom);
130  setOperationAction(ISD::SETCC, MVT::i64, Custom);
131  setOperationAction(ISD::SETCC, MVT::f32, Custom);
132  setOperationAction(ISD::SETCC, MVT::f64, Custom);
133
134  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
135  setOperationAction(ISD::JumpTable, MVT::i32, Custom);
136  setOperationAction(ISD::JumpTable, MVT::i64, Custom);
137
138  setOperationAction(ISD::VASTART, MVT::Other, Custom);
139  setOperationAction(ISD::VACOPY, MVT::Other, Custom);
140  setOperationAction(ISD::VAEND, MVT::Other, Expand);
141  setOperationAction(ISD::VAARG, MVT::Other, Expand);
142
143  setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
144
145  setOperationAction(ISD::ROTL, MVT::i32, Expand);
146  setOperationAction(ISD::ROTL, MVT::i64, Expand);
147
148  setOperationAction(ISD::UREM, MVT::i32, Expand);
149  setOperationAction(ISD::UREM, MVT::i64, Expand);
150  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
151  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
152
153  setOperationAction(ISD::SREM, MVT::i32, Expand);
154  setOperationAction(ISD::SREM, MVT::i64, Expand);
155  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
156  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
157
158  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
159  setOperationAction(ISD::CTPOP, MVT::i64, Expand);
160
161  // Legal floating-point operations.
162  setOperationAction(ISD::FABS, MVT::f32, Legal);
163  setOperationAction(ISD::FABS, MVT::f64, Legal);
164
165  setOperationAction(ISD::FCEIL, MVT::f32, Legal);
166  setOperationAction(ISD::FCEIL, MVT::f64, Legal);
167
168  setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
169  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
170
171  setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
172  setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
173
174  setOperationAction(ISD::FNEG, MVT::f32, Legal);
175  setOperationAction(ISD::FNEG, MVT::f64, Legal);
176
177  setOperationAction(ISD::FRINT, MVT::f32, Legal);
178  setOperationAction(ISD::FRINT, MVT::f64, Legal);
179
180  setOperationAction(ISD::FSQRT, MVT::f32, Legal);
181  setOperationAction(ISD::FSQRT, MVT::f64, Legal);
182
183  setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
184  setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
185
186  setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
187  setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
188  setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
189
190  // Illegal floating-point operations.
191  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
192  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
193
194  setOperationAction(ISD::FCOS, MVT::f32, Expand);
195  setOperationAction(ISD::FCOS, MVT::f64, Expand);
196
197  setOperationAction(ISD::FEXP, MVT::f32, Expand);
198  setOperationAction(ISD::FEXP, MVT::f64, Expand);
199
200  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
201  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
202
203  setOperationAction(ISD::FLOG, MVT::f32, Expand);
204  setOperationAction(ISD::FLOG, MVT::f64, Expand);
205
206  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
207  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
208
209  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
210  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
211
212  setOperationAction(ISD::FPOW, MVT::f32, Expand);
213  setOperationAction(ISD::FPOW, MVT::f64, Expand);
214
215  setOperationAction(ISD::FPOWI, MVT::f32, Expand);
216  setOperationAction(ISD::FPOWI, MVT::f64, Expand);
217
218  setOperationAction(ISD::FREM, MVT::f32, Expand);
219  setOperationAction(ISD::FREM, MVT::f64, Expand);
220
221  setOperationAction(ISD::FSIN, MVT::f32, Expand);
222  setOperationAction(ISD::FSIN, MVT::f64, Expand);
223
224  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
225  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
226
227  // Virtually no operation on f128 is legal, but LLVM can't expand them when
228  // there's a valid register class, so we need custom operations in most cases.
229  setOperationAction(ISD::FABS,       MVT::f128, Expand);
230  setOperationAction(ISD::FADD,       MVT::f128, Custom);
231  setOperationAction(ISD::FCOPYSIGN,  MVT::f128, Expand);
232  setOperationAction(ISD::FCOS,       MVT::f128, Expand);
233  setOperationAction(ISD::FDIV,       MVT::f128, Custom);
234  setOperationAction(ISD::FMA,        MVT::f128, Expand);
235  setOperationAction(ISD::FMUL,       MVT::f128, Custom);
236  setOperationAction(ISD::FNEG,       MVT::f128, Expand);
237  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Expand);
238  setOperationAction(ISD::FP_ROUND,   MVT::f128, Expand);
239  setOperationAction(ISD::FPOW,       MVT::f128, Expand);
240  setOperationAction(ISD::FREM,       MVT::f128, Expand);
241  setOperationAction(ISD::FRINT,      MVT::f128, Expand);
242  setOperationAction(ISD::FSIN,       MVT::f128, Expand);
243  setOperationAction(ISD::FSINCOS,    MVT::f128, Expand);
244  setOperationAction(ISD::FSQRT,      MVT::f128, Expand);
245  setOperationAction(ISD::FSUB,       MVT::f128, Custom);
246  setOperationAction(ISD::FTRUNC,     MVT::f128, Expand);
247  setOperationAction(ISD::SETCC,      MVT::f128, Custom);
248  setOperationAction(ISD::BR_CC,      MVT::f128, Custom);
249  setOperationAction(ISD::SELECT,     MVT::f128, Expand);
250  setOperationAction(ISD::SELECT_CC,  MVT::f128, Custom);
251  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Custom);
252
253  // Lowering for many of the conversions is actually specified by the non-f128
254  // type. The LowerXXX function will be trivial when f128 isn't involved.
255  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
256  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
257  setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
258  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
259  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
260  setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
261  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
262  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
263  setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
264  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
265  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
266  setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
267  setOperationAction(ISD::FP_ROUND,  MVT::f32, Custom);
268  setOperationAction(ISD::FP_ROUND,  MVT::f64, Custom);
269
270  // This prevents LLVM trying to compress double constants into a floating
271  // constant-pool entry and trying to load from there. It's of doubtful benefit
272  // for A64: we'd need LDR followed by FCVT, I believe.
273  setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
274  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
275  setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
276
277  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
278  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
279  setTruncStoreAction(MVT::f128, MVT::f16, Expand);
280  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
281  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
282  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
283
284  setExceptionPointerRegister(AArch64::X0);
285  setExceptionSelectorRegister(AArch64::X1);
286
287  if (Subtarget->hasNEON()) {
288    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i8, Custom);
289    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
290    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
291    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i16, Custom);
292    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
293    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
294    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i32, Custom);
295    setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
296    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
297    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
298    setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
299    setOperationAction(ISD::BUILD_VECTOR, MVT::v1f32, Custom);
300    setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
301    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
302    setOperationAction(ISD::BUILD_VECTOR, MVT::v1f64, Custom);
303    setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
304
305    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
306    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
307    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
308    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i16, Custom);
309    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
310    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i32, Custom);
311    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
312    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
313    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f32, Custom);
314    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
315    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1f64, Custom);
316    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
317
318    setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Legal);
319    setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal);
320    setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal);
321    setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal);
322    setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal);
323    setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal);
324    setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal);
325    setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Legal);
326    setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Legal);
327
328    setOperationAction(ISD::SETCC, MVT::v8i8, Custom);
329    setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
330    setOperationAction(ISD::SETCC, MVT::v4i16, Custom);
331    setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
332    setOperationAction(ISD::SETCC, MVT::v2i32, Custom);
333    setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
334    setOperationAction(ISD::SETCC, MVT::v1i64, Custom);
335    setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
336    setOperationAction(ISD::SETCC, MVT::v1f32, Custom);
337    setOperationAction(ISD::SETCC, MVT::v2f32, Custom);
338    setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
339    setOperationAction(ISD::SETCC, MVT::v1f64, Custom);
340    setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
341
342    setOperationAction(ISD::FFLOOR, MVT::v2f32, Legal);
343    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
344    setOperationAction(ISD::FFLOOR, MVT::v1f64, Legal);
345    setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
346
347    setOperationAction(ISD::FCEIL, MVT::v2f32, Legal);
348    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
349    setOperationAction(ISD::FCEIL, MVT::v1f64, Legal);
350    setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
351
352    setOperationAction(ISD::FTRUNC, MVT::v2f32, Legal);
353    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
354    setOperationAction(ISD::FTRUNC, MVT::v1f64, Legal);
355    setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
356
357    setOperationAction(ISD::FRINT, MVT::v2f32, Legal);
358    setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
359    setOperationAction(ISD::FRINT, MVT::v1f64, Legal);
360    setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
361
362    setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Legal);
363    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
364    setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Legal);
365    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
366
367    setOperationAction(ISD::FROUND, MVT::v2f32, Legal);
368    setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
369    setOperationAction(ISD::FROUND, MVT::v1f64, Legal);
370    setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
371  }
372}
373
374EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
375  // It's reasonably important that this value matches the "natural" legal
376  // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
377  // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
378  if (!VT.isVector()) return MVT::i32;
379  return VT.changeVectorElementTypeToInteger();
380}
381
382static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
383                                  unsigned &LdrOpc,
384                                  unsigned &StrOpc) {
385  static const unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
386                                       AArch64::LDXR_word, AArch64::LDXR_dword};
387  static const unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
388                                     AArch64::LDAXR_word, AArch64::LDAXR_dword};
389  static const unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
390                                       AArch64::STXR_word, AArch64::STXR_dword};
391  static const unsigned StoreRels[] = {AArch64::STLXR_byte,AArch64::STLXR_hword,
392                                     AArch64::STLXR_word, AArch64::STLXR_dword};
393
394  const unsigned *LoadOps, *StoreOps;
395  if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
396    LoadOps = LoadAcqs;
397  else
398    LoadOps = LoadBares;
399
400  if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
401    StoreOps = StoreRels;
402  else
403    StoreOps = StoreBares;
404
405  assert(isPowerOf2_32(Size) && Size <= 8 &&
406         "unsupported size for atomic binary op!");
407
408  LdrOpc = LoadOps[Log2_32(Size)];
409  StrOpc = StoreOps[Log2_32(Size)];
410}
411
412// FIXME: AArch64::DTripleRegClass and AArch64::QTripleRegClass don't really
413// have value type mapped, and they are both being defined as MVT::untyped.
414// Without knowing the MVT type, MachineLICM::getRegisterClassIDAndCost
415// would fail to figure out the register pressure correctly.
416std::pair<const TargetRegisterClass*, uint8_t>
417AArch64TargetLowering::findRepresentativeClass(MVT VT) const{
418  const TargetRegisterClass *RRC = 0;
419  uint8_t Cost = 1;
420  switch (VT.SimpleTy) {
421  default:
422    return TargetLowering::findRepresentativeClass(VT);
423  case MVT::v4i64:
424    RRC = &AArch64::QPairRegClass;
425    Cost = 2;
426    break;
427  case MVT::v8i64:
428    RRC = &AArch64::QQuadRegClass;
429    Cost = 4;
430    break;
431  }
432  return std::make_pair(RRC, Cost);
433}
434
435MachineBasicBlock *
436AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
437                                        unsigned Size,
438                                        unsigned BinOpcode) const {
439  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
440  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
441
442  const BasicBlock *LLVM_BB = BB->getBasicBlock();
443  MachineFunction *MF = BB->getParent();
444  MachineFunction::iterator It = BB;
445  ++It;
446
447  unsigned dest = MI->getOperand(0).getReg();
448  unsigned ptr = MI->getOperand(1).getReg();
449  unsigned incr = MI->getOperand(2).getReg();
450  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
451  DebugLoc dl = MI->getDebugLoc();
452
453  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
454
455  unsigned ldrOpc, strOpc;
456  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
457
458  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
459  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
460  MF->insert(It, loopMBB);
461  MF->insert(It, exitMBB);
462
463  // Transfer the remainder of BB and its successor edges to exitMBB.
464  exitMBB->splice(exitMBB->begin(), BB,
465                  llvm::next(MachineBasicBlock::iterator(MI)),
466                  BB->end());
467  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
468
469  const TargetRegisterClass *TRC
470    = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
471  unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
472
473  //  thisMBB:
474  //   ...
475  //   fallthrough --> loopMBB
476  BB->addSuccessor(loopMBB);
477
478  //  loopMBB:
479  //   ldxr dest, ptr
480  //   <binop> scratch, dest, incr
481  //   stxr stxr_status, scratch, ptr
482  //   cbnz stxr_status, loopMBB
483  //   fallthrough --> exitMBB
484  BB = loopMBB;
485  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
486  if (BinOpcode) {
487    // All arithmetic operations we'll be creating are designed to take an extra
488    // shift or extend operand, which we can conveniently set to zero.
489
490    // Operand order needs to go the other way for NAND.
491    if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
492      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
493        .addReg(incr).addReg(dest).addImm(0);
494    else
495      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
496        .addReg(dest).addReg(incr).addImm(0);
497  }
498
499  // From the stxr, the register is GPR32; from the cmp it's GPR32wsp
500  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
501  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
502
503  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
504  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
505    .addReg(stxr_status).addMBB(loopMBB);
506
507  BB->addSuccessor(loopMBB);
508  BB->addSuccessor(exitMBB);
509
510  //  exitMBB:
511  //   ...
512  BB = exitMBB;
513
514  MI->eraseFromParent();   // The instruction is gone now.
515
516  return BB;
517}
518
519MachineBasicBlock *
520AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
521                                              MachineBasicBlock *BB,
522                                              unsigned Size,
523                                              unsigned CmpOp,
524                                              A64CC::CondCodes Cond) const {
525  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
526
527  const BasicBlock *LLVM_BB = BB->getBasicBlock();
528  MachineFunction *MF = BB->getParent();
529  MachineFunction::iterator It = BB;
530  ++It;
531
532  unsigned dest = MI->getOperand(0).getReg();
533  unsigned ptr = MI->getOperand(1).getReg();
534  unsigned incr = MI->getOperand(2).getReg();
535  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
536
537  unsigned oldval = dest;
538  DebugLoc dl = MI->getDebugLoc();
539
540  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
541  const TargetRegisterClass *TRC, *TRCsp;
542  if (Size == 8) {
543    TRC = &AArch64::GPR64RegClass;
544    TRCsp = &AArch64::GPR64xspRegClass;
545  } else {
546    TRC = &AArch64::GPR32RegClass;
547    TRCsp = &AArch64::GPR32wspRegClass;
548  }
549
550  unsigned ldrOpc, strOpc;
551  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
552
553  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
554  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
555  MF->insert(It, loopMBB);
556  MF->insert(It, exitMBB);
557
558  // Transfer the remainder of BB and its successor edges to exitMBB.
559  exitMBB->splice(exitMBB->begin(), BB,
560                  llvm::next(MachineBasicBlock::iterator(MI)),
561                  BB->end());
562  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
563
564  unsigned scratch = MRI.createVirtualRegister(TRC);
565  MRI.constrainRegClass(scratch, TRCsp);
566
567  //  thisMBB:
568  //   ...
569  //   fallthrough --> loopMBB
570  BB->addSuccessor(loopMBB);
571
572  //  loopMBB:
573  //   ldxr dest, ptr
574  //   cmp incr, dest (, sign extend if necessary)
575  //   csel scratch, dest, incr, cond
576  //   stxr stxr_status, scratch, ptr
577  //   cbnz stxr_status, loopMBB
578  //   fallthrough --> exitMBB
579  BB = loopMBB;
580  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
581
582  // Build compare and cmov instructions.
583  MRI.constrainRegClass(incr, TRCsp);
584  BuildMI(BB, dl, TII->get(CmpOp))
585    .addReg(incr).addReg(oldval).addImm(0);
586
587  BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
588          scratch)
589    .addReg(oldval).addReg(incr).addImm(Cond);
590
591  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
592  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
593
594  BuildMI(BB, dl, TII->get(strOpc), stxr_status)
595    .addReg(scratch).addReg(ptr);
596  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
597    .addReg(stxr_status).addMBB(loopMBB);
598
599  BB->addSuccessor(loopMBB);
600  BB->addSuccessor(exitMBB);
601
602  //  exitMBB:
603  //   ...
604  BB = exitMBB;
605
606  MI->eraseFromParent();   // The instruction is gone now.
607
608  return BB;
609}
610
611MachineBasicBlock *
612AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
613                                         MachineBasicBlock *BB,
614                                         unsigned Size) const {
615  unsigned dest    = MI->getOperand(0).getReg();
616  unsigned ptr     = MI->getOperand(1).getReg();
617  unsigned oldval  = MI->getOperand(2).getReg();
618  unsigned newval  = MI->getOperand(3).getReg();
619  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
620  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
621  DebugLoc dl = MI->getDebugLoc();
622
623  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
624  const TargetRegisterClass *TRCsp;
625  TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
626
627  unsigned ldrOpc, strOpc;
628  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
629
630  MachineFunction *MF = BB->getParent();
631  const BasicBlock *LLVM_BB = BB->getBasicBlock();
632  MachineFunction::iterator It = BB;
633  ++It; // insert the new blocks after the current block
634
635  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
636  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
637  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
638  MF->insert(It, loop1MBB);
639  MF->insert(It, loop2MBB);
640  MF->insert(It, exitMBB);
641
642  // Transfer the remainder of BB and its successor edges to exitMBB.
643  exitMBB->splice(exitMBB->begin(), BB,
644                  llvm::next(MachineBasicBlock::iterator(MI)),
645                  BB->end());
646  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
647
648  //  thisMBB:
649  //   ...
650  //   fallthrough --> loop1MBB
651  BB->addSuccessor(loop1MBB);
652
653  // loop1MBB:
654  //   ldxr dest, [ptr]
655  //   cmp dest, oldval
656  //   b.ne exitMBB
657  BB = loop1MBB;
658  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
659
660  unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
661  MRI.constrainRegClass(dest, TRCsp);
662  BuildMI(BB, dl, TII->get(CmpOp))
663    .addReg(dest).addReg(oldval).addImm(0);
664  BuildMI(BB, dl, TII->get(AArch64::Bcc))
665    .addImm(A64CC::NE).addMBB(exitMBB);
666  BB->addSuccessor(loop2MBB);
667  BB->addSuccessor(exitMBB);
668
669  // loop2MBB:
670  //   strex stxr_status, newval, [ptr]
671  //   cbnz stxr_status, loop1MBB
672  BB = loop2MBB;
673  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
674  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
675
676  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
677  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
678    .addReg(stxr_status).addMBB(loop1MBB);
679  BB->addSuccessor(loop1MBB);
680  BB->addSuccessor(exitMBB);
681
682  //  exitMBB:
683  //   ...
684  BB = exitMBB;
685
686  MI->eraseFromParent();   // The instruction is gone now.
687
688  return BB;
689}
690
691MachineBasicBlock *
692AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
693                                    MachineBasicBlock *MBB) const {
694  // We materialise the F128CSEL pseudo-instruction using conditional branches
695  // and loads, giving an instruciton sequence like:
696  //     str q0, [sp]
697  //     b.ne IfTrue
698  //     b Finish
699  // IfTrue:
700  //     str q1, [sp]
701  // Finish:
702  //     ldr q0, [sp]
703  //
704  // Using virtual registers would probably not be beneficial since COPY
705  // instructions are expensive for f128 (there's no actual instruction to
706  // implement them).
707  //
708  // An alternative would be to do an integer-CSEL on some address. E.g.:
709  //     mov x0, sp
710  //     add x1, sp, #16
711  //     str q0, [x0]
712  //     str q1, [x1]
713  //     csel x0, x0, x1, ne
714  //     ldr q0, [x0]
715  //
716  // It's unclear which approach is actually optimal.
717  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
718  MachineFunction *MF = MBB->getParent();
719  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
720  DebugLoc DL = MI->getDebugLoc();
721  MachineFunction::iterator It = MBB;
722  ++It;
723
724  unsigned DestReg = MI->getOperand(0).getReg();
725  unsigned IfTrueReg = MI->getOperand(1).getReg();
726  unsigned IfFalseReg = MI->getOperand(2).getReg();
727  unsigned CondCode = MI->getOperand(3).getImm();
728  bool NZCVKilled = MI->getOperand(4).isKill();
729
730  MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
731  MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
732  MF->insert(It, TrueBB);
733  MF->insert(It, EndBB);
734
735  // Transfer rest of current basic-block to EndBB
736  EndBB->splice(EndBB->begin(), MBB,
737                llvm::next(MachineBasicBlock::iterator(MI)),
738                MBB->end());
739  EndBB->transferSuccessorsAndUpdatePHIs(MBB);
740
741  // We need somewhere to store the f128 value needed.
742  int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
743
744  //     [... start of incoming MBB ...]
745  //     str qIFFALSE, [sp]
746  //     b.cc IfTrue
747  //     b Done
748  BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
749    .addReg(IfFalseReg)
750    .addFrameIndex(ScratchFI)
751    .addImm(0);
752  BuildMI(MBB, DL, TII->get(AArch64::Bcc))
753    .addImm(CondCode)
754    .addMBB(TrueBB);
755  BuildMI(MBB, DL, TII->get(AArch64::Bimm))
756    .addMBB(EndBB);
757  MBB->addSuccessor(TrueBB);
758  MBB->addSuccessor(EndBB);
759
760  if (!NZCVKilled) {
761    // NZCV is live-through TrueBB.
762    TrueBB->addLiveIn(AArch64::NZCV);
763    EndBB->addLiveIn(AArch64::NZCV);
764  }
765
766  // IfTrue:
767  //     str qIFTRUE, [sp]
768  BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
769    .addReg(IfTrueReg)
770    .addFrameIndex(ScratchFI)
771    .addImm(0);
772
773  // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
774  // blocks.
775  TrueBB->addSuccessor(EndBB);
776
777  // Done:
778  //     ldr qDEST, [sp]
779  //     [... rest of incoming MBB ...]
780  MachineInstr *StartOfEnd = EndBB->begin();
781  BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
782    .addFrameIndex(ScratchFI)
783    .addImm(0);
784
785  MI->eraseFromParent();
786  return EndBB;
787}
788
789MachineBasicBlock *
790AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
791                                                 MachineBasicBlock *MBB) const {
792  switch (MI->getOpcode()) {
793  default: llvm_unreachable("Unhandled instruction with custom inserter");
794  case AArch64::F128CSEL:
795    return EmitF128CSEL(MI, MBB);
796  case AArch64::ATOMIC_LOAD_ADD_I8:
797    return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
798  case AArch64::ATOMIC_LOAD_ADD_I16:
799    return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
800  case AArch64::ATOMIC_LOAD_ADD_I32:
801    return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
802  case AArch64::ATOMIC_LOAD_ADD_I64:
803    return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
804
805  case AArch64::ATOMIC_LOAD_SUB_I8:
806    return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
807  case AArch64::ATOMIC_LOAD_SUB_I16:
808    return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
809  case AArch64::ATOMIC_LOAD_SUB_I32:
810    return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
811  case AArch64::ATOMIC_LOAD_SUB_I64:
812    return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
813
814  case AArch64::ATOMIC_LOAD_AND_I8:
815    return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
816  case AArch64::ATOMIC_LOAD_AND_I16:
817    return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
818  case AArch64::ATOMIC_LOAD_AND_I32:
819    return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
820  case AArch64::ATOMIC_LOAD_AND_I64:
821    return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
822
823  case AArch64::ATOMIC_LOAD_OR_I8:
824    return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
825  case AArch64::ATOMIC_LOAD_OR_I16:
826    return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
827  case AArch64::ATOMIC_LOAD_OR_I32:
828    return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
829  case AArch64::ATOMIC_LOAD_OR_I64:
830    return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
831
832  case AArch64::ATOMIC_LOAD_XOR_I8:
833    return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
834  case AArch64::ATOMIC_LOAD_XOR_I16:
835    return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
836  case AArch64::ATOMIC_LOAD_XOR_I32:
837    return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
838  case AArch64::ATOMIC_LOAD_XOR_I64:
839    return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
840
841  case AArch64::ATOMIC_LOAD_NAND_I8:
842    return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
843  case AArch64::ATOMIC_LOAD_NAND_I16:
844    return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
845  case AArch64::ATOMIC_LOAD_NAND_I32:
846    return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
847  case AArch64::ATOMIC_LOAD_NAND_I64:
848    return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
849
850  case AArch64::ATOMIC_LOAD_MIN_I8:
851    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
852  case AArch64::ATOMIC_LOAD_MIN_I16:
853    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
854  case AArch64::ATOMIC_LOAD_MIN_I32:
855    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
856  case AArch64::ATOMIC_LOAD_MIN_I64:
857    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
858
859  case AArch64::ATOMIC_LOAD_MAX_I8:
860    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
861  case AArch64::ATOMIC_LOAD_MAX_I16:
862    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
863  case AArch64::ATOMIC_LOAD_MAX_I32:
864    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
865  case AArch64::ATOMIC_LOAD_MAX_I64:
866    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
867
868  case AArch64::ATOMIC_LOAD_UMIN_I8:
869    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
870  case AArch64::ATOMIC_LOAD_UMIN_I16:
871    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
872  case AArch64::ATOMIC_LOAD_UMIN_I32:
873    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
874  case AArch64::ATOMIC_LOAD_UMIN_I64:
875    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
876
877  case AArch64::ATOMIC_LOAD_UMAX_I8:
878    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
879  case AArch64::ATOMIC_LOAD_UMAX_I16:
880    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
881  case AArch64::ATOMIC_LOAD_UMAX_I32:
882    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
883  case AArch64::ATOMIC_LOAD_UMAX_I64:
884    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
885
886  case AArch64::ATOMIC_SWAP_I8:
887    return emitAtomicBinary(MI, MBB, 1, 0);
888  case AArch64::ATOMIC_SWAP_I16:
889    return emitAtomicBinary(MI, MBB, 2, 0);
890  case AArch64::ATOMIC_SWAP_I32:
891    return emitAtomicBinary(MI, MBB, 4, 0);
892  case AArch64::ATOMIC_SWAP_I64:
893    return emitAtomicBinary(MI, MBB, 8, 0);
894
895  case AArch64::ATOMIC_CMP_SWAP_I8:
896    return emitAtomicCmpSwap(MI, MBB, 1);
897  case AArch64::ATOMIC_CMP_SWAP_I16:
898    return emitAtomicCmpSwap(MI, MBB, 2);
899  case AArch64::ATOMIC_CMP_SWAP_I32:
900    return emitAtomicCmpSwap(MI, MBB, 4);
901  case AArch64::ATOMIC_CMP_SWAP_I64:
902    return emitAtomicCmpSwap(MI, MBB, 8);
903  }
904}
905
906
907const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
908  switch (Opcode) {
909  case AArch64ISD::BR_CC:          return "AArch64ISD::BR_CC";
910  case AArch64ISD::Call:           return "AArch64ISD::Call";
911  case AArch64ISD::FPMOV:          return "AArch64ISD::FPMOV";
912  case AArch64ISD::GOTLoad:        return "AArch64ISD::GOTLoad";
913  case AArch64ISD::BFI:            return "AArch64ISD::BFI";
914  case AArch64ISD::EXTR:           return "AArch64ISD::EXTR";
915  case AArch64ISD::Ret:            return "AArch64ISD::Ret";
916  case AArch64ISD::SBFX:           return "AArch64ISD::SBFX";
917  case AArch64ISD::SELECT_CC:      return "AArch64ISD::SELECT_CC";
918  case AArch64ISD::SETCC:          return "AArch64ISD::SETCC";
919  case AArch64ISD::TC_RETURN:      return "AArch64ISD::TC_RETURN";
920  case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
921  case AArch64ISD::TLSDESCCALL:    return "AArch64ISD::TLSDESCCALL";
922  case AArch64ISD::WrapperLarge:   return "AArch64ISD::WrapperLarge";
923  case AArch64ISD::WrapperSmall:   return "AArch64ISD::WrapperSmall";
924
925  case AArch64ISD::NEON_BSL:
926    return "AArch64ISD::NEON_BSL";
927  case AArch64ISD::NEON_MOVIMM:
928    return "AArch64ISD::NEON_MOVIMM";
929  case AArch64ISD::NEON_MVNIMM:
930    return "AArch64ISD::NEON_MVNIMM";
931  case AArch64ISD::NEON_FMOVIMM:
932    return "AArch64ISD::NEON_FMOVIMM";
933  case AArch64ISD::NEON_CMP:
934    return "AArch64ISD::NEON_CMP";
935  case AArch64ISD::NEON_CMPZ:
936    return "AArch64ISD::NEON_CMPZ";
937  case AArch64ISD::NEON_TST:
938    return "AArch64ISD::NEON_TST";
939  case AArch64ISD::NEON_QSHLs:
940    return "AArch64ISD::NEON_QSHLs";
941  case AArch64ISD::NEON_QSHLu:
942    return "AArch64ISD::NEON_QSHLu";
943  case AArch64ISD::NEON_VDUP:
944    return "AArch64ISD::NEON_VDUP";
945  case AArch64ISD::NEON_VDUPLANE:
946    return "AArch64ISD::NEON_VDUPLANE";
947  case AArch64ISD::NEON_REV16:
948    return "AArch64ISD::NEON_REV16";
949  case AArch64ISD::NEON_REV32:
950    return "AArch64ISD::NEON_REV32";
951  case AArch64ISD::NEON_REV64:
952    return "AArch64ISD::NEON_REV64";
953  case AArch64ISD::NEON_UZP1:
954    return "AArch64ISD::NEON_UZP1";
955  case AArch64ISD::NEON_UZP2:
956    return "AArch64ISD::NEON_UZP2";
957  case AArch64ISD::NEON_ZIP1:
958    return "AArch64ISD::NEON_ZIP1";
959  case AArch64ISD::NEON_ZIP2:
960    return "AArch64ISD::NEON_ZIP2";
961  case AArch64ISD::NEON_TRN1:
962    return "AArch64ISD::NEON_TRN1";
963  case AArch64ISD::NEON_TRN2:
964    return "AArch64ISD::NEON_TRN2";
965  case AArch64ISD::NEON_LD1_UPD:
966    return "AArch64ISD::NEON_LD1_UPD";
967  case AArch64ISD::NEON_LD2_UPD:
968    return "AArch64ISD::NEON_LD2_UPD";
969  case AArch64ISD::NEON_LD3_UPD:
970    return "AArch64ISD::NEON_LD3_UPD";
971  case AArch64ISD::NEON_LD4_UPD:
972    return "AArch64ISD::NEON_LD4_UPD";
973  case AArch64ISD::NEON_ST1_UPD:
974    return "AArch64ISD::NEON_ST1_UPD";
975  case AArch64ISD::NEON_ST2_UPD:
976    return "AArch64ISD::NEON_ST2_UPD";
977  case AArch64ISD::NEON_ST3_UPD:
978    return "AArch64ISD::NEON_ST3_UPD";
979  case AArch64ISD::NEON_ST4_UPD:
980    return "AArch64ISD::NEON_ST4_UPD";
981  case AArch64ISD::NEON_LD1x2_UPD:
982    return "AArch64ISD::NEON_LD1x2_UPD";
983  case AArch64ISD::NEON_LD1x3_UPD:
984    return "AArch64ISD::NEON_LD1x3_UPD";
985  case AArch64ISD::NEON_LD1x4_UPD:
986    return "AArch64ISD::NEON_LD1x4_UPD";
987  case AArch64ISD::NEON_ST1x2_UPD:
988    return "AArch64ISD::NEON_ST1x2_UPD";
989  case AArch64ISD::NEON_ST1x3_UPD:
990    return "AArch64ISD::NEON_ST1x3_UPD";
991  case AArch64ISD::NEON_ST1x4_UPD:
992    return "AArch64ISD::NEON_ST1x4_UPD";
993  case AArch64ISD::NEON_LD2DUP:
994    return "AArch64ISD::NEON_LD2DUP";
995  case AArch64ISD::NEON_LD3DUP:
996    return "AArch64ISD::NEON_LD3DUP";
997  case AArch64ISD::NEON_LD4DUP:
998    return "AArch64ISD::NEON_LD4DUP";
999  case AArch64ISD::NEON_LD2DUP_UPD:
1000    return "AArch64ISD::NEON_LD2DUP_UPD";
1001  case AArch64ISD::NEON_LD3DUP_UPD:
1002    return "AArch64ISD::NEON_LD3DUP_UPD";
1003  case AArch64ISD::NEON_LD4DUP_UPD:
1004    return "AArch64ISD::NEON_LD4DUP_UPD";
1005  case AArch64ISD::NEON_LD2LN_UPD:
1006    return "AArch64ISD::NEON_LD2LN_UPD";
1007  case AArch64ISD::NEON_LD3LN_UPD:
1008    return "AArch64ISD::NEON_LD3LN_UPD";
1009  case AArch64ISD::NEON_LD4LN_UPD:
1010    return "AArch64ISD::NEON_LD4LN_UPD";
1011  case AArch64ISD::NEON_ST2LN_UPD:
1012    return "AArch64ISD::NEON_ST2LN_UPD";
1013  case AArch64ISD::NEON_ST3LN_UPD:
1014    return "AArch64ISD::NEON_ST3LN_UPD";
1015  case AArch64ISD::NEON_ST4LN_UPD:
1016    return "AArch64ISD::NEON_ST4LN_UPD";
1017  case AArch64ISD::NEON_VEXTRACT:
1018    return "AArch64ISD::NEON_VEXTRACT";
1019  default:
1020    return NULL;
1021  }
1022}
1023
1024static const uint16_t AArch64FPRArgRegs[] = {
1025  AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
1026  AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
1027};
1028static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
1029
1030static const uint16_t AArch64ArgRegs[] = {
1031  AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
1032  AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
1033};
1034static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
1035
1036static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
1037                                 CCValAssign::LocInfo LocInfo,
1038                                 ISD::ArgFlagsTy ArgFlags, CCState &State) {
1039  // Mark all remaining general purpose registers as allocated. We don't
1040  // backtrack: if (for example) an i128 gets put on the stack, no subsequent
1041  // i64 will go in registers (C.11).
1042  for (unsigned i = 0; i < NumArgRegs; ++i)
1043    State.AllocateReg(AArch64ArgRegs[i]);
1044
1045  return false;
1046}
1047
1048#include "AArch64GenCallingConv.inc"
1049
1050CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1051
1052  switch(CC) {
1053  default: llvm_unreachable("Unsupported calling convention");
1054  case CallingConv::Fast:
1055  case CallingConv::C:
1056    return CC_A64_APCS;
1057  }
1058}
1059
1060void
1061AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
1062                                           SDLoc DL, SDValue &Chain) const {
1063  MachineFunction &MF = DAG.getMachineFunction();
1064  MachineFrameInfo *MFI = MF.getFrameInfo();
1065  AArch64MachineFunctionInfo *FuncInfo
1066    = MF.getInfo<AArch64MachineFunctionInfo>();
1067
1068  SmallVector<SDValue, 8> MemOps;
1069
1070  unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
1071                                                         NumArgRegs);
1072  unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
1073                                                         NumFPRArgRegs);
1074
1075  unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
1076  int GPRIdx = 0;
1077  if (GPRSaveSize != 0) {
1078    GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
1079
1080    SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
1081
1082    for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
1083      unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
1084      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
1085      SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
1086                                   MachinePointerInfo::getStack(i * 8),
1087                                   false, false, 0);
1088      MemOps.push_back(Store);
1089      FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
1090                        DAG.getConstant(8, getPointerTy()));
1091    }
1092  }
1093
1094  if (getSubtarget()->hasFPARMv8()) {
1095  unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
1096  int FPRIdx = 0;
1097    // According to the AArch64 Procedure Call Standard, section B.1/B.3, we
1098    // can omit a register save area if we know we'll never use registers of
1099    // that class.
1100    if (FPRSaveSize != 0) {
1101      FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
1102
1103      SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
1104
1105      for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
1106        unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
1107            &AArch64::FPR128RegClass);
1108        SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
1109        SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
1110            MachinePointerInfo::getStack(i * 16),
1111            false, false, 0);
1112        MemOps.push_back(Store);
1113        FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
1114            DAG.getConstant(16, getPointerTy()));
1115      }
1116    }
1117    FuncInfo->setVariadicFPRIdx(FPRIdx);
1118    FuncInfo->setVariadicFPRSize(FPRSaveSize);
1119  }
1120
1121  int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true);
1122
1123  FuncInfo->setVariadicStackIdx(StackIdx);
1124  FuncInfo->setVariadicGPRIdx(GPRIdx);
1125  FuncInfo->setVariadicGPRSize(GPRSaveSize);
1126
1127  if (!MemOps.empty()) {
1128    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
1129                        MemOps.size());
1130  }
1131}
1132
1133
1134SDValue
1135AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
1136                                      CallingConv::ID CallConv, bool isVarArg,
1137                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1138                                      SDLoc dl, SelectionDAG &DAG,
1139                                      SmallVectorImpl<SDValue> &InVals) const {
1140  MachineFunction &MF = DAG.getMachineFunction();
1141  AArch64MachineFunctionInfo *FuncInfo
1142    = MF.getInfo<AArch64MachineFunctionInfo>();
1143  MachineFrameInfo *MFI = MF.getFrameInfo();
1144  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1145
1146  SmallVector<CCValAssign, 16> ArgLocs;
1147  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1148                 getTargetMachine(), ArgLocs, *DAG.getContext());
1149  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1150
1151  SmallVector<SDValue, 16> ArgValues;
1152
1153  SDValue ArgValue;
1154  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1155    CCValAssign &VA = ArgLocs[i];
1156    ISD::ArgFlagsTy Flags = Ins[i].Flags;
1157
1158    if (Flags.isByVal()) {
1159      // Byval is used for small structs and HFAs in the PCS, but the system
1160      // should work in a non-compliant manner for larger structs.
1161      EVT PtrTy = getPointerTy();
1162      int Size = Flags.getByValSize();
1163      unsigned NumRegs = (Size + 7) / 8;
1164
1165      unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
1166                                                 VA.getLocMemOffset(),
1167                                                 false);
1168      SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
1169      InVals.push_back(FrameIdxN);
1170
1171      continue;
1172    } else if (VA.isRegLoc()) {
1173      MVT RegVT = VA.getLocVT();
1174      const TargetRegisterClass *RC = getRegClassFor(RegVT);
1175      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1176
1177      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1178    } else { // VA.isRegLoc()
1179      assert(VA.isMemLoc());
1180
1181      int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
1182                                      VA.getLocMemOffset(), true);
1183
1184      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1185      ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1186                             MachinePointerInfo::getFixedStack(FI),
1187                             false, false, false, 0);
1188
1189
1190    }
1191
1192    switch (VA.getLocInfo()) {
1193    default: llvm_unreachable("Unknown loc info!");
1194    case CCValAssign::Full: break;
1195    case CCValAssign::BCvt:
1196      ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
1197      break;
1198    case CCValAssign::SExt:
1199    case CCValAssign::ZExt:
1200    case CCValAssign::AExt: {
1201      unsigned DestSize = VA.getValVT().getSizeInBits();
1202      unsigned DestSubReg;
1203
1204      switch (DestSize) {
1205      case 8: DestSubReg = AArch64::sub_8; break;
1206      case 16: DestSubReg = AArch64::sub_16; break;
1207      case 32: DestSubReg = AArch64::sub_32; break;
1208      case 64: DestSubReg = AArch64::sub_64; break;
1209      default: llvm_unreachable("Unexpected argument promotion");
1210      }
1211
1212      ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
1213                                   VA.getValVT(), ArgValue,
1214                                   DAG.getTargetConstant(DestSubReg, MVT::i32)),
1215                         0);
1216      break;
1217    }
1218    }
1219
1220    InVals.push_back(ArgValue);
1221  }
1222
1223  if (isVarArg)
1224    SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
1225
1226  unsigned StackArgSize = CCInfo.getNextStackOffset();
1227  if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
1228    // This is a non-standard ABI so by fiat I say we're allowed to make full
1229    // use of the stack area to be popped, which must be aligned to 16 bytes in
1230    // any case:
1231    StackArgSize = RoundUpToAlignment(StackArgSize, 16);
1232
1233    // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
1234    // a multiple of 16.
1235    FuncInfo->setArgumentStackToRestore(StackArgSize);
1236
1237    // This realignment carries over to the available bytes below. Our own
1238    // callers will guarantee the space is free by giving an aligned value to
1239    // CALLSEQ_START.
1240  }
1241  // Even if we're not expected to free up the space, it's useful to know how
1242  // much is there while considering tail calls (because we can reuse it).
1243  FuncInfo->setBytesInStackArgArea(StackArgSize);
1244
1245  return Chain;
1246}
1247
1248SDValue
1249AArch64TargetLowering::LowerReturn(SDValue Chain,
1250                                   CallingConv::ID CallConv, bool isVarArg,
1251                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
1252                                   const SmallVectorImpl<SDValue> &OutVals,
1253                                   SDLoc dl, SelectionDAG &DAG) const {
1254  // CCValAssign - represent the assignment of the return value to a location.
1255  SmallVector<CCValAssign, 16> RVLocs;
1256
1257  // CCState - Info about the registers and stack slots.
1258  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1259                 getTargetMachine(), RVLocs, *DAG.getContext());
1260
1261  // Analyze outgoing return values.
1262  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
1263
1264  SDValue Flag;
1265  SmallVector<SDValue, 4> RetOps(1, Chain);
1266
1267  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1268    // PCS: "If the type, T, of the result of a function is such that
1269    // void func(T arg) would require that arg be passed as a value in a
1270    // register (or set of registers) according to the rules in 5.4, then the
1271    // result is returned in the same registers as would be used for such an
1272    // argument.
1273    //
1274    // Otherwise, the caller shall reserve a block of memory of sufficient
1275    // size and alignment to hold the result. The address of the memory block
1276    // shall be passed as an additional argument to the function in x8."
1277    //
1278    // This is implemented in two places. The register-return values are dealt
1279    // with here, more complex returns are passed as an sret parameter, which
1280    // means we don't have to worry about it during actual return.
1281    CCValAssign &VA = RVLocs[i];
1282    assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
1283
1284
1285    SDValue Arg = OutVals[i];
1286
1287    // There's no convenient note in the ABI about this as there is for normal
1288    // arguments, but it says return values are passed in the same registers as
1289    // an argument would be. I believe that includes the comments about
1290    // unspecified higher bits, putting the burden of widening on the *caller*
1291    // for return values.
1292    switch (VA.getLocInfo()) {
1293    default: llvm_unreachable("Unknown loc info");
1294    case CCValAssign::Full: break;
1295    case CCValAssign::SExt:
1296    case CCValAssign::ZExt:
1297    case CCValAssign::AExt:
1298      // Floating-point values should only be extended when they're going into
1299      // memory, which can't happen here so an integer extend is acceptable.
1300      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1301      break;
1302    case CCValAssign::BCvt:
1303      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1304      break;
1305    }
1306
1307    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1308    Flag = Chain.getValue(1);
1309    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1310  }
1311
1312  RetOps[0] = Chain;  // Update chain.
1313
1314  // Add the flag if we have it.
1315  if (Flag.getNode())
1316    RetOps.push_back(Flag);
1317
1318  return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other,
1319                     &RetOps[0], RetOps.size());
1320}
1321
1322SDValue
1323AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
1324                                 SmallVectorImpl<SDValue> &InVals) const {
1325  SelectionDAG &DAG                     = CLI.DAG;
1326  SDLoc &dl                             = CLI.DL;
1327  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1328  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1329  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1330  SDValue Chain                         = CLI.Chain;
1331  SDValue Callee                        = CLI.Callee;
1332  bool &IsTailCall                      = CLI.IsTailCall;
1333  CallingConv::ID CallConv              = CLI.CallConv;
1334  bool IsVarArg                         = CLI.IsVarArg;
1335
1336  MachineFunction &MF = DAG.getMachineFunction();
1337  AArch64MachineFunctionInfo *FuncInfo
1338    = MF.getInfo<AArch64MachineFunctionInfo>();
1339  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1340  bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
1341  bool IsSibCall = false;
1342
1343  if (IsTailCall) {
1344    IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1345                    IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1346                                                   Outs, OutVals, Ins, DAG);
1347
1348    // A sibling call is one where we're under the usual C ABI and not planning
1349    // to change that but can still do a tail call:
1350    if (!TailCallOpt && IsTailCall)
1351      IsSibCall = true;
1352  }
1353
1354  SmallVector<CCValAssign, 16> ArgLocs;
1355  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1356                 getTargetMachine(), ArgLocs, *DAG.getContext());
1357  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1358
1359  // On AArch64 (and all other architectures I'm aware of) the most this has to
1360  // do is adjust the stack pointer.
1361  unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
1362  if (IsSibCall) {
1363    // Since we're not changing the ABI to make this a tail call, the memory
1364    // operands are already available in the caller's incoming argument space.
1365    NumBytes = 0;
1366  }
1367
1368  // FPDiff is the byte offset of the call's argument area from the callee's.
1369  // Stores to callee stack arguments will be placed in FixedStackSlots offset
1370  // by this amount for a tail call. In a sibling call it must be 0 because the
1371  // caller will deallocate the entire stack and the callee still expects its
1372  // arguments to begin at SP+0. Completely unused for non-tail calls.
1373  int FPDiff = 0;
1374
1375  if (IsTailCall && !IsSibCall) {
1376    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1377
1378    // FPDiff will be negative if this tail call requires more space than we
1379    // would automatically have in our incoming argument space. Positive if we
1380    // can actually shrink the stack.
1381    FPDiff = NumReusableBytes - NumBytes;
1382
1383    // The stack pointer must be 16-byte aligned at all times it's used for a
1384    // memory operation, which in practice means at *all* times and in
1385    // particular across call boundaries. Therefore our own arguments started at
1386    // a 16-byte aligned SP and the delta applied for the tail call should
1387    // satisfy the same constraint.
1388    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
1389  }
1390
1391  if (!IsSibCall)
1392    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
1393                                 dl);
1394
1395  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
1396                                        getPointerTy());
1397
1398  SmallVector<SDValue, 8> MemOpChains;
1399  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1400
1401  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1402    CCValAssign &VA = ArgLocs[i];
1403    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1404    SDValue Arg = OutVals[i];
1405
1406    // Callee does the actual widening, so all extensions just use an implicit
1407    // definition of the rest of the Loc. Aesthetically, this would be nicer as
1408    // an ANY_EXTEND, but that isn't valid for floating-point types and this
1409    // alternative works on integer types too.
1410    switch (VA.getLocInfo()) {
1411    default: llvm_unreachable("Unknown loc info!");
1412    case CCValAssign::Full: break;
1413    case CCValAssign::SExt:
1414    case CCValAssign::ZExt:
1415    case CCValAssign::AExt: {
1416      unsigned SrcSize = VA.getValVT().getSizeInBits();
1417      unsigned SrcSubReg;
1418
1419      switch (SrcSize) {
1420      case 8: SrcSubReg = AArch64::sub_8; break;
1421      case 16: SrcSubReg = AArch64::sub_16; break;
1422      case 32: SrcSubReg = AArch64::sub_32; break;
1423      case 64: SrcSubReg = AArch64::sub_64; break;
1424      default: llvm_unreachable("Unexpected argument promotion");
1425      }
1426
1427      Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
1428                                    VA.getLocVT(),
1429                                    DAG.getUNDEF(VA.getLocVT()),
1430                                    Arg,
1431                                    DAG.getTargetConstant(SrcSubReg, MVT::i32)),
1432                    0);
1433
1434      break;
1435    }
1436    case CCValAssign::BCvt:
1437      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1438      break;
1439    }
1440
1441    if (VA.isRegLoc()) {
1442      // A normal register (sub-) argument. For now we just note it down because
1443      // we want to copy things into registers as late as possible to avoid
1444      // register-pressure (and possibly worse).
1445      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1446      continue;
1447    }
1448
1449    assert(VA.isMemLoc() && "unexpected argument location");
1450
1451    SDValue DstAddr;
1452    MachinePointerInfo DstInfo;
1453    if (IsTailCall) {
1454      uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
1455                                          VA.getLocVT().getSizeInBits();
1456      OpSize = (OpSize + 7) / 8;
1457      int32_t Offset = VA.getLocMemOffset() + FPDiff;
1458      int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
1459
1460      DstAddr = DAG.getFrameIndex(FI, getPointerTy());
1461      DstInfo = MachinePointerInfo::getFixedStack(FI);
1462
1463      // Make sure any stack arguments overlapping with where we're storing are
1464      // loaded before this eventual operation. Otherwise they'll be clobbered.
1465      Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
1466    } else {
1467      SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset());
1468
1469      DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1470      DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
1471    }
1472
1473    if (Flags.isByVal()) {
1474      SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
1475      SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
1476                                  Flags.getByValAlign(),
1477                                  /*isVolatile = */ false,
1478                                  /*alwaysInline = */ false,
1479                                  DstInfo, MachinePointerInfo(0));
1480      MemOpChains.push_back(Cpy);
1481    } else {
1482      // Normal stack argument, put it where it's needed.
1483      SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
1484                                   false, false, 0);
1485      MemOpChains.push_back(Store);
1486    }
1487  }
1488
1489  // The loads and stores generated above shouldn't clash with each
1490  // other. Combining them with this TokenFactor notes that fact for the rest of
1491  // the backend.
1492  if (!MemOpChains.empty())
1493    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1494                        &MemOpChains[0], MemOpChains.size());
1495
1496  // Most of the rest of the instructions need to be glued together; we don't
1497  // want assignments to actual registers used by a call to be rearranged by a
1498  // well-meaning scheduler.
1499  SDValue InFlag;
1500
1501  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1502    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1503                             RegsToPass[i].second, InFlag);
1504    InFlag = Chain.getValue(1);
1505  }
1506
1507  // The linker is responsible for inserting veneers when necessary to put a
1508  // function call destination in range, so we don't need to bother with a
1509  // wrapper here.
1510  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1511    const GlobalValue *GV = G->getGlobal();
1512    Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
1513  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1514    const char *Sym = S->getSymbol();
1515    Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1516  }
1517
1518  // We don't usually want to end the call-sequence here because we would tidy
1519  // the frame up *after* the call, however in the ABI-changing tail-call case
1520  // we've carefully laid out the parameters so that when sp is reset they'll be
1521  // in the correct location.
1522  if (IsTailCall && !IsSibCall) {
1523    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1524                               DAG.getIntPtrConstant(0, true), InFlag, dl);
1525    InFlag = Chain.getValue(1);
1526  }
1527
1528  // We produce the following DAG scheme for the actual call instruction:
1529  //     (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
1530  //
1531  // Most arguments aren't going to be used and just keep the values live as
1532  // far as LLVM is concerned. It's expected to be selected as simply "bl
1533  // callee" (for a direct, non-tail call).
1534  std::vector<SDValue> Ops;
1535  Ops.push_back(Chain);
1536  Ops.push_back(Callee);
1537
1538  if (IsTailCall) {
1539    // Each tail call may have to adjust the stack by a different amount, so
1540    // this information must travel along with the operation for eventual
1541    // consumption by emitEpilogue.
1542    Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
1543  }
1544
1545  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1546    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1547                                  RegsToPass[i].second.getValueType()));
1548
1549
1550  // Add a register mask operand representing the call-preserved registers. This
1551  // is used later in codegen to constrain register-allocation.
1552  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1553  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1554  assert(Mask && "Missing call preserved mask for calling convention");
1555  Ops.push_back(DAG.getRegisterMask(Mask));
1556
1557  // If we needed glue, put it in as the last argument.
1558  if (InFlag.getNode())
1559    Ops.push_back(InFlag);
1560
1561  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1562
1563  if (IsTailCall) {
1564    return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1565  }
1566
1567  Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size());
1568  InFlag = Chain.getValue(1);
1569
1570  // Now we can reclaim the stack, just as well do it before working out where
1571  // our return value is.
1572  if (!IsSibCall) {
1573    uint64_t CalleePopBytes
1574      = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
1575
1576    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1577                               DAG.getIntPtrConstant(CalleePopBytes, true),
1578                               InFlag, dl);
1579    InFlag = Chain.getValue(1);
1580  }
1581
1582  return LowerCallResult(Chain, InFlag, CallConv,
1583                         IsVarArg, Ins, dl, DAG, InVals);
1584}
1585
1586SDValue
1587AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1588                                      CallingConv::ID CallConv, bool IsVarArg,
1589                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1590                                      SDLoc dl, SelectionDAG &DAG,
1591                                      SmallVectorImpl<SDValue> &InVals) const {
1592  // Assign locations to each value returned by this call.
1593  SmallVector<CCValAssign, 16> RVLocs;
1594  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1595                 getTargetMachine(), RVLocs, *DAG.getContext());
1596  CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
1597
1598  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1599    CCValAssign VA = RVLocs[i];
1600
1601    // Return values that are too big to fit into registers should use an sret
1602    // pointer, so this can be a lot simpler than the main argument code.
1603    assert(VA.isRegLoc() && "Memory locations not expected for call return");
1604
1605    SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1606                                     InFlag);
1607    Chain = Val.getValue(1);
1608    InFlag = Val.getValue(2);
1609
1610    switch (VA.getLocInfo()) {
1611    default: llvm_unreachable("Unknown loc info!");
1612    case CCValAssign::Full: break;
1613    case CCValAssign::BCvt:
1614      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1615      break;
1616    case CCValAssign::ZExt:
1617    case CCValAssign::SExt:
1618    case CCValAssign::AExt:
1619      // Floating-point arguments only get extended/truncated if they're going
1620      // in memory, so using the integer operation is acceptable here.
1621      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
1622      break;
1623    }
1624
1625    InVals.push_back(Val);
1626  }
1627
1628  return Chain;
1629}
1630
1631bool
1632AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1633                                    CallingConv::ID CalleeCC,
1634                                    bool IsVarArg,
1635                                    bool IsCalleeStructRet,
1636                                    bool IsCallerStructRet,
1637                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1638                                    const SmallVectorImpl<SDValue> &OutVals,
1639                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1640                                    SelectionDAG& DAG) const {
1641
1642  // For CallingConv::C this function knows whether the ABI needs
1643  // changing. That's not true for other conventions so they will have to opt in
1644  // manually.
1645  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1646    return false;
1647
1648  const MachineFunction &MF = DAG.getMachineFunction();
1649  const Function *CallerF = MF.getFunction();
1650  CallingConv::ID CallerCC = CallerF->getCallingConv();
1651  bool CCMatch = CallerCC == CalleeCC;
1652
1653  // Byval parameters hand the function a pointer directly into the stack area
1654  // we want to reuse during a tail call. Working around this *is* possible (see
1655  // X86) but less efficient and uglier in LowerCall.
1656  for (Function::const_arg_iterator i = CallerF->arg_begin(),
1657         e = CallerF->arg_end(); i != e; ++i)
1658    if (i->hasByValAttr())
1659      return false;
1660
1661  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
1662    if (IsTailCallConvention(CalleeCC) && CCMatch)
1663      return true;
1664    return false;
1665  }
1666
1667  // Now we search for cases where we can use a tail call without changing the
1668  // ABI. Sibcall is used in some places (particularly gcc) to refer to this
1669  // concept.
1670
1671  // I want anyone implementing a new calling convention to think long and hard
1672  // about this assert.
1673  assert((!IsVarArg || CalleeCC == CallingConv::C)
1674         && "Unexpected variadic calling convention");
1675
1676  if (IsVarArg && !Outs.empty()) {
1677    // At least two cases here: if caller is fastcc then we can't have any
1678    // memory arguments (we'd be expected to clean up the stack afterwards). If
1679    // caller is C then we could potentially use its argument area.
1680
1681    // FIXME: for now we take the most conservative of these in both cases:
1682    // disallow all variadic memory operands.
1683    SmallVector<CCValAssign, 16> ArgLocs;
1684    CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1685                   getTargetMachine(), ArgLocs, *DAG.getContext());
1686
1687    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1688    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
1689      if (!ArgLocs[i].isRegLoc())
1690        return false;
1691  }
1692
1693  // If the calling conventions do not match, then we'd better make sure the
1694  // results are returned in the same way as what the caller expects.
1695  if (!CCMatch) {
1696    SmallVector<CCValAssign, 16> RVLocs1;
1697    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1698                    getTargetMachine(), RVLocs1, *DAG.getContext());
1699    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
1700
1701    SmallVector<CCValAssign, 16> RVLocs2;
1702    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1703                    getTargetMachine(), RVLocs2, *DAG.getContext());
1704    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
1705
1706    if (RVLocs1.size() != RVLocs2.size())
1707      return false;
1708    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1709      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1710        return false;
1711      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1712        return false;
1713      if (RVLocs1[i].isRegLoc()) {
1714        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1715          return false;
1716      } else {
1717        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1718          return false;
1719      }
1720    }
1721  }
1722
1723  // Nothing more to check if the callee is taking no arguments
1724  if (Outs.empty())
1725    return true;
1726
1727  SmallVector<CCValAssign, 16> ArgLocs;
1728  CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1729                 getTargetMachine(), ArgLocs, *DAG.getContext());
1730
1731  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1732
1733  const AArch64MachineFunctionInfo *FuncInfo
1734    = MF.getInfo<AArch64MachineFunctionInfo>();
1735
1736  // If the stack arguments for this call would fit into our own save area then
1737  // the call can be made tail.
1738  return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
1739}
1740
1741bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
1742                                                   bool TailCallOpt) const {
1743  return CallCC == CallingConv::Fast && TailCallOpt;
1744}
1745
1746bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
1747  return CallCC == CallingConv::Fast;
1748}
1749
1750SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
1751                                                   SelectionDAG &DAG,
1752                                                   MachineFrameInfo *MFI,
1753                                                   int ClobberedFI) const {
1754  SmallVector<SDValue, 8> ArgChains;
1755  int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
1756  int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
1757
1758  // Include the original chain at the beginning of the list. When this is
1759  // used by target LowerCall hooks, this helps legalize find the
1760  // CALLSEQ_BEGIN node.
1761  ArgChains.push_back(Chain);
1762
1763  // Add a chain value for each stack argument corresponding
1764  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1765         UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
1766    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
1767      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
1768        if (FI->getIndex() < 0) {
1769          int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
1770          int64_t InLastByte = InFirstByte;
1771          InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
1772
1773          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1774              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1775            ArgChains.push_back(SDValue(L, 1));
1776        }
1777
1778   // Build a tokenfactor for all the chains.
1779   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other,
1780                      &ArgChains[0], ArgChains.size());
1781}
1782
1783static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
1784  switch (CC) {
1785  case ISD::SETEQ:  return A64CC::EQ;
1786  case ISD::SETGT:  return A64CC::GT;
1787  case ISD::SETGE:  return A64CC::GE;
1788  case ISD::SETLT:  return A64CC::LT;
1789  case ISD::SETLE:  return A64CC::LE;
1790  case ISD::SETNE:  return A64CC::NE;
1791  case ISD::SETUGT: return A64CC::HI;
1792  case ISD::SETUGE: return A64CC::HS;
1793  case ISD::SETULT: return A64CC::LO;
1794  case ISD::SETULE: return A64CC::LS;
1795  default: llvm_unreachable("Unexpected condition code");
1796  }
1797}
1798
1799bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
1800  // icmp is implemented using adds/subs immediate, which take an unsigned
1801  // 12-bit immediate, optionally shifted left by 12 bits.
1802
1803  // Symmetric by using adds/subs
1804  if (Val < 0)
1805    Val = -Val;
1806
1807  return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
1808}
1809
1810SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
1811                                        ISD::CondCode CC, SDValue &A64cc,
1812                                        SelectionDAG &DAG, SDLoc &dl) const {
1813  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1814    int64_t C = 0;
1815    EVT VT = RHSC->getValueType(0);
1816    bool knownInvalid = false;
1817
1818    // I'm not convinced the rest of LLVM handles these edge cases properly, but
1819    // we can at least get it right.
1820    if (isSignedIntSetCC(CC)) {
1821      C = RHSC->getSExtValue();
1822    } else if (RHSC->getZExtValue() > INT64_MAX) {
1823      // A 64-bit constant not representable by a signed 64-bit integer is far
1824      // too big to fit into a SUBS immediate anyway.
1825      knownInvalid = true;
1826    } else {
1827      C = RHSC->getZExtValue();
1828    }
1829
1830    if (!knownInvalid && !isLegalICmpImmediate(C)) {
1831      // Constant does not fit, try adjusting it by one?
1832      switch (CC) {
1833      default: break;
1834      case ISD::SETLT:
1835      case ISD::SETGE:
1836        if (isLegalICmpImmediate(C-1)) {
1837          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1838          RHS = DAG.getConstant(C-1, VT);
1839        }
1840        break;
1841      case ISD::SETULT:
1842      case ISD::SETUGE:
1843        if (isLegalICmpImmediate(C-1)) {
1844          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1845          RHS = DAG.getConstant(C-1, VT);
1846        }
1847        break;
1848      case ISD::SETLE:
1849      case ISD::SETGT:
1850        if (isLegalICmpImmediate(C+1)) {
1851          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1852          RHS = DAG.getConstant(C+1, VT);
1853        }
1854        break;
1855      case ISD::SETULE:
1856      case ISD::SETUGT:
1857        if (isLegalICmpImmediate(C+1)) {
1858          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1859          RHS = DAG.getConstant(C+1, VT);
1860        }
1861        break;
1862      }
1863    }
1864  }
1865
1866  A64CC::CondCodes CondCode = IntCCToA64CC(CC);
1867  A64cc = DAG.getConstant(CondCode, MVT::i32);
1868  return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1869                     DAG.getCondCode(CC));
1870}
1871
1872static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
1873                                    A64CC::CondCodes &Alternative) {
1874  A64CC::CondCodes CondCode = A64CC::Invalid;
1875  Alternative = A64CC::Invalid;
1876
1877  switch (CC) {
1878  default: llvm_unreachable("Unknown FP condition!");
1879  case ISD::SETEQ:
1880  case ISD::SETOEQ: CondCode = A64CC::EQ; break;
1881  case ISD::SETGT:
1882  case ISD::SETOGT: CondCode = A64CC::GT; break;
1883  case ISD::SETGE:
1884  case ISD::SETOGE: CondCode = A64CC::GE; break;
1885  case ISD::SETOLT: CondCode = A64CC::MI; break;
1886  case ISD::SETOLE: CondCode = A64CC::LS; break;
1887  case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
1888  case ISD::SETO:   CondCode = A64CC::VC; break;
1889  case ISD::SETUO:  CondCode = A64CC::VS; break;
1890  case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
1891  case ISD::SETUGT: CondCode = A64CC::HI; break;
1892  case ISD::SETUGE: CondCode = A64CC::PL; break;
1893  case ISD::SETLT:
1894  case ISD::SETULT: CondCode = A64CC::LT; break;
1895  case ISD::SETLE:
1896  case ISD::SETULE: CondCode = A64CC::LE; break;
1897  case ISD::SETNE:
1898  case ISD::SETUNE: CondCode = A64CC::NE; break;
1899  }
1900  return CondCode;
1901}
1902
1903SDValue
1904AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1905  SDLoc DL(Op);
1906  EVT PtrVT = getPointerTy();
1907  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1908
1909  switch(getTargetMachine().getCodeModel()) {
1910  case CodeModel::Small:
1911    // The most efficient code is PC-relative anyway for the small memory model,
1912    // so we don't need to worry about relocation model.
1913    return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
1914                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
1915                                                 AArch64II::MO_NO_FLAG),
1916                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
1917                                                 AArch64II::MO_LO12),
1918                       DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
1919  case CodeModel::Large:
1920    return DAG.getNode(
1921      AArch64ISD::WrapperLarge, DL, PtrVT,
1922      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3),
1923      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
1924      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
1925      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
1926  default:
1927    llvm_unreachable("Only small and large code models supported now");
1928  }
1929}
1930
1931
1932// (BRCOND chain, val, dest)
1933SDValue
1934AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1935  SDLoc dl(Op);
1936  SDValue Chain = Op.getOperand(0);
1937  SDValue TheBit = Op.getOperand(1);
1938  SDValue DestBB = Op.getOperand(2);
1939
1940  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
1941  // that as the consumer we are responsible for ignoring rubbish in higher
1942  // bits.
1943  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
1944                       DAG.getConstant(1, MVT::i32));
1945
1946  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
1947                               DAG.getConstant(0, TheBit.getValueType()),
1948                               DAG.getCondCode(ISD::SETNE));
1949
1950  return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
1951                     A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
1952                     DestBB);
1953}
1954
1955// (BR_CC chain, condcode, lhs, rhs, dest)
1956SDValue
1957AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1958  SDLoc dl(Op);
1959  SDValue Chain = Op.getOperand(0);
1960  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1961  SDValue LHS = Op.getOperand(2);
1962  SDValue RHS = Op.getOperand(3);
1963  SDValue DestBB = Op.getOperand(4);
1964
1965  if (LHS.getValueType() == MVT::f128) {
1966    // f128 comparisons are lowered to runtime calls by a routine which sets
1967    // LHS, RHS and CC appropriately for the rest of this function to continue.
1968    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
1969
1970    // If softenSetCCOperands returned a scalar, we need to compare the result
1971    // against zero to select between true and false values.
1972    if (RHS.getNode() == 0) {
1973      RHS = DAG.getConstant(0, LHS.getValueType());
1974      CC = ISD::SETNE;
1975    }
1976  }
1977
1978  if (LHS.getValueType().isInteger()) {
1979    SDValue A64cc;
1980
1981    // Integers are handled in a separate function because the combinations of
1982    // immediates and tests can get hairy and we may want to fiddle things.
1983    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
1984
1985    return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1986                       Chain, CmpOp, A64cc, DestBB);
1987  }
1988
1989  // Note that some LLVM floating-point CondCodes can't be lowered to a single
1990  // conditional branch, hence FPCCToA64CC can set a second test, where either
1991  // passing is sufficient.
1992  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
1993  CondCode = FPCCToA64CC(CC, Alternative);
1994  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
1995  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1996                              DAG.getCondCode(CC));
1997  SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1998                                 Chain, SetCC, A64cc, DestBB);
1999
2000  if (Alternative != A64CC::Invalid) {
2001    A64cc = DAG.getConstant(Alternative, MVT::i32);
2002    A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
2003                           A64BR_CC, SetCC, A64cc, DestBB);
2004
2005  }
2006
2007  return A64BR_CC;
2008}
2009
2010SDValue
2011AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
2012                                       RTLIB::Libcall Call) const {
2013  ArgListTy Args;
2014  ArgListEntry Entry;
2015  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
2016    EVT ArgVT = Op.getOperand(i).getValueType();
2017    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2018    Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
2019    Entry.isSExt = false;
2020    Entry.isZExt = false;
2021    Args.push_back(Entry);
2022  }
2023  SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
2024
2025  Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
2026
2027  // By default, the input chain to this libcall is the entry node of the
2028  // function. If the libcall is going to be emitted as a tail call then
2029  // isUsedByReturnOnly will change it to the right chain if the return
2030  // node which is being folded has a non-entry input chain.
2031  SDValue InChain = DAG.getEntryNode();
2032
2033  // isTailCall may be true since the callee does not reference caller stack
2034  // frame. Check if it's in the right position.
2035  SDValue TCChain = InChain;
2036  bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
2037  if (isTailCall)
2038    InChain = TCChain;
2039
2040  TargetLowering::
2041  CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
2042                    0, getLibcallCallingConv(Call), isTailCall,
2043                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2044                    Callee, Args, DAG, SDLoc(Op));
2045  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2046
2047  if (!CallInfo.second.getNode())
2048    // It's a tailcall, return the chain (which is the DAG root).
2049    return DAG.getRoot();
2050
2051  return CallInfo.first;
2052}
2053
2054SDValue
2055AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
2056  if (Op.getOperand(0).getValueType() != MVT::f128) {
2057    // It's legal except when f128 is involved
2058    return Op;
2059  }
2060
2061  RTLIB::Libcall LC;
2062  LC  = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
2063
2064  SDValue SrcVal = Op.getOperand(0);
2065  return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
2066                     /*isSigned*/ false, SDLoc(Op)).first;
2067}
2068
2069SDValue
2070AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
2071  assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
2072
2073  RTLIB::Libcall LC;
2074  LC  = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
2075
2076  return LowerF128ToCall(Op, DAG, LC);
2077}
2078
2079SDValue
2080AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
2081                                      bool IsSigned) const {
2082  if (Op.getOperand(0).getValueType() != MVT::f128) {
2083    // It's legal except when f128 is involved
2084    return Op;
2085  }
2086
2087  RTLIB::Libcall LC;
2088  if (IsSigned)
2089    LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
2090  else
2091    LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
2092
2093  return LowerF128ToCall(Op, DAG, LC);
2094}
2095
2096SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2097  MachineFunction &MF = DAG.getMachineFunction();
2098  MachineFrameInfo *MFI = MF.getFrameInfo();
2099  MFI->setReturnAddressIsTaken(true);
2100
2101  EVT VT = Op.getValueType();
2102  SDLoc dl(Op);
2103  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2104  if (Depth) {
2105    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2106    SDValue Offset = DAG.getConstant(8, MVT::i64);
2107    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2108                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2109                       MachinePointerInfo(), false, false, false, 0);
2110  }
2111
2112  // Return X30, which contains the return address. Mark it an implicit live-in.
2113  unsigned Reg = MF.addLiveIn(AArch64::X30, getRegClassFor(MVT::i64));
2114  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, MVT::i64);
2115}
2116
2117
2118SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG)
2119                                              const {
2120  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2121  MFI->setFrameAddressIsTaken(true);
2122
2123  EVT VT = Op.getValueType();
2124  SDLoc dl(Op);
2125  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2126  unsigned FrameReg = AArch64::X29;
2127  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2128  while (Depth--)
2129    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
2130                            MachinePointerInfo(),
2131                            false, false, false, 0);
2132  return FrameAddr;
2133}
2134
2135SDValue
2136AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op,
2137                                                  SelectionDAG &DAG) const {
2138  assert(getTargetMachine().getCodeModel() == CodeModel::Large);
2139  assert(getTargetMachine().getRelocationModel() == Reloc::Static);
2140
2141  EVT PtrVT = getPointerTy();
2142  SDLoc dl(Op);
2143  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2144  const GlobalValue *GV = GN->getGlobal();
2145
2146  SDValue GlobalAddr = DAG.getNode(
2147      AArch64ISD::WrapperLarge, dl, PtrVT,
2148      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3),
2149      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
2150      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
2151      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
2152
2153  if (GN->getOffset() != 0)
2154    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
2155                       DAG.getConstant(GN->getOffset(), PtrVT));
2156
2157  return GlobalAddr;
2158}
2159
2160SDValue
2161AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op,
2162                                                  SelectionDAG &DAG) const {
2163  assert(getTargetMachine().getCodeModel() == CodeModel::Small);
2164
2165  EVT PtrVT = getPointerTy();
2166  SDLoc dl(Op);
2167  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2168  const GlobalValue *GV = GN->getGlobal();
2169  unsigned Alignment = GV->getAlignment();
2170  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2171  if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) {
2172    // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate
2173    // to zero when they remain undefined. In PIC mode the GOT can take care of
2174    // this, but in absolute mode we use a constant pool load.
2175    SDValue PoolAddr;
2176    PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2177                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
2178                                                     AArch64II::MO_NO_FLAG),
2179                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
2180                                                     AArch64II::MO_LO12),
2181                           DAG.getConstant(8, MVT::i32));
2182    SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr,
2183                                     MachinePointerInfo::getConstantPool(),
2184                                     /*isVolatile=*/ false,
2185                                     /*isNonTemporal=*/ true,
2186                                     /*isInvariant=*/ true, 8);
2187    if (GN->getOffset() != 0)
2188      return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
2189                         DAG.getConstant(GN->getOffset(), PtrVT));
2190
2191    return GlobalAddr;
2192  }
2193
2194  if (Alignment == 0) {
2195    const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
2196    if (GVPtrTy->getElementType()->isSized()) {
2197      Alignment
2198        = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
2199    } else {
2200      // Be conservative if we can't guess, not that it really matters:
2201      // functions and labels aren't valid for loads, and the methods used to
2202      // actually calculate an address work with any alignment.
2203      Alignment = 1;
2204    }
2205  }
2206
2207  unsigned char HiFixup, LoFixup;
2208  bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM);
2209
2210  if (UseGOT) {
2211    HiFixup = AArch64II::MO_GOT;
2212    LoFixup = AArch64II::MO_GOT_LO12;
2213    Alignment = 8;
2214  } else {
2215    HiFixup = AArch64II::MO_NO_FLAG;
2216    LoFixup = AArch64II::MO_LO12;
2217  }
2218
2219  // AArch64's small model demands the following sequence:
2220  // ADRP x0, somewhere
2221  // ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
2222  SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2223                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2224                                                             HiFixup),
2225                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2226                                                             LoFixup),
2227                                  DAG.getConstant(Alignment, MVT::i32));
2228
2229  if (UseGOT) {
2230    GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
2231                            GlobalRef);
2232  }
2233
2234  if (GN->getOffset() != 0)
2235    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
2236                       DAG.getConstant(GN->getOffset(), PtrVT));
2237
2238  return GlobalRef;
2239}
2240
2241SDValue
2242AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
2243                                             SelectionDAG &DAG) const {
2244  // TableGen doesn't have easy access to the CodeModel or RelocationModel, so
2245  // we make those distinctions here.
2246
2247  switch (getTargetMachine().getCodeModel()) {
2248  case CodeModel::Small:
2249    return LowerGlobalAddressELFSmall(Op, DAG);
2250  case CodeModel::Large:
2251    return LowerGlobalAddressELFLarge(Op, DAG);
2252  default:
2253    llvm_unreachable("Only small and large code models supported now");
2254  }
2255}
2256
2257SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
2258                                                SDValue DescAddr,
2259                                                SDLoc DL,
2260                                                SelectionDAG &DAG) const {
2261  EVT PtrVT = getPointerTy();
2262
2263  // The function we need to call is simply the first entry in the GOT for this
2264  // descriptor, load it in preparation.
2265  SDValue Func, Chain;
2266  Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2267                     DescAddr);
2268
2269  // The function takes only one argument: the address of the descriptor itself
2270  // in X0.
2271  SDValue Glue;
2272  Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
2273  Glue = Chain.getValue(1);
2274
2275  // Finally, there's a special calling-convention which means that the lookup
2276  // must preserve all registers (except X0, obviously).
2277  const TargetRegisterInfo *TRI  = getTargetMachine().getRegisterInfo();
2278  const AArch64RegisterInfo *A64RI
2279    = static_cast<const AArch64RegisterInfo *>(TRI);
2280  const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
2281
2282  // We're now ready to populate the argument list, as with a normal call:
2283  std::vector<SDValue> Ops;
2284  Ops.push_back(Chain);
2285  Ops.push_back(Func);
2286  Ops.push_back(SymAddr);
2287  Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
2288  Ops.push_back(DAG.getRegisterMask(Mask));
2289  Ops.push_back(Glue);
2290
2291  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2292  Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0],
2293                      Ops.size());
2294  Glue = Chain.getValue(1);
2295
2296  // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
2297  // back to the generic handling code.
2298  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
2299}
2300
2301SDValue
2302AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
2303                                             SelectionDAG &DAG) const {
2304  assert(getSubtarget()->isTargetELF() &&
2305         "TLS not implemented for non-ELF targets");
2306  assert(getTargetMachine().getCodeModel() == CodeModel::Small
2307         && "TLS only supported in small memory model");
2308  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2309
2310  TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
2311
2312  SDValue TPOff;
2313  EVT PtrVT = getPointerTy();
2314  SDLoc DL(Op);
2315  const GlobalValue *GV = GA->getGlobal();
2316
2317  SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
2318
2319  if (Model == TLSModel::InitialExec) {
2320    TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2321                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2322                                                   AArch64II::MO_GOTTPREL),
2323                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2324                                                   AArch64II::MO_GOTTPREL_LO12),
2325                        DAG.getConstant(8, MVT::i32));
2326    TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2327                        TPOff);
2328  } else if (Model == TLSModel::LocalExec) {
2329    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2330                                               AArch64II::MO_TPREL_G1);
2331    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2332                                               AArch64II::MO_TPREL_G0_NC);
2333
2334    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2335                                       DAG.getTargetConstant(1, MVT::i32)), 0);
2336    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2337                                       TPOff, LoVar,
2338                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2339  } else if (Model == TLSModel::GeneralDynamic) {
2340    // Accesses used in this sequence go via the TLS descriptor which lives in
2341    // the GOT. Prepare an address we can use to handle this.
2342    SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2343                                                AArch64II::MO_TLSDESC);
2344    SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2345                                                AArch64II::MO_TLSDESC_LO12);
2346    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2347                                   HiDesc, LoDesc,
2348                                   DAG.getConstant(8, MVT::i32));
2349    SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
2350
2351    TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2352  } else if (Model == TLSModel::LocalDynamic) {
2353    // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2354    // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2355    // the beginning of the module's TLS region, followed by a DTPREL offset
2356    // calculation.
2357
2358    // These accesses will need deduplicating if there's more than one.
2359    AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
2360      .getInfo<AArch64MachineFunctionInfo>();
2361    MFI->incNumLocalDynamicTLSAccesses();
2362
2363
2364    // Get the location of _TLS_MODULE_BASE_:
2365    SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2366                                                AArch64II::MO_TLSDESC);
2367    SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2368                                                AArch64II::MO_TLSDESC_LO12);
2369    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2370                                   HiDesc, LoDesc,
2371                                   DAG.getConstant(8, MVT::i32));
2372    SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
2373
2374    ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2375
2376    // Get the variable's offset from _TLS_MODULE_BASE_
2377    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2378                                               AArch64II::MO_DTPREL_G1);
2379    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2380                                               AArch64II::MO_DTPREL_G0_NC);
2381
2382    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2383                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2384    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2385                                       TPOff, LoVar,
2386                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2387  } else
2388      llvm_unreachable("Unsupported TLS access model");
2389
2390
2391  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
2392}
2393
2394SDValue
2395AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2396                                      bool IsSigned) const {
2397  if (Op.getValueType() != MVT::f128) {
2398    // Legal for everything except f128.
2399    return Op;
2400  }
2401
2402  RTLIB::Libcall LC;
2403  if (IsSigned)
2404    LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2405  else
2406    LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2407
2408  return LowerF128ToCall(Op, DAG, LC);
2409}
2410
2411
2412SDValue
2413AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2414  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2415  SDLoc dl(JT);
2416  EVT PtrVT = getPointerTy();
2417
2418  // When compiling PIC, jump tables get put in the code section so a static
2419  // relocation-style is acceptable for both cases.
2420  switch (getTargetMachine().getCodeModel()) {
2421  case CodeModel::Small:
2422    return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2423                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT),
2424                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2425                                              AArch64II::MO_LO12),
2426                       DAG.getConstant(1, MVT::i32));
2427  case CodeModel::Large:
2428    return DAG.getNode(
2429      AArch64ISD::WrapperLarge, dl, PtrVT,
2430      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3),
2431      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC),
2432      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC),
2433      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC));
2434  default:
2435    llvm_unreachable("Only small and large code models supported now");
2436  }
2437}
2438
2439// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
2440SDValue
2441AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2442  SDLoc dl(Op);
2443  SDValue LHS = Op.getOperand(0);
2444  SDValue RHS = Op.getOperand(1);
2445  SDValue IfTrue = Op.getOperand(2);
2446  SDValue IfFalse = Op.getOperand(3);
2447  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2448
2449  if (LHS.getValueType() == MVT::f128) {
2450    // f128 comparisons are lowered to libcalls, but slot in nicely here
2451    // afterwards.
2452    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2453
2454    // If softenSetCCOperands returned a scalar, we need to compare the result
2455    // against zero to select between true and false values.
2456    if (RHS.getNode() == 0) {
2457      RHS = DAG.getConstant(0, LHS.getValueType());
2458      CC = ISD::SETNE;
2459    }
2460  }
2461
2462  if (LHS.getValueType().isInteger()) {
2463    SDValue A64cc;
2464
2465    // Integers are handled in a separate function because the combinations of
2466    // immediates and tests can get hairy and we may want to fiddle things.
2467    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2468
2469    return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2470                       CmpOp, IfTrue, IfFalse, A64cc);
2471  }
2472
2473  // Note that some LLVM floating-point CondCodes can't be lowered to a single
2474  // conditional branch, hence FPCCToA64CC can set a second test, where either
2475  // passing is sufficient.
2476  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2477  CondCode = FPCCToA64CC(CC, Alternative);
2478  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2479  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2480                              DAG.getCondCode(CC));
2481  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
2482                                     Op.getValueType(),
2483                                     SetCC, IfTrue, IfFalse, A64cc);
2484
2485  if (Alternative != A64CC::Invalid) {
2486    A64cc = DAG.getConstant(Alternative, MVT::i32);
2487    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2488                               SetCC, IfTrue, A64SELECT_CC, A64cc);
2489
2490  }
2491
2492  return A64SELECT_CC;
2493}
2494
2495// (SELECT testbit, iftrue, iffalse)
2496SDValue
2497AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2498  SDLoc dl(Op);
2499  SDValue TheBit = Op.getOperand(0);
2500  SDValue IfTrue = Op.getOperand(1);
2501  SDValue IfFalse = Op.getOperand(2);
2502
2503  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
2504  // that as the consumer we are responsible for ignoring rubbish in higher
2505  // bits.
2506  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
2507                       DAG.getConstant(1, MVT::i32));
2508  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
2509                               DAG.getConstant(0, TheBit.getValueType()),
2510                               DAG.getCondCode(ISD::SETNE));
2511
2512  return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2513                     A64CMP, IfTrue, IfFalse,
2514                     DAG.getConstant(A64CC::NE, MVT::i32));
2515}
2516
2517static SDValue LowerVectorSETCC(SDValue Op, SelectionDAG &DAG) {
2518  SDLoc DL(Op);
2519  SDValue LHS = Op.getOperand(0);
2520  SDValue RHS = Op.getOperand(1);
2521  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2522  EVT VT = Op.getValueType();
2523  bool Invert = false;
2524  SDValue Op0, Op1;
2525  unsigned Opcode;
2526
2527  if (LHS.getValueType().isInteger()) {
2528
2529    // Attempt to use Vector Integer Compare Mask Test instruction.
2530    // TST = icmp ne (and (op0, op1), zero).
2531    if (CC == ISD::SETNE) {
2532      if (((LHS.getOpcode() == ISD::AND) &&
2533           ISD::isBuildVectorAllZeros(RHS.getNode())) ||
2534          ((RHS.getOpcode() == ISD::AND) &&
2535           ISD::isBuildVectorAllZeros(LHS.getNode()))) {
2536
2537        SDValue AndOp = (LHS.getOpcode() == ISD::AND) ? LHS : RHS;
2538        SDValue NewLHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(0));
2539        SDValue NewRHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(1));
2540        return DAG.getNode(AArch64ISD::NEON_TST, DL, VT, NewLHS, NewRHS);
2541      }
2542    }
2543
2544    // Attempt to use Vector Integer Compare Mask against Zero instr (Signed).
2545    // Note: Compare against Zero does not support unsigned predicates.
2546    if ((ISD::isBuildVectorAllZeros(RHS.getNode()) ||
2547         ISD::isBuildVectorAllZeros(LHS.getNode())) &&
2548        !isUnsignedIntSetCC(CC)) {
2549
2550      // If LHS is the zero value, swap operands and CondCode.
2551      if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
2552        CC = getSetCCSwappedOperands(CC);
2553        Op0 = RHS;
2554      } else
2555        Op0 = LHS;
2556
2557      // Ensure valid CondCode for Compare Mask against Zero instruction:
2558      // EQ, GE, GT, LE, LT.
2559      if (ISD::SETNE == CC) {
2560        Invert = true;
2561        CC = ISD::SETEQ;
2562      }
2563
2564      // Using constant type to differentiate integer and FP compares with zero.
2565      Op1 = DAG.getConstant(0, MVT::i32);
2566      Opcode = AArch64ISD::NEON_CMPZ;
2567
2568    } else {
2569      // Attempt to use Vector Integer Compare Mask instr (Signed/Unsigned).
2570      // Ensure valid CondCode for Compare Mask instr: EQ, GE, GT, UGE, UGT.
2571      bool Swap = false;
2572      switch (CC) {
2573      default:
2574        llvm_unreachable("Illegal integer comparison.");
2575      case ISD::SETEQ:
2576      case ISD::SETGT:
2577      case ISD::SETGE:
2578      case ISD::SETUGT:
2579      case ISD::SETUGE:
2580        break;
2581      case ISD::SETNE:
2582        Invert = true;
2583        CC = ISD::SETEQ;
2584        break;
2585      case ISD::SETULT:
2586      case ISD::SETULE:
2587      case ISD::SETLT:
2588      case ISD::SETLE:
2589        Swap = true;
2590        CC = getSetCCSwappedOperands(CC);
2591      }
2592
2593      if (Swap)
2594        std::swap(LHS, RHS);
2595
2596      Opcode = AArch64ISD::NEON_CMP;
2597      Op0 = LHS;
2598      Op1 = RHS;
2599    }
2600
2601    // Generate Compare Mask instr or Compare Mask against Zero instr.
2602    SDValue NeonCmp =
2603        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
2604
2605    if (Invert)
2606      NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
2607
2608    return NeonCmp;
2609  }
2610
2611  // Now handle Floating Point cases.
2612  // Attempt to use Vector Floating Point Compare Mask against Zero instruction.
2613  if (ISD::isBuildVectorAllZeros(RHS.getNode()) ||
2614      ISD::isBuildVectorAllZeros(LHS.getNode())) {
2615
2616    // If LHS is the zero value, swap operands and CondCode.
2617    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
2618      CC = getSetCCSwappedOperands(CC);
2619      Op0 = RHS;
2620    } else
2621      Op0 = LHS;
2622
2623    // Using constant type to differentiate integer and FP compares with zero.
2624    Op1 = DAG.getConstantFP(0, MVT::f32);
2625    Opcode = AArch64ISD::NEON_CMPZ;
2626  } else {
2627    // Attempt to use Vector Floating Point Compare Mask instruction.
2628    Op0 = LHS;
2629    Op1 = RHS;
2630    Opcode = AArch64ISD::NEON_CMP;
2631  }
2632
2633  SDValue NeonCmpAlt;
2634  // Some register compares have to be implemented with swapped CC and operands,
2635  // e.g.: OLT implemented as OGT with swapped operands.
2636  bool SwapIfRegArgs = false;
2637
2638  // Ensure valid CondCode for FP Compare Mask against Zero instruction:
2639  // EQ, GE, GT, LE, LT.
2640  // And ensure valid CondCode for FP Compare Mask instruction: EQ, GE, GT.
2641  switch (CC) {
2642  default:
2643    llvm_unreachable("Illegal FP comparison");
2644  case ISD::SETUNE:
2645  case ISD::SETNE:
2646    Invert = true; // Fallthrough
2647  case ISD::SETOEQ:
2648  case ISD::SETEQ:
2649    CC = ISD::SETEQ;
2650    break;
2651  case ISD::SETOLT:
2652  case ISD::SETLT:
2653    CC = ISD::SETLT;
2654    SwapIfRegArgs = true;
2655    break;
2656  case ISD::SETOGT:
2657  case ISD::SETGT:
2658    CC = ISD::SETGT;
2659    break;
2660  case ISD::SETOLE:
2661  case ISD::SETLE:
2662    CC = ISD::SETLE;
2663    SwapIfRegArgs = true;
2664    break;
2665  case ISD::SETOGE:
2666  case ISD::SETGE:
2667    CC = ISD::SETGE;
2668    break;
2669  case ISD::SETUGE:
2670    Invert = true;
2671    CC = ISD::SETLT;
2672    SwapIfRegArgs = true;
2673    break;
2674  case ISD::SETULE:
2675    Invert = true;
2676    CC = ISD::SETGT;
2677    break;
2678  case ISD::SETUGT:
2679    Invert = true;
2680    CC = ISD::SETLE;
2681    SwapIfRegArgs = true;
2682    break;
2683  case ISD::SETULT:
2684    Invert = true;
2685    CC = ISD::SETGE;
2686    break;
2687  case ISD::SETUEQ:
2688    Invert = true; // Fallthrough
2689  case ISD::SETONE:
2690    // Expand this to (OGT |OLT).
2691    NeonCmpAlt =
2692        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGT));
2693    CC = ISD::SETLT;
2694    SwapIfRegArgs = true;
2695    break;
2696  case ISD::SETUO:
2697    Invert = true; // Fallthrough
2698  case ISD::SETO:
2699    // Expand this to (OGE | OLT).
2700    NeonCmpAlt =
2701        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGE));
2702    CC = ISD::SETLT;
2703    SwapIfRegArgs = true;
2704    break;
2705  }
2706
2707  if (Opcode == AArch64ISD::NEON_CMP && SwapIfRegArgs) {
2708    CC = getSetCCSwappedOperands(CC);
2709    std::swap(Op0, Op1);
2710  }
2711
2712  // Generate FP Compare Mask instr or FP Compare Mask against Zero instr
2713  SDValue NeonCmp = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
2714
2715  if (NeonCmpAlt.getNode())
2716    NeonCmp = DAG.getNode(ISD::OR, DL, VT, NeonCmp, NeonCmpAlt);
2717
2718  if (Invert)
2719    NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
2720
2721  return NeonCmp;
2722}
2723
2724// (SETCC lhs, rhs, condcode)
2725SDValue
2726AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2727  SDLoc dl(Op);
2728  SDValue LHS = Op.getOperand(0);
2729  SDValue RHS = Op.getOperand(1);
2730  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2731  EVT VT = Op.getValueType();
2732
2733  if (VT.isVector())
2734    return LowerVectorSETCC(Op, DAG);
2735
2736  if (LHS.getValueType() == MVT::f128) {
2737    // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
2738    // for the rest of the function (some i32 or i64 values).
2739    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2740
2741    // If softenSetCCOperands returned a scalar, use it.
2742    if (RHS.getNode() == 0) {
2743      assert(LHS.getValueType() == Op.getValueType() &&
2744             "Unexpected setcc expansion!");
2745      return LHS;
2746    }
2747  }
2748
2749  if (LHS.getValueType().isInteger()) {
2750    SDValue A64cc;
2751
2752    // Integers are handled in a separate function because the combinations of
2753    // immediates and tests can get hairy and we may want to fiddle things.
2754    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2755
2756    return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2757                       CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2758                       A64cc);
2759  }
2760
2761  // Note that some LLVM floating-point CondCodes can't be lowered to a single
2762  // conditional branch, hence FPCCToA64CC can set a second test, where either
2763  // passing is sufficient.
2764  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2765  CondCode = FPCCToA64CC(CC, Alternative);
2766  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2767  SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2768                              DAG.getCondCode(CC));
2769  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2770                                     CmpOp, DAG.getConstant(1, VT),
2771                                     DAG.getConstant(0, VT), A64cc);
2772
2773  if (Alternative != A64CC::Invalid) {
2774    A64cc = DAG.getConstant(Alternative, MVT::i32);
2775    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
2776                               DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
2777  }
2778
2779  return A64SELECT_CC;
2780}
2781
2782SDValue
2783AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2784  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2785  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2786
2787  // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
2788  // rather than just 8.
2789  return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op),
2790                       Op.getOperand(1), Op.getOperand(2),
2791                       DAG.getConstant(32, MVT::i32), 8, false, false,
2792                       MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
2793}
2794
2795SDValue
2796AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2797  // The layout of the va_list struct is specified in the AArch64 Procedure Call
2798  // Standard, section B.3.
2799  MachineFunction &MF = DAG.getMachineFunction();
2800  AArch64MachineFunctionInfo *FuncInfo
2801    = MF.getInfo<AArch64MachineFunctionInfo>();
2802  SDLoc DL(Op);
2803
2804  SDValue Chain = Op.getOperand(0);
2805  SDValue VAList = Op.getOperand(1);
2806  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2807  SmallVector<SDValue, 4> MemOps;
2808
2809  // void *__stack at offset 0
2810  SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
2811                                    getPointerTy());
2812  MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
2813                                MachinePointerInfo(SV), false, false, 0));
2814
2815  // void *__gr_top at offset 8
2816  int GPRSize = FuncInfo->getVariadicGPRSize();
2817  if (GPRSize > 0) {
2818    SDValue GRTop, GRTopAddr;
2819
2820    GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2821                            DAG.getConstant(8, getPointerTy()));
2822
2823    GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
2824    GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
2825                        DAG.getConstant(GPRSize, getPointerTy()));
2826
2827    MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
2828                                  MachinePointerInfo(SV, 8),
2829                                  false, false, 0));
2830  }
2831
2832  // void *__vr_top at offset 16
2833  int FPRSize = FuncInfo->getVariadicFPRSize();
2834  if (FPRSize > 0) {
2835    SDValue VRTop, VRTopAddr;
2836    VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2837                            DAG.getConstant(16, getPointerTy()));
2838
2839    VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
2840    VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
2841                        DAG.getConstant(FPRSize, getPointerTy()));
2842
2843    MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
2844                                  MachinePointerInfo(SV, 16),
2845                                  false, false, 0));
2846  }
2847
2848  // int __gr_offs at offset 24
2849  SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2850                                   DAG.getConstant(24, getPointerTy()));
2851  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
2852                                GROffsAddr, MachinePointerInfo(SV, 24),
2853                                false, false, 0));
2854
2855  // int __vr_offs at offset 28
2856  SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2857                                   DAG.getConstant(28, getPointerTy()));
2858  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
2859                                VROffsAddr, MachinePointerInfo(SV, 28),
2860                                false, false, 0));
2861
2862  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
2863                     MemOps.size());
2864}
2865
2866SDValue
2867AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2868  switch (Op.getOpcode()) {
2869  default: llvm_unreachable("Don't know how to custom lower this!");
2870  case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
2871  case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
2872  case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
2873  case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
2874  case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
2875  case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
2876  case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
2877  case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
2878  case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
2879  case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
2880  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
2881  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
2882
2883  case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2884  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
2885  case ISD::BR_CC: return LowerBR_CC(Op, DAG);
2886  case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
2887  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2888  case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2889  case ISD::SELECT: return LowerSELECT(Op, DAG);
2890  case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
2891  case ISD::SETCC: return LowerSETCC(Op, DAG);
2892  case ISD::VACOPY: return LowerVACOPY(Op, DAG);
2893  case ISD::VASTART: return LowerVASTART(Op, DAG);
2894  case ISD::BUILD_VECTOR:
2895    return LowerBUILD_VECTOR(Op, DAG, getSubtarget());
2896  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2897  }
2898
2899  return SDValue();
2900}
2901
2902/// Check if the specified splat value corresponds to a valid vector constant
2903/// for a Neon instruction with a "modified immediate" operand (e.g., MOVI).  If
2904/// so, return the encoded 8-bit immediate and the OpCmode instruction fields
2905/// values.
2906static bool isNeonModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
2907                              unsigned SplatBitSize, SelectionDAG &DAG,
2908                              bool is128Bits, NeonModImmType type, EVT &VT,
2909                              unsigned &Imm, unsigned &OpCmode) {
2910  switch (SplatBitSize) {
2911  default:
2912    llvm_unreachable("unexpected size for isNeonModifiedImm");
2913  case 8: {
2914    if (type != Neon_Mov_Imm)
2915      return false;
2916    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2917    // Neon movi per byte: Op=0, Cmode=1110.
2918    OpCmode = 0xe;
2919    Imm = SplatBits;
2920    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
2921    break;
2922  }
2923  case 16: {
2924    // Neon move inst per halfword
2925    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
2926    if ((SplatBits & ~0xff) == 0) {
2927      // Value = 0x00nn is 0x00nn LSL 0
2928      // movi: Op=0, Cmode=1000; mvni: Op=1, Cmode=1000
2929      // bic:  Op=1, Cmode=1001;  orr:  Op=0, Cmode=1001
2930      // Op=x, Cmode=100y
2931      Imm = SplatBits;
2932      OpCmode = 0x8;
2933      break;
2934    }
2935    if ((SplatBits & ~0xff00) == 0) {
2936      // Value = 0xnn00 is 0x00nn LSL 8
2937      // movi: Op=0, Cmode=1010; mvni: Op=1, Cmode=1010
2938      // bic:  Op=1, Cmode=1011;  orr:  Op=0, Cmode=1011
2939      // Op=x, Cmode=101x
2940      Imm = SplatBits >> 8;
2941      OpCmode = 0xa;
2942      break;
2943    }
2944    // can't handle any other
2945    return false;
2946  }
2947
2948  case 32: {
2949    // First the LSL variants (MSL is unusable by some interested instructions).
2950
2951    // Neon move instr per word, shift zeros
2952    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
2953    if ((SplatBits & ~0xff) == 0) {
2954      // Value = 0x000000nn is 0x000000nn LSL 0
2955      // movi: Op=0, Cmode= 0000; mvni: Op=1, Cmode= 0000
2956      // bic:  Op=1, Cmode= 0001; orr:  Op=0, Cmode= 0001
2957      // Op=x, Cmode=000x
2958      Imm = SplatBits;
2959      OpCmode = 0;
2960      break;
2961    }
2962    if ((SplatBits & ~0xff00) == 0) {
2963      // Value = 0x0000nn00 is 0x000000nn LSL 8
2964      // movi: Op=0, Cmode= 0010;  mvni: Op=1, Cmode= 0010
2965      // bic:  Op=1, Cmode= 0011;  orr : Op=0, Cmode= 0011
2966      // Op=x, Cmode=001x
2967      Imm = SplatBits >> 8;
2968      OpCmode = 0x2;
2969      break;
2970    }
2971    if ((SplatBits & ~0xff0000) == 0) {
2972      // Value = 0x00nn0000 is 0x000000nn LSL 16
2973      // movi: Op=0, Cmode= 0100; mvni: Op=1, Cmode= 0100
2974      // bic:  Op=1, Cmode= 0101; orr:  Op=0, Cmode= 0101
2975      // Op=x, Cmode=010x
2976      Imm = SplatBits >> 16;
2977      OpCmode = 0x4;
2978      break;
2979    }
2980    if ((SplatBits & ~0xff000000) == 0) {
2981      // Value = 0xnn000000 is 0x000000nn LSL 24
2982      // movi: Op=0, Cmode= 0110; mvni: Op=1, Cmode= 0110
2983      // bic:  Op=1, Cmode= 0111; orr:  Op=0, Cmode= 0111
2984      // Op=x, Cmode=011x
2985      Imm = SplatBits >> 24;
2986      OpCmode = 0x6;
2987      break;
2988    }
2989
2990    // Now the MSL immediates.
2991
2992    // Neon move instr per word, shift ones
2993    if ((SplatBits & ~0xffff) == 0 &&
2994        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
2995      // Value = 0x0000nnff is 0x000000nn MSL 8
2996      // movi: Op=0, Cmode= 1100; mvni: Op=1, Cmode= 1100
2997      // Op=x, Cmode=1100
2998      Imm = SplatBits >> 8;
2999      OpCmode = 0xc;
3000      break;
3001    }
3002    if ((SplatBits & ~0xffffff) == 0 &&
3003        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3004      // Value = 0x00nnffff is 0x000000nn MSL 16
3005      // movi: Op=1, Cmode= 1101; mvni: Op=1, Cmode= 1101
3006      // Op=x, Cmode=1101
3007      Imm = SplatBits >> 16;
3008      OpCmode = 0xd;
3009      break;
3010    }
3011    // can't handle any other
3012    return false;
3013  }
3014
3015  case 64: {
3016    if (type != Neon_Mov_Imm)
3017      return false;
3018    // Neon move instr bytemask, where each byte is either 0x00 or 0xff.
3019    // movi Op=1, Cmode=1110.
3020    OpCmode = 0x1e;
3021    uint64_t BitMask = 0xff;
3022    uint64_t Val = 0;
3023    unsigned ImmMask = 1;
3024    Imm = 0;
3025    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3026      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3027        Val |= BitMask;
3028        Imm |= ImmMask;
3029      } else if ((SplatBits & BitMask) != 0) {
3030        return false;
3031      }
3032      BitMask <<= 8;
3033      ImmMask <<= 1;
3034    }
3035    SplatBits = Val;
3036    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3037    break;
3038  }
3039  }
3040
3041  return true;
3042}
3043
3044static SDValue PerformANDCombine(SDNode *N,
3045                                 TargetLowering::DAGCombinerInfo &DCI) {
3046
3047  SelectionDAG &DAG = DCI.DAG;
3048  SDLoc DL(N);
3049  EVT VT = N->getValueType(0);
3050
3051  // We're looking for an SRA/SHL pair which form an SBFX.
3052
3053  if (VT != MVT::i32 && VT != MVT::i64)
3054    return SDValue();
3055
3056  if (!isa<ConstantSDNode>(N->getOperand(1)))
3057    return SDValue();
3058
3059  uint64_t TruncMask = N->getConstantOperandVal(1);
3060  if (!isMask_64(TruncMask))
3061    return SDValue();
3062
3063  uint64_t Width = CountPopulation_64(TruncMask);
3064  SDValue Shift = N->getOperand(0);
3065
3066  if (Shift.getOpcode() != ISD::SRL)
3067    return SDValue();
3068
3069  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
3070    return SDValue();
3071  uint64_t LSB = Shift->getConstantOperandVal(1);
3072
3073  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
3074    return SDValue();
3075
3076  return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
3077                     DAG.getConstant(LSB, MVT::i64),
3078                     DAG.getConstant(LSB + Width - 1, MVT::i64));
3079}
3080
3081/// For a true bitfield insert, the bits getting into that contiguous mask
3082/// should come from the low part of an existing value: they must be formed from
3083/// a compatible SHL operation (unless they're already low). This function
3084/// checks that condition and returns the least-significant bit that's
3085/// intended. If the operation not a field preparation, -1 is returned.
3086static int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT,
3087                            SDValue &MaskedVal, uint64_t Mask) {
3088  if (!isShiftedMask_64(Mask))
3089    return -1;
3090
3091  // Now we need to alter MaskedVal so that it is an appropriate input for a BFI
3092  // instruction. BFI will do a left-shift by LSB before applying the mask we've
3093  // spotted, so in general we should pre-emptively "undo" that by making sure
3094  // the incoming bits have had a right-shift applied to them.
3095  //
3096  // This right shift, however, will combine with existing left/right shifts. In
3097  // the simplest case of a completely straight bitfield operation, it will be
3098  // expected to completely cancel out with an existing SHL. More complicated
3099  // cases (e.g. bitfield to bitfield copy) may still need a real shift before
3100  // the BFI.
3101
3102  uint64_t LSB = countTrailingZeros(Mask);
3103  int64_t ShiftRightRequired = LSB;
3104  if (MaskedVal.getOpcode() == ISD::SHL &&
3105      isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
3106    ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
3107    MaskedVal = MaskedVal.getOperand(0);
3108  } else if (MaskedVal.getOpcode() == ISD::SRL &&
3109             isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
3110    ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
3111    MaskedVal = MaskedVal.getOperand(0);
3112  }
3113
3114  if (ShiftRightRequired > 0)
3115    MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
3116                            DAG.getConstant(ShiftRightRequired, MVT::i64));
3117  else if (ShiftRightRequired < 0) {
3118    // We could actually end up with a residual left shift, for example with
3119    // "struc.bitfield = val << 1".
3120    MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
3121                            DAG.getConstant(-ShiftRightRequired, MVT::i64));
3122  }
3123
3124  return LSB;
3125}
3126
3127/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
3128/// a mask and an extension. Returns true if a BFI was found and provides
3129/// information on its surroundings.
3130static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
3131                          bool &Extended) {
3132  Extended = false;
3133  if (N.getOpcode() == ISD::ZERO_EXTEND) {
3134    Extended = true;
3135    N = N.getOperand(0);
3136  }
3137
3138  if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
3139    Mask = N->getConstantOperandVal(1);
3140    N = N.getOperand(0);
3141  } else {
3142    // Mask is the whole width.
3143    Mask = -1ULL >> (64 - N.getValueType().getSizeInBits());
3144  }
3145
3146  if (N.getOpcode() == AArch64ISD::BFI) {
3147    BFI = N;
3148    return true;
3149  }
3150
3151  return false;
3152}
3153
3154/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
3155/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
3156/// can often be further combined with a larger mask. Ultimately, we want mask
3157/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
3158static SDValue tryCombineToBFI(SDNode *N,
3159                               TargetLowering::DAGCombinerInfo &DCI,
3160                               const AArch64Subtarget *Subtarget) {
3161  SelectionDAG &DAG = DCI.DAG;
3162  SDLoc DL(N);
3163  EVT VT = N->getValueType(0);
3164
3165  assert(N->getOpcode() == ISD::OR && "Unexpected root");
3166
3167  // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
3168  // abandon the effort.
3169  SDValue LHS = N->getOperand(0);
3170  if (LHS.getOpcode() != ISD::AND)
3171    return SDValue();
3172
3173  uint64_t LHSMask;
3174  if (isa<ConstantSDNode>(LHS.getOperand(1)))
3175    LHSMask = LHS->getConstantOperandVal(1);
3176  else
3177    return SDValue();
3178
3179  // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
3180  // is or abandon the effort.
3181  SDValue RHS = N->getOperand(1);
3182  if (RHS.getOpcode() != ISD::AND)
3183    return SDValue();
3184
3185  uint64_t RHSMask;
3186  if (isa<ConstantSDNode>(RHS.getOperand(1)))
3187    RHSMask = RHS->getConstantOperandVal(1);
3188  else
3189    return SDValue();
3190
3191  // Can't do anything if the masks are incompatible.
3192  if (LHSMask & RHSMask)
3193    return SDValue();
3194
3195  // Now we need one of the masks to be a contiguous field. Without loss of
3196  // generality that should be the RHS one.
3197  SDValue Bitfield = LHS.getOperand(0);
3198  if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
3199    // We know that LHS is a candidate new value, and RHS isn't already a better
3200    // one.
3201    std::swap(LHS, RHS);
3202    std::swap(LHSMask, RHSMask);
3203  }
3204
3205  // We've done our best to put the right operands in the right places, all we
3206  // can do now is check whether a BFI exists.
3207  Bitfield = RHS.getOperand(0);
3208  int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
3209  if (LSB == -1)
3210    return SDValue();
3211
3212  uint32_t Width = CountPopulation_64(RHSMask);
3213  assert(Width && "Expected non-zero bitfield width");
3214
3215  SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
3216                            LHS.getOperand(0), Bitfield,
3217                            DAG.getConstant(LSB, MVT::i64),
3218                            DAG.getConstant(Width, MVT::i64));
3219
3220  // Mask is trivial
3221  if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits())))
3222    return BFI;
3223
3224  return DAG.getNode(ISD::AND, DL, VT, BFI,
3225                     DAG.getConstant(LHSMask | RHSMask, VT));
3226}
3227
3228/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
3229/// original input. This is surprisingly common because SROA splits things up
3230/// into i8 chunks, so the originally detected MaskedBFI may actually only act
3231/// on the low (say) byte of a word. This is then orred into the rest of the
3232/// word afterwards.
3233///
3234/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
3235///
3236/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
3237/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
3238/// involved.
3239static SDValue tryCombineToLargerBFI(SDNode *N,
3240                                     TargetLowering::DAGCombinerInfo &DCI,
3241                                     const AArch64Subtarget *Subtarget) {
3242  SelectionDAG &DAG = DCI.DAG;
3243  SDLoc DL(N);
3244  EVT VT = N->getValueType(0);
3245
3246  // First job is to hunt for a MaskedBFI on either the left or right. Swap
3247  // operands if it's actually on the right.
3248  SDValue BFI;
3249  SDValue PossExtraMask;
3250  uint64_t ExistingMask = 0;
3251  bool Extended = false;
3252  if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
3253    PossExtraMask = N->getOperand(1);
3254  else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
3255    PossExtraMask = N->getOperand(0);
3256  else
3257    return SDValue();
3258
3259  // We can only combine a BFI with another compatible mask.
3260  if (PossExtraMask.getOpcode() != ISD::AND ||
3261      !isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
3262    return SDValue();
3263
3264  uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
3265
3266  // Masks must be compatible.
3267  if (ExtraMask & ExistingMask)
3268    return SDValue();
3269
3270  SDValue OldBFIVal = BFI.getOperand(0);
3271  SDValue NewBFIVal = BFI.getOperand(1);
3272  if (Extended) {
3273    // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
3274    // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
3275    // need to be made compatible.
3276    assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
3277           && "Invalid types for BFI");
3278    OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
3279    NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
3280  }
3281
3282  // We need the MaskedBFI to be combined with a mask of the *same* value.
3283  if (PossExtraMask.getOperand(0) != OldBFIVal)
3284    return SDValue();
3285
3286  BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
3287                    OldBFIVal, NewBFIVal,
3288                    BFI.getOperand(2), BFI.getOperand(3));
3289
3290  // If the masking is trivial, we don't need to create it.
3291  if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits())))
3292    return BFI;
3293
3294  return DAG.getNode(ISD::AND, DL, VT, BFI,
3295                     DAG.getConstant(ExtraMask | ExistingMask, VT));
3296}
3297
3298/// An EXTR instruction is made up of two shifts, ORed together. This helper
3299/// searches for and classifies those shifts.
3300static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
3301                         bool &FromHi) {
3302  if (N.getOpcode() == ISD::SHL)
3303    FromHi = false;
3304  else if (N.getOpcode() == ISD::SRL)
3305    FromHi = true;
3306  else
3307    return false;
3308
3309  if (!isa<ConstantSDNode>(N.getOperand(1)))
3310    return false;
3311
3312  ShiftAmount = N->getConstantOperandVal(1);
3313  Src = N->getOperand(0);
3314  return true;
3315}
3316
3317/// EXTR instruction extracts a contiguous chunk of bits from two existing
3318/// registers viewed as a high/low pair. This function looks for the pattern:
3319/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
3320/// EXTR. Can't quite be done in TableGen because the two immediates aren't
3321/// independent.
3322static SDValue tryCombineToEXTR(SDNode *N,
3323                                TargetLowering::DAGCombinerInfo &DCI) {
3324  SelectionDAG &DAG = DCI.DAG;
3325  SDLoc DL(N);
3326  EVT VT = N->getValueType(0);
3327
3328  assert(N->getOpcode() == ISD::OR && "Unexpected root");
3329
3330  if (VT != MVT::i32 && VT != MVT::i64)
3331    return SDValue();
3332
3333  SDValue LHS;
3334  uint32_t ShiftLHS = 0;
3335  bool LHSFromHi = 0;
3336  if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
3337    return SDValue();
3338
3339  SDValue RHS;
3340  uint32_t ShiftRHS = 0;
3341  bool RHSFromHi = 0;
3342  if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
3343    return SDValue();
3344
3345  // If they're both trying to come from the high part of the register, they're
3346  // not really an EXTR.
3347  if (LHSFromHi == RHSFromHi)
3348    return SDValue();
3349
3350  if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
3351    return SDValue();
3352
3353  if (LHSFromHi) {
3354    std::swap(LHS, RHS);
3355    std::swap(ShiftLHS, ShiftRHS);
3356  }
3357
3358  return DAG.getNode(AArch64ISD::EXTR, DL, VT,
3359                     LHS, RHS,
3360                     DAG.getConstant(ShiftRHS, MVT::i64));
3361}
3362
3363/// Target-specific dag combine xforms for ISD::OR
3364static SDValue PerformORCombine(SDNode *N,
3365                                TargetLowering::DAGCombinerInfo &DCI,
3366                                const AArch64Subtarget *Subtarget) {
3367
3368  SelectionDAG &DAG = DCI.DAG;
3369  SDLoc DL(N);
3370  EVT VT = N->getValueType(0);
3371
3372  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3373    return SDValue();
3374
3375  // Attempt to recognise bitfield-insert operations.
3376  SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
3377  if (Res.getNode())
3378    return Res;
3379
3380  // Attempt to combine an existing MaskedBFI operation into one with a larger
3381  // mask.
3382  Res = tryCombineToLargerBFI(N, DCI, Subtarget);
3383  if (Res.getNode())
3384    return Res;
3385
3386  Res = tryCombineToEXTR(N, DCI);
3387  if (Res.getNode())
3388    return Res;
3389
3390  if (!Subtarget->hasNEON())
3391    return SDValue();
3392
3393  // Attempt to use vector immediate-form BSL
3394  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
3395
3396  SDValue N0 = N->getOperand(0);
3397  if (N0.getOpcode() != ISD::AND)
3398    return SDValue();
3399
3400  SDValue N1 = N->getOperand(1);
3401  if (N1.getOpcode() != ISD::AND)
3402    return SDValue();
3403
3404  if (VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
3405    APInt SplatUndef;
3406    unsigned SplatBitSize;
3407    bool HasAnyUndefs;
3408    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
3409    APInt SplatBits0;
3410    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
3411                                      HasAnyUndefs) &&
3412        !HasAnyUndefs) {
3413      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
3414      APInt SplatBits1;
3415      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
3416                                        HasAnyUndefs) &&
3417          !HasAnyUndefs && SplatBits0 == ~SplatBits1) {
3418        // Canonicalize the vector type to make instruction selection simpler.
3419        EVT CanonicalVT = VT.is128BitVector() ? MVT::v16i8 : MVT::v8i8;
3420        SDValue Result = DAG.getNode(AArch64ISD::NEON_BSL, DL, CanonicalVT,
3421                                     N0->getOperand(1), N0->getOperand(0),
3422                                     N1->getOperand(0));
3423        return DAG.getNode(ISD::BITCAST, DL, VT, Result);
3424      }
3425    }
3426  }
3427
3428  return SDValue();
3429}
3430
3431/// Target-specific dag combine xforms for ISD::SRA
3432static SDValue PerformSRACombine(SDNode *N,
3433                                 TargetLowering::DAGCombinerInfo &DCI) {
3434
3435  SelectionDAG &DAG = DCI.DAG;
3436  SDLoc DL(N);
3437  EVT VT = N->getValueType(0);
3438
3439  // We're looking for an SRA/SHL pair which form an SBFX.
3440
3441  if (VT != MVT::i32 && VT != MVT::i64)
3442    return SDValue();
3443
3444  if (!isa<ConstantSDNode>(N->getOperand(1)))
3445    return SDValue();
3446
3447  uint64_t ExtraSignBits = N->getConstantOperandVal(1);
3448  SDValue Shift = N->getOperand(0);
3449
3450  if (Shift.getOpcode() != ISD::SHL)
3451    return SDValue();
3452
3453  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
3454    return SDValue();
3455
3456  uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
3457  uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
3458  uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
3459
3460  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
3461    return SDValue();
3462
3463  return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
3464                     DAG.getConstant(LSB, MVT::i64),
3465                     DAG.getConstant(LSB + Width - 1, MVT::i64));
3466}
3467
3468/// Check if this is a valid build_vector for the immediate operand of
3469/// a vector shift operation, where all the elements of the build_vector
3470/// must have the same constant integer value.
3471static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
3472  // Ignore bit_converts.
3473  while (Op.getOpcode() == ISD::BITCAST)
3474    Op = Op.getOperand(0);
3475  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3476  APInt SplatBits, SplatUndef;
3477  unsigned SplatBitSize;
3478  bool HasAnyUndefs;
3479  if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
3480                                      HasAnyUndefs, ElementBits) ||
3481      SplatBitSize > ElementBits)
3482    return false;
3483  Cnt = SplatBits.getSExtValue();
3484  return true;
3485}
3486
3487/// Check if this is a valid build_vector for the immediate operand of
3488/// a vector shift left operation.  That value must be in the range:
3489/// 0 <= Value < ElementBits
3490static bool isVShiftLImm(SDValue Op, EVT VT, int64_t &Cnt) {
3491  assert(VT.isVector() && "vector shift count is not a vector type");
3492  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3493  if (!getVShiftImm(Op, ElementBits, Cnt))
3494    return false;
3495  return (Cnt >= 0 && Cnt < ElementBits);
3496}
3497
3498/// Check if this is a valid build_vector for the immediate operand of a
3499/// vector shift right operation. The value must be in the range:
3500///   1 <= Value <= ElementBits
3501static bool isVShiftRImm(SDValue Op, EVT VT, int64_t &Cnt) {
3502  assert(VT.isVector() && "vector shift count is not a vector type");
3503  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3504  if (!getVShiftImm(Op, ElementBits, Cnt))
3505    return false;
3506  return (Cnt >= 1 && Cnt <= ElementBits);
3507}
3508
3509/// Checks for immediate versions of vector shifts and lowers them.
3510static SDValue PerformShiftCombine(SDNode *N,
3511                                   TargetLowering::DAGCombinerInfo &DCI,
3512                                   const AArch64Subtarget *ST) {
3513  SelectionDAG &DAG = DCI.DAG;
3514  EVT VT = N->getValueType(0);
3515  if (N->getOpcode() == ISD::SRA && (VT == MVT::i32 || VT == MVT::i64))
3516    return PerformSRACombine(N, DCI);
3517
3518  // Nothing to be done for scalar shifts.
3519  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3520  if (!VT.isVector() || !TLI.isTypeLegal(VT))
3521    return SDValue();
3522
3523  assert(ST->hasNEON() && "unexpected vector shift");
3524  int64_t Cnt;
3525
3526  switch (N->getOpcode()) {
3527  default:
3528    llvm_unreachable("unexpected shift opcode");
3529
3530  case ISD::SHL:
3531    if (isVShiftLImm(N->getOperand(1), VT, Cnt)) {
3532      SDValue RHS =
3533          DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
3534                      DAG.getConstant(Cnt, MVT::i32));
3535      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), RHS);
3536    }
3537    break;
3538
3539  case ISD::SRA:
3540  case ISD::SRL:
3541    if (isVShiftRImm(N->getOperand(1), VT, Cnt)) {
3542      SDValue RHS =
3543          DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
3544                      DAG.getConstant(Cnt, MVT::i32));
3545      return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N->getOperand(0), RHS);
3546    }
3547    break;
3548  }
3549
3550  return SDValue();
3551}
3552
3553/// ARM-specific DAG combining for intrinsics.
3554static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
3555  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3556
3557  switch (IntNo) {
3558  default:
3559    // Don't do anything for most intrinsics.
3560    break;
3561
3562  case Intrinsic::arm_neon_vqshifts:
3563  case Intrinsic::arm_neon_vqshiftu:
3564    EVT VT = N->getOperand(1).getValueType();
3565    int64_t Cnt;
3566    if (!isVShiftLImm(N->getOperand(2), VT, Cnt))
3567      break;
3568    unsigned VShiftOpc = (IntNo == Intrinsic::arm_neon_vqshifts)
3569                             ? AArch64ISD::NEON_QSHLs
3570                             : AArch64ISD::NEON_QSHLu;
3571    return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
3572                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
3573  }
3574
3575  return SDValue();
3576}
3577
3578/// Target-specific DAG combine function for NEON load/store intrinsics
3579/// to merge base address updates.
3580static SDValue CombineBaseUpdate(SDNode *N,
3581                                 TargetLowering::DAGCombinerInfo &DCI) {
3582  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
3583    return SDValue();
3584
3585  SelectionDAG &DAG = DCI.DAG;
3586  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
3587                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
3588  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
3589  SDValue Addr = N->getOperand(AddrOpIdx);
3590
3591  // Search for a use of the address operand that is an increment.
3592  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
3593       UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
3594    SDNode *User = *UI;
3595    if (User->getOpcode() != ISD::ADD ||
3596        UI.getUse().getResNo() != Addr.getResNo())
3597      continue;
3598
3599    // Check that the add is independent of the load/store.  Otherwise, folding
3600    // it would create a cycle.
3601    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
3602      continue;
3603
3604    // Find the new opcode for the updating load/store.
3605    bool isLoad = true;
3606    bool isLaneOp = false;
3607    unsigned NewOpc = 0;
3608    unsigned NumVecs = 0;
3609    if (isIntrinsic) {
3610      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
3611      switch (IntNo) {
3612      default: llvm_unreachable("unexpected intrinsic for Neon base update");
3613      case Intrinsic::arm_neon_vld1:       NewOpc = AArch64ISD::NEON_LD1_UPD;
3614        NumVecs = 1; break;
3615      case Intrinsic::arm_neon_vld2:       NewOpc = AArch64ISD::NEON_LD2_UPD;
3616        NumVecs = 2; break;
3617      case Intrinsic::arm_neon_vld3:       NewOpc = AArch64ISD::NEON_LD3_UPD;
3618        NumVecs = 3; break;
3619      case Intrinsic::arm_neon_vld4:       NewOpc = AArch64ISD::NEON_LD4_UPD;
3620        NumVecs = 4; break;
3621      case Intrinsic::arm_neon_vst1:       NewOpc = AArch64ISD::NEON_ST1_UPD;
3622        NumVecs = 1; isLoad = false; break;
3623      case Intrinsic::arm_neon_vst2:       NewOpc = AArch64ISD::NEON_ST2_UPD;
3624        NumVecs = 2; isLoad = false; break;
3625      case Intrinsic::arm_neon_vst3:       NewOpc = AArch64ISD::NEON_ST3_UPD;
3626        NumVecs = 3; isLoad = false; break;
3627      case Intrinsic::arm_neon_vst4:       NewOpc = AArch64ISD::NEON_ST4_UPD;
3628        NumVecs = 4; isLoad = false; break;
3629      case Intrinsic::aarch64_neon_vld1x2: NewOpc = AArch64ISD::NEON_LD1x2_UPD;
3630        NumVecs = 2; break;
3631      case Intrinsic::aarch64_neon_vld1x3: NewOpc = AArch64ISD::NEON_LD1x3_UPD;
3632        NumVecs = 3; break;
3633      case Intrinsic::aarch64_neon_vld1x4: NewOpc = AArch64ISD::NEON_LD1x4_UPD;
3634        NumVecs = 4; break;
3635      case Intrinsic::aarch64_neon_vst1x2: NewOpc = AArch64ISD::NEON_ST1x2_UPD;
3636        NumVecs = 2; isLoad = false; break;
3637      case Intrinsic::aarch64_neon_vst1x3: NewOpc = AArch64ISD::NEON_ST1x3_UPD;
3638        NumVecs = 3; isLoad = false; break;
3639      case Intrinsic::aarch64_neon_vst1x4: NewOpc = AArch64ISD::NEON_ST1x4_UPD;
3640        NumVecs = 4; isLoad = false; break;
3641      case Intrinsic::arm_neon_vld2lane:   NewOpc = AArch64ISD::NEON_LD2LN_UPD;
3642        NumVecs = 2; isLaneOp = true; break;
3643      case Intrinsic::arm_neon_vld3lane:   NewOpc = AArch64ISD::NEON_LD3LN_UPD;
3644        NumVecs = 3; isLaneOp = true; break;
3645      case Intrinsic::arm_neon_vld4lane:   NewOpc = AArch64ISD::NEON_LD4LN_UPD;
3646        NumVecs = 4; isLaneOp = true; break;
3647      case Intrinsic::arm_neon_vst2lane:   NewOpc = AArch64ISD::NEON_ST2LN_UPD;
3648        NumVecs = 2; isLoad = false; isLaneOp = true; break;
3649      case Intrinsic::arm_neon_vst3lane:   NewOpc = AArch64ISD::NEON_ST3LN_UPD;
3650        NumVecs = 3; isLoad = false; isLaneOp = true; break;
3651      case Intrinsic::arm_neon_vst4lane:   NewOpc = AArch64ISD::NEON_ST4LN_UPD;
3652        NumVecs = 4; isLoad = false; isLaneOp = true; break;
3653      }
3654    } else {
3655      isLaneOp = true;
3656      switch (N->getOpcode()) {
3657      default: llvm_unreachable("unexpected opcode for Neon base update");
3658      case AArch64ISD::NEON_LD2DUP: NewOpc = AArch64ISD::NEON_LD2DUP_UPD;
3659        NumVecs = 2; break;
3660      case AArch64ISD::NEON_LD3DUP: NewOpc = AArch64ISD::NEON_LD3DUP_UPD;
3661        NumVecs = 3; break;
3662      case AArch64ISD::NEON_LD4DUP: NewOpc = AArch64ISD::NEON_LD4DUP_UPD;
3663        NumVecs = 4; break;
3664      }
3665    }
3666
3667    // Find the size of memory referenced by the load/store.
3668    EVT VecTy;
3669    if (isLoad)
3670      VecTy = N->getValueType(0);
3671    else
3672      VecTy = N->getOperand(AddrOpIdx + 1).getValueType();
3673    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
3674    if (isLaneOp)
3675      NumBytes /= VecTy.getVectorNumElements();
3676
3677    // If the increment is a constant, it must match the memory ref size.
3678    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
3679    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
3680      uint32_t IncVal = CInc->getZExtValue();
3681      if (IncVal != NumBytes)
3682        continue;
3683      Inc = DAG.getTargetConstant(IncVal, MVT::i32);
3684    }
3685
3686    // Create the new updating load/store node.
3687    EVT Tys[6];
3688    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
3689    unsigned n;
3690    for (n = 0; n < NumResultVecs; ++n)
3691      Tys[n] = VecTy;
3692    Tys[n++] = MVT::i64;
3693    Tys[n] = MVT::Other;
3694    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs + 2);
3695    SmallVector<SDValue, 8> Ops;
3696    Ops.push_back(N->getOperand(0)); // incoming chain
3697    Ops.push_back(N->getOperand(AddrOpIdx));
3698    Ops.push_back(Inc);
3699    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
3700      Ops.push_back(N->getOperand(i));
3701    }
3702    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
3703    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
3704                                           Ops.data(), Ops.size(),
3705                                           MemInt->getMemoryVT(),
3706                                           MemInt->getMemOperand());
3707
3708    // Update the uses.
3709    std::vector<SDValue> NewResults;
3710    for (unsigned i = 0; i < NumResultVecs; ++i) {
3711      NewResults.push_back(SDValue(UpdN.getNode(), i));
3712    }
3713    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
3714    DCI.CombineTo(N, NewResults);
3715    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
3716
3717    break;
3718  }
3719  return SDValue();
3720}
3721
3722/// For a VDUPLANE node N, check if its source operand is a vldN-lane (N > 1)
3723/// intrinsic, and if all the other uses of that intrinsic are also VDUPLANEs.
3724/// If so, combine them to a vldN-dup operation and return true.
3725static SDValue CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
3726  SelectionDAG &DAG = DCI.DAG;
3727  EVT VT = N->getValueType(0);
3728
3729  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
3730  SDNode *VLD = N->getOperand(0).getNode();
3731  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
3732    return SDValue();
3733  unsigned NumVecs = 0;
3734  unsigned NewOpc = 0;
3735  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
3736  if (IntNo == Intrinsic::arm_neon_vld2lane) {
3737    NumVecs = 2;
3738    NewOpc = AArch64ISD::NEON_LD2DUP;
3739  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
3740    NumVecs = 3;
3741    NewOpc = AArch64ISD::NEON_LD3DUP;
3742  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
3743    NumVecs = 4;
3744    NewOpc = AArch64ISD::NEON_LD4DUP;
3745  } else {
3746    return SDValue();
3747  }
3748
3749  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
3750  // numbers match the load.
3751  unsigned VLDLaneNo =
3752      cast<ConstantSDNode>(VLD->getOperand(NumVecs + 3))->getZExtValue();
3753  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
3754       UI != UE; ++UI) {
3755    // Ignore uses of the chain result.
3756    if (UI.getUse().getResNo() == NumVecs)
3757      continue;
3758    SDNode *User = *UI;
3759    if (User->getOpcode() != AArch64ISD::NEON_VDUPLANE ||
3760        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
3761      return SDValue();
3762  }
3763
3764  // Create the vldN-dup node.
3765  EVT Tys[5];
3766  unsigned n;
3767  for (n = 0; n < NumVecs; ++n)
3768    Tys[n] = VT;
3769  Tys[n] = MVT::Other;
3770  SDVTList SDTys = DAG.getVTList(Tys, NumVecs + 1);
3771  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
3772  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
3773  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, Ops, 2,
3774                                           VLDMemInt->getMemoryVT(),
3775                                           VLDMemInt->getMemOperand());
3776
3777  // Update the uses.
3778  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
3779       UI != UE; ++UI) {
3780    unsigned ResNo = UI.getUse().getResNo();
3781    // Ignore uses of the chain result.
3782    if (ResNo == NumVecs)
3783      continue;
3784    SDNode *User = *UI;
3785    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
3786  }
3787
3788  // Now the vldN-lane intrinsic is dead except for its chain result.
3789  // Update uses of the chain.
3790  std::vector<SDValue> VLDDupResults;
3791  for (unsigned n = 0; n < NumVecs; ++n)
3792    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
3793  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
3794  DCI.CombineTo(VLD, VLDDupResults);
3795
3796  return SDValue(N, 0);
3797}
3798
3799SDValue
3800AArch64TargetLowering::PerformDAGCombine(SDNode *N,
3801                                         DAGCombinerInfo &DCI) const {
3802  switch (N->getOpcode()) {
3803  default: break;
3804  case ISD::AND: return PerformANDCombine(N, DCI);
3805  case ISD::OR: return PerformORCombine(N, DCI, getSubtarget());
3806  case ISD::SHL:
3807  case ISD::SRA:
3808  case ISD::SRL:
3809    return PerformShiftCombine(N, DCI, getSubtarget());
3810  case ISD::INTRINSIC_WO_CHAIN:
3811    return PerformIntrinsicCombine(N, DCI.DAG);
3812  case AArch64ISD::NEON_VDUPLANE:
3813    return CombineVLDDUP(N, DCI);
3814  case AArch64ISD::NEON_LD2DUP:
3815  case AArch64ISD::NEON_LD3DUP:
3816  case AArch64ISD::NEON_LD4DUP:
3817    return CombineBaseUpdate(N, DCI);
3818  case ISD::INTRINSIC_VOID:
3819  case ISD::INTRINSIC_W_CHAIN:
3820    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
3821    case Intrinsic::arm_neon_vld1:
3822    case Intrinsic::arm_neon_vld2:
3823    case Intrinsic::arm_neon_vld3:
3824    case Intrinsic::arm_neon_vld4:
3825    case Intrinsic::arm_neon_vst1:
3826    case Intrinsic::arm_neon_vst2:
3827    case Intrinsic::arm_neon_vst3:
3828    case Intrinsic::arm_neon_vst4:
3829    case Intrinsic::arm_neon_vld2lane:
3830    case Intrinsic::arm_neon_vld3lane:
3831    case Intrinsic::arm_neon_vld4lane:
3832    case Intrinsic::aarch64_neon_vld1x2:
3833    case Intrinsic::aarch64_neon_vld1x3:
3834    case Intrinsic::aarch64_neon_vld1x4:
3835    case Intrinsic::aarch64_neon_vst1x2:
3836    case Intrinsic::aarch64_neon_vst1x3:
3837    case Intrinsic::aarch64_neon_vst1x4:
3838    case Intrinsic::arm_neon_vst2lane:
3839    case Intrinsic::arm_neon_vst3lane:
3840    case Intrinsic::arm_neon_vst4lane:
3841      return CombineBaseUpdate(N, DCI);
3842    default:
3843      break;
3844    }
3845  }
3846  return SDValue();
3847}
3848
3849bool
3850AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3851  VT = VT.getScalarType();
3852
3853  if (!VT.isSimple())
3854    return false;
3855
3856  switch (VT.getSimpleVT().SimpleTy) {
3857  case MVT::f16:
3858  case MVT::f32:
3859  case MVT::f64:
3860    return true;
3861  case MVT::f128:
3862    return false;
3863  default:
3864    break;
3865  }
3866
3867  return false;
3868}
3869
3870// Check whether a Build Vector could be presented as Shuffle Vector. If yes,
3871// try to call LowerVECTOR_SHUFFLE to lower it.
3872bool AArch64TargetLowering::isKnownShuffleVector(SDValue Op, SelectionDAG &DAG,
3873                                                 SDValue &Res) const {
3874  SDLoc DL(Op);
3875  EVT VT = Op.getValueType();
3876  unsigned NumElts = VT.getVectorNumElements();
3877  unsigned V0NumElts = 0;
3878  int Mask[16];
3879  SDValue V0, V1;
3880
3881  // Check if all elements are extracted from less than 3 vectors.
3882  for (unsigned i = 0; i < NumElts; ++i) {
3883    SDValue Elt = Op.getOperand(i);
3884    if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
3885      return false;
3886
3887    if (V0.getNode() == 0) {
3888      V0 = Elt.getOperand(0);
3889      V0NumElts = V0.getValueType().getVectorNumElements();
3890    }
3891    if (Elt.getOperand(0) == V0) {
3892      Mask[i] = (cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue());
3893      continue;
3894    } else if (V1.getNode() == 0) {
3895      V1 = Elt.getOperand(0);
3896    }
3897    if (Elt.getOperand(0) == V1) {
3898      unsigned Lane = cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue();
3899      Mask[i] = (Lane + V0NumElts);
3900      continue;
3901    } else {
3902      return false;
3903    }
3904  }
3905
3906  if (!V1.getNode() && V0NumElts == NumElts * 2) {
3907    V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0,
3908                     DAG.getConstant(NumElts, MVT::i64));
3909    V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0,
3910                     DAG.getConstant(0, MVT::i64));
3911    V0NumElts = V0.getValueType().getVectorNumElements();
3912  }
3913
3914  if (V1.getNode() && NumElts == V0NumElts &&
3915      V0NumElts == V1.getValueType().getVectorNumElements()) {
3916    SDValue Shuffle = DAG.getVectorShuffle(VT, DL, V0, V1, Mask);
3917    Res = LowerVECTOR_SHUFFLE(Shuffle, DAG);
3918    return true;
3919  } else
3920    return false;
3921}
3922
3923// If this is a case we can't handle, return null and let the default
3924// expansion code take care of it.
3925SDValue
3926AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3927                                         const AArch64Subtarget *ST) const {
3928
3929  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3930  SDLoc DL(Op);
3931  EVT VT = Op.getValueType();
3932
3933  APInt SplatBits, SplatUndef;
3934  unsigned SplatBitSize;
3935  bool HasAnyUndefs;
3936
3937  unsigned UseNeonMov = VT.getSizeInBits() >= 64;
3938
3939  // Note we favor lowering MOVI over MVNI.
3940  // This has implications on the definition of patterns in TableGen to select
3941  // BIC immediate instructions but not ORR immediate instructions.
3942  // If this lowering order is changed, TableGen patterns for BIC immediate and
3943  // ORR immediate instructions have to be updated.
3944  if (UseNeonMov &&
3945      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3946    if (SplatBitSize <= 64) {
3947      // First attempt to use vector immediate-form MOVI
3948      EVT NeonMovVT;
3949      unsigned Imm = 0;
3950      unsigned OpCmode = 0;
3951
3952      if (isNeonModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
3953                            SplatBitSize, DAG, VT.is128BitVector(),
3954                            Neon_Mov_Imm, NeonMovVT, Imm, OpCmode)) {
3955        SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
3956        SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
3957
3958        if (ImmVal.getNode() && OpCmodeVal.getNode()) {
3959          SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MOVIMM, DL, NeonMovVT,
3960                                        ImmVal, OpCmodeVal);
3961          return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
3962        }
3963      }
3964
3965      // Then attempt to use vector immediate-form MVNI
3966      uint64_t NegatedImm = (~SplatBits).getZExtValue();
3967      if (isNeonModifiedImm(NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
3968                            DAG, VT.is128BitVector(), Neon_Mvn_Imm, NeonMovVT,
3969                            Imm, OpCmode)) {
3970        SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
3971        SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
3972        if (ImmVal.getNode() && OpCmodeVal.getNode()) {
3973          SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MVNIMM, DL, NeonMovVT,
3974                                        ImmVal, OpCmodeVal);
3975          return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
3976        }
3977      }
3978
3979      // Attempt to use vector immediate-form FMOV
3980      if (((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) ||
3981          (VT == MVT::v2f64 && SplatBitSize == 64)) {
3982        APFloat RealVal(
3983            SplatBitSize == 32 ? APFloat::IEEEsingle : APFloat::IEEEdouble,
3984            SplatBits);
3985        uint32_t ImmVal;
3986        if (A64Imms::isFPImm(RealVal, ImmVal)) {
3987          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
3988          return DAG.getNode(AArch64ISD::NEON_FMOVIMM, DL, VT, Val);
3989        }
3990      }
3991    }
3992  }
3993
3994  unsigned NumElts = VT.getVectorNumElements();
3995  bool isOnlyLowElement = true;
3996  bool usesOnlyOneValue = true;
3997  bool hasDominantValue = false;
3998  bool isConstant = true;
3999
4000  // Map of the number of times a particular SDValue appears in the
4001  // element list.
4002  DenseMap<SDValue, unsigned> ValueCounts;
4003  SDValue Value;
4004  for (unsigned i = 0; i < NumElts; ++i) {
4005    SDValue V = Op.getOperand(i);
4006    if (V.getOpcode() == ISD::UNDEF)
4007      continue;
4008    if (i > 0)
4009      isOnlyLowElement = false;
4010    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4011      isConstant = false;
4012
4013    ValueCounts.insert(std::make_pair(V, 0));
4014    unsigned &Count = ValueCounts[V];
4015
4016    // Is this value dominant? (takes up more than half of the lanes)
4017    if (++Count > (NumElts / 2)) {
4018      hasDominantValue = true;
4019      Value = V;
4020    }
4021  }
4022  if (ValueCounts.size() != 1)
4023    usesOnlyOneValue = false;
4024  if (!Value.getNode() && ValueCounts.size() > 0)
4025    Value = ValueCounts.begin()->first;
4026
4027  if (ValueCounts.size() == 0)
4028    return DAG.getUNDEF(VT);
4029
4030  // Loads are better lowered with insert_vector_elt.
4031  // Keep going if we are hitting this case.
4032  if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
4033    return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4034
4035  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4036  if (hasDominantValue && EltSize <= 64) {
4037    // Use VDUP for non-constant splats.
4038    if (!isConstant) {
4039      SDValue N;
4040
4041      // If we are DUPing a value that comes directly from a vector, we could
4042      // just use DUPLANE. We can only do this if the lane being extracted
4043      // is at a constant index, as the DUP from lane instructions only have
4044      // constant-index forms.
4045      if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4046          isa<ConstantSDNode>(Value->getOperand(1))) {
4047          N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT,
4048                        Value->getOperand(0), Value->getOperand(1));
4049      } else
4050        N = DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
4051
4052      if (!usesOnlyOneValue) {
4053        // The dominant value was splatted as 'N', but we now have to insert
4054        // all differing elements.
4055        for (unsigned I = 0; I < NumElts; ++I) {
4056          if (Op.getOperand(I) == Value)
4057            continue;
4058          SmallVector<SDValue, 3> Ops;
4059          Ops.push_back(N);
4060          Ops.push_back(Op.getOperand(I));
4061          Ops.push_back(DAG.getConstant(I, MVT::i64));
4062          N = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, &Ops[0], 3);
4063        }
4064      }
4065      return N;
4066    }
4067    if (usesOnlyOneValue && isConstant) {
4068      return DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
4069    }
4070  }
4071  // If all elements are constants and the case above didn't get hit, fall back
4072  // to the default expansion, which will generate a load from the constant
4073  // pool.
4074  if (isConstant)
4075    return SDValue();
4076
4077  // Try to lower this in lowering ShuffleVector way.
4078  SDValue Shuf;
4079  if (isKnownShuffleVector(Op, DAG, Shuf))
4080    return Shuf;
4081
4082  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
4083  // know the default expansion would otherwise fall back on something even
4084  // worse. For a vector with one or two non-undef values, that's
4085  // scalar_to_vector for the elements followed by a shuffle (provided the
4086  // shuffle is valid for the target) and materialization element by element
4087  // on the stack followed by a load for everything else.
4088  if (!isConstant && !usesOnlyOneValue) {
4089    SDValue Vec = DAG.getUNDEF(VT);
4090    for (unsigned i = 0 ; i < NumElts; ++i) {
4091      SDValue V = Op.getOperand(i);
4092      if (V.getOpcode() == ISD::UNDEF)
4093        continue;
4094      SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
4095      Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, LaneIdx);
4096    }
4097    return Vec;
4098  }
4099  return SDValue();
4100}
4101
4102/// isREVMask - Check if a vector shuffle corresponds to a REV
4103/// instruction with the specified blocksize.  (The order of the elements
4104/// within each block of the vector is reversed.)
4105static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4106  assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4107         "Only possible block sizes for REV are: 16, 32, 64");
4108
4109  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4110  if (EltSz == 64)
4111    return false;
4112
4113  unsigned NumElts = VT.getVectorNumElements();
4114  unsigned BlockElts = M[0] + 1;
4115  // If the first shuffle index is UNDEF, be optimistic.
4116  if (M[0] < 0)
4117    BlockElts = BlockSize / EltSz;
4118
4119  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4120    return false;
4121
4122  for (unsigned i = 0; i < NumElts; ++i) {
4123    if (M[i] < 0)
4124      continue; // ignore UNDEF indices
4125    if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4126      return false;
4127  }
4128
4129  return true;
4130}
4131
4132// isPermuteMask - Check whether the vector shuffle matches to UZP, ZIP and
4133// TRN instruction.
4134static unsigned isPermuteMask(ArrayRef<int> M, EVT VT) {
4135  unsigned NumElts = VT.getVectorNumElements();
4136  if (NumElts < 4)
4137    return 0;
4138
4139  bool ismatch = true;
4140
4141  // Check UZP1
4142  for (unsigned i = 0; i < NumElts; ++i) {
4143    if ((unsigned)M[i] != i * 2) {
4144      ismatch = false;
4145      break;
4146    }
4147  }
4148  if (ismatch)
4149    return AArch64ISD::NEON_UZP1;
4150
4151  // Check UZP2
4152  ismatch = true;
4153  for (unsigned i = 0; i < NumElts; ++i) {
4154    if ((unsigned)M[i] != i * 2 + 1) {
4155      ismatch = false;
4156      break;
4157    }
4158  }
4159  if (ismatch)
4160    return AArch64ISD::NEON_UZP2;
4161
4162  // Check ZIP1
4163  ismatch = true;
4164  for (unsigned i = 0; i < NumElts; ++i) {
4165    if ((unsigned)M[i] != i / 2 + NumElts * (i % 2)) {
4166      ismatch = false;
4167      break;
4168    }
4169  }
4170  if (ismatch)
4171    return AArch64ISD::NEON_ZIP1;
4172
4173  // Check ZIP2
4174  ismatch = true;
4175  for (unsigned i = 0; i < NumElts; ++i) {
4176    if ((unsigned)M[i] != (NumElts + i) / 2 + NumElts * (i % 2)) {
4177      ismatch = false;
4178      break;
4179    }
4180  }
4181  if (ismatch)
4182    return AArch64ISD::NEON_ZIP2;
4183
4184  // Check TRN1
4185  ismatch = true;
4186  for (unsigned i = 0; i < NumElts; ++i) {
4187    if ((unsigned)M[i] != i + (NumElts - 1) * (i % 2)) {
4188      ismatch = false;
4189      break;
4190    }
4191  }
4192  if (ismatch)
4193    return AArch64ISD::NEON_TRN1;
4194
4195  // Check TRN2
4196  ismatch = true;
4197  for (unsigned i = 0; i < NumElts; ++i) {
4198    if ((unsigned)M[i] != 1 + i + (NumElts - 1) * (i % 2)) {
4199      ismatch = false;
4200      break;
4201    }
4202  }
4203  if (ismatch)
4204    return AArch64ISD::NEON_TRN2;
4205
4206  return 0;
4207}
4208
4209SDValue
4210AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4211                                           SelectionDAG &DAG) const {
4212  SDValue V1 = Op.getOperand(0);
4213  SDValue V2 = Op.getOperand(1);
4214  SDLoc dl(Op);
4215  EVT VT = Op.getValueType();
4216  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4217
4218  // Convert shuffles that are directly supported on NEON to target-specific
4219  // DAG nodes, instead of keeping them as shuffles and matching them again
4220  // during code selection.  This is more efficient and avoids the possibility
4221  // of inconsistencies between legalization and selection.
4222  ArrayRef<int> ShuffleMask = SVN->getMask();
4223
4224  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4225  if (EltSize > 64)
4226    return SDValue();
4227
4228  if (isREVMask(ShuffleMask, VT, 64))
4229    return DAG.getNode(AArch64ISD::NEON_REV64, dl, VT, V1);
4230  if (isREVMask(ShuffleMask, VT, 32))
4231    return DAG.getNode(AArch64ISD::NEON_REV32, dl, VT, V1);
4232  if (isREVMask(ShuffleMask, VT, 16))
4233    return DAG.getNode(AArch64ISD::NEON_REV16, dl, VT, V1);
4234
4235  unsigned ISDNo = isPermuteMask(ShuffleMask, VT);
4236  if (ISDNo)
4237    return DAG.getNode(ISDNo, dl, VT, V1, V2);
4238
4239  // If the element of shuffle mask are all the same constant, we can
4240  // transform it into either NEON_VDUP or NEON_VDUPLANE
4241  if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4242    int Lane = SVN->getSplatIndex();
4243    // If this is undef splat, generate it via "just" vdup, if possible.
4244    if (Lane == -1) Lane = 0;
4245
4246    // Test if V1 is a SCALAR_TO_VECTOR.
4247    if (V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4248      return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT, V1.getOperand(0));
4249    }
4250    // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR.
4251    if (V1.getOpcode() == ISD::BUILD_VECTOR) {
4252      bool IsScalarToVector = true;
4253      for (unsigned i = 0, e = V1.getNumOperands(); i != e; ++i)
4254        if (V1.getOperand(i).getOpcode() != ISD::UNDEF &&
4255            i != (unsigned)Lane) {
4256          IsScalarToVector = false;
4257          break;
4258        }
4259      if (IsScalarToVector)
4260        return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT,
4261                           V1.getOperand(Lane));
4262    }
4263
4264    // Test if V1 is a EXTRACT_SUBVECTOR.
4265    if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
4266      int ExtLane = cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
4267      return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1.getOperand(0),
4268                         DAG.getConstant(Lane + ExtLane, MVT::i64));
4269    }
4270    // Test if V1 is a CONCAT_VECTORS.
4271    if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
4272        V1.getOperand(1).getOpcode() == ISD::UNDEF) {
4273      SDValue Op0 = V1.getOperand(0);
4274      assert((unsigned)Lane < Op0.getValueType().getVectorNumElements() &&
4275             "Invalid vector lane access");
4276      return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, Op0,
4277                         DAG.getConstant(Lane, MVT::i64));
4278    }
4279
4280    return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1,
4281                       DAG.getConstant(Lane, MVT::i64));
4282  }
4283
4284  int Length = ShuffleMask.size();
4285  int V1EltNum = V1.getValueType().getVectorNumElements();
4286
4287  // If the number of v1 elements is the same as the number of shuffle mask
4288  // element and the shuffle masks are sequential values, we can transform
4289  // it into NEON_VEXTRACT.
4290  if (V1EltNum == Length) {
4291    // Check if the shuffle mask is sequential.
4292    bool IsSequential = true;
4293    int CurMask = ShuffleMask[0];
4294    for (int I = 0; I < Length; ++I) {
4295      if (ShuffleMask[I] != CurMask) {
4296        IsSequential = false;
4297        break;
4298      }
4299      CurMask++;
4300    }
4301    if (IsSequential) {
4302      assert((EltSize % 8 == 0) && "Bitsize of vector element is incorrect");
4303      unsigned VecSize = EltSize * V1EltNum;
4304      unsigned Index = (EltSize/8) * ShuffleMask[0];
4305      if (VecSize == 64 || VecSize == 128)
4306        return DAG.getNode(AArch64ISD::NEON_VEXTRACT, dl, VT, V1, V2,
4307                           DAG.getConstant(Index, MVT::i64));
4308    }
4309  }
4310
4311  // For shuffle mask like "0, 1, 2, 3, 4, 5, 13, 7", try to generate insert
4312  // by element from V2 to V1 .
4313  // If shuffle mask is like "0, 1, 10, 11, 12, 13, 14, 15", V2 would be a
4314  // better choice to be inserted than V1 as less insert needed, so we count
4315  // element to be inserted for both V1 and V2, and select less one as insert
4316  // target.
4317
4318  // Collect elements need to be inserted and their index.
4319  SmallVector<int, 8> NV1Elt;
4320  SmallVector<int, 8> N1Index;
4321  SmallVector<int, 8> NV2Elt;
4322  SmallVector<int, 8> N2Index;
4323  for (int I = 0; I != Length; ++I) {
4324    if (ShuffleMask[I] != I) {
4325      NV1Elt.push_back(ShuffleMask[I]);
4326      N1Index.push_back(I);
4327    }
4328  }
4329  for (int I = 0; I != Length; ++I) {
4330    if (ShuffleMask[I] != (I + V1EltNum)) {
4331      NV2Elt.push_back(ShuffleMask[I]);
4332      N2Index.push_back(I);
4333    }
4334  }
4335
4336  // Decide which to be inserted. If all lanes mismatch, neither V1 nor V2
4337  // will be inserted.
4338  SDValue InsV = V1;
4339  SmallVector<int, 8> InsMasks = NV1Elt;
4340  SmallVector<int, 8> InsIndex = N1Index;
4341  if ((int)NV1Elt.size() != Length || (int)NV2Elt.size() != Length) {
4342    if (NV1Elt.size() > NV2Elt.size()) {
4343      InsV = V2;
4344      InsMasks = NV2Elt;
4345      InsIndex = N2Index;
4346    }
4347  } else {
4348    InsV = DAG.getNode(ISD::UNDEF, dl, VT);
4349  }
4350
4351  for (int I = 0, E = InsMasks.size(); I != E; ++I) {
4352    SDValue ExtV = V1;
4353    int Mask = InsMasks[I];
4354    if (Mask >= V1EltNum) {
4355      ExtV = V2;
4356      Mask -= V1EltNum;
4357    }
4358    // Any value type smaller than i32 is illegal in AArch64, and this lower
4359    // function is called after legalize pass, so we need to legalize
4360    // the result here.
4361    EVT EltVT;
4362    if (VT.getVectorElementType().isFloatingPoint())
4363      EltVT = (EltSize == 64) ? MVT::f64 : MVT::f32;
4364    else
4365      EltVT = (EltSize == 64) ? MVT::i64 : MVT::i32;
4366
4367    if (Mask >= 0) {
4368      ExtV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, ExtV,
4369                         DAG.getConstant(Mask, MVT::i64));
4370      InsV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, InsV, ExtV,
4371                         DAG.getConstant(InsIndex[I], MVT::i64));
4372    }
4373  }
4374  return InsV;
4375}
4376
4377AArch64TargetLowering::ConstraintType
4378AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4379  if (Constraint.size() == 1) {
4380    switch (Constraint[0]) {
4381    default: break;
4382    case 'w': // An FP/SIMD vector register
4383      return C_RegisterClass;
4384    case 'I': // Constant that can be used with an ADD instruction
4385    case 'J': // Constant that can be used with a SUB instruction
4386    case 'K': // Constant that can be used with a 32-bit logical instruction
4387    case 'L': // Constant that can be used with a 64-bit logical instruction
4388    case 'M': // Constant that can be used as a 32-bit MOV immediate
4389    case 'N': // Constant that can be used as a 64-bit MOV immediate
4390    case 'Y': // Floating point constant zero
4391    case 'Z': // Integer constant zero
4392      return C_Other;
4393    case 'Q': // A memory reference with base register and no offset
4394      return C_Memory;
4395    case 'S': // A symbolic address
4396      return C_Other;
4397    }
4398  }
4399
4400  // FIXME: Ump, Utf, Usa, Ush
4401  // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
4402  //      whatever they may be
4403  // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
4404  // Usa: An absolute symbolic address
4405  // Ush: The high part (bits 32:12) of a pc-relative symbolic address
4406  assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
4407         && Constraint != "Ush" && "Unimplemented constraints");
4408
4409  return TargetLowering::getConstraintType(Constraint);
4410}
4411
4412TargetLowering::ConstraintWeight
4413AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
4414                                                const char *Constraint) const {
4415
4416  llvm_unreachable("Constraint weight unimplemented");
4417}
4418
4419void
4420AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4421                                                    std::string &Constraint,
4422                                                    std::vector<SDValue> &Ops,
4423                                                    SelectionDAG &DAG) const {
4424  SDValue Result(0, 0);
4425
4426  // Only length 1 constraints are C_Other.
4427  if (Constraint.size() != 1) return;
4428
4429  // Only C_Other constraints get lowered like this. That means constants for us
4430  // so return early if there's no hope the constraint can be lowered.
4431
4432  switch(Constraint[0]) {
4433  default: break;
4434  case 'I': case 'J': case 'K': case 'L':
4435  case 'M': case 'N': case 'Z': {
4436    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4437    if (!C)
4438      return;
4439
4440    uint64_t CVal = C->getZExtValue();
4441    uint32_t Bits;
4442
4443    switch (Constraint[0]) {
4444    default:
4445      // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
4446      // is a peculiarly useless SUB constraint.
4447      llvm_unreachable("Unimplemented C_Other constraint");
4448    case 'I':
4449      if (CVal <= 0xfff)
4450        break;
4451      return;
4452    case 'K':
4453      if (A64Imms::isLogicalImm(32, CVal, Bits))
4454        break;
4455      return;
4456    case 'L':
4457      if (A64Imms::isLogicalImm(64, CVal, Bits))
4458        break;
4459      return;
4460    case 'Z':
4461      if (CVal == 0)
4462        break;
4463      return;
4464    }
4465
4466    Result = DAG.getTargetConstant(CVal, Op.getValueType());
4467    break;
4468  }
4469  case 'S': {
4470    // An absolute symbolic address or label reference.
4471    if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4472      Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4473                                          GA->getValueType(0));
4474    } else if (const BlockAddressSDNode *BA
4475                 = dyn_cast<BlockAddressSDNode>(Op)) {
4476      Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
4477                                         BA->getValueType(0));
4478    } else if (const ExternalSymbolSDNode *ES
4479                 = dyn_cast<ExternalSymbolSDNode>(Op)) {
4480      Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
4481                                           ES->getValueType(0));
4482    } else
4483      return;
4484    break;
4485  }
4486  case 'Y':
4487    if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
4488      if (CFP->isExactlyValue(0.0)) {
4489        Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
4490        break;
4491      }
4492    }
4493    return;
4494  }
4495
4496  if (Result.getNode()) {
4497    Ops.push_back(Result);
4498    return;
4499  }
4500
4501  // It's an unknown constraint for us. Let generic code have a go.
4502  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4503}
4504
4505std::pair<unsigned, const TargetRegisterClass*>
4506AArch64TargetLowering::getRegForInlineAsmConstraint(
4507                                                  const std::string &Constraint,
4508                                                  MVT VT) const {
4509  if (Constraint.size() == 1) {
4510    switch (Constraint[0]) {
4511    case 'r':
4512      if (VT.getSizeInBits() <= 32)
4513        return std::make_pair(0U, &AArch64::GPR32RegClass);
4514      else if (VT == MVT::i64)
4515        return std::make_pair(0U, &AArch64::GPR64RegClass);
4516      break;
4517    case 'w':
4518      if (VT == MVT::f16)
4519        return std::make_pair(0U, &AArch64::FPR16RegClass);
4520      else if (VT == MVT::f32)
4521        return std::make_pair(0U, &AArch64::FPR32RegClass);
4522      else if (VT.getSizeInBits() == 64)
4523        return std::make_pair(0U, &AArch64::FPR64RegClass);
4524      else if (VT.getSizeInBits() == 128)
4525        return std::make_pair(0U, &AArch64::FPR128RegClass);
4526      break;
4527    }
4528  }
4529
4530  // Use the default implementation in TargetLowering to convert the register
4531  // constraint into a member of a register class.
4532  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4533}
4534
4535/// Represent NEON load and store intrinsics as MemIntrinsicNodes.
4536/// The associated MachineMemOperands record the alignment specified
4537/// in the intrinsic calls.
4538bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
4539                                               const CallInst &I,
4540                                               unsigned Intrinsic) const {
4541  switch (Intrinsic) {
4542  case Intrinsic::arm_neon_vld1:
4543  case Intrinsic::arm_neon_vld2:
4544  case Intrinsic::arm_neon_vld3:
4545  case Intrinsic::arm_neon_vld4:
4546  case Intrinsic::aarch64_neon_vld1x2:
4547  case Intrinsic::aarch64_neon_vld1x3:
4548  case Intrinsic::aarch64_neon_vld1x4:
4549  case Intrinsic::arm_neon_vld2lane:
4550  case Intrinsic::arm_neon_vld3lane:
4551  case Intrinsic::arm_neon_vld4lane: {
4552    Info.opc = ISD::INTRINSIC_W_CHAIN;
4553    // Conservatively set memVT to the entire set of vectors loaded.
4554    uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
4555    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
4556    Info.ptrVal = I.getArgOperand(0);
4557    Info.offset = 0;
4558    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
4559    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
4560    Info.vol = false; // volatile loads with NEON intrinsics not supported
4561    Info.readMem = true;
4562    Info.writeMem = false;
4563    return true;
4564  }
4565  case Intrinsic::arm_neon_vst1:
4566  case Intrinsic::arm_neon_vst2:
4567  case Intrinsic::arm_neon_vst3:
4568  case Intrinsic::arm_neon_vst4:
4569  case Intrinsic::aarch64_neon_vst1x2:
4570  case Intrinsic::aarch64_neon_vst1x3:
4571  case Intrinsic::aarch64_neon_vst1x4:
4572  case Intrinsic::arm_neon_vst2lane:
4573  case Intrinsic::arm_neon_vst3lane:
4574  case Intrinsic::arm_neon_vst4lane: {
4575    Info.opc = ISD::INTRINSIC_VOID;
4576    // Conservatively set memVT to the entire set of vectors stored.
4577    unsigned NumElts = 0;
4578    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
4579      Type *ArgTy = I.getArgOperand(ArgI)->getType();
4580      if (!ArgTy->isVectorTy())
4581        break;
4582      NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
4583    }
4584    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
4585    Info.ptrVal = I.getArgOperand(0);
4586    Info.offset = 0;
4587    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
4588    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
4589    Info.vol = false; // volatile stores with NEON intrinsics not supported
4590    Info.readMem = false;
4591    Info.writeMem = true;
4592    return true;
4593  }
4594  default:
4595    break;
4596  }
4597
4598  return false;
4599}
4600