AArch64ISelLowering.cpp revision 97577757c6dc84233ad10cd432664257e593e76d
1//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AArch64 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "aarch64-isel"
16#include "AArch64.h"
17#include "AArch64ISelLowering.h"
18#include "AArch64MachineFunctionInfo.h"
19#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "Utils/AArch64BaseInfo.h"
22#include "llvm/CodeGen/Analysis.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28#include "llvm/IR/CallingConv.h"
29
30using namespace llvm;
31
32static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
33  const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
34
35  if (Subtarget->isTargetLinux())
36    return new AArch64LinuxTargetObjectFile();
37  if (Subtarget->isTargetELF())
38    return new TargetLoweringObjectFileELF();
39  llvm_unreachable("unknown subtarget type");
40}
41
42AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
43  : TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) {
44
45  const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
46
47  // SIMD compares set the entire lane's bits to 1
48  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
49
50  // Scalar register <-> type mapping
51  addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
52  addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
53
54  if (Subtarget->hasFPARMv8()) {
55    addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
56    addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
57    addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
58    addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
59  }
60
61  if (Subtarget->hasNEON()) {
62    // And the vectors
63    addRegisterClass(MVT::v1i8,  &AArch64::FPR8RegClass);
64    addRegisterClass(MVT::v1i16, &AArch64::FPR16RegClass);
65    addRegisterClass(MVT::v1i32, &AArch64::FPR32RegClass);
66    addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
67    addRegisterClass(MVT::v1f32, &AArch64::FPR32RegClass);
68    addRegisterClass(MVT::v1f64, &AArch64::FPR64RegClass);
69    addRegisterClass(MVT::v8i8, &AArch64::FPR64RegClass);
70    addRegisterClass(MVT::v4i16, &AArch64::FPR64RegClass);
71    addRegisterClass(MVT::v2i32, &AArch64::FPR64RegClass);
72    addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
73    addRegisterClass(MVT::v2f32, &AArch64::FPR64RegClass);
74    addRegisterClass(MVT::v16i8, &AArch64::FPR128RegClass);
75    addRegisterClass(MVT::v8i16, &AArch64::FPR128RegClass);
76    addRegisterClass(MVT::v4i32, &AArch64::FPR128RegClass);
77    addRegisterClass(MVT::v2i64, &AArch64::FPR128RegClass);
78    addRegisterClass(MVT::v4f32, &AArch64::FPR128RegClass);
79    addRegisterClass(MVT::v2f64, &AArch64::FPR128RegClass);
80  }
81
82  computeRegisterProperties();
83
84  // We combine OR nodes for bitfield and NEON BSL operations.
85  setTargetDAGCombine(ISD::OR);
86
87  setTargetDAGCombine(ISD::AND);
88  setTargetDAGCombine(ISD::SRA);
89  setTargetDAGCombine(ISD::SRL);
90  setTargetDAGCombine(ISD::SHL);
91
92  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
93  setTargetDAGCombine(ISD::INTRINSIC_VOID);
94  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
95
96  // AArch64 does not have i1 loads, or much of anything for i1 really.
97  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
98  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
99  setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
100
101  setStackPointerRegisterToSaveRestore(AArch64::XSP);
102  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
103  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
104  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
105
106  // We'll lower globals to wrappers for selection.
107  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
108  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
109
110  // A64 instructions have the comparison predicate attached to the user of the
111  // result, but having a separate comparison is valuable for matching.
112  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
113  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
114  setOperationAction(ISD::BR_CC, MVT::f32, Custom);
115  setOperationAction(ISD::BR_CC, MVT::f64, Custom);
116
117  setOperationAction(ISD::SELECT, MVT::i32, Custom);
118  setOperationAction(ISD::SELECT, MVT::i64, Custom);
119  setOperationAction(ISD::SELECT, MVT::f32, Custom);
120  setOperationAction(ISD::SELECT, MVT::f64, Custom);
121
122  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
123  setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
124  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
125  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
126
127  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
128
129  setOperationAction(ISD::SETCC, MVT::i32, Custom);
130  setOperationAction(ISD::SETCC, MVT::i64, Custom);
131  setOperationAction(ISD::SETCC, MVT::f32, Custom);
132  setOperationAction(ISD::SETCC, MVT::f64, Custom);
133
134  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
135  setOperationAction(ISD::JumpTable, MVT::i32, Custom);
136  setOperationAction(ISD::JumpTable, MVT::i64, Custom);
137
138  setOperationAction(ISD::VASTART, MVT::Other, Custom);
139  setOperationAction(ISD::VACOPY, MVT::Other, Custom);
140  setOperationAction(ISD::VAEND, MVT::Other, Expand);
141  setOperationAction(ISD::VAARG, MVT::Other, Expand);
142
143  setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
144
145  setOperationAction(ISD::ROTL, MVT::i32, Expand);
146  setOperationAction(ISD::ROTL, MVT::i64, Expand);
147
148  setOperationAction(ISD::UREM, MVT::i32, Expand);
149  setOperationAction(ISD::UREM, MVT::i64, Expand);
150  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
151  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
152
153  setOperationAction(ISD::SREM, MVT::i32, Expand);
154  setOperationAction(ISD::SREM, MVT::i64, Expand);
155  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
156  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
157
158  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
159  setOperationAction(ISD::CTPOP, MVT::i64, Expand);
160
161  // Legal floating-point operations.
162  setOperationAction(ISD::FABS, MVT::f32, Legal);
163  setOperationAction(ISD::FABS, MVT::f64, Legal);
164
165  setOperationAction(ISD::FCEIL, MVT::f32, Legal);
166  setOperationAction(ISD::FCEIL, MVT::f64, Legal);
167
168  setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
169  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
170
171  setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
172  setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
173
174  setOperationAction(ISD::FNEG, MVT::f32, Legal);
175  setOperationAction(ISD::FNEG, MVT::f64, Legal);
176
177  setOperationAction(ISD::FRINT, MVT::f32, Legal);
178  setOperationAction(ISD::FRINT, MVT::f64, Legal);
179
180  setOperationAction(ISD::FSQRT, MVT::f32, Legal);
181  setOperationAction(ISD::FSQRT, MVT::f64, Legal);
182
183  setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
184  setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
185
186  setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
187  setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
188  setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
189
190  // Illegal floating-point operations.
191  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
192  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
193
194  setOperationAction(ISD::FCOS, MVT::f32, Expand);
195  setOperationAction(ISD::FCOS, MVT::f64, Expand);
196
197  setOperationAction(ISD::FEXP, MVT::f32, Expand);
198  setOperationAction(ISD::FEXP, MVT::f64, Expand);
199
200  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
201  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
202
203  setOperationAction(ISD::FLOG, MVT::f32, Expand);
204  setOperationAction(ISD::FLOG, MVT::f64, Expand);
205
206  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
207  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
208
209  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
210  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
211
212  setOperationAction(ISD::FPOW, MVT::f32, Expand);
213  setOperationAction(ISD::FPOW, MVT::f64, Expand);
214
215  setOperationAction(ISD::FPOWI, MVT::f32, Expand);
216  setOperationAction(ISD::FPOWI, MVT::f64, Expand);
217
218  setOperationAction(ISD::FREM, MVT::f32, Expand);
219  setOperationAction(ISD::FREM, MVT::f64, Expand);
220
221  setOperationAction(ISD::FSIN, MVT::f32, Expand);
222  setOperationAction(ISD::FSIN, MVT::f64, Expand);
223
224  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
225  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
226
227  // Virtually no operation on f128 is legal, but LLVM can't expand them when
228  // there's a valid register class, so we need custom operations in most cases.
229  setOperationAction(ISD::FABS,       MVT::f128, Expand);
230  setOperationAction(ISD::FADD,       MVT::f128, Custom);
231  setOperationAction(ISD::FCOPYSIGN,  MVT::f128, Expand);
232  setOperationAction(ISD::FCOS,       MVT::f128, Expand);
233  setOperationAction(ISD::FDIV,       MVT::f128, Custom);
234  setOperationAction(ISD::FMA,        MVT::f128, Expand);
235  setOperationAction(ISD::FMUL,       MVT::f128, Custom);
236  setOperationAction(ISD::FNEG,       MVT::f128, Expand);
237  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Expand);
238  setOperationAction(ISD::FP_ROUND,   MVT::f128, Expand);
239  setOperationAction(ISD::FPOW,       MVT::f128, Expand);
240  setOperationAction(ISD::FREM,       MVT::f128, Expand);
241  setOperationAction(ISD::FRINT,      MVT::f128, Expand);
242  setOperationAction(ISD::FSIN,       MVT::f128, Expand);
243  setOperationAction(ISD::FSINCOS,    MVT::f128, Expand);
244  setOperationAction(ISD::FSQRT,      MVT::f128, Expand);
245  setOperationAction(ISD::FSUB,       MVT::f128, Custom);
246  setOperationAction(ISD::FTRUNC,     MVT::f128, Expand);
247  setOperationAction(ISD::SETCC,      MVT::f128, Custom);
248  setOperationAction(ISD::BR_CC,      MVT::f128, Custom);
249  setOperationAction(ISD::SELECT,     MVT::f128, Expand);
250  setOperationAction(ISD::SELECT_CC,  MVT::f128, Custom);
251  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Custom);
252
253  // Lowering for many of the conversions is actually specified by the non-f128
254  // type. The LowerXXX function will be trivial when f128 isn't involved.
255  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
256  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
257  setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
258  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
259  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
260  setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
261  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
262  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
263  setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
264  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
265  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
266  setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
267  setOperationAction(ISD::FP_ROUND,  MVT::f32, Custom);
268  setOperationAction(ISD::FP_ROUND,  MVT::f64, Custom);
269
270  // This prevents LLVM trying to compress double constants into a floating
271  // constant-pool entry and trying to load from there. It's of doubtful benefit
272  // for A64: we'd need LDR followed by FCVT, I believe.
273  setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
274  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
275  setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
276
277  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
278  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
279  setTruncStoreAction(MVT::f128, MVT::f16, Expand);
280  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
281  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
282  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
283
284  setExceptionPointerRegister(AArch64::X0);
285  setExceptionSelectorRegister(AArch64::X1);
286
287  if (Subtarget->hasNEON()) {
288    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i8, Custom);
289    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
290    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
291    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i16, Custom);
292    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
293    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
294    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i32, Custom);
295    setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
296    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
297    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
298    setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
299    setOperationAction(ISD::BUILD_VECTOR, MVT::v1f32, Custom);
300    setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
301    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
302    setOperationAction(ISD::BUILD_VECTOR, MVT::v1f64, Custom);
303    setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
304
305    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
306    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
307    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
308    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i16, Custom);
309    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
310    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i32, Custom);
311    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
312    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
313    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f32, Custom);
314    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
315    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1f64, Custom);
316    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
317
318    setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Legal);
319    setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal);
320    setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal);
321    setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal);
322    setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal);
323    setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal);
324    setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal);
325    setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Legal);
326    setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Legal);
327
328    setOperationAction(ISD::SETCC, MVT::v8i8, Custom);
329    setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
330    setOperationAction(ISD::SETCC, MVT::v4i16, Custom);
331    setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
332    setOperationAction(ISD::SETCC, MVT::v2i32, Custom);
333    setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
334    setOperationAction(ISD::SETCC, MVT::v1i64, Custom);
335    setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
336    setOperationAction(ISD::SETCC, MVT::v1f32, Custom);
337    setOperationAction(ISD::SETCC, MVT::v2f32, Custom);
338    setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
339    setOperationAction(ISD::SETCC, MVT::v1f64, Custom);
340    setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
341
342    setOperationAction(ISD::FFLOOR, MVT::v2f32, Legal);
343    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
344    setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
345
346    setOperationAction(ISD::FCEIL, MVT::v2f32, Legal);
347    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
348    setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
349
350    setOperationAction(ISD::FTRUNC, MVT::v2f32, Legal);
351    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
352    setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
353
354    setOperationAction(ISD::FRINT, MVT::v2f32, Legal);
355    setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
356    setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
357
358    setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Legal);
359    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
360    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
361
362    setOperationAction(ISD::FROUND, MVT::v2f32, Legal);
363    setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
364    setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
365  }
366}
367
368EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
369  // It's reasonably important that this value matches the "natural" legal
370  // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
371  // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
372  if (!VT.isVector()) return MVT::i32;
373  return VT.changeVectorElementTypeToInteger();
374}
375
376static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
377                                  unsigned &LdrOpc,
378                                  unsigned &StrOpc) {
379  static const unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
380                                       AArch64::LDXR_word, AArch64::LDXR_dword};
381  static const unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
382                                     AArch64::LDAXR_word, AArch64::LDAXR_dword};
383  static const unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
384                                       AArch64::STXR_word, AArch64::STXR_dword};
385  static const unsigned StoreRels[] = {AArch64::STLXR_byte,AArch64::STLXR_hword,
386                                     AArch64::STLXR_word, AArch64::STLXR_dword};
387
388  const unsigned *LoadOps, *StoreOps;
389  if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
390    LoadOps = LoadAcqs;
391  else
392    LoadOps = LoadBares;
393
394  if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
395    StoreOps = StoreRels;
396  else
397    StoreOps = StoreBares;
398
399  assert(isPowerOf2_32(Size) && Size <= 8 &&
400         "unsupported size for atomic binary op!");
401
402  LdrOpc = LoadOps[Log2_32(Size)];
403  StrOpc = StoreOps[Log2_32(Size)];
404}
405
406MachineBasicBlock *
407AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
408                                        unsigned Size,
409                                        unsigned BinOpcode) const {
410  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
411  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
412
413  const BasicBlock *LLVM_BB = BB->getBasicBlock();
414  MachineFunction *MF = BB->getParent();
415  MachineFunction::iterator It = BB;
416  ++It;
417
418  unsigned dest = MI->getOperand(0).getReg();
419  unsigned ptr = MI->getOperand(1).getReg();
420  unsigned incr = MI->getOperand(2).getReg();
421  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
422  DebugLoc dl = MI->getDebugLoc();
423
424  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
425
426  unsigned ldrOpc, strOpc;
427  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
428
429  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
430  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
431  MF->insert(It, loopMBB);
432  MF->insert(It, exitMBB);
433
434  // Transfer the remainder of BB and its successor edges to exitMBB.
435  exitMBB->splice(exitMBB->begin(), BB,
436                  llvm::next(MachineBasicBlock::iterator(MI)),
437                  BB->end());
438  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
439
440  const TargetRegisterClass *TRC
441    = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
442  unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
443
444  //  thisMBB:
445  //   ...
446  //   fallthrough --> loopMBB
447  BB->addSuccessor(loopMBB);
448
449  //  loopMBB:
450  //   ldxr dest, ptr
451  //   <binop> scratch, dest, incr
452  //   stxr stxr_status, scratch, ptr
453  //   cbnz stxr_status, loopMBB
454  //   fallthrough --> exitMBB
455  BB = loopMBB;
456  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
457  if (BinOpcode) {
458    // All arithmetic operations we'll be creating are designed to take an extra
459    // shift or extend operand, which we can conveniently set to zero.
460
461    // Operand order needs to go the other way for NAND.
462    if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
463      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
464        .addReg(incr).addReg(dest).addImm(0);
465    else
466      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
467        .addReg(dest).addReg(incr).addImm(0);
468  }
469
470  // From the stxr, the register is GPR32; from the cmp it's GPR32wsp
471  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
472  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
473
474  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
475  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
476    .addReg(stxr_status).addMBB(loopMBB);
477
478  BB->addSuccessor(loopMBB);
479  BB->addSuccessor(exitMBB);
480
481  //  exitMBB:
482  //   ...
483  BB = exitMBB;
484
485  MI->eraseFromParent();   // The instruction is gone now.
486
487  return BB;
488}
489
490MachineBasicBlock *
491AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
492                                              MachineBasicBlock *BB,
493                                              unsigned Size,
494                                              unsigned CmpOp,
495                                              A64CC::CondCodes Cond) const {
496  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
497
498  const BasicBlock *LLVM_BB = BB->getBasicBlock();
499  MachineFunction *MF = BB->getParent();
500  MachineFunction::iterator It = BB;
501  ++It;
502
503  unsigned dest = MI->getOperand(0).getReg();
504  unsigned ptr = MI->getOperand(1).getReg();
505  unsigned incr = MI->getOperand(2).getReg();
506  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
507
508  unsigned oldval = dest;
509  DebugLoc dl = MI->getDebugLoc();
510
511  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
512  const TargetRegisterClass *TRC, *TRCsp;
513  if (Size == 8) {
514    TRC = &AArch64::GPR64RegClass;
515    TRCsp = &AArch64::GPR64xspRegClass;
516  } else {
517    TRC = &AArch64::GPR32RegClass;
518    TRCsp = &AArch64::GPR32wspRegClass;
519  }
520
521  unsigned ldrOpc, strOpc;
522  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
523
524  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
525  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
526  MF->insert(It, loopMBB);
527  MF->insert(It, exitMBB);
528
529  // Transfer the remainder of BB and its successor edges to exitMBB.
530  exitMBB->splice(exitMBB->begin(), BB,
531                  llvm::next(MachineBasicBlock::iterator(MI)),
532                  BB->end());
533  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
534
535  unsigned scratch = MRI.createVirtualRegister(TRC);
536  MRI.constrainRegClass(scratch, TRCsp);
537
538  //  thisMBB:
539  //   ...
540  //   fallthrough --> loopMBB
541  BB->addSuccessor(loopMBB);
542
543  //  loopMBB:
544  //   ldxr dest, ptr
545  //   cmp incr, dest (, sign extend if necessary)
546  //   csel scratch, dest, incr, cond
547  //   stxr stxr_status, scratch, ptr
548  //   cbnz stxr_status, loopMBB
549  //   fallthrough --> exitMBB
550  BB = loopMBB;
551  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
552
553  // Build compare and cmov instructions.
554  MRI.constrainRegClass(incr, TRCsp);
555  BuildMI(BB, dl, TII->get(CmpOp))
556    .addReg(incr).addReg(oldval).addImm(0);
557
558  BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
559          scratch)
560    .addReg(oldval).addReg(incr).addImm(Cond);
561
562  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
563  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
564
565  BuildMI(BB, dl, TII->get(strOpc), stxr_status)
566    .addReg(scratch).addReg(ptr);
567  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
568    .addReg(stxr_status).addMBB(loopMBB);
569
570  BB->addSuccessor(loopMBB);
571  BB->addSuccessor(exitMBB);
572
573  //  exitMBB:
574  //   ...
575  BB = exitMBB;
576
577  MI->eraseFromParent();   // The instruction is gone now.
578
579  return BB;
580}
581
582MachineBasicBlock *
583AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
584                                         MachineBasicBlock *BB,
585                                         unsigned Size) const {
586  unsigned dest    = MI->getOperand(0).getReg();
587  unsigned ptr     = MI->getOperand(1).getReg();
588  unsigned oldval  = MI->getOperand(2).getReg();
589  unsigned newval  = MI->getOperand(3).getReg();
590  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
591  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
592  DebugLoc dl = MI->getDebugLoc();
593
594  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
595  const TargetRegisterClass *TRCsp;
596  TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
597
598  unsigned ldrOpc, strOpc;
599  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
600
601  MachineFunction *MF = BB->getParent();
602  const BasicBlock *LLVM_BB = BB->getBasicBlock();
603  MachineFunction::iterator It = BB;
604  ++It; // insert the new blocks after the current block
605
606  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
607  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
608  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
609  MF->insert(It, loop1MBB);
610  MF->insert(It, loop2MBB);
611  MF->insert(It, exitMBB);
612
613  // Transfer the remainder of BB and its successor edges to exitMBB.
614  exitMBB->splice(exitMBB->begin(), BB,
615                  llvm::next(MachineBasicBlock::iterator(MI)),
616                  BB->end());
617  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
618
619  //  thisMBB:
620  //   ...
621  //   fallthrough --> loop1MBB
622  BB->addSuccessor(loop1MBB);
623
624  // loop1MBB:
625  //   ldxr dest, [ptr]
626  //   cmp dest, oldval
627  //   b.ne exitMBB
628  BB = loop1MBB;
629  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
630
631  unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
632  MRI.constrainRegClass(dest, TRCsp);
633  BuildMI(BB, dl, TII->get(CmpOp))
634    .addReg(dest).addReg(oldval).addImm(0);
635  BuildMI(BB, dl, TII->get(AArch64::Bcc))
636    .addImm(A64CC::NE).addMBB(exitMBB);
637  BB->addSuccessor(loop2MBB);
638  BB->addSuccessor(exitMBB);
639
640  // loop2MBB:
641  //   strex stxr_status, newval, [ptr]
642  //   cbnz stxr_status, loop1MBB
643  BB = loop2MBB;
644  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
645  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
646
647  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
648  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
649    .addReg(stxr_status).addMBB(loop1MBB);
650  BB->addSuccessor(loop1MBB);
651  BB->addSuccessor(exitMBB);
652
653  //  exitMBB:
654  //   ...
655  BB = exitMBB;
656
657  MI->eraseFromParent();   // The instruction is gone now.
658
659  return BB;
660}
661
662MachineBasicBlock *
663AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
664                                    MachineBasicBlock *MBB) const {
665  // We materialise the F128CSEL pseudo-instruction using conditional branches
666  // and loads, giving an instruciton sequence like:
667  //     str q0, [sp]
668  //     b.ne IfTrue
669  //     b Finish
670  // IfTrue:
671  //     str q1, [sp]
672  // Finish:
673  //     ldr q0, [sp]
674  //
675  // Using virtual registers would probably not be beneficial since COPY
676  // instructions are expensive for f128 (there's no actual instruction to
677  // implement them).
678  //
679  // An alternative would be to do an integer-CSEL on some address. E.g.:
680  //     mov x0, sp
681  //     add x1, sp, #16
682  //     str q0, [x0]
683  //     str q1, [x1]
684  //     csel x0, x0, x1, ne
685  //     ldr q0, [x0]
686  //
687  // It's unclear which approach is actually optimal.
688  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
689  MachineFunction *MF = MBB->getParent();
690  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
691  DebugLoc DL = MI->getDebugLoc();
692  MachineFunction::iterator It = MBB;
693  ++It;
694
695  unsigned DestReg = MI->getOperand(0).getReg();
696  unsigned IfTrueReg = MI->getOperand(1).getReg();
697  unsigned IfFalseReg = MI->getOperand(2).getReg();
698  unsigned CondCode = MI->getOperand(3).getImm();
699  bool NZCVKilled = MI->getOperand(4).isKill();
700
701  MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
702  MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
703  MF->insert(It, TrueBB);
704  MF->insert(It, EndBB);
705
706  // Transfer rest of current basic-block to EndBB
707  EndBB->splice(EndBB->begin(), MBB,
708                llvm::next(MachineBasicBlock::iterator(MI)),
709                MBB->end());
710  EndBB->transferSuccessorsAndUpdatePHIs(MBB);
711
712  // We need somewhere to store the f128 value needed.
713  int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
714
715  //     [... start of incoming MBB ...]
716  //     str qIFFALSE, [sp]
717  //     b.cc IfTrue
718  //     b Done
719  BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
720    .addReg(IfFalseReg)
721    .addFrameIndex(ScratchFI)
722    .addImm(0);
723  BuildMI(MBB, DL, TII->get(AArch64::Bcc))
724    .addImm(CondCode)
725    .addMBB(TrueBB);
726  BuildMI(MBB, DL, TII->get(AArch64::Bimm))
727    .addMBB(EndBB);
728  MBB->addSuccessor(TrueBB);
729  MBB->addSuccessor(EndBB);
730
731  if (!NZCVKilled) {
732    // NZCV is live-through TrueBB.
733    TrueBB->addLiveIn(AArch64::NZCV);
734    EndBB->addLiveIn(AArch64::NZCV);
735  }
736
737  // IfTrue:
738  //     str qIFTRUE, [sp]
739  BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
740    .addReg(IfTrueReg)
741    .addFrameIndex(ScratchFI)
742    .addImm(0);
743
744  // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
745  // blocks.
746  TrueBB->addSuccessor(EndBB);
747
748  // Done:
749  //     ldr qDEST, [sp]
750  //     [... rest of incoming MBB ...]
751  MachineInstr *StartOfEnd = EndBB->begin();
752  BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
753    .addFrameIndex(ScratchFI)
754    .addImm(0);
755
756  MI->eraseFromParent();
757  return EndBB;
758}
759
760MachineBasicBlock *
761AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
762                                                 MachineBasicBlock *MBB) const {
763  switch (MI->getOpcode()) {
764  default: llvm_unreachable("Unhandled instruction with custom inserter");
765  case AArch64::F128CSEL:
766    return EmitF128CSEL(MI, MBB);
767  case AArch64::ATOMIC_LOAD_ADD_I8:
768    return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
769  case AArch64::ATOMIC_LOAD_ADD_I16:
770    return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
771  case AArch64::ATOMIC_LOAD_ADD_I32:
772    return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
773  case AArch64::ATOMIC_LOAD_ADD_I64:
774    return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
775
776  case AArch64::ATOMIC_LOAD_SUB_I8:
777    return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
778  case AArch64::ATOMIC_LOAD_SUB_I16:
779    return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
780  case AArch64::ATOMIC_LOAD_SUB_I32:
781    return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
782  case AArch64::ATOMIC_LOAD_SUB_I64:
783    return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
784
785  case AArch64::ATOMIC_LOAD_AND_I8:
786    return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
787  case AArch64::ATOMIC_LOAD_AND_I16:
788    return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
789  case AArch64::ATOMIC_LOAD_AND_I32:
790    return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
791  case AArch64::ATOMIC_LOAD_AND_I64:
792    return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
793
794  case AArch64::ATOMIC_LOAD_OR_I8:
795    return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
796  case AArch64::ATOMIC_LOAD_OR_I16:
797    return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
798  case AArch64::ATOMIC_LOAD_OR_I32:
799    return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
800  case AArch64::ATOMIC_LOAD_OR_I64:
801    return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
802
803  case AArch64::ATOMIC_LOAD_XOR_I8:
804    return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
805  case AArch64::ATOMIC_LOAD_XOR_I16:
806    return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
807  case AArch64::ATOMIC_LOAD_XOR_I32:
808    return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
809  case AArch64::ATOMIC_LOAD_XOR_I64:
810    return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
811
812  case AArch64::ATOMIC_LOAD_NAND_I8:
813    return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
814  case AArch64::ATOMIC_LOAD_NAND_I16:
815    return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
816  case AArch64::ATOMIC_LOAD_NAND_I32:
817    return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
818  case AArch64::ATOMIC_LOAD_NAND_I64:
819    return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
820
821  case AArch64::ATOMIC_LOAD_MIN_I8:
822    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
823  case AArch64::ATOMIC_LOAD_MIN_I16:
824    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
825  case AArch64::ATOMIC_LOAD_MIN_I32:
826    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
827  case AArch64::ATOMIC_LOAD_MIN_I64:
828    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
829
830  case AArch64::ATOMIC_LOAD_MAX_I8:
831    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
832  case AArch64::ATOMIC_LOAD_MAX_I16:
833    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
834  case AArch64::ATOMIC_LOAD_MAX_I32:
835    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
836  case AArch64::ATOMIC_LOAD_MAX_I64:
837    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
838
839  case AArch64::ATOMIC_LOAD_UMIN_I8:
840    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
841  case AArch64::ATOMIC_LOAD_UMIN_I16:
842    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
843  case AArch64::ATOMIC_LOAD_UMIN_I32:
844    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
845  case AArch64::ATOMIC_LOAD_UMIN_I64:
846    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
847
848  case AArch64::ATOMIC_LOAD_UMAX_I8:
849    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
850  case AArch64::ATOMIC_LOAD_UMAX_I16:
851    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
852  case AArch64::ATOMIC_LOAD_UMAX_I32:
853    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
854  case AArch64::ATOMIC_LOAD_UMAX_I64:
855    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
856
857  case AArch64::ATOMIC_SWAP_I8:
858    return emitAtomicBinary(MI, MBB, 1, 0);
859  case AArch64::ATOMIC_SWAP_I16:
860    return emitAtomicBinary(MI, MBB, 2, 0);
861  case AArch64::ATOMIC_SWAP_I32:
862    return emitAtomicBinary(MI, MBB, 4, 0);
863  case AArch64::ATOMIC_SWAP_I64:
864    return emitAtomicBinary(MI, MBB, 8, 0);
865
866  case AArch64::ATOMIC_CMP_SWAP_I8:
867    return emitAtomicCmpSwap(MI, MBB, 1);
868  case AArch64::ATOMIC_CMP_SWAP_I16:
869    return emitAtomicCmpSwap(MI, MBB, 2);
870  case AArch64::ATOMIC_CMP_SWAP_I32:
871    return emitAtomicCmpSwap(MI, MBB, 4);
872  case AArch64::ATOMIC_CMP_SWAP_I64:
873    return emitAtomicCmpSwap(MI, MBB, 8);
874  }
875}
876
877
878const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
879  switch (Opcode) {
880  case AArch64ISD::BR_CC:          return "AArch64ISD::BR_CC";
881  case AArch64ISD::Call:           return "AArch64ISD::Call";
882  case AArch64ISD::FPMOV:          return "AArch64ISD::FPMOV";
883  case AArch64ISD::GOTLoad:        return "AArch64ISD::GOTLoad";
884  case AArch64ISD::BFI:            return "AArch64ISD::BFI";
885  case AArch64ISD::EXTR:           return "AArch64ISD::EXTR";
886  case AArch64ISD::Ret:            return "AArch64ISD::Ret";
887  case AArch64ISD::SBFX:           return "AArch64ISD::SBFX";
888  case AArch64ISD::SELECT_CC:      return "AArch64ISD::SELECT_CC";
889  case AArch64ISD::SETCC:          return "AArch64ISD::SETCC";
890  case AArch64ISD::TC_RETURN:      return "AArch64ISD::TC_RETURN";
891  case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
892  case AArch64ISD::TLSDESCCALL:    return "AArch64ISD::TLSDESCCALL";
893  case AArch64ISD::WrapperLarge:   return "AArch64ISD::WrapperLarge";
894  case AArch64ISD::WrapperSmall:   return "AArch64ISD::WrapperSmall";
895
896  case AArch64ISD::NEON_BSL:
897    return "AArch64ISD::NEON_BSL";
898  case AArch64ISD::NEON_MOVIMM:
899    return "AArch64ISD::NEON_MOVIMM";
900  case AArch64ISD::NEON_MVNIMM:
901    return "AArch64ISD::NEON_MVNIMM";
902  case AArch64ISD::NEON_FMOVIMM:
903    return "AArch64ISD::NEON_FMOVIMM";
904  case AArch64ISD::NEON_CMP:
905    return "AArch64ISD::NEON_CMP";
906  case AArch64ISD::NEON_CMPZ:
907    return "AArch64ISD::NEON_CMPZ";
908  case AArch64ISD::NEON_TST:
909    return "AArch64ISD::NEON_TST";
910  case AArch64ISD::NEON_QSHLs:
911    return "AArch64ISD::NEON_QSHLs";
912  case AArch64ISD::NEON_QSHLu:
913    return "AArch64ISD::NEON_QSHLu";
914  case AArch64ISD::NEON_VDUP:
915    return "AArch64ISD::NEON_VDUP";
916  case AArch64ISD::NEON_VDUPLANE:
917    return "AArch64ISD::NEON_VDUPLANE";
918  case AArch64ISD::NEON_REV16:
919    return "AArch64ISD::NEON_REV16";
920  case AArch64ISD::NEON_REV32:
921    return "AArch64ISD::NEON_REV32";
922  case AArch64ISD::NEON_REV64:
923    return "AArch64ISD::NEON_REV64";
924  case AArch64ISD::NEON_LD1_UPD:
925    return "AArch64ISD::NEON_LD1_UPD";
926  case AArch64ISD::NEON_LD2_UPD:
927    return "AArch64ISD::NEON_LD2_UPD";
928  case AArch64ISD::NEON_LD3_UPD:
929    return "AArch64ISD::NEON_LD3_UPD";
930  case AArch64ISD::NEON_LD4_UPD:
931    return "AArch64ISD::NEON_LD4_UPD";
932  case AArch64ISD::NEON_ST1_UPD:
933    return "AArch64ISD::NEON_ST1_UPD";
934  case AArch64ISD::NEON_ST2_UPD:
935    return "AArch64ISD::NEON_ST2_UPD";
936  case AArch64ISD::NEON_ST3_UPD:
937    return "AArch64ISD::NEON_ST3_UPD";
938  case AArch64ISD::NEON_ST4_UPD:
939    return "AArch64ISD::NEON_ST4_UPD";
940  case AArch64ISD::NEON_LD1x2_UPD:
941    return "AArch64ISD::NEON_LD1x2_UPD";
942  case AArch64ISD::NEON_LD1x3_UPD:
943    return "AArch64ISD::NEON_LD1x3_UPD";
944  case AArch64ISD::NEON_LD1x4_UPD:
945    return "AArch64ISD::NEON_LD1x4_UPD";
946  case AArch64ISD::NEON_ST1x2_UPD:
947    return "AArch64ISD::NEON_ST1x2_UPD";
948  case AArch64ISD::NEON_ST1x3_UPD:
949    return "AArch64ISD::NEON_ST1x3_UPD";
950  case AArch64ISD::NEON_ST1x4_UPD:
951    return "AArch64ISD::NEON_ST1x4_UPD";
952  case AArch64ISD::NEON_VEXTRACT:
953    return "AArch64ISD::NEON_VEXTRACT";
954  default:
955    return NULL;
956  }
957}
958
959static const uint16_t AArch64FPRArgRegs[] = {
960  AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
961  AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
962};
963static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
964
965static const uint16_t AArch64ArgRegs[] = {
966  AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
967  AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
968};
969static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
970
971static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
972                                 CCValAssign::LocInfo LocInfo,
973                                 ISD::ArgFlagsTy ArgFlags, CCState &State) {
974  // Mark all remaining general purpose registers as allocated. We don't
975  // backtrack: if (for example) an i128 gets put on the stack, no subsequent
976  // i64 will go in registers (C.11).
977  for (unsigned i = 0; i < NumArgRegs; ++i)
978    State.AllocateReg(AArch64ArgRegs[i]);
979
980  return false;
981}
982
983#include "AArch64GenCallingConv.inc"
984
985CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
986
987  switch(CC) {
988  default: llvm_unreachable("Unsupported calling convention");
989  case CallingConv::Fast:
990  case CallingConv::C:
991    return CC_A64_APCS;
992  }
993}
994
995void
996AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
997                                           SDLoc DL, SDValue &Chain) const {
998  MachineFunction &MF = DAG.getMachineFunction();
999  MachineFrameInfo *MFI = MF.getFrameInfo();
1000  AArch64MachineFunctionInfo *FuncInfo
1001    = MF.getInfo<AArch64MachineFunctionInfo>();
1002
1003  SmallVector<SDValue, 8> MemOps;
1004
1005  unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
1006                                                         NumArgRegs);
1007  unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
1008                                                         NumFPRArgRegs);
1009
1010  unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
1011  int GPRIdx = 0;
1012  if (GPRSaveSize != 0) {
1013    GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
1014
1015    SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
1016
1017    for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
1018      unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
1019      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
1020      SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
1021                                   MachinePointerInfo::getStack(i * 8),
1022                                   false, false, 0);
1023      MemOps.push_back(Store);
1024      FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
1025                        DAG.getConstant(8, getPointerTy()));
1026    }
1027  }
1028
1029  if (getSubtarget()->hasFPARMv8()) {
1030  unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
1031  int FPRIdx = 0;
1032    // According to the AArch64 Procedure Call Standard, section B.1/B.3, we
1033    // can omit a register save area if we know we'll never use registers of
1034    // that class.
1035    if (FPRSaveSize != 0) {
1036      FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
1037
1038      SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
1039
1040      for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
1041        unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
1042            &AArch64::FPR128RegClass);
1043        SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
1044        SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
1045            MachinePointerInfo::getStack(i * 16),
1046            false, false, 0);
1047        MemOps.push_back(Store);
1048        FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
1049            DAG.getConstant(16, getPointerTy()));
1050      }
1051    }
1052    FuncInfo->setVariadicFPRIdx(FPRIdx);
1053    FuncInfo->setVariadicFPRSize(FPRSaveSize);
1054  }
1055
1056  int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true);
1057
1058  FuncInfo->setVariadicStackIdx(StackIdx);
1059  FuncInfo->setVariadicGPRIdx(GPRIdx);
1060  FuncInfo->setVariadicGPRSize(GPRSaveSize);
1061
1062  if (!MemOps.empty()) {
1063    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
1064                        MemOps.size());
1065  }
1066}
1067
1068
1069SDValue
1070AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
1071                                      CallingConv::ID CallConv, bool isVarArg,
1072                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1073                                      SDLoc dl, SelectionDAG &DAG,
1074                                      SmallVectorImpl<SDValue> &InVals) const {
1075  MachineFunction &MF = DAG.getMachineFunction();
1076  AArch64MachineFunctionInfo *FuncInfo
1077    = MF.getInfo<AArch64MachineFunctionInfo>();
1078  MachineFrameInfo *MFI = MF.getFrameInfo();
1079  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1080
1081  SmallVector<CCValAssign, 16> ArgLocs;
1082  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1083                 getTargetMachine(), ArgLocs, *DAG.getContext());
1084  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1085
1086  SmallVector<SDValue, 16> ArgValues;
1087
1088  SDValue ArgValue;
1089  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1090    CCValAssign &VA = ArgLocs[i];
1091    ISD::ArgFlagsTy Flags = Ins[i].Flags;
1092
1093    if (Flags.isByVal()) {
1094      // Byval is used for small structs and HFAs in the PCS, but the system
1095      // should work in a non-compliant manner for larger structs.
1096      EVT PtrTy = getPointerTy();
1097      int Size = Flags.getByValSize();
1098      unsigned NumRegs = (Size + 7) / 8;
1099
1100      unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
1101                                                 VA.getLocMemOffset(),
1102                                                 false);
1103      SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
1104      InVals.push_back(FrameIdxN);
1105
1106      continue;
1107    } else if (VA.isRegLoc()) {
1108      MVT RegVT = VA.getLocVT();
1109      const TargetRegisterClass *RC = getRegClassFor(RegVT);
1110      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1111
1112      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1113    } else { // VA.isRegLoc()
1114      assert(VA.isMemLoc());
1115
1116      int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
1117                                      VA.getLocMemOffset(), true);
1118
1119      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1120      ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1121                             MachinePointerInfo::getFixedStack(FI),
1122                             false, false, false, 0);
1123
1124
1125    }
1126
1127    switch (VA.getLocInfo()) {
1128    default: llvm_unreachable("Unknown loc info!");
1129    case CCValAssign::Full: break;
1130    case CCValAssign::BCvt:
1131      ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
1132      break;
1133    case CCValAssign::SExt:
1134    case CCValAssign::ZExt:
1135    case CCValAssign::AExt: {
1136      unsigned DestSize = VA.getValVT().getSizeInBits();
1137      unsigned DestSubReg;
1138
1139      switch (DestSize) {
1140      case 8: DestSubReg = AArch64::sub_8; break;
1141      case 16: DestSubReg = AArch64::sub_16; break;
1142      case 32: DestSubReg = AArch64::sub_32; break;
1143      case 64: DestSubReg = AArch64::sub_64; break;
1144      default: llvm_unreachable("Unexpected argument promotion");
1145      }
1146
1147      ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
1148                                   VA.getValVT(), ArgValue,
1149                                   DAG.getTargetConstant(DestSubReg, MVT::i32)),
1150                         0);
1151      break;
1152    }
1153    }
1154
1155    InVals.push_back(ArgValue);
1156  }
1157
1158  if (isVarArg)
1159    SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
1160
1161  unsigned StackArgSize = CCInfo.getNextStackOffset();
1162  if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
1163    // This is a non-standard ABI so by fiat I say we're allowed to make full
1164    // use of the stack area to be popped, which must be aligned to 16 bytes in
1165    // any case:
1166    StackArgSize = RoundUpToAlignment(StackArgSize, 16);
1167
1168    // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
1169    // a multiple of 16.
1170    FuncInfo->setArgumentStackToRestore(StackArgSize);
1171
1172    // This realignment carries over to the available bytes below. Our own
1173    // callers will guarantee the space is free by giving an aligned value to
1174    // CALLSEQ_START.
1175  }
1176  // Even if we're not expected to free up the space, it's useful to know how
1177  // much is there while considering tail calls (because we can reuse it).
1178  FuncInfo->setBytesInStackArgArea(StackArgSize);
1179
1180  return Chain;
1181}
1182
1183SDValue
1184AArch64TargetLowering::LowerReturn(SDValue Chain,
1185                                   CallingConv::ID CallConv, bool isVarArg,
1186                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
1187                                   const SmallVectorImpl<SDValue> &OutVals,
1188                                   SDLoc dl, SelectionDAG &DAG) const {
1189  // CCValAssign - represent the assignment of the return value to a location.
1190  SmallVector<CCValAssign, 16> RVLocs;
1191
1192  // CCState - Info about the registers and stack slots.
1193  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1194                 getTargetMachine(), RVLocs, *DAG.getContext());
1195
1196  // Analyze outgoing return values.
1197  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
1198
1199  SDValue Flag;
1200  SmallVector<SDValue, 4> RetOps(1, Chain);
1201
1202  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1203    // PCS: "If the type, T, of the result of a function is such that
1204    // void func(T arg) would require that arg be passed as a value in a
1205    // register (or set of registers) according to the rules in 5.4, then the
1206    // result is returned in the same registers as would be used for such an
1207    // argument.
1208    //
1209    // Otherwise, the caller shall reserve a block of memory of sufficient
1210    // size and alignment to hold the result. The address of the memory block
1211    // shall be passed as an additional argument to the function in x8."
1212    //
1213    // This is implemented in two places. The register-return values are dealt
1214    // with here, more complex returns are passed as an sret parameter, which
1215    // means we don't have to worry about it during actual return.
1216    CCValAssign &VA = RVLocs[i];
1217    assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
1218
1219
1220    SDValue Arg = OutVals[i];
1221
1222    // There's no convenient note in the ABI about this as there is for normal
1223    // arguments, but it says return values are passed in the same registers as
1224    // an argument would be. I believe that includes the comments about
1225    // unspecified higher bits, putting the burden of widening on the *caller*
1226    // for return values.
1227    switch (VA.getLocInfo()) {
1228    default: llvm_unreachable("Unknown loc info");
1229    case CCValAssign::Full: break;
1230    case CCValAssign::SExt:
1231    case CCValAssign::ZExt:
1232    case CCValAssign::AExt:
1233      // Floating-point values should only be extended when they're going into
1234      // memory, which can't happen here so an integer extend is acceptable.
1235      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1236      break;
1237    case CCValAssign::BCvt:
1238      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1239      break;
1240    }
1241
1242    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1243    Flag = Chain.getValue(1);
1244    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1245  }
1246
1247  RetOps[0] = Chain;  // Update chain.
1248
1249  // Add the flag if we have it.
1250  if (Flag.getNode())
1251    RetOps.push_back(Flag);
1252
1253  return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other,
1254                     &RetOps[0], RetOps.size());
1255}
1256
1257SDValue
1258AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
1259                                 SmallVectorImpl<SDValue> &InVals) const {
1260  SelectionDAG &DAG                     = CLI.DAG;
1261  SDLoc &dl                             = CLI.DL;
1262  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1263  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1264  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1265  SDValue Chain                         = CLI.Chain;
1266  SDValue Callee                        = CLI.Callee;
1267  bool &IsTailCall                      = CLI.IsTailCall;
1268  CallingConv::ID CallConv              = CLI.CallConv;
1269  bool IsVarArg                         = CLI.IsVarArg;
1270
1271  MachineFunction &MF = DAG.getMachineFunction();
1272  AArch64MachineFunctionInfo *FuncInfo
1273    = MF.getInfo<AArch64MachineFunctionInfo>();
1274  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1275  bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
1276  bool IsSibCall = false;
1277
1278  if (IsTailCall) {
1279    IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1280                    IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1281                                                   Outs, OutVals, Ins, DAG);
1282
1283    // A sibling call is one where we're under the usual C ABI and not planning
1284    // to change that but can still do a tail call:
1285    if (!TailCallOpt && IsTailCall)
1286      IsSibCall = true;
1287  }
1288
1289  SmallVector<CCValAssign, 16> ArgLocs;
1290  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1291                 getTargetMachine(), ArgLocs, *DAG.getContext());
1292  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1293
1294  // On AArch64 (and all other architectures I'm aware of) the most this has to
1295  // do is adjust the stack pointer.
1296  unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
1297  if (IsSibCall) {
1298    // Since we're not changing the ABI to make this a tail call, the memory
1299    // operands are already available in the caller's incoming argument space.
1300    NumBytes = 0;
1301  }
1302
1303  // FPDiff is the byte offset of the call's argument area from the callee's.
1304  // Stores to callee stack arguments will be placed in FixedStackSlots offset
1305  // by this amount for a tail call. In a sibling call it must be 0 because the
1306  // caller will deallocate the entire stack and the callee still expects its
1307  // arguments to begin at SP+0. Completely unused for non-tail calls.
1308  int FPDiff = 0;
1309
1310  if (IsTailCall && !IsSibCall) {
1311    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1312
1313    // FPDiff will be negative if this tail call requires more space than we
1314    // would automatically have in our incoming argument space. Positive if we
1315    // can actually shrink the stack.
1316    FPDiff = NumReusableBytes - NumBytes;
1317
1318    // The stack pointer must be 16-byte aligned at all times it's used for a
1319    // memory operation, which in practice means at *all* times and in
1320    // particular across call boundaries. Therefore our own arguments started at
1321    // a 16-byte aligned SP and the delta applied for the tail call should
1322    // satisfy the same constraint.
1323    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
1324  }
1325
1326  if (!IsSibCall)
1327    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
1328                                 dl);
1329
1330  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
1331                                        getPointerTy());
1332
1333  SmallVector<SDValue, 8> MemOpChains;
1334  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1335
1336  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1337    CCValAssign &VA = ArgLocs[i];
1338    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1339    SDValue Arg = OutVals[i];
1340
1341    // Callee does the actual widening, so all extensions just use an implicit
1342    // definition of the rest of the Loc. Aesthetically, this would be nicer as
1343    // an ANY_EXTEND, but that isn't valid for floating-point types and this
1344    // alternative works on integer types too.
1345    switch (VA.getLocInfo()) {
1346    default: llvm_unreachable("Unknown loc info!");
1347    case CCValAssign::Full: break;
1348    case CCValAssign::SExt:
1349    case CCValAssign::ZExt:
1350    case CCValAssign::AExt: {
1351      unsigned SrcSize = VA.getValVT().getSizeInBits();
1352      unsigned SrcSubReg;
1353
1354      switch (SrcSize) {
1355      case 8: SrcSubReg = AArch64::sub_8; break;
1356      case 16: SrcSubReg = AArch64::sub_16; break;
1357      case 32: SrcSubReg = AArch64::sub_32; break;
1358      case 64: SrcSubReg = AArch64::sub_64; break;
1359      default: llvm_unreachable("Unexpected argument promotion");
1360      }
1361
1362      Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
1363                                    VA.getLocVT(),
1364                                    DAG.getUNDEF(VA.getLocVT()),
1365                                    Arg,
1366                                    DAG.getTargetConstant(SrcSubReg, MVT::i32)),
1367                    0);
1368
1369      break;
1370    }
1371    case CCValAssign::BCvt:
1372      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1373      break;
1374    }
1375
1376    if (VA.isRegLoc()) {
1377      // A normal register (sub-) argument. For now we just note it down because
1378      // we want to copy things into registers as late as possible to avoid
1379      // register-pressure (and possibly worse).
1380      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1381      continue;
1382    }
1383
1384    assert(VA.isMemLoc() && "unexpected argument location");
1385
1386    SDValue DstAddr;
1387    MachinePointerInfo DstInfo;
1388    if (IsTailCall) {
1389      uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
1390                                          VA.getLocVT().getSizeInBits();
1391      OpSize = (OpSize + 7) / 8;
1392      int32_t Offset = VA.getLocMemOffset() + FPDiff;
1393      int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
1394
1395      DstAddr = DAG.getFrameIndex(FI, getPointerTy());
1396      DstInfo = MachinePointerInfo::getFixedStack(FI);
1397
1398      // Make sure any stack arguments overlapping with where we're storing are
1399      // loaded before this eventual operation. Otherwise they'll be clobbered.
1400      Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
1401    } else {
1402      SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset());
1403
1404      DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1405      DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
1406    }
1407
1408    if (Flags.isByVal()) {
1409      SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
1410      SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
1411                                  Flags.getByValAlign(),
1412                                  /*isVolatile = */ false,
1413                                  /*alwaysInline = */ false,
1414                                  DstInfo, MachinePointerInfo(0));
1415      MemOpChains.push_back(Cpy);
1416    } else {
1417      // Normal stack argument, put it where it's needed.
1418      SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
1419                                   false, false, 0);
1420      MemOpChains.push_back(Store);
1421    }
1422  }
1423
1424  // The loads and stores generated above shouldn't clash with each
1425  // other. Combining them with this TokenFactor notes that fact for the rest of
1426  // the backend.
1427  if (!MemOpChains.empty())
1428    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1429                        &MemOpChains[0], MemOpChains.size());
1430
1431  // Most of the rest of the instructions need to be glued together; we don't
1432  // want assignments to actual registers used by a call to be rearranged by a
1433  // well-meaning scheduler.
1434  SDValue InFlag;
1435
1436  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1437    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1438                             RegsToPass[i].second, InFlag);
1439    InFlag = Chain.getValue(1);
1440  }
1441
1442  // The linker is responsible for inserting veneers when necessary to put a
1443  // function call destination in range, so we don't need to bother with a
1444  // wrapper here.
1445  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1446    const GlobalValue *GV = G->getGlobal();
1447    Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
1448  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1449    const char *Sym = S->getSymbol();
1450    Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1451  }
1452
1453  // We don't usually want to end the call-sequence here because we would tidy
1454  // the frame up *after* the call, however in the ABI-changing tail-call case
1455  // we've carefully laid out the parameters so that when sp is reset they'll be
1456  // in the correct location.
1457  if (IsTailCall && !IsSibCall) {
1458    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1459                               DAG.getIntPtrConstant(0, true), InFlag, dl);
1460    InFlag = Chain.getValue(1);
1461  }
1462
1463  // We produce the following DAG scheme for the actual call instruction:
1464  //     (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
1465  //
1466  // Most arguments aren't going to be used and just keep the values live as
1467  // far as LLVM is concerned. It's expected to be selected as simply "bl
1468  // callee" (for a direct, non-tail call).
1469  std::vector<SDValue> Ops;
1470  Ops.push_back(Chain);
1471  Ops.push_back(Callee);
1472
1473  if (IsTailCall) {
1474    // Each tail call may have to adjust the stack by a different amount, so
1475    // this information must travel along with the operation for eventual
1476    // consumption by emitEpilogue.
1477    Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
1478  }
1479
1480  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1481    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1482                                  RegsToPass[i].second.getValueType()));
1483
1484
1485  // Add a register mask operand representing the call-preserved registers. This
1486  // is used later in codegen to constrain register-allocation.
1487  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1488  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1489  assert(Mask && "Missing call preserved mask for calling convention");
1490  Ops.push_back(DAG.getRegisterMask(Mask));
1491
1492  // If we needed glue, put it in as the last argument.
1493  if (InFlag.getNode())
1494    Ops.push_back(InFlag);
1495
1496  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1497
1498  if (IsTailCall) {
1499    return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1500  }
1501
1502  Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size());
1503  InFlag = Chain.getValue(1);
1504
1505  // Now we can reclaim the stack, just as well do it before working out where
1506  // our return value is.
1507  if (!IsSibCall) {
1508    uint64_t CalleePopBytes
1509      = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
1510
1511    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1512                               DAG.getIntPtrConstant(CalleePopBytes, true),
1513                               InFlag, dl);
1514    InFlag = Chain.getValue(1);
1515  }
1516
1517  return LowerCallResult(Chain, InFlag, CallConv,
1518                         IsVarArg, Ins, dl, DAG, InVals);
1519}
1520
1521SDValue
1522AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1523                                      CallingConv::ID CallConv, bool IsVarArg,
1524                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1525                                      SDLoc dl, SelectionDAG &DAG,
1526                                      SmallVectorImpl<SDValue> &InVals) const {
1527  // Assign locations to each value returned by this call.
1528  SmallVector<CCValAssign, 16> RVLocs;
1529  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1530                 getTargetMachine(), RVLocs, *DAG.getContext());
1531  CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
1532
1533  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1534    CCValAssign VA = RVLocs[i];
1535
1536    // Return values that are too big to fit into registers should use an sret
1537    // pointer, so this can be a lot simpler than the main argument code.
1538    assert(VA.isRegLoc() && "Memory locations not expected for call return");
1539
1540    SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1541                                     InFlag);
1542    Chain = Val.getValue(1);
1543    InFlag = Val.getValue(2);
1544
1545    switch (VA.getLocInfo()) {
1546    default: llvm_unreachable("Unknown loc info!");
1547    case CCValAssign::Full: break;
1548    case CCValAssign::BCvt:
1549      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1550      break;
1551    case CCValAssign::ZExt:
1552    case CCValAssign::SExt:
1553    case CCValAssign::AExt:
1554      // Floating-point arguments only get extended/truncated if they're going
1555      // in memory, so using the integer operation is acceptable here.
1556      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
1557      break;
1558    }
1559
1560    InVals.push_back(Val);
1561  }
1562
1563  return Chain;
1564}
1565
1566bool
1567AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1568                                    CallingConv::ID CalleeCC,
1569                                    bool IsVarArg,
1570                                    bool IsCalleeStructRet,
1571                                    bool IsCallerStructRet,
1572                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1573                                    const SmallVectorImpl<SDValue> &OutVals,
1574                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1575                                    SelectionDAG& DAG) const {
1576
1577  // For CallingConv::C this function knows whether the ABI needs
1578  // changing. That's not true for other conventions so they will have to opt in
1579  // manually.
1580  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1581    return false;
1582
1583  const MachineFunction &MF = DAG.getMachineFunction();
1584  const Function *CallerF = MF.getFunction();
1585  CallingConv::ID CallerCC = CallerF->getCallingConv();
1586  bool CCMatch = CallerCC == CalleeCC;
1587
1588  // Byval parameters hand the function a pointer directly into the stack area
1589  // we want to reuse during a tail call. Working around this *is* possible (see
1590  // X86) but less efficient and uglier in LowerCall.
1591  for (Function::const_arg_iterator i = CallerF->arg_begin(),
1592         e = CallerF->arg_end(); i != e; ++i)
1593    if (i->hasByValAttr())
1594      return false;
1595
1596  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
1597    if (IsTailCallConvention(CalleeCC) && CCMatch)
1598      return true;
1599    return false;
1600  }
1601
1602  // Now we search for cases where we can use a tail call without changing the
1603  // ABI. Sibcall is used in some places (particularly gcc) to refer to this
1604  // concept.
1605
1606  // I want anyone implementing a new calling convention to think long and hard
1607  // about this assert.
1608  assert((!IsVarArg || CalleeCC == CallingConv::C)
1609         && "Unexpected variadic calling convention");
1610
1611  if (IsVarArg && !Outs.empty()) {
1612    // At least two cases here: if caller is fastcc then we can't have any
1613    // memory arguments (we'd be expected to clean up the stack afterwards). If
1614    // caller is C then we could potentially use its argument area.
1615
1616    // FIXME: for now we take the most conservative of these in both cases:
1617    // disallow all variadic memory operands.
1618    SmallVector<CCValAssign, 16> ArgLocs;
1619    CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1620                   getTargetMachine(), ArgLocs, *DAG.getContext());
1621
1622    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1623    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
1624      if (!ArgLocs[i].isRegLoc())
1625        return false;
1626  }
1627
1628  // If the calling conventions do not match, then we'd better make sure the
1629  // results are returned in the same way as what the caller expects.
1630  if (!CCMatch) {
1631    SmallVector<CCValAssign, 16> RVLocs1;
1632    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1633                    getTargetMachine(), RVLocs1, *DAG.getContext());
1634    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
1635
1636    SmallVector<CCValAssign, 16> RVLocs2;
1637    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1638                    getTargetMachine(), RVLocs2, *DAG.getContext());
1639    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
1640
1641    if (RVLocs1.size() != RVLocs2.size())
1642      return false;
1643    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1644      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1645        return false;
1646      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1647        return false;
1648      if (RVLocs1[i].isRegLoc()) {
1649        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1650          return false;
1651      } else {
1652        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1653          return false;
1654      }
1655    }
1656  }
1657
1658  // Nothing more to check if the callee is taking no arguments
1659  if (Outs.empty())
1660    return true;
1661
1662  SmallVector<CCValAssign, 16> ArgLocs;
1663  CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1664                 getTargetMachine(), ArgLocs, *DAG.getContext());
1665
1666  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1667
1668  const AArch64MachineFunctionInfo *FuncInfo
1669    = MF.getInfo<AArch64MachineFunctionInfo>();
1670
1671  // If the stack arguments for this call would fit into our own save area then
1672  // the call can be made tail.
1673  return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
1674}
1675
1676bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
1677                                                   bool TailCallOpt) const {
1678  return CallCC == CallingConv::Fast && TailCallOpt;
1679}
1680
1681bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
1682  return CallCC == CallingConv::Fast;
1683}
1684
1685SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
1686                                                   SelectionDAG &DAG,
1687                                                   MachineFrameInfo *MFI,
1688                                                   int ClobberedFI) const {
1689  SmallVector<SDValue, 8> ArgChains;
1690  int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
1691  int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
1692
1693  // Include the original chain at the beginning of the list. When this is
1694  // used by target LowerCall hooks, this helps legalize find the
1695  // CALLSEQ_BEGIN node.
1696  ArgChains.push_back(Chain);
1697
1698  // Add a chain value for each stack argument corresponding
1699  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1700         UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
1701    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
1702      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
1703        if (FI->getIndex() < 0) {
1704          int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
1705          int64_t InLastByte = InFirstByte;
1706          InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
1707
1708          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1709              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1710            ArgChains.push_back(SDValue(L, 1));
1711        }
1712
1713   // Build a tokenfactor for all the chains.
1714   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other,
1715                      &ArgChains[0], ArgChains.size());
1716}
1717
1718static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
1719  switch (CC) {
1720  case ISD::SETEQ:  return A64CC::EQ;
1721  case ISD::SETGT:  return A64CC::GT;
1722  case ISD::SETGE:  return A64CC::GE;
1723  case ISD::SETLT:  return A64CC::LT;
1724  case ISD::SETLE:  return A64CC::LE;
1725  case ISD::SETNE:  return A64CC::NE;
1726  case ISD::SETUGT: return A64CC::HI;
1727  case ISD::SETUGE: return A64CC::HS;
1728  case ISD::SETULT: return A64CC::LO;
1729  case ISD::SETULE: return A64CC::LS;
1730  default: llvm_unreachable("Unexpected condition code");
1731  }
1732}
1733
1734bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
1735  // icmp is implemented using adds/subs immediate, which take an unsigned
1736  // 12-bit immediate, optionally shifted left by 12 bits.
1737
1738  // Symmetric by using adds/subs
1739  if (Val < 0)
1740    Val = -Val;
1741
1742  return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
1743}
1744
1745SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
1746                                        ISD::CondCode CC, SDValue &A64cc,
1747                                        SelectionDAG &DAG, SDLoc &dl) const {
1748  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1749    int64_t C = 0;
1750    EVT VT = RHSC->getValueType(0);
1751    bool knownInvalid = false;
1752
1753    // I'm not convinced the rest of LLVM handles these edge cases properly, but
1754    // we can at least get it right.
1755    if (isSignedIntSetCC(CC)) {
1756      C = RHSC->getSExtValue();
1757    } else if (RHSC->getZExtValue() > INT64_MAX) {
1758      // A 64-bit constant not representable by a signed 64-bit integer is far
1759      // too big to fit into a SUBS immediate anyway.
1760      knownInvalid = true;
1761    } else {
1762      C = RHSC->getZExtValue();
1763    }
1764
1765    if (!knownInvalid && !isLegalICmpImmediate(C)) {
1766      // Constant does not fit, try adjusting it by one?
1767      switch (CC) {
1768      default: break;
1769      case ISD::SETLT:
1770      case ISD::SETGE:
1771        if (isLegalICmpImmediate(C-1)) {
1772          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1773          RHS = DAG.getConstant(C-1, VT);
1774        }
1775        break;
1776      case ISD::SETULT:
1777      case ISD::SETUGE:
1778        if (isLegalICmpImmediate(C-1)) {
1779          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1780          RHS = DAG.getConstant(C-1, VT);
1781        }
1782        break;
1783      case ISD::SETLE:
1784      case ISD::SETGT:
1785        if (isLegalICmpImmediate(C+1)) {
1786          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1787          RHS = DAG.getConstant(C+1, VT);
1788        }
1789        break;
1790      case ISD::SETULE:
1791      case ISD::SETUGT:
1792        if (isLegalICmpImmediate(C+1)) {
1793          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1794          RHS = DAG.getConstant(C+1, VT);
1795        }
1796        break;
1797      }
1798    }
1799  }
1800
1801  A64CC::CondCodes CondCode = IntCCToA64CC(CC);
1802  A64cc = DAG.getConstant(CondCode, MVT::i32);
1803  return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1804                     DAG.getCondCode(CC));
1805}
1806
1807static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
1808                                    A64CC::CondCodes &Alternative) {
1809  A64CC::CondCodes CondCode = A64CC::Invalid;
1810  Alternative = A64CC::Invalid;
1811
1812  switch (CC) {
1813  default: llvm_unreachable("Unknown FP condition!");
1814  case ISD::SETEQ:
1815  case ISD::SETOEQ: CondCode = A64CC::EQ; break;
1816  case ISD::SETGT:
1817  case ISD::SETOGT: CondCode = A64CC::GT; break;
1818  case ISD::SETGE:
1819  case ISD::SETOGE: CondCode = A64CC::GE; break;
1820  case ISD::SETOLT: CondCode = A64CC::MI; break;
1821  case ISD::SETOLE: CondCode = A64CC::LS; break;
1822  case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
1823  case ISD::SETO:   CondCode = A64CC::VC; break;
1824  case ISD::SETUO:  CondCode = A64CC::VS; break;
1825  case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
1826  case ISD::SETUGT: CondCode = A64CC::HI; break;
1827  case ISD::SETUGE: CondCode = A64CC::PL; break;
1828  case ISD::SETLT:
1829  case ISD::SETULT: CondCode = A64CC::LT; break;
1830  case ISD::SETLE:
1831  case ISD::SETULE: CondCode = A64CC::LE; break;
1832  case ISD::SETNE:
1833  case ISD::SETUNE: CondCode = A64CC::NE; break;
1834  }
1835  return CondCode;
1836}
1837
1838SDValue
1839AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1840  SDLoc DL(Op);
1841  EVT PtrVT = getPointerTy();
1842  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1843
1844  switch(getTargetMachine().getCodeModel()) {
1845  case CodeModel::Small:
1846    // The most efficient code is PC-relative anyway for the small memory model,
1847    // so we don't need to worry about relocation model.
1848    return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
1849                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
1850                                                 AArch64II::MO_NO_FLAG),
1851                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
1852                                                 AArch64II::MO_LO12),
1853                       DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
1854  case CodeModel::Large:
1855    return DAG.getNode(
1856      AArch64ISD::WrapperLarge, DL, PtrVT,
1857      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3),
1858      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
1859      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
1860      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
1861  default:
1862    llvm_unreachable("Only small and large code models supported now");
1863  }
1864}
1865
1866
1867// (BRCOND chain, val, dest)
1868SDValue
1869AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1870  SDLoc dl(Op);
1871  SDValue Chain = Op.getOperand(0);
1872  SDValue TheBit = Op.getOperand(1);
1873  SDValue DestBB = Op.getOperand(2);
1874
1875  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
1876  // that as the consumer we are responsible for ignoring rubbish in higher
1877  // bits.
1878  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
1879                       DAG.getConstant(1, MVT::i32));
1880
1881  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
1882                               DAG.getConstant(0, TheBit.getValueType()),
1883                               DAG.getCondCode(ISD::SETNE));
1884
1885  return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
1886                     A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
1887                     DestBB);
1888}
1889
1890// (BR_CC chain, condcode, lhs, rhs, dest)
1891SDValue
1892AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1893  SDLoc dl(Op);
1894  SDValue Chain = Op.getOperand(0);
1895  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1896  SDValue LHS = Op.getOperand(2);
1897  SDValue RHS = Op.getOperand(3);
1898  SDValue DestBB = Op.getOperand(4);
1899
1900  if (LHS.getValueType() == MVT::f128) {
1901    // f128 comparisons are lowered to runtime calls by a routine which sets
1902    // LHS, RHS and CC appropriately for the rest of this function to continue.
1903    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
1904
1905    // If softenSetCCOperands returned a scalar, we need to compare the result
1906    // against zero to select between true and false values.
1907    if (RHS.getNode() == 0) {
1908      RHS = DAG.getConstant(0, LHS.getValueType());
1909      CC = ISD::SETNE;
1910    }
1911  }
1912
1913  if (LHS.getValueType().isInteger()) {
1914    SDValue A64cc;
1915
1916    // Integers are handled in a separate function because the combinations of
1917    // immediates and tests can get hairy and we may want to fiddle things.
1918    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
1919
1920    return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1921                       Chain, CmpOp, A64cc, DestBB);
1922  }
1923
1924  // Note that some LLVM floating-point CondCodes can't be lowered to a single
1925  // conditional branch, hence FPCCToA64CC can set a second test, where either
1926  // passing is sufficient.
1927  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
1928  CondCode = FPCCToA64CC(CC, Alternative);
1929  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
1930  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1931                              DAG.getCondCode(CC));
1932  SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1933                                 Chain, SetCC, A64cc, DestBB);
1934
1935  if (Alternative != A64CC::Invalid) {
1936    A64cc = DAG.getConstant(Alternative, MVT::i32);
1937    A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1938                           A64BR_CC, SetCC, A64cc, DestBB);
1939
1940  }
1941
1942  return A64BR_CC;
1943}
1944
1945SDValue
1946AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
1947                                       RTLIB::Libcall Call) const {
1948  ArgListTy Args;
1949  ArgListEntry Entry;
1950  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
1951    EVT ArgVT = Op.getOperand(i).getValueType();
1952    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1953    Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
1954    Entry.isSExt = false;
1955    Entry.isZExt = false;
1956    Args.push_back(Entry);
1957  }
1958  SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
1959
1960  Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
1961
1962  // By default, the input chain to this libcall is the entry node of the
1963  // function. If the libcall is going to be emitted as a tail call then
1964  // isUsedByReturnOnly will change it to the right chain if the return
1965  // node which is being folded has a non-entry input chain.
1966  SDValue InChain = DAG.getEntryNode();
1967
1968  // isTailCall may be true since the callee does not reference caller stack
1969  // frame. Check if it's in the right position.
1970  SDValue TCChain = InChain;
1971  bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
1972  if (isTailCall)
1973    InChain = TCChain;
1974
1975  TargetLowering::
1976  CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
1977                    0, getLibcallCallingConv(Call), isTailCall,
1978                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1979                    Callee, Args, DAG, SDLoc(Op));
1980  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
1981
1982  if (!CallInfo.second.getNode())
1983    // It's a tailcall, return the chain (which is the DAG root).
1984    return DAG.getRoot();
1985
1986  return CallInfo.first;
1987}
1988
1989SDValue
1990AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
1991  if (Op.getOperand(0).getValueType() != MVT::f128) {
1992    // It's legal except when f128 is involved
1993    return Op;
1994  }
1995
1996  RTLIB::Libcall LC;
1997  LC  = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1998
1999  SDValue SrcVal = Op.getOperand(0);
2000  return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
2001                     /*isSigned*/ false, SDLoc(Op)).first;
2002}
2003
2004SDValue
2005AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
2006  assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
2007
2008  RTLIB::Libcall LC;
2009  LC  = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
2010
2011  return LowerF128ToCall(Op, DAG, LC);
2012}
2013
2014SDValue
2015AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
2016                                      bool IsSigned) const {
2017  if (Op.getOperand(0).getValueType() != MVT::f128) {
2018    // It's legal except when f128 is involved
2019    return Op;
2020  }
2021
2022  RTLIB::Libcall LC;
2023  if (IsSigned)
2024    LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
2025  else
2026    LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
2027
2028  return LowerF128ToCall(Op, DAG, LC);
2029}
2030
2031SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2032  MachineFunction &MF = DAG.getMachineFunction();
2033  MachineFrameInfo *MFI = MF.getFrameInfo();
2034  MFI->setReturnAddressIsTaken(true);
2035
2036  EVT VT = Op.getValueType();
2037  SDLoc dl(Op);
2038  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2039  if (Depth) {
2040    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2041    SDValue Offset = DAG.getConstant(8, MVT::i64);
2042    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2043                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2044                       MachinePointerInfo(), false, false, false, 0);
2045  }
2046
2047  // Return X30, which contains the return address. Mark it an implicit live-in.
2048  unsigned Reg = MF.addLiveIn(AArch64::X30, getRegClassFor(MVT::i64));
2049  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, MVT::i64);
2050}
2051
2052
2053SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG)
2054                                              const {
2055  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2056  MFI->setFrameAddressIsTaken(true);
2057
2058  EVT VT = Op.getValueType();
2059  SDLoc dl(Op);
2060  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2061  unsigned FrameReg = AArch64::X29;
2062  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2063  while (Depth--)
2064    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
2065                            MachinePointerInfo(),
2066                            false, false, false, 0);
2067  return FrameAddr;
2068}
2069
2070SDValue
2071AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op,
2072                                                  SelectionDAG &DAG) const {
2073  assert(getTargetMachine().getCodeModel() == CodeModel::Large);
2074  assert(getTargetMachine().getRelocationModel() == Reloc::Static);
2075
2076  EVT PtrVT = getPointerTy();
2077  SDLoc dl(Op);
2078  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2079  const GlobalValue *GV = GN->getGlobal();
2080
2081  SDValue GlobalAddr = DAG.getNode(
2082      AArch64ISD::WrapperLarge, dl, PtrVT,
2083      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3),
2084      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
2085      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
2086      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
2087
2088  if (GN->getOffset() != 0)
2089    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
2090                       DAG.getConstant(GN->getOffset(), PtrVT));
2091
2092  return GlobalAddr;
2093}
2094
2095SDValue
2096AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op,
2097                                                  SelectionDAG &DAG) const {
2098  assert(getTargetMachine().getCodeModel() == CodeModel::Small);
2099
2100  EVT PtrVT = getPointerTy();
2101  SDLoc dl(Op);
2102  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2103  const GlobalValue *GV = GN->getGlobal();
2104  unsigned Alignment = GV->getAlignment();
2105  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2106  if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) {
2107    // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate
2108    // to zero when they remain undefined. In PIC mode the GOT can take care of
2109    // this, but in absolute mode we use a constant pool load.
2110    SDValue PoolAddr;
2111    PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2112                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
2113                                                     AArch64II::MO_NO_FLAG),
2114                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
2115                                                     AArch64II::MO_LO12),
2116                           DAG.getConstant(8, MVT::i32));
2117    SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr,
2118                                     MachinePointerInfo::getConstantPool(),
2119                                     /*isVolatile=*/ false,
2120                                     /*isNonTemporal=*/ true,
2121                                     /*isInvariant=*/ true, 8);
2122    if (GN->getOffset() != 0)
2123      return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
2124                         DAG.getConstant(GN->getOffset(), PtrVT));
2125
2126    return GlobalAddr;
2127  }
2128
2129  if (Alignment == 0) {
2130    const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
2131    if (GVPtrTy->getElementType()->isSized()) {
2132      Alignment
2133        = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
2134    } else {
2135      // Be conservative if we can't guess, not that it really matters:
2136      // functions and labels aren't valid for loads, and the methods used to
2137      // actually calculate an address work with any alignment.
2138      Alignment = 1;
2139    }
2140  }
2141
2142  unsigned char HiFixup, LoFixup;
2143  bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM);
2144
2145  if (UseGOT) {
2146    HiFixup = AArch64II::MO_GOT;
2147    LoFixup = AArch64II::MO_GOT_LO12;
2148    Alignment = 8;
2149  } else {
2150    HiFixup = AArch64II::MO_NO_FLAG;
2151    LoFixup = AArch64II::MO_LO12;
2152  }
2153
2154  // AArch64's small model demands the following sequence:
2155  // ADRP x0, somewhere
2156  // ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
2157  SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2158                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2159                                                             HiFixup),
2160                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2161                                                             LoFixup),
2162                                  DAG.getConstant(Alignment, MVT::i32));
2163
2164  if (UseGOT) {
2165    GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
2166                            GlobalRef);
2167  }
2168
2169  if (GN->getOffset() != 0)
2170    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
2171                       DAG.getConstant(GN->getOffset(), PtrVT));
2172
2173  return GlobalRef;
2174}
2175
2176SDValue
2177AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
2178                                             SelectionDAG &DAG) const {
2179  // TableGen doesn't have easy access to the CodeModel or RelocationModel, so
2180  // we make those distinctions here.
2181
2182  switch (getTargetMachine().getCodeModel()) {
2183  case CodeModel::Small:
2184    return LowerGlobalAddressELFSmall(Op, DAG);
2185  case CodeModel::Large:
2186    return LowerGlobalAddressELFLarge(Op, DAG);
2187  default:
2188    llvm_unreachable("Only small and large code models supported now");
2189  }
2190}
2191
2192SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
2193                                                SDValue DescAddr,
2194                                                SDLoc DL,
2195                                                SelectionDAG &DAG) const {
2196  EVT PtrVT = getPointerTy();
2197
2198  // The function we need to call is simply the first entry in the GOT for this
2199  // descriptor, load it in preparation.
2200  SDValue Func, Chain;
2201  Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2202                     DescAddr);
2203
2204  // The function takes only one argument: the address of the descriptor itself
2205  // in X0.
2206  SDValue Glue;
2207  Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
2208  Glue = Chain.getValue(1);
2209
2210  // Finally, there's a special calling-convention which means that the lookup
2211  // must preserve all registers (except X0, obviously).
2212  const TargetRegisterInfo *TRI  = getTargetMachine().getRegisterInfo();
2213  const AArch64RegisterInfo *A64RI
2214    = static_cast<const AArch64RegisterInfo *>(TRI);
2215  const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
2216
2217  // We're now ready to populate the argument list, as with a normal call:
2218  std::vector<SDValue> Ops;
2219  Ops.push_back(Chain);
2220  Ops.push_back(Func);
2221  Ops.push_back(SymAddr);
2222  Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
2223  Ops.push_back(DAG.getRegisterMask(Mask));
2224  Ops.push_back(Glue);
2225
2226  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2227  Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0],
2228                      Ops.size());
2229  Glue = Chain.getValue(1);
2230
2231  // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
2232  // back to the generic handling code.
2233  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
2234}
2235
2236SDValue
2237AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
2238                                             SelectionDAG &DAG) const {
2239  assert(getSubtarget()->isTargetELF() &&
2240         "TLS not implemented for non-ELF targets");
2241  assert(getTargetMachine().getCodeModel() == CodeModel::Small
2242         && "TLS only supported in small memory model");
2243  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2244
2245  TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
2246
2247  SDValue TPOff;
2248  EVT PtrVT = getPointerTy();
2249  SDLoc DL(Op);
2250  const GlobalValue *GV = GA->getGlobal();
2251
2252  SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
2253
2254  if (Model == TLSModel::InitialExec) {
2255    TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2256                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2257                                                   AArch64II::MO_GOTTPREL),
2258                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2259                                                   AArch64II::MO_GOTTPREL_LO12),
2260                        DAG.getConstant(8, MVT::i32));
2261    TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2262                        TPOff);
2263  } else if (Model == TLSModel::LocalExec) {
2264    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2265                                               AArch64II::MO_TPREL_G1);
2266    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2267                                               AArch64II::MO_TPREL_G0_NC);
2268
2269    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2270                                       DAG.getTargetConstant(1, MVT::i32)), 0);
2271    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2272                                       TPOff, LoVar,
2273                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2274  } else if (Model == TLSModel::GeneralDynamic) {
2275    // Accesses used in this sequence go via the TLS descriptor which lives in
2276    // the GOT. Prepare an address we can use to handle this.
2277    SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2278                                                AArch64II::MO_TLSDESC);
2279    SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2280                                                AArch64II::MO_TLSDESC_LO12);
2281    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2282                                   HiDesc, LoDesc,
2283                                   DAG.getConstant(8, MVT::i32));
2284    SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
2285
2286    TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2287  } else if (Model == TLSModel::LocalDynamic) {
2288    // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2289    // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2290    // the beginning of the module's TLS region, followed by a DTPREL offset
2291    // calculation.
2292
2293    // These accesses will need deduplicating if there's more than one.
2294    AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
2295      .getInfo<AArch64MachineFunctionInfo>();
2296    MFI->incNumLocalDynamicTLSAccesses();
2297
2298
2299    // Get the location of _TLS_MODULE_BASE_:
2300    SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2301                                                AArch64II::MO_TLSDESC);
2302    SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2303                                                AArch64II::MO_TLSDESC_LO12);
2304    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2305                                   HiDesc, LoDesc,
2306                                   DAG.getConstant(8, MVT::i32));
2307    SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
2308
2309    ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2310
2311    // Get the variable's offset from _TLS_MODULE_BASE_
2312    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2313                                               AArch64II::MO_DTPREL_G1);
2314    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2315                                               AArch64II::MO_DTPREL_G0_NC);
2316
2317    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2318                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2319    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2320                                       TPOff, LoVar,
2321                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2322  } else
2323      llvm_unreachable("Unsupported TLS access model");
2324
2325
2326  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
2327}
2328
2329SDValue
2330AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2331                                      bool IsSigned) const {
2332  if (Op.getValueType() != MVT::f128) {
2333    // Legal for everything except f128.
2334    return Op;
2335  }
2336
2337  RTLIB::Libcall LC;
2338  if (IsSigned)
2339    LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2340  else
2341    LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2342
2343  return LowerF128ToCall(Op, DAG, LC);
2344}
2345
2346
2347SDValue
2348AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2349  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2350  SDLoc dl(JT);
2351  EVT PtrVT = getPointerTy();
2352
2353  // When compiling PIC, jump tables get put in the code section so a static
2354  // relocation-style is acceptable for both cases.
2355  switch (getTargetMachine().getCodeModel()) {
2356  case CodeModel::Small:
2357    return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2358                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT),
2359                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2360                                              AArch64II::MO_LO12),
2361                       DAG.getConstant(1, MVT::i32));
2362  case CodeModel::Large:
2363    return DAG.getNode(
2364      AArch64ISD::WrapperLarge, dl, PtrVT,
2365      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3),
2366      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC),
2367      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC),
2368      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC));
2369  default:
2370    llvm_unreachable("Only small and large code models supported now");
2371  }
2372}
2373
2374// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
2375SDValue
2376AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2377  SDLoc dl(Op);
2378  SDValue LHS = Op.getOperand(0);
2379  SDValue RHS = Op.getOperand(1);
2380  SDValue IfTrue = Op.getOperand(2);
2381  SDValue IfFalse = Op.getOperand(3);
2382  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2383
2384  if (LHS.getValueType() == MVT::f128) {
2385    // f128 comparisons are lowered to libcalls, but slot in nicely here
2386    // afterwards.
2387    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2388
2389    // If softenSetCCOperands returned a scalar, we need to compare the result
2390    // against zero to select between true and false values.
2391    if (RHS.getNode() == 0) {
2392      RHS = DAG.getConstant(0, LHS.getValueType());
2393      CC = ISD::SETNE;
2394    }
2395  }
2396
2397  if (LHS.getValueType().isInteger()) {
2398    SDValue A64cc;
2399
2400    // Integers are handled in a separate function because the combinations of
2401    // immediates and tests can get hairy and we may want to fiddle things.
2402    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2403
2404    return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2405                       CmpOp, IfTrue, IfFalse, A64cc);
2406  }
2407
2408  // Note that some LLVM floating-point CondCodes can't be lowered to a single
2409  // conditional branch, hence FPCCToA64CC can set a second test, where either
2410  // passing is sufficient.
2411  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2412  CondCode = FPCCToA64CC(CC, Alternative);
2413  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2414  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2415                              DAG.getCondCode(CC));
2416  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
2417                                     Op.getValueType(),
2418                                     SetCC, IfTrue, IfFalse, A64cc);
2419
2420  if (Alternative != A64CC::Invalid) {
2421    A64cc = DAG.getConstant(Alternative, MVT::i32);
2422    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2423                               SetCC, IfTrue, A64SELECT_CC, A64cc);
2424
2425  }
2426
2427  return A64SELECT_CC;
2428}
2429
2430// (SELECT testbit, iftrue, iffalse)
2431SDValue
2432AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2433  SDLoc dl(Op);
2434  SDValue TheBit = Op.getOperand(0);
2435  SDValue IfTrue = Op.getOperand(1);
2436  SDValue IfFalse = Op.getOperand(2);
2437
2438  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
2439  // that as the consumer we are responsible for ignoring rubbish in higher
2440  // bits.
2441  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
2442                       DAG.getConstant(1, MVT::i32));
2443  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
2444                               DAG.getConstant(0, TheBit.getValueType()),
2445                               DAG.getCondCode(ISD::SETNE));
2446
2447  return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2448                     A64CMP, IfTrue, IfFalse,
2449                     DAG.getConstant(A64CC::NE, MVT::i32));
2450}
2451
2452static SDValue LowerVectorSETCC(SDValue Op, SelectionDAG &DAG) {
2453  SDLoc DL(Op);
2454  SDValue LHS = Op.getOperand(0);
2455  SDValue RHS = Op.getOperand(1);
2456  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2457  EVT VT = Op.getValueType();
2458  bool Invert = false;
2459  SDValue Op0, Op1;
2460  unsigned Opcode;
2461
2462  if (LHS.getValueType().isInteger()) {
2463
2464    // Attempt to use Vector Integer Compare Mask Test instruction.
2465    // TST = icmp ne (and (op0, op1), zero).
2466    if (CC == ISD::SETNE) {
2467      if (((LHS.getOpcode() == ISD::AND) &&
2468           ISD::isBuildVectorAllZeros(RHS.getNode())) ||
2469          ((RHS.getOpcode() == ISD::AND) &&
2470           ISD::isBuildVectorAllZeros(LHS.getNode()))) {
2471
2472        SDValue AndOp = (LHS.getOpcode() == ISD::AND) ? LHS : RHS;
2473        SDValue NewLHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(0));
2474        SDValue NewRHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(1));
2475        return DAG.getNode(AArch64ISD::NEON_TST, DL, VT, NewLHS, NewRHS);
2476      }
2477    }
2478
2479    // Attempt to use Vector Integer Compare Mask against Zero instr (Signed).
2480    // Note: Compare against Zero does not support unsigned predicates.
2481    if ((ISD::isBuildVectorAllZeros(RHS.getNode()) ||
2482         ISD::isBuildVectorAllZeros(LHS.getNode())) &&
2483        !isUnsignedIntSetCC(CC)) {
2484
2485      // If LHS is the zero value, swap operands and CondCode.
2486      if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
2487        CC = getSetCCSwappedOperands(CC);
2488        Op0 = RHS;
2489      } else
2490        Op0 = LHS;
2491
2492      // Ensure valid CondCode for Compare Mask against Zero instruction:
2493      // EQ, GE, GT, LE, LT.
2494      if (ISD::SETNE == CC) {
2495        Invert = true;
2496        CC = ISD::SETEQ;
2497      }
2498
2499      // Using constant type to differentiate integer and FP compares with zero.
2500      Op1 = DAG.getConstant(0, MVT::i32);
2501      Opcode = AArch64ISD::NEON_CMPZ;
2502
2503    } else {
2504      // Attempt to use Vector Integer Compare Mask instr (Signed/Unsigned).
2505      // Ensure valid CondCode for Compare Mask instr: EQ, GE, GT, UGE, UGT.
2506      bool Swap = false;
2507      switch (CC) {
2508      default:
2509        llvm_unreachable("Illegal integer comparison.");
2510      case ISD::SETEQ:
2511      case ISD::SETGT:
2512      case ISD::SETGE:
2513      case ISD::SETUGT:
2514      case ISD::SETUGE:
2515        break;
2516      case ISD::SETNE:
2517        Invert = true;
2518        CC = ISD::SETEQ;
2519        break;
2520      case ISD::SETULT:
2521      case ISD::SETULE:
2522      case ISD::SETLT:
2523      case ISD::SETLE:
2524        Swap = true;
2525        CC = getSetCCSwappedOperands(CC);
2526      }
2527
2528      if (Swap)
2529        std::swap(LHS, RHS);
2530
2531      Opcode = AArch64ISD::NEON_CMP;
2532      Op0 = LHS;
2533      Op1 = RHS;
2534    }
2535
2536    // Generate Compare Mask instr or Compare Mask against Zero instr.
2537    SDValue NeonCmp =
2538        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
2539
2540    if (Invert)
2541      NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
2542
2543    return NeonCmp;
2544  }
2545
2546  // Now handle Floating Point cases.
2547  // Attempt to use Vector Floating Point Compare Mask against Zero instruction.
2548  if (ISD::isBuildVectorAllZeros(RHS.getNode()) ||
2549      ISD::isBuildVectorAllZeros(LHS.getNode())) {
2550
2551    // If LHS is the zero value, swap operands and CondCode.
2552    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
2553      CC = getSetCCSwappedOperands(CC);
2554      Op0 = RHS;
2555    } else
2556      Op0 = LHS;
2557
2558    // Using constant type to differentiate integer and FP compares with zero.
2559    Op1 = DAG.getConstantFP(0, MVT::f32);
2560    Opcode = AArch64ISD::NEON_CMPZ;
2561  } else {
2562    // Attempt to use Vector Floating Point Compare Mask instruction.
2563    Op0 = LHS;
2564    Op1 = RHS;
2565    Opcode = AArch64ISD::NEON_CMP;
2566  }
2567
2568  SDValue NeonCmpAlt;
2569  // Some register compares have to be implemented with swapped CC and operands,
2570  // e.g.: OLT implemented as OGT with swapped operands.
2571  bool SwapIfRegArgs = false;
2572
2573  // Ensure valid CondCode for FP Compare Mask against Zero instruction:
2574  // EQ, GE, GT, LE, LT.
2575  // And ensure valid CondCode for FP Compare Mask instruction: EQ, GE, GT.
2576  switch (CC) {
2577  default:
2578    llvm_unreachable("Illegal FP comparison");
2579  case ISD::SETUNE:
2580  case ISD::SETNE:
2581    Invert = true; // Fallthrough
2582  case ISD::SETOEQ:
2583  case ISD::SETEQ:
2584    CC = ISD::SETEQ;
2585    break;
2586  case ISD::SETOLT:
2587  case ISD::SETLT:
2588    CC = ISD::SETLT;
2589    SwapIfRegArgs = true;
2590    break;
2591  case ISD::SETOGT:
2592  case ISD::SETGT:
2593    CC = ISD::SETGT;
2594    break;
2595  case ISD::SETOLE:
2596  case ISD::SETLE:
2597    CC = ISD::SETLE;
2598    SwapIfRegArgs = true;
2599    break;
2600  case ISD::SETOGE:
2601  case ISD::SETGE:
2602    CC = ISD::SETGE;
2603    break;
2604  case ISD::SETUGE:
2605    Invert = true;
2606    CC = ISD::SETLT;
2607    SwapIfRegArgs = true;
2608    break;
2609  case ISD::SETULE:
2610    Invert = true;
2611    CC = ISD::SETGT;
2612    break;
2613  case ISD::SETUGT:
2614    Invert = true;
2615    CC = ISD::SETLE;
2616    SwapIfRegArgs = true;
2617    break;
2618  case ISD::SETULT:
2619    Invert = true;
2620    CC = ISD::SETGE;
2621    break;
2622  case ISD::SETUEQ:
2623    Invert = true; // Fallthrough
2624  case ISD::SETONE:
2625    // Expand this to (OGT |OLT).
2626    NeonCmpAlt =
2627        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGT));
2628    CC = ISD::SETLT;
2629    SwapIfRegArgs = true;
2630    break;
2631  case ISD::SETUO:
2632    Invert = true; // Fallthrough
2633  case ISD::SETO:
2634    // Expand this to (OGE | OLT).
2635    NeonCmpAlt =
2636        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGE));
2637    CC = ISD::SETLT;
2638    SwapIfRegArgs = true;
2639    break;
2640  }
2641
2642  if (Opcode == AArch64ISD::NEON_CMP && SwapIfRegArgs) {
2643    CC = getSetCCSwappedOperands(CC);
2644    std::swap(Op0, Op1);
2645  }
2646
2647  // Generate FP Compare Mask instr or FP Compare Mask against Zero instr
2648  SDValue NeonCmp = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
2649
2650  if (NeonCmpAlt.getNode())
2651    NeonCmp = DAG.getNode(ISD::OR, DL, VT, NeonCmp, NeonCmpAlt);
2652
2653  if (Invert)
2654    NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
2655
2656  return NeonCmp;
2657}
2658
2659// (SETCC lhs, rhs, condcode)
2660SDValue
2661AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2662  SDLoc dl(Op);
2663  SDValue LHS = Op.getOperand(0);
2664  SDValue RHS = Op.getOperand(1);
2665  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2666  EVT VT = Op.getValueType();
2667
2668  if (VT.isVector())
2669    return LowerVectorSETCC(Op, DAG);
2670
2671  if (LHS.getValueType() == MVT::f128) {
2672    // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
2673    // for the rest of the function (some i32 or i64 values).
2674    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2675
2676    // If softenSetCCOperands returned a scalar, use it.
2677    if (RHS.getNode() == 0) {
2678      assert(LHS.getValueType() == Op.getValueType() &&
2679             "Unexpected setcc expansion!");
2680      return LHS;
2681    }
2682  }
2683
2684  if (LHS.getValueType().isInteger()) {
2685    SDValue A64cc;
2686
2687    // Integers are handled in a separate function because the combinations of
2688    // immediates and tests can get hairy and we may want to fiddle things.
2689    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2690
2691    return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2692                       CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2693                       A64cc);
2694  }
2695
2696  // Note that some LLVM floating-point CondCodes can't be lowered to a single
2697  // conditional branch, hence FPCCToA64CC can set a second test, where either
2698  // passing is sufficient.
2699  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2700  CondCode = FPCCToA64CC(CC, Alternative);
2701  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2702  SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2703                              DAG.getCondCode(CC));
2704  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2705                                     CmpOp, DAG.getConstant(1, VT),
2706                                     DAG.getConstant(0, VT), A64cc);
2707
2708  if (Alternative != A64CC::Invalid) {
2709    A64cc = DAG.getConstant(Alternative, MVT::i32);
2710    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
2711                               DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
2712  }
2713
2714  return A64SELECT_CC;
2715}
2716
2717SDValue
2718AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2719  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2720  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2721
2722  // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
2723  // rather than just 8.
2724  return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op),
2725                       Op.getOperand(1), Op.getOperand(2),
2726                       DAG.getConstant(32, MVT::i32), 8, false, false,
2727                       MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
2728}
2729
2730SDValue
2731AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2732  // The layout of the va_list struct is specified in the AArch64 Procedure Call
2733  // Standard, section B.3.
2734  MachineFunction &MF = DAG.getMachineFunction();
2735  AArch64MachineFunctionInfo *FuncInfo
2736    = MF.getInfo<AArch64MachineFunctionInfo>();
2737  SDLoc DL(Op);
2738
2739  SDValue Chain = Op.getOperand(0);
2740  SDValue VAList = Op.getOperand(1);
2741  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2742  SmallVector<SDValue, 4> MemOps;
2743
2744  // void *__stack at offset 0
2745  SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
2746                                    getPointerTy());
2747  MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
2748                                MachinePointerInfo(SV), false, false, 0));
2749
2750  // void *__gr_top at offset 8
2751  int GPRSize = FuncInfo->getVariadicGPRSize();
2752  if (GPRSize > 0) {
2753    SDValue GRTop, GRTopAddr;
2754
2755    GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2756                            DAG.getConstant(8, getPointerTy()));
2757
2758    GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
2759    GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
2760                        DAG.getConstant(GPRSize, getPointerTy()));
2761
2762    MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
2763                                  MachinePointerInfo(SV, 8),
2764                                  false, false, 0));
2765  }
2766
2767  // void *__vr_top at offset 16
2768  int FPRSize = FuncInfo->getVariadicFPRSize();
2769  if (FPRSize > 0) {
2770    SDValue VRTop, VRTopAddr;
2771    VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2772                            DAG.getConstant(16, getPointerTy()));
2773
2774    VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
2775    VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
2776                        DAG.getConstant(FPRSize, getPointerTy()));
2777
2778    MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
2779                                  MachinePointerInfo(SV, 16),
2780                                  false, false, 0));
2781  }
2782
2783  // int __gr_offs at offset 24
2784  SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2785                                   DAG.getConstant(24, getPointerTy()));
2786  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
2787                                GROffsAddr, MachinePointerInfo(SV, 24),
2788                                false, false, 0));
2789
2790  // int __vr_offs at offset 28
2791  SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2792                                   DAG.getConstant(28, getPointerTy()));
2793  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
2794                                VROffsAddr, MachinePointerInfo(SV, 28),
2795                                false, false, 0));
2796
2797  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
2798                     MemOps.size());
2799}
2800
2801SDValue
2802AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2803  switch (Op.getOpcode()) {
2804  default: llvm_unreachable("Don't know how to custom lower this!");
2805  case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
2806  case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
2807  case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
2808  case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
2809  case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
2810  case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
2811  case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
2812  case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
2813  case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
2814  case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
2815  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
2816  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
2817
2818  case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2819  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
2820  case ISD::BR_CC: return LowerBR_CC(Op, DAG);
2821  case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
2822  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2823  case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2824  case ISD::SELECT: return LowerSELECT(Op, DAG);
2825  case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
2826  case ISD::SETCC: return LowerSETCC(Op, DAG);
2827  case ISD::VACOPY: return LowerVACOPY(Op, DAG);
2828  case ISD::VASTART: return LowerVASTART(Op, DAG);
2829  case ISD::BUILD_VECTOR:
2830    return LowerBUILD_VECTOR(Op, DAG, getSubtarget());
2831  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2832  }
2833
2834  return SDValue();
2835}
2836
2837/// Check if the specified splat value corresponds to a valid vector constant
2838/// for a Neon instruction with a "modified immediate" operand (e.g., MOVI).  If
2839/// so, return the encoded 8-bit immediate and the OpCmode instruction fields
2840/// values.
2841static bool isNeonModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
2842                              unsigned SplatBitSize, SelectionDAG &DAG,
2843                              bool is128Bits, NeonModImmType type, EVT &VT,
2844                              unsigned &Imm, unsigned &OpCmode) {
2845  switch (SplatBitSize) {
2846  default:
2847    llvm_unreachable("unexpected size for isNeonModifiedImm");
2848  case 8: {
2849    if (type != Neon_Mov_Imm)
2850      return false;
2851    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2852    // Neon movi per byte: Op=0, Cmode=1110.
2853    OpCmode = 0xe;
2854    Imm = SplatBits;
2855    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
2856    break;
2857  }
2858  case 16: {
2859    // Neon move inst per halfword
2860    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
2861    if ((SplatBits & ~0xff) == 0) {
2862      // Value = 0x00nn is 0x00nn LSL 0
2863      // movi: Op=0, Cmode=1000; mvni: Op=1, Cmode=1000
2864      // bic:  Op=1, Cmode=1001;  orr:  Op=0, Cmode=1001
2865      // Op=x, Cmode=100y
2866      Imm = SplatBits;
2867      OpCmode = 0x8;
2868      break;
2869    }
2870    if ((SplatBits & ~0xff00) == 0) {
2871      // Value = 0xnn00 is 0x00nn LSL 8
2872      // movi: Op=0, Cmode=1010; mvni: Op=1, Cmode=1010
2873      // bic:  Op=1, Cmode=1011;  orr:  Op=0, Cmode=1011
2874      // Op=x, Cmode=101x
2875      Imm = SplatBits >> 8;
2876      OpCmode = 0xa;
2877      break;
2878    }
2879    // can't handle any other
2880    return false;
2881  }
2882
2883  case 32: {
2884    // First the LSL variants (MSL is unusable by some interested instructions).
2885
2886    // Neon move instr per word, shift zeros
2887    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
2888    if ((SplatBits & ~0xff) == 0) {
2889      // Value = 0x000000nn is 0x000000nn LSL 0
2890      // movi: Op=0, Cmode= 0000; mvni: Op=1, Cmode= 0000
2891      // bic:  Op=1, Cmode= 0001; orr:  Op=0, Cmode= 0001
2892      // Op=x, Cmode=000x
2893      Imm = SplatBits;
2894      OpCmode = 0;
2895      break;
2896    }
2897    if ((SplatBits & ~0xff00) == 0) {
2898      // Value = 0x0000nn00 is 0x000000nn LSL 8
2899      // movi: Op=0, Cmode= 0010;  mvni: Op=1, Cmode= 0010
2900      // bic:  Op=1, Cmode= 0011;  orr : Op=0, Cmode= 0011
2901      // Op=x, Cmode=001x
2902      Imm = SplatBits >> 8;
2903      OpCmode = 0x2;
2904      break;
2905    }
2906    if ((SplatBits & ~0xff0000) == 0) {
2907      // Value = 0x00nn0000 is 0x000000nn LSL 16
2908      // movi: Op=0, Cmode= 0100; mvni: Op=1, Cmode= 0100
2909      // bic:  Op=1, Cmode= 0101; orr:  Op=0, Cmode= 0101
2910      // Op=x, Cmode=010x
2911      Imm = SplatBits >> 16;
2912      OpCmode = 0x4;
2913      break;
2914    }
2915    if ((SplatBits & ~0xff000000) == 0) {
2916      // Value = 0xnn000000 is 0x000000nn LSL 24
2917      // movi: Op=0, Cmode= 0110; mvni: Op=1, Cmode= 0110
2918      // bic:  Op=1, Cmode= 0111; orr:  Op=0, Cmode= 0111
2919      // Op=x, Cmode=011x
2920      Imm = SplatBits >> 24;
2921      OpCmode = 0x6;
2922      break;
2923    }
2924
2925    // Now the MSL immediates.
2926
2927    // Neon move instr per word, shift ones
2928    if ((SplatBits & ~0xffff) == 0 &&
2929        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
2930      // Value = 0x0000nnff is 0x000000nn MSL 8
2931      // movi: Op=0, Cmode= 1100; mvni: Op=1, Cmode= 1100
2932      // Op=x, Cmode=1100
2933      Imm = SplatBits >> 8;
2934      OpCmode = 0xc;
2935      break;
2936    }
2937    if ((SplatBits & ~0xffffff) == 0 &&
2938        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
2939      // Value = 0x00nnffff is 0x000000nn MSL 16
2940      // movi: Op=1, Cmode= 1101; mvni: Op=1, Cmode= 1101
2941      // Op=x, Cmode=1101
2942      Imm = SplatBits >> 16;
2943      OpCmode = 0xd;
2944      break;
2945    }
2946    // can't handle any other
2947    return false;
2948  }
2949
2950  case 64: {
2951    if (type != Neon_Mov_Imm)
2952      return false;
2953    // Neon move instr bytemask, where each byte is either 0x00 or 0xff.
2954    // movi Op=1, Cmode=1110.
2955    OpCmode = 0x1e;
2956    uint64_t BitMask = 0xff;
2957    uint64_t Val = 0;
2958    unsigned ImmMask = 1;
2959    Imm = 0;
2960    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2961      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
2962        Val |= BitMask;
2963        Imm |= ImmMask;
2964      } else if ((SplatBits & BitMask) != 0) {
2965        return false;
2966      }
2967      BitMask <<= 8;
2968      ImmMask <<= 1;
2969    }
2970    SplatBits = Val;
2971    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
2972    break;
2973  }
2974  }
2975
2976  return true;
2977}
2978
2979static SDValue PerformANDCombine(SDNode *N,
2980                                 TargetLowering::DAGCombinerInfo &DCI) {
2981
2982  SelectionDAG &DAG = DCI.DAG;
2983  SDLoc DL(N);
2984  EVT VT = N->getValueType(0);
2985
2986  // We're looking for an SRA/SHL pair which form an SBFX.
2987
2988  if (VT != MVT::i32 && VT != MVT::i64)
2989    return SDValue();
2990
2991  if (!isa<ConstantSDNode>(N->getOperand(1)))
2992    return SDValue();
2993
2994  uint64_t TruncMask = N->getConstantOperandVal(1);
2995  if (!isMask_64(TruncMask))
2996    return SDValue();
2997
2998  uint64_t Width = CountPopulation_64(TruncMask);
2999  SDValue Shift = N->getOperand(0);
3000
3001  if (Shift.getOpcode() != ISD::SRL)
3002    return SDValue();
3003
3004  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
3005    return SDValue();
3006  uint64_t LSB = Shift->getConstantOperandVal(1);
3007
3008  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
3009    return SDValue();
3010
3011  return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
3012                     DAG.getConstant(LSB, MVT::i64),
3013                     DAG.getConstant(LSB + Width - 1, MVT::i64));
3014}
3015
3016/// For a true bitfield insert, the bits getting into that contiguous mask
3017/// should come from the low part of an existing value: they must be formed from
3018/// a compatible SHL operation (unless they're already low). This function
3019/// checks that condition and returns the least-significant bit that's
3020/// intended. If the operation not a field preparation, -1 is returned.
3021static int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT,
3022                            SDValue &MaskedVal, uint64_t Mask) {
3023  if (!isShiftedMask_64(Mask))
3024    return -1;
3025
3026  // Now we need to alter MaskedVal so that it is an appropriate input for a BFI
3027  // instruction. BFI will do a left-shift by LSB before applying the mask we've
3028  // spotted, so in general we should pre-emptively "undo" that by making sure
3029  // the incoming bits have had a right-shift applied to them.
3030  //
3031  // This right shift, however, will combine with existing left/right shifts. In
3032  // the simplest case of a completely straight bitfield operation, it will be
3033  // expected to completely cancel out with an existing SHL. More complicated
3034  // cases (e.g. bitfield to bitfield copy) may still need a real shift before
3035  // the BFI.
3036
3037  uint64_t LSB = countTrailingZeros(Mask);
3038  int64_t ShiftRightRequired = LSB;
3039  if (MaskedVal.getOpcode() == ISD::SHL &&
3040      isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
3041    ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
3042    MaskedVal = MaskedVal.getOperand(0);
3043  } else if (MaskedVal.getOpcode() == ISD::SRL &&
3044             isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
3045    ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
3046    MaskedVal = MaskedVal.getOperand(0);
3047  }
3048
3049  if (ShiftRightRequired > 0)
3050    MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
3051                            DAG.getConstant(ShiftRightRequired, MVT::i64));
3052  else if (ShiftRightRequired < 0) {
3053    // We could actually end up with a residual left shift, for example with
3054    // "struc.bitfield = val << 1".
3055    MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
3056                            DAG.getConstant(-ShiftRightRequired, MVT::i64));
3057  }
3058
3059  return LSB;
3060}
3061
3062/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
3063/// a mask and an extension. Returns true if a BFI was found and provides
3064/// information on its surroundings.
3065static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
3066                          bool &Extended) {
3067  Extended = false;
3068  if (N.getOpcode() == ISD::ZERO_EXTEND) {
3069    Extended = true;
3070    N = N.getOperand(0);
3071  }
3072
3073  if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
3074    Mask = N->getConstantOperandVal(1);
3075    N = N.getOperand(0);
3076  } else {
3077    // Mask is the whole width.
3078    Mask = -1ULL >> (64 - N.getValueType().getSizeInBits());
3079  }
3080
3081  if (N.getOpcode() == AArch64ISD::BFI) {
3082    BFI = N;
3083    return true;
3084  }
3085
3086  return false;
3087}
3088
3089/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
3090/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
3091/// can often be further combined with a larger mask. Ultimately, we want mask
3092/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
3093static SDValue tryCombineToBFI(SDNode *N,
3094                               TargetLowering::DAGCombinerInfo &DCI,
3095                               const AArch64Subtarget *Subtarget) {
3096  SelectionDAG &DAG = DCI.DAG;
3097  SDLoc DL(N);
3098  EVT VT = N->getValueType(0);
3099
3100  assert(N->getOpcode() == ISD::OR && "Unexpected root");
3101
3102  // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
3103  // abandon the effort.
3104  SDValue LHS = N->getOperand(0);
3105  if (LHS.getOpcode() != ISD::AND)
3106    return SDValue();
3107
3108  uint64_t LHSMask;
3109  if (isa<ConstantSDNode>(LHS.getOperand(1)))
3110    LHSMask = LHS->getConstantOperandVal(1);
3111  else
3112    return SDValue();
3113
3114  // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
3115  // is or abandon the effort.
3116  SDValue RHS = N->getOperand(1);
3117  if (RHS.getOpcode() != ISD::AND)
3118    return SDValue();
3119
3120  uint64_t RHSMask;
3121  if (isa<ConstantSDNode>(RHS.getOperand(1)))
3122    RHSMask = RHS->getConstantOperandVal(1);
3123  else
3124    return SDValue();
3125
3126  // Can't do anything if the masks are incompatible.
3127  if (LHSMask & RHSMask)
3128    return SDValue();
3129
3130  // Now we need one of the masks to be a contiguous field. Without loss of
3131  // generality that should be the RHS one.
3132  SDValue Bitfield = LHS.getOperand(0);
3133  if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
3134    // We know that LHS is a candidate new value, and RHS isn't already a better
3135    // one.
3136    std::swap(LHS, RHS);
3137    std::swap(LHSMask, RHSMask);
3138  }
3139
3140  // We've done our best to put the right operands in the right places, all we
3141  // can do now is check whether a BFI exists.
3142  Bitfield = RHS.getOperand(0);
3143  int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
3144  if (LSB == -1)
3145    return SDValue();
3146
3147  uint32_t Width = CountPopulation_64(RHSMask);
3148  assert(Width && "Expected non-zero bitfield width");
3149
3150  SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
3151                            LHS.getOperand(0), Bitfield,
3152                            DAG.getConstant(LSB, MVT::i64),
3153                            DAG.getConstant(Width, MVT::i64));
3154
3155  // Mask is trivial
3156  if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits())))
3157    return BFI;
3158
3159  return DAG.getNode(ISD::AND, DL, VT, BFI,
3160                     DAG.getConstant(LHSMask | RHSMask, VT));
3161}
3162
3163/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
3164/// original input. This is surprisingly common because SROA splits things up
3165/// into i8 chunks, so the originally detected MaskedBFI may actually only act
3166/// on the low (say) byte of a word. This is then orred into the rest of the
3167/// word afterwards.
3168///
3169/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
3170///
3171/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
3172/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
3173/// involved.
3174static SDValue tryCombineToLargerBFI(SDNode *N,
3175                                     TargetLowering::DAGCombinerInfo &DCI,
3176                                     const AArch64Subtarget *Subtarget) {
3177  SelectionDAG &DAG = DCI.DAG;
3178  SDLoc DL(N);
3179  EVT VT = N->getValueType(0);
3180
3181  // First job is to hunt for a MaskedBFI on either the left or right. Swap
3182  // operands if it's actually on the right.
3183  SDValue BFI;
3184  SDValue PossExtraMask;
3185  uint64_t ExistingMask = 0;
3186  bool Extended = false;
3187  if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
3188    PossExtraMask = N->getOperand(1);
3189  else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
3190    PossExtraMask = N->getOperand(0);
3191  else
3192    return SDValue();
3193
3194  // We can only combine a BFI with another compatible mask.
3195  if (PossExtraMask.getOpcode() != ISD::AND ||
3196      !isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
3197    return SDValue();
3198
3199  uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
3200
3201  // Masks must be compatible.
3202  if (ExtraMask & ExistingMask)
3203    return SDValue();
3204
3205  SDValue OldBFIVal = BFI.getOperand(0);
3206  SDValue NewBFIVal = BFI.getOperand(1);
3207  if (Extended) {
3208    // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
3209    // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
3210    // need to be made compatible.
3211    assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
3212           && "Invalid types for BFI");
3213    OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
3214    NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
3215  }
3216
3217  // We need the MaskedBFI to be combined with a mask of the *same* value.
3218  if (PossExtraMask.getOperand(0) != OldBFIVal)
3219    return SDValue();
3220
3221  BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
3222                    OldBFIVal, NewBFIVal,
3223                    BFI.getOperand(2), BFI.getOperand(3));
3224
3225  // If the masking is trivial, we don't need to create it.
3226  if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits())))
3227    return BFI;
3228
3229  return DAG.getNode(ISD::AND, DL, VT, BFI,
3230                     DAG.getConstant(ExtraMask | ExistingMask, VT));
3231}
3232
3233/// An EXTR instruction is made up of two shifts, ORed together. This helper
3234/// searches for and classifies those shifts.
3235static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
3236                         bool &FromHi) {
3237  if (N.getOpcode() == ISD::SHL)
3238    FromHi = false;
3239  else if (N.getOpcode() == ISD::SRL)
3240    FromHi = true;
3241  else
3242    return false;
3243
3244  if (!isa<ConstantSDNode>(N.getOperand(1)))
3245    return false;
3246
3247  ShiftAmount = N->getConstantOperandVal(1);
3248  Src = N->getOperand(0);
3249  return true;
3250}
3251
3252/// EXTR instruction extracts a contiguous chunk of bits from two existing
3253/// registers viewed as a high/low pair. This function looks for the pattern:
3254/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
3255/// EXTR. Can't quite be done in TableGen because the two immediates aren't
3256/// independent.
3257static SDValue tryCombineToEXTR(SDNode *N,
3258                                TargetLowering::DAGCombinerInfo &DCI) {
3259  SelectionDAG &DAG = DCI.DAG;
3260  SDLoc DL(N);
3261  EVT VT = N->getValueType(0);
3262
3263  assert(N->getOpcode() == ISD::OR && "Unexpected root");
3264
3265  if (VT != MVT::i32 && VT != MVT::i64)
3266    return SDValue();
3267
3268  SDValue LHS;
3269  uint32_t ShiftLHS = 0;
3270  bool LHSFromHi = 0;
3271  if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
3272    return SDValue();
3273
3274  SDValue RHS;
3275  uint32_t ShiftRHS = 0;
3276  bool RHSFromHi = 0;
3277  if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
3278    return SDValue();
3279
3280  // If they're both trying to come from the high part of the register, they're
3281  // not really an EXTR.
3282  if (LHSFromHi == RHSFromHi)
3283    return SDValue();
3284
3285  if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
3286    return SDValue();
3287
3288  if (LHSFromHi) {
3289    std::swap(LHS, RHS);
3290    std::swap(ShiftLHS, ShiftRHS);
3291  }
3292
3293  return DAG.getNode(AArch64ISD::EXTR, DL, VT,
3294                     LHS, RHS,
3295                     DAG.getConstant(ShiftRHS, MVT::i64));
3296}
3297
3298/// Target-specific dag combine xforms for ISD::OR
3299static SDValue PerformORCombine(SDNode *N,
3300                                TargetLowering::DAGCombinerInfo &DCI,
3301                                const AArch64Subtarget *Subtarget) {
3302
3303  SelectionDAG &DAG = DCI.DAG;
3304  SDLoc DL(N);
3305  EVT VT = N->getValueType(0);
3306
3307  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3308    return SDValue();
3309
3310  // Attempt to recognise bitfield-insert operations.
3311  SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
3312  if (Res.getNode())
3313    return Res;
3314
3315  // Attempt to combine an existing MaskedBFI operation into one with a larger
3316  // mask.
3317  Res = tryCombineToLargerBFI(N, DCI, Subtarget);
3318  if (Res.getNode())
3319    return Res;
3320
3321  Res = tryCombineToEXTR(N, DCI);
3322  if (Res.getNode())
3323    return Res;
3324
3325  if (!Subtarget->hasNEON())
3326    return SDValue();
3327
3328  // Attempt to use vector immediate-form BSL
3329  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
3330
3331  SDValue N0 = N->getOperand(0);
3332  if (N0.getOpcode() != ISD::AND)
3333    return SDValue();
3334
3335  SDValue N1 = N->getOperand(1);
3336  if (N1.getOpcode() != ISD::AND)
3337    return SDValue();
3338
3339  if (VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
3340    APInt SplatUndef;
3341    unsigned SplatBitSize;
3342    bool HasAnyUndefs;
3343    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
3344    APInt SplatBits0;
3345    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
3346                                      HasAnyUndefs) &&
3347        !HasAnyUndefs) {
3348      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
3349      APInt SplatBits1;
3350      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
3351                                        HasAnyUndefs) &&
3352          !HasAnyUndefs && SplatBits0 == ~SplatBits1) {
3353        // Canonicalize the vector type to make instruction selection simpler.
3354        EVT CanonicalVT = VT.is128BitVector() ? MVT::v16i8 : MVT::v8i8;
3355        SDValue Result = DAG.getNode(AArch64ISD::NEON_BSL, DL, CanonicalVT,
3356                                     N0->getOperand(1), N0->getOperand(0),
3357                                     N1->getOperand(0));
3358        return DAG.getNode(ISD::BITCAST, DL, VT, Result);
3359      }
3360    }
3361  }
3362
3363  return SDValue();
3364}
3365
3366/// Target-specific dag combine xforms for ISD::SRA
3367static SDValue PerformSRACombine(SDNode *N,
3368                                 TargetLowering::DAGCombinerInfo &DCI) {
3369
3370  SelectionDAG &DAG = DCI.DAG;
3371  SDLoc DL(N);
3372  EVT VT = N->getValueType(0);
3373
3374  // We're looking for an SRA/SHL pair which form an SBFX.
3375
3376  if (VT != MVT::i32 && VT != MVT::i64)
3377    return SDValue();
3378
3379  if (!isa<ConstantSDNode>(N->getOperand(1)))
3380    return SDValue();
3381
3382  uint64_t ExtraSignBits = N->getConstantOperandVal(1);
3383  SDValue Shift = N->getOperand(0);
3384
3385  if (Shift.getOpcode() != ISD::SHL)
3386    return SDValue();
3387
3388  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
3389    return SDValue();
3390
3391  uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
3392  uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
3393  uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
3394
3395  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
3396    return SDValue();
3397
3398  return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
3399                     DAG.getConstant(LSB, MVT::i64),
3400                     DAG.getConstant(LSB + Width - 1, MVT::i64));
3401}
3402
3403/// Check if this is a valid build_vector for the immediate operand of
3404/// a vector shift operation, where all the elements of the build_vector
3405/// must have the same constant integer value.
3406static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
3407  // Ignore bit_converts.
3408  while (Op.getOpcode() == ISD::BITCAST)
3409    Op = Op.getOperand(0);
3410  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3411  APInt SplatBits, SplatUndef;
3412  unsigned SplatBitSize;
3413  bool HasAnyUndefs;
3414  if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
3415                                      HasAnyUndefs, ElementBits) ||
3416      SplatBitSize > ElementBits)
3417    return false;
3418  Cnt = SplatBits.getSExtValue();
3419  return true;
3420}
3421
3422/// Check if this is a valid build_vector for the immediate operand of
3423/// a vector shift left operation.  That value must be in the range:
3424/// 0 <= Value < ElementBits
3425static bool isVShiftLImm(SDValue Op, EVT VT, int64_t &Cnt) {
3426  assert(VT.isVector() && "vector shift count is not a vector type");
3427  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3428  if (!getVShiftImm(Op, ElementBits, Cnt))
3429    return false;
3430  return (Cnt >= 0 && Cnt < ElementBits);
3431}
3432
3433/// Check if this is a valid build_vector for the immediate operand of a
3434/// vector shift right operation. The value must be in the range:
3435///   1 <= Value <= ElementBits
3436static bool isVShiftRImm(SDValue Op, EVT VT, int64_t &Cnt) {
3437  assert(VT.isVector() && "vector shift count is not a vector type");
3438  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3439  if (!getVShiftImm(Op, ElementBits, Cnt))
3440    return false;
3441  return (Cnt >= 1 && Cnt <= ElementBits);
3442}
3443
3444/// Checks for immediate versions of vector shifts and lowers them.
3445static SDValue PerformShiftCombine(SDNode *N,
3446                                   TargetLowering::DAGCombinerInfo &DCI,
3447                                   const AArch64Subtarget *ST) {
3448  SelectionDAG &DAG = DCI.DAG;
3449  EVT VT = N->getValueType(0);
3450  if (N->getOpcode() == ISD::SRA && (VT == MVT::i32 || VT == MVT::i64))
3451    return PerformSRACombine(N, DCI);
3452
3453  // Nothing to be done for scalar shifts.
3454  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3455  if (!VT.isVector() || !TLI.isTypeLegal(VT))
3456    return SDValue();
3457
3458  assert(ST->hasNEON() && "unexpected vector shift");
3459  int64_t Cnt;
3460
3461  switch (N->getOpcode()) {
3462  default:
3463    llvm_unreachable("unexpected shift opcode");
3464
3465  case ISD::SHL:
3466    if (isVShiftLImm(N->getOperand(1), VT, Cnt)) {
3467      SDValue RHS =
3468          DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
3469                      DAG.getConstant(Cnt, MVT::i32));
3470      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), RHS);
3471    }
3472    break;
3473
3474  case ISD::SRA:
3475  case ISD::SRL:
3476    if (isVShiftRImm(N->getOperand(1), VT, Cnt)) {
3477      SDValue RHS =
3478          DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
3479                      DAG.getConstant(Cnt, MVT::i32));
3480      return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N->getOperand(0), RHS);
3481    }
3482    break;
3483  }
3484
3485  return SDValue();
3486}
3487
3488/// ARM-specific DAG combining for intrinsics.
3489static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
3490  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3491
3492  switch (IntNo) {
3493  default:
3494    // Don't do anything for most intrinsics.
3495    break;
3496
3497  case Intrinsic::arm_neon_vqshifts:
3498  case Intrinsic::arm_neon_vqshiftu:
3499    EVT VT = N->getOperand(1).getValueType();
3500    int64_t Cnt;
3501    if (!isVShiftLImm(N->getOperand(2), VT, Cnt))
3502      break;
3503    unsigned VShiftOpc = (IntNo == Intrinsic::arm_neon_vqshifts)
3504                             ? AArch64ISD::NEON_QSHLs
3505                             : AArch64ISD::NEON_QSHLu;
3506    return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
3507                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
3508  }
3509
3510  return SDValue();
3511}
3512
3513/// Target-specific DAG combine function for NEON load/store intrinsics
3514/// to merge base address updates.
3515static SDValue CombineBaseUpdate(SDNode *N,
3516                                 TargetLowering::DAGCombinerInfo &DCI) {
3517  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
3518    return SDValue();
3519
3520  SelectionDAG &DAG = DCI.DAG;
3521  unsigned AddrOpIdx = 2;
3522  SDValue Addr = N->getOperand(AddrOpIdx);
3523
3524  // Search for a use of the address operand that is an increment.
3525  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
3526       UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
3527    SDNode *User = *UI;
3528    if (User->getOpcode() != ISD::ADD ||
3529        UI.getUse().getResNo() != Addr.getResNo())
3530      continue;
3531
3532    // Check that the add is independent of the load/store.  Otherwise, folding
3533    // it would create a cycle.
3534    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
3535      continue;
3536
3537    // Find the new opcode for the updating load/store.
3538    bool isLoad = true;
3539    unsigned NewOpc = 0;
3540    unsigned NumVecs = 0;
3541    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
3542    switch (IntNo) {
3543    default: llvm_unreachable("unexpected intrinsic for Neon base update");
3544    case Intrinsic::arm_neon_vld1:     NewOpc = AArch64ISD::NEON_LD1_UPD;
3545      NumVecs = 1; break;
3546    case Intrinsic::arm_neon_vld2:     NewOpc = AArch64ISD::NEON_LD2_UPD;
3547      NumVecs = 2; break;
3548    case Intrinsic::arm_neon_vld3:     NewOpc = AArch64ISD::NEON_LD3_UPD;
3549      NumVecs = 3; break;
3550    case Intrinsic::arm_neon_vld4:     NewOpc = AArch64ISD::NEON_LD4_UPD;
3551      NumVecs = 4; break;
3552    case Intrinsic::arm_neon_vst1:     NewOpc = AArch64ISD::NEON_ST1_UPD;
3553      NumVecs = 1; isLoad = false; break;
3554    case Intrinsic::arm_neon_vst2:     NewOpc = AArch64ISD::NEON_ST2_UPD;
3555      NumVecs = 2; isLoad = false; break;
3556    case Intrinsic::arm_neon_vst3:     NewOpc = AArch64ISD::NEON_ST3_UPD;
3557      NumVecs = 3; isLoad = false; break;
3558    case Intrinsic::arm_neon_vst4:     NewOpc = AArch64ISD::NEON_ST4_UPD;
3559      NumVecs = 4; isLoad = false; break;
3560    case Intrinsic::aarch64_neon_vld1x2: NewOpc = AArch64ISD::NEON_LD1x2_UPD;
3561      NumVecs = 2; break;
3562    case Intrinsic::aarch64_neon_vld1x3: NewOpc = AArch64ISD::NEON_LD1x3_UPD;
3563      NumVecs = 3; break;
3564    case Intrinsic::aarch64_neon_vld1x4: NewOpc = AArch64ISD::NEON_LD1x4_UPD;
3565      NumVecs = 4; break;
3566    case Intrinsic::aarch64_neon_vst1x2: NewOpc = AArch64ISD::NEON_ST1x2_UPD;
3567      NumVecs = 2; isLoad = false; break;
3568    case Intrinsic::aarch64_neon_vst1x3: NewOpc = AArch64ISD::NEON_ST1x3_UPD;
3569      NumVecs = 3; isLoad = false; break;
3570    case Intrinsic::aarch64_neon_vst1x4: NewOpc = AArch64ISD::NEON_ST1x4_UPD;
3571      NumVecs = 4; isLoad = false; break;
3572    }
3573
3574    // Find the size of memory referenced by the load/store.
3575    EVT VecTy;
3576    if (isLoad)
3577      VecTy = N->getValueType(0);
3578    else
3579      VecTy = N->getOperand(AddrOpIdx + 1).getValueType();
3580    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
3581
3582    // If the increment is a constant, it must match the memory ref size.
3583    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
3584    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
3585      uint32_t IncVal = CInc->getZExtValue();
3586      if (IncVal != NumBytes)
3587        continue;
3588      Inc = DAG.getTargetConstant(IncVal, MVT::i32);
3589    }
3590
3591    // Create the new updating load/store node.
3592    EVT Tys[6];
3593    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
3594    unsigned n;
3595    for (n = 0; n < NumResultVecs; ++n)
3596      Tys[n] = VecTy;
3597    Tys[n++] = MVT::i64;
3598    Tys[n] = MVT::Other;
3599    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs + 2);
3600    SmallVector<SDValue, 8> Ops;
3601    Ops.push_back(N->getOperand(0)); // incoming chain
3602    Ops.push_back(N->getOperand(AddrOpIdx));
3603    Ops.push_back(Inc);
3604    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
3605      Ops.push_back(N->getOperand(i));
3606    }
3607    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
3608    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
3609                                           Ops.data(), Ops.size(),
3610                                           MemInt->getMemoryVT(),
3611                                           MemInt->getMemOperand());
3612
3613    // Update the uses.
3614    std::vector<SDValue> NewResults;
3615    for (unsigned i = 0; i < NumResultVecs; ++i) {
3616      NewResults.push_back(SDValue(UpdN.getNode(), i));
3617    }
3618    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
3619    DCI.CombineTo(N, NewResults);
3620    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
3621
3622    break;
3623  }
3624  return SDValue();
3625}
3626
3627SDValue
3628AArch64TargetLowering::PerformDAGCombine(SDNode *N,
3629                                         DAGCombinerInfo &DCI) const {
3630  switch (N->getOpcode()) {
3631  default: break;
3632  case ISD::AND: return PerformANDCombine(N, DCI);
3633  case ISD::OR: return PerformORCombine(N, DCI, getSubtarget());
3634  case ISD::SHL:
3635  case ISD::SRA:
3636  case ISD::SRL:
3637    return PerformShiftCombine(N, DCI, getSubtarget());
3638  case ISD::INTRINSIC_WO_CHAIN:
3639    return PerformIntrinsicCombine(N, DCI.DAG);
3640  case ISD::INTRINSIC_VOID:
3641  case ISD::INTRINSIC_W_CHAIN:
3642    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
3643    case Intrinsic::arm_neon_vld1:
3644    case Intrinsic::arm_neon_vld2:
3645    case Intrinsic::arm_neon_vld3:
3646    case Intrinsic::arm_neon_vld4:
3647    case Intrinsic::arm_neon_vst1:
3648    case Intrinsic::arm_neon_vst2:
3649    case Intrinsic::arm_neon_vst3:
3650    case Intrinsic::arm_neon_vst4:
3651    case Intrinsic::aarch64_neon_vld1x2:
3652    case Intrinsic::aarch64_neon_vld1x3:
3653    case Intrinsic::aarch64_neon_vld1x4:
3654    case Intrinsic::aarch64_neon_vst1x2:
3655    case Intrinsic::aarch64_neon_vst1x3:
3656    case Intrinsic::aarch64_neon_vst1x4:
3657      return CombineBaseUpdate(N, DCI);
3658    default:
3659      break;
3660    }
3661  }
3662  return SDValue();
3663}
3664
3665bool
3666AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3667  VT = VT.getScalarType();
3668
3669  if (!VT.isSimple())
3670    return false;
3671
3672  switch (VT.getSimpleVT().SimpleTy) {
3673  case MVT::f16:
3674  case MVT::f32:
3675  case MVT::f64:
3676    return true;
3677  case MVT::f128:
3678    return false;
3679  default:
3680    break;
3681  }
3682
3683  return false;
3684}
3685
3686// If this is a case we can't handle, return null and let the default
3687// expansion code take care of it.
3688SDValue
3689AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3690                                         const AArch64Subtarget *ST) const {
3691
3692  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3693  SDLoc DL(Op);
3694  EVT VT = Op.getValueType();
3695
3696  APInt SplatBits, SplatUndef;
3697  unsigned SplatBitSize;
3698  bool HasAnyUndefs;
3699
3700  unsigned UseNeonMov = VT.getSizeInBits() >= 64;
3701
3702  // Note we favor lowering MOVI over MVNI.
3703  // This has implications on the definition of patterns in TableGen to select
3704  // BIC immediate instructions but not ORR immediate instructions.
3705  // If this lowering order is changed, TableGen patterns for BIC immediate and
3706  // ORR immediate instructions have to be updated.
3707  if (UseNeonMov &&
3708      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3709    if (SplatBitSize <= 64) {
3710      // First attempt to use vector immediate-form MOVI
3711      EVT NeonMovVT;
3712      unsigned Imm = 0;
3713      unsigned OpCmode = 0;
3714
3715      if (isNeonModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
3716                            SplatBitSize, DAG, VT.is128BitVector(),
3717                            Neon_Mov_Imm, NeonMovVT, Imm, OpCmode)) {
3718        SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
3719        SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
3720
3721        if (ImmVal.getNode() && OpCmodeVal.getNode()) {
3722          SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MOVIMM, DL, NeonMovVT,
3723                                        ImmVal, OpCmodeVal);
3724          return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
3725        }
3726      }
3727
3728      // Then attempt to use vector immediate-form MVNI
3729      uint64_t NegatedImm = (~SplatBits).getZExtValue();
3730      if (isNeonModifiedImm(NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
3731                            DAG, VT.is128BitVector(), Neon_Mvn_Imm, NeonMovVT,
3732                            Imm, OpCmode)) {
3733        SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
3734        SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
3735        if (ImmVal.getNode() && OpCmodeVal.getNode()) {
3736          SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MVNIMM, DL, NeonMovVT,
3737                                        ImmVal, OpCmodeVal);
3738          return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
3739        }
3740      }
3741
3742      // Attempt to use vector immediate-form FMOV
3743      if (((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) ||
3744          (VT == MVT::v2f64 && SplatBitSize == 64)) {
3745        APFloat RealVal(
3746            SplatBitSize == 32 ? APFloat::IEEEsingle : APFloat::IEEEdouble,
3747            SplatBits);
3748        uint32_t ImmVal;
3749        if (A64Imms::isFPImm(RealVal, ImmVal)) {
3750          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
3751          return DAG.getNode(AArch64ISD::NEON_FMOVIMM, DL, VT, Val);
3752        }
3753      }
3754    }
3755  }
3756
3757  unsigned NumElts = VT.getVectorNumElements();
3758  bool isOnlyLowElement = true;
3759  bool usesOnlyOneValue = true;
3760  bool hasDominantValue = false;
3761  bool isConstant = true;
3762
3763  // Map of the number of times a particular SDValue appears in the
3764  // element list.
3765  DenseMap<SDValue, unsigned> ValueCounts;
3766  SDValue Value;
3767  for (unsigned i = 0; i < NumElts; ++i) {
3768    SDValue V = Op.getOperand(i);
3769    if (V.getOpcode() == ISD::UNDEF)
3770      continue;
3771    if (i > 0)
3772      isOnlyLowElement = false;
3773    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3774      isConstant = false;
3775
3776    ValueCounts.insert(std::make_pair(V, 0));
3777    unsigned &Count = ValueCounts[V];
3778
3779    // Is this value dominant? (takes up more than half of the lanes)
3780    if (++Count > (NumElts / 2)) {
3781      hasDominantValue = true;
3782      Value = V;
3783    }
3784  }
3785  if (ValueCounts.size() != 1)
3786    usesOnlyOneValue = false;
3787  if (!Value.getNode() && ValueCounts.size() > 0)
3788    Value = ValueCounts.begin()->first;
3789
3790  if (ValueCounts.size() == 0)
3791    return DAG.getUNDEF(VT);
3792
3793  // Loads are better lowered with insert_vector_elt.
3794  // Keep going if we are hitting this case.
3795  if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
3796    return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
3797
3798  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3799  // Use VDUP for non-constant splats.
3800  if (hasDominantValue && EltSize <= 64) {
3801    if (!isConstant) {
3802      SDValue N;
3803
3804      // If we are DUPing a value that comes directly from a vector, we could
3805      // just use DUPLANE. We can only do this if the lane being extracted
3806      // is at a constant index, as the DUP from lane instructions only have
3807      // constant-index forms.
3808      if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
3809          isa<ConstantSDNode>(Value->getOperand(1))) {
3810          N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT,
3811                        Value->getOperand(0), Value->getOperand(1));
3812      } else
3813        N = DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
3814
3815      if (!usesOnlyOneValue) {
3816        // The dominant value was splatted as 'N', but we now have to insert
3817        // all differing elements.
3818        for (unsigned I = 0; I < NumElts; ++I) {
3819          if (Op.getOperand(I) == Value)
3820            continue;
3821          SmallVector<SDValue, 3> Ops;
3822          Ops.push_back(N);
3823          Ops.push_back(Op.getOperand(I));
3824          Ops.push_back(DAG.getConstant(I, MVT::i32));
3825          N = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, &Ops[0], 3);
3826        }
3827      }
3828      return N;
3829    }
3830    if (usesOnlyOneValue && isConstant) {
3831      return DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
3832    }
3833  }
3834  // If all elements are constants and the case above didn't get hit, fall back
3835  // to the default expansion, which will generate a load from the constant
3836  // pool.
3837  if (isConstant)
3838    return SDValue();
3839
3840  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
3841  // know the default expansion would otherwise fall back on something even
3842  // worse. For a vector with one or two non-undef values, that's
3843  // scalar_to_vector for the elements followed by a shuffle (provided the
3844  // shuffle is valid for the target) and materialization element by element
3845  // on the stack followed by a load for everything else.
3846  if (!isConstant && !usesOnlyOneValue) {
3847    SDValue Vec = DAG.getUNDEF(VT);
3848    for (unsigned i = 0 ; i < NumElts; ++i) {
3849      SDValue V = Op.getOperand(i);
3850      if (V.getOpcode() == ISD::UNDEF)
3851        continue;
3852      SDValue LaneIdx = DAG.getConstant(i, MVT::i32);
3853      Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, LaneIdx);
3854    }
3855    return Vec;
3856  }
3857  return SDValue();
3858}
3859
3860/// isREVMask - Check if a vector shuffle corresponds to a REV
3861/// instruction with the specified blocksize.  (The order of the elements
3862/// within each block of the vector is reversed.)
3863static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
3864  assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
3865         "Only possible block sizes for REV are: 16, 32, 64");
3866
3867  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3868  if (EltSz == 64)
3869    return false;
3870
3871  unsigned NumElts = VT.getVectorNumElements();
3872  unsigned BlockElts = M[0] + 1;
3873  // If the first shuffle index is UNDEF, be optimistic.
3874  if (M[0] < 0)
3875    BlockElts = BlockSize / EltSz;
3876
3877  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3878    return false;
3879
3880  for (unsigned i = 0; i < NumElts; ++i) {
3881    if (M[i] < 0)
3882      continue; // ignore UNDEF indices
3883    if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
3884      return false;
3885  }
3886
3887  return true;
3888}
3889
3890SDValue
3891AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3892                                           SelectionDAG &DAG) const {
3893  SDValue V1 = Op.getOperand(0);
3894  SDValue V2 = Op.getOperand(1);
3895  SDLoc dl(Op);
3896  EVT VT = Op.getValueType();
3897  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
3898
3899  // Convert shuffles that are directly supported on NEON to target-specific
3900  // DAG nodes, instead of keeping them as shuffles and matching them again
3901  // during code selection.  This is more efficient and avoids the possibility
3902  // of inconsistencies between legalization and selection.
3903  ArrayRef<int> ShuffleMask = SVN->getMask();
3904
3905  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3906  if (EltSize > 64)
3907    return SDValue();
3908
3909  if (isREVMask(ShuffleMask, VT, 64))
3910    return DAG.getNode(AArch64ISD::NEON_REV64, dl, VT, V1);
3911  if (isREVMask(ShuffleMask, VT, 32))
3912    return DAG.getNode(AArch64ISD::NEON_REV32, dl, VT, V1);
3913  if (isREVMask(ShuffleMask, VT, 16))
3914    return DAG.getNode(AArch64ISD::NEON_REV16, dl, VT, V1);
3915
3916  // If the element of shuffle mask are all the same constant, we can
3917  // transform it into either NEON_VDUP or NEON_VDUPLANE
3918  if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
3919    int Lane = SVN->getSplatIndex();
3920    // If this is undef splat, generate it via "just" vdup, if possible.
3921    if (Lane == -1) Lane = 0;
3922
3923    // Test if V1 is a SCALAR_TO_VECTOR.
3924    if (V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3925      return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT, V1.getOperand(0));
3926    }
3927    // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR.
3928    if (V1.getOpcode() == ISD::BUILD_VECTOR) {
3929      bool IsScalarToVector = true;
3930      for (unsigned i = 0, e = V1.getNumOperands(); i != e; ++i)
3931        if (V1.getOperand(i).getOpcode() != ISD::UNDEF &&
3932            i != (unsigned)Lane) {
3933          IsScalarToVector = false;
3934          break;
3935        }
3936      if (IsScalarToVector)
3937        return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT,
3938                           V1.getOperand(Lane));
3939    }
3940    return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1,
3941                       DAG.getConstant(Lane, MVT::i64));
3942  }
3943
3944  int Length = ShuffleMask.size();
3945  int V1EltNum = V1.getValueType().getVectorNumElements();
3946
3947  // If the number of v1 elements is the same as the number of shuffle mask
3948  // element and the shuffle masks are sequential values, we can transform
3949  // it into NEON_VEXTRACT.
3950  if (V1EltNum == Length) {
3951    // Check if the shuffle mask is sequential.
3952    bool IsSequential = true;
3953    int CurMask = ShuffleMask[0];
3954    for (int I = 0; I < Length; ++I) {
3955      if (ShuffleMask[I] != CurMask) {
3956        IsSequential = false;
3957        break;
3958      }
3959      CurMask++;
3960    }
3961    if (IsSequential) {
3962      assert((EltSize % 8 == 0) && "Bitsize of vector element is incorrect");
3963      unsigned VecSize = EltSize * V1EltNum;
3964      unsigned Index = (EltSize/8) * ShuffleMask[0];
3965      if (VecSize == 64 || VecSize == 128)
3966        return DAG.getNode(AArch64ISD::NEON_VEXTRACT, dl, VT, V1, V2,
3967                           DAG.getConstant(Index, MVT::i64));
3968    }
3969  }
3970
3971  // For shuffle mask like "0, 1, 2, 3, 4, 5, 13, 7", try to generate insert
3972  // by element from V2 to V1 .
3973  // If shuffle mask is like "0, 1, 10, 11, 12, 13, 14, 15", V2 would be a
3974  // better choice to be inserted than V1 as less insert needed, so we count
3975  // element to be inserted for both V1 and V2, and select less one as insert
3976  // target.
3977
3978  // Collect elements need to be inserted and their index.
3979  SmallVector<int, 8> NV1Elt;
3980  SmallVector<int, 8> N1Index;
3981  SmallVector<int, 8> NV2Elt;
3982  SmallVector<int, 8> N2Index;
3983  for (int I = 0; I != Length; ++I) {
3984    if (ShuffleMask[I] != I) {
3985      NV1Elt.push_back(ShuffleMask[I]);
3986      N1Index.push_back(I);
3987    }
3988  }
3989  for (int I = 0; I != Length; ++I) {
3990    if (ShuffleMask[I] != (I + V1EltNum)) {
3991      NV2Elt.push_back(ShuffleMask[I]);
3992      N2Index.push_back(I);
3993    }
3994  }
3995
3996  // Decide which to be inserted. If all lanes mismatch, neither V1 nor V2
3997  // will be inserted.
3998  SDValue InsV = V1;
3999  SmallVector<int, 8> InsMasks = NV1Elt;
4000  SmallVector<int, 8> InsIndex = N1Index;
4001  if ((int)NV1Elt.size() != Length || (int)NV2Elt.size() != Length) {
4002    if (NV1Elt.size() > NV2Elt.size()) {
4003      InsV = V2;
4004      InsMasks = NV2Elt;
4005      InsIndex = N2Index;
4006    }
4007  } else {
4008    InsV = DAG.getNode(ISD::UNDEF, dl, VT);
4009  }
4010
4011  for (int I = 0, E = InsMasks.size(); I != E; ++I) {
4012    SDValue ExtV = V1;
4013    int Mask = InsMasks[I];
4014    if (Mask >= V1EltNum) {
4015      ExtV = V2;
4016      Mask -= V1EltNum;
4017    }
4018    // Any value type smaller than i32 is illegal in AArch64, and this lower
4019    // function is called after legalize pass, so we need to legalize
4020    // the result here.
4021    EVT EltVT;
4022    if (VT.getVectorElementType().isFloatingPoint())
4023      EltVT = (EltSize == 64) ? MVT::f64 : MVT::f32;
4024    else
4025      EltVT = (EltSize == 64) ? MVT::i64 : MVT::i32;
4026
4027    ExtV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, ExtV,
4028                        DAG.getConstant(Mask, MVT::i64));
4029    InsV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, InsV, ExtV,
4030                       DAG.getConstant(InsIndex[I], MVT::i64));
4031  }
4032  return InsV;
4033}
4034
4035AArch64TargetLowering::ConstraintType
4036AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4037  if (Constraint.size() == 1) {
4038    switch (Constraint[0]) {
4039    default: break;
4040    case 'w': // An FP/SIMD vector register
4041      return C_RegisterClass;
4042    case 'I': // Constant that can be used with an ADD instruction
4043    case 'J': // Constant that can be used with a SUB instruction
4044    case 'K': // Constant that can be used with a 32-bit logical instruction
4045    case 'L': // Constant that can be used with a 64-bit logical instruction
4046    case 'M': // Constant that can be used as a 32-bit MOV immediate
4047    case 'N': // Constant that can be used as a 64-bit MOV immediate
4048    case 'Y': // Floating point constant zero
4049    case 'Z': // Integer constant zero
4050      return C_Other;
4051    case 'Q': // A memory reference with base register and no offset
4052      return C_Memory;
4053    case 'S': // A symbolic address
4054      return C_Other;
4055    }
4056  }
4057
4058  // FIXME: Ump, Utf, Usa, Ush
4059  // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
4060  //      whatever they may be
4061  // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
4062  // Usa: An absolute symbolic address
4063  // Ush: The high part (bits 32:12) of a pc-relative symbolic address
4064  assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
4065         && Constraint != "Ush" && "Unimplemented constraints");
4066
4067  return TargetLowering::getConstraintType(Constraint);
4068}
4069
4070TargetLowering::ConstraintWeight
4071AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
4072                                                const char *Constraint) const {
4073
4074  llvm_unreachable("Constraint weight unimplemented");
4075}
4076
4077void
4078AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4079                                                    std::string &Constraint,
4080                                                    std::vector<SDValue> &Ops,
4081                                                    SelectionDAG &DAG) const {
4082  SDValue Result(0, 0);
4083
4084  // Only length 1 constraints are C_Other.
4085  if (Constraint.size() != 1) return;
4086
4087  // Only C_Other constraints get lowered like this. That means constants for us
4088  // so return early if there's no hope the constraint can be lowered.
4089
4090  switch(Constraint[0]) {
4091  default: break;
4092  case 'I': case 'J': case 'K': case 'L':
4093  case 'M': case 'N': case 'Z': {
4094    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4095    if (!C)
4096      return;
4097
4098    uint64_t CVal = C->getZExtValue();
4099    uint32_t Bits;
4100
4101    switch (Constraint[0]) {
4102    default:
4103      // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
4104      // is a peculiarly useless SUB constraint.
4105      llvm_unreachable("Unimplemented C_Other constraint");
4106    case 'I':
4107      if (CVal <= 0xfff)
4108        break;
4109      return;
4110    case 'K':
4111      if (A64Imms::isLogicalImm(32, CVal, Bits))
4112        break;
4113      return;
4114    case 'L':
4115      if (A64Imms::isLogicalImm(64, CVal, Bits))
4116        break;
4117      return;
4118    case 'Z':
4119      if (CVal == 0)
4120        break;
4121      return;
4122    }
4123
4124    Result = DAG.getTargetConstant(CVal, Op.getValueType());
4125    break;
4126  }
4127  case 'S': {
4128    // An absolute symbolic address or label reference.
4129    if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4130      Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4131                                          GA->getValueType(0));
4132    } else if (const BlockAddressSDNode *BA
4133                 = dyn_cast<BlockAddressSDNode>(Op)) {
4134      Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
4135                                         BA->getValueType(0));
4136    } else if (const ExternalSymbolSDNode *ES
4137                 = dyn_cast<ExternalSymbolSDNode>(Op)) {
4138      Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
4139                                           ES->getValueType(0));
4140    } else
4141      return;
4142    break;
4143  }
4144  case 'Y':
4145    if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
4146      if (CFP->isExactlyValue(0.0)) {
4147        Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
4148        break;
4149      }
4150    }
4151    return;
4152  }
4153
4154  if (Result.getNode()) {
4155    Ops.push_back(Result);
4156    return;
4157  }
4158
4159  // It's an unknown constraint for us. Let generic code have a go.
4160  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4161}
4162
4163std::pair<unsigned, const TargetRegisterClass*>
4164AArch64TargetLowering::getRegForInlineAsmConstraint(
4165                                                  const std::string &Constraint,
4166                                                  MVT VT) const {
4167  if (Constraint.size() == 1) {
4168    switch (Constraint[0]) {
4169    case 'r':
4170      if (VT.getSizeInBits() <= 32)
4171        return std::make_pair(0U, &AArch64::GPR32RegClass);
4172      else if (VT == MVT::i64)
4173        return std::make_pair(0U, &AArch64::GPR64RegClass);
4174      break;
4175    case 'w':
4176      if (VT == MVT::f16)
4177        return std::make_pair(0U, &AArch64::FPR16RegClass);
4178      else if (VT == MVT::f32)
4179        return std::make_pair(0U, &AArch64::FPR32RegClass);
4180      else if (VT.getSizeInBits() == 64)
4181        return std::make_pair(0U, &AArch64::FPR64RegClass);
4182      else if (VT.getSizeInBits() == 128)
4183        return std::make_pair(0U, &AArch64::FPR128RegClass);
4184      break;
4185    }
4186  }
4187
4188  // Use the default implementation in TargetLowering to convert the register
4189  // constraint into a member of a register class.
4190  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4191}
4192
4193/// Represent NEON load and store intrinsics as MemIntrinsicNodes.
4194/// The associated MachineMemOperands record the alignment specified
4195/// in the intrinsic calls.
4196bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
4197                                               const CallInst &I,
4198                                               unsigned Intrinsic) const {
4199  switch (Intrinsic) {
4200  case Intrinsic::arm_neon_vld1:
4201  case Intrinsic::arm_neon_vld2:
4202  case Intrinsic::arm_neon_vld3:
4203  case Intrinsic::arm_neon_vld4:
4204  case Intrinsic::aarch64_neon_vld1x2:
4205  case Intrinsic::aarch64_neon_vld1x3:
4206  case Intrinsic::aarch64_neon_vld1x4: {
4207    Info.opc = ISD::INTRINSIC_W_CHAIN;
4208    // Conservatively set memVT to the entire set of vectors loaded.
4209    uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
4210    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
4211    Info.ptrVal = I.getArgOperand(0);
4212    Info.offset = 0;
4213    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
4214    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
4215    Info.vol = false; // volatile loads with NEON intrinsics not supported
4216    Info.readMem = true;
4217    Info.writeMem = false;
4218    return true;
4219  }
4220  case Intrinsic::arm_neon_vst1:
4221  case Intrinsic::arm_neon_vst2:
4222  case Intrinsic::arm_neon_vst3:
4223  case Intrinsic::arm_neon_vst4:
4224  case Intrinsic::aarch64_neon_vst1x2:
4225  case Intrinsic::aarch64_neon_vst1x3:
4226  case Intrinsic::aarch64_neon_vst1x4: {
4227    Info.opc = ISD::INTRINSIC_VOID;
4228    // Conservatively set memVT to the entire set of vectors stored.
4229    unsigned NumElts = 0;
4230    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
4231      Type *ArgTy = I.getArgOperand(ArgI)->getType();
4232      if (!ArgTy->isVectorTy())
4233        break;
4234      NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
4235    }
4236    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
4237    Info.ptrVal = I.getArgOperand(0);
4238    Info.offset = 0;
4239    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
4240    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
4241    Info.vol = false; // volatile stores with NEON intrinsics not supported
4242    Info.readMem = false;
4243    Info.writeMem = true;
4244    return true;
4245  }
4246  default:
4247    break;
4248  }
4249
4250  return false;
4251}
4252