AArch64ISelLowering.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
15c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===//
25c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
35c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//                     The LLVM Compiler Infrastructure
45c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
55c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// License. See LICENSE.TXT for details.
75c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
85c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
95c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
105c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// This file implements the AArch64TargetLowering class.
115c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
125c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
135c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
145c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "AArch64ISelLowering.h"
155c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "AArch64PerfectShuffle.h"
165c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "AArch64Subtarget.h"
175c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "AArch64MachineFunctionInfo.h"
185c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "AArch64TargetMachine.h"
195c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "AArch64TargetObjectFile.h"
205c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "MCTargetDesc/AArch64AddressingModes.h"
215c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/ADT/Statistic.h"
225c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/CodeGen/CallingConvLower.h"
235c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/CodeGen/MachineFrameInfo.h"
245c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/CodeGen/MachineInstrBuilder.h"
255c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/CodeGen/MachineRegisterInfo.h"
265c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/IR/Function.h"
275c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/IR/Intrinsics.h"
285c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/IR/Type.h"
295c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/Support/CommandLine.h"
305c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/Support/Debug.h"
315c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/Support/ErrorHandling.h"
325267f701546148b83dfbe1d151cb184385bb5c22Torne (Richard Coles)#include "llvm/Support/raw_ostream.h"
335c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/Target/TargetOptions.h"
34f79f16f17ddc4f842d7b7a38603e280e94be826aTorne (Richard Coles)using namespace llvm;
3593ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)
3693ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)#define DEBUG_TYPE "aarch64-lower"
375c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
3851b2906e11752df6c18351cf520e30522d3b53a1Torne (Richard Coles)STATISTIC(NumTailCalls, "Number of tail calls");
395c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)STATISTIC(NumShiftInserts, "Number of vector shift inserts");
40f79f16f17ddc4f842d7b7a38603e280e94be826aTorne (Richard Coles)
4193ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)enum AlignMode {
4293ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)  StrictAlign,
4393ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)  NoStrictAlign
4493ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)};
4593ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)
4693ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)static cl::opt<AlignMode>
4793ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)Align(cl::desc("Load/store alignment support"),
4893ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)      cl::Hidden, cl::init(NoStrictAlign),
4993ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)      cl::values(
5093ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)          clEnumValN(StrictAlign,   "aarch64-strict-align",
5193ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)                     "Disallow all unaligned memory accesses"),
5293ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)          clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
5393ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)                     "Allow unaligned memory accesses"),
5493ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)          clEnumValEnd));
5593ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)
5693ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)// Place holder until extr generation is tested fully.
5793ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)static cl::opt<bool>
5893ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
5993ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)                          cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
6093ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)                          cl::init(true));
6193ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)
6293ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)static cl::opt<bool>
635c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
645c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)                         cl::desc("Allow AArch64 SLI/SRI formation"),
655c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)                         cl::init(false));
665c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
675c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
685c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// AArch64 Lowering public interface.
695c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
705c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
715c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  if (TM.getSubtarget<AArch64Subtarget>().isTargetDarwin())
725c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)    return new AArch64_MachoTargetObjectFile();
735c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
745c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  return new AArch64_ELFTargetObjectFile();
755c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)}
765c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
775c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
7893ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)    : TargetLowering(TM, createTLOF(TM)) {
795c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  Subtarget = &TM.getSubtarget<AArch64Subtarget>();
805c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
815c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
825c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  // we have to make something up. Arbitrarily, choose ZeroOrOne.
835c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  setBooleanContents(ZeroOrOneBooleanContent);
845c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  // When comparing vectors the result sets the different elements in the
855c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  // vector to all-one or all-zero.
865c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
875c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
885c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  // Set up the register classes.
895c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
905c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
915c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
925c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  if (Subtarget->hasFPARMv8()) {
935c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)    addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
945c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)    addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
955c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)    addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
965c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)    addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
975c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  }
985c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
9951b2906e11752df6c18351cf520e30522d3b53a1Torne (Richard Coles)  if (Subtarget->hasNEON()) {
100    addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
101    addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
102    // Someone set us up the NEON.
103    addDRTypeForNEON(MVT::v2f32);
104    addDRTypeForNEON(MVT::v8i8);
105    addDRTypeForNEON(MVT::v4i16);
106    addDRTypeForNEON(MVT::v2i32);
107    addDRTypeForNEON(MVT::v1i64);
108    addDRTypeForNEON(MVT::v1f64);
109
110    addQRTypeForNEON(MVT::v4f32);
111    addQRTypeForNEON(MVT::v2f64);
112    addQRTypeForNEON(MVT::v16i8);
113    addQRTypeForNEON(MVT::v8i16);
114    addQRTypeForNEON(MVT::v4i32);
115    addQRTypeForNEON(MVT::v2i64);
116  }
117
118  // Compute derived properties from the register classes
119  computeRegisterProperties();
120
121  // Provide all sorts of operation actions
122  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
123  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
124  setOperationAction(ISD::SETCC, MVT::i32, Custom);
125  setOperationAction(ISD::SETCC, MVT::i64, Custom);
126  setOperationAction(ISD::SETCC, MVT::f32, Custom);
127  setOperationAction(ISD::SETCC, MVT::f64, Custom);
128  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
129  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
130  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
131  setOperationAction(ISD::BR_CC, MVT::f32, Custom);
132  setOperationAction(ISD::BR_CC, MVT::f64, Custom);
133  setOperationAction(ISD::SELECT, MVT::i32, Custom);
134  setOperationAction(ISD::SELECT, MVT::i64, Custom);
135  setOperationAction(ISD::SELECT, MVT::f32, Custom);
136  setOperationAction(ISD::SELECT, MVT::f64, Custom);
137  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
138  setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
139  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
140  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
141  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
142  setOperationAction(ISD::JumpTable, MVT::i64, Custom);
143
144  setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
145  setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
146  setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
147
148  setOperationAction(ISD::FREM, MVT::f32, Expand);
149  setOperationAction(ISD::FREM, MVT::f64, Expand);
150  setOperationAction(ISD::FREM, MVT::f80, Expand);
151
152  // Custom lowering hooks are needed for XOR
153  // to fold it into CSINC/CSINV.
154  setOperationAction(ISD::XOR, MVT::i32, Custom);
155  setOperationAction(ISD::XOR, MVT::i64, Custom);
156
157  // Virtually no operation on f128 is legal, but LLVM can't expand them when
158  // there's a valid register class, so we need custom operations in most cases.
159  setOperationAction(ISD::FABS, MVT::f128, Expand);
160  setOperationAction(ISD::FADD, MVT::f128, Custom);
161  setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
162  setOperationAction(ISD::FCOS, MVT::f128, Expand);
163  setOperationAction(ISD::FDIV, MVT::f128, Custom);
164  setOperationAction(ISD::FMA, MVT::f128, Expand);
165  setOperationAction(ISD::FMUL, MVT::f128, Custom);
166  setOperationAction(ISD::FNEG, MVT::f128, Expand);
167  setOperationAction(ISD::FPOW, MVT::f128, Expand);
168  setOperationAction(ISD::FREM, MVT::f128, Expand);
169  setOperationAction(ISD::FRINT, MVT::f128, Expand);
170  setOperationAction(ISD::FSIN, MVT::f128, Expand);
171  setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
172  setOperationAction(ISD::FSQRT, MVT::f128, Expand);
173  setOperationAction(ISD::FSUB, MVT::f128, Custom);
174  setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
175  setOperationAction(ISD::SETCC, MVT::f128, Custom);
176  setOperationAction(ISD::BR_CC, MVT::f128, Custom);
177  setOperationAction(ISD::SELECT, MVT::f128, Custom);
178  setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
179  setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
180
181  // Lowering for many of the conversions is actually specified by the non-f128
182  // type. The LowerXXX function will be trivial when f128 isn't involved.
183  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
184  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
185  setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
186  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
187  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
188  setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
189  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
190  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
191  setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
192  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
193  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
194  setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
195  setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
196  setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
197
198  // Variable arguments.
199  setOperationAction(ISD::VASTART, MVT::Other, Custom);
200  setOperationAction(ISD::VAARG, MVT::Other, Custom);
201  setOperationAction(ISD::VACOPY, MVT::Other, Custom);
202  setOperationAction(ISD::VAEND, MVT::Other, Expand);
203
204  // Variable-sized objects.
205  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
206  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
207  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
208
209  // Exception handling.
210  // FIXME: These are guesses. Has this been defined yet?
211  setExceptionPointerRegister(AArch64::X0);
212  setExceptionSelectorRegister(AArch64::X1);
213
214  // Constant pool entries
215  setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
216
217  // BlockAddress
218  setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
219
220  // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
221  setOperationAction(ISD::ADDC, MVT::i32, Custom);
222  setOperationAction(ISD::ADDE, MVT::i32, Custom);
223  setOperationAction(ISD::SUBC, MVT::i32, Custom);
224  setOperationAction(ISD::SUBE, MVT::i32, Custom);
225  setOperationAction(ISD::ADDC, MVT::i64, Custom);
226  setOperationAction(ISD::ADDE, MVT::i64, Custom);
227  setOperationAction(ISD::SUBC, MVT::i64, Custom);
228  setOperationAction(ISD::SUBE, MVT::i64, Custom);
229
230  // AArch64 lacks both left-rotate and popcount instructions.
231  setOperationAction(ISD::ROTL, MVT::i32, Expand);
232  setOperationAction(ISD::ROTL, MVT::i64, Expand);
233
234  // AArch64 doesn't have {U|S}MUL_LOHI.
235  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
236  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
237
238
239  // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
240  // counterparts, which AArch64 supports directly.
241  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
242  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
243  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
244  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
245
246  setOperationAction(ISD::CTPOP, MVT::i32, Custom);
247  setOperationAction(ISD::CTPOP, MVT::i64, Custom);
248
249  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
250  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
251  setOperationAction(ISD::SREM, MVT::i32, Expand);
252  setOperationAction(ISD::SREM, MVT::i64, Expand);
253  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
254  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
255  setOperationAction(ISD::UREM, MVT::i32, Expand);
256  setOperationAction(ISD::UREM, MVT::i64, Expand);
257
258  // Custom lower Add/Sub/Mul with overflow.
259  setOperationAction(ISD::SADDO, MVT::i32, Custom);
260  setOperationAction(ISD::SADDO, MVT::i64, Custom);
261  setOperationAction(ISD::UADDO, MVT::i32, Custom);
262  setOperationAction(ISD::UADDO, MVT::i64, Custom);
263  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
264  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
265  setOperationAction(ISD::USUBO, MVT::i32, Custom);
266  setOperationAction(ISD::USUBO, MVT::i64, Custom);
267  setOperationAction(ISD::SMULO, MVT::i32, Custom);
268  setOperationAction(ISD::SMULO, MVT::i64, Custom);
269  setOperationAction(ISD::UMULO, MVT::i32, Custom);
270  setOperationAction(ISD::UMULO, MVT::i64, Custom);
271
272  setOperationAction(ISD::FSIN, MVT::f32, Expand);
273  setOperationAction(ISD::FSIN, MVT::f64, Expand);
274  setOperationAction(ISD::FCOS, MVT::f32, Expand);
275  setOperationAction(ISD::FCOS, MVT::f64, Expand);
276  setOperationAction(ISD::FPOW, MVT::f32, Expand);
277  setOperationAction(ISD::FPOW, MVT::f64, Expand);
278  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
279  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
280
281  // AArch64 has implementations of a lot of rounding-like FP operations.
282  static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
283  for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
284    MVT Ty = RoundingTypes[I];
285    setOperationAction(ISD::FFLOOR, Ty, Legal);
286    setOperationAction(ISD::FNEARBYINT, Ty, Legal);
287    setOperationAction(ISD::FCEIL, Ty, Legal);
288    setOperationAction(ISD::FRINT, Ty, Legal);
289    setOperationAction(ISD::FTRUNC, Ty, Legal);
290    setOperationAction(ISD::FROUND, Ty, Legal);
291  }
292
293  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
294
295  if (Subtarget->isTargetMachO()) {
296    // For iOS, we don't want to the normal expansion of a libcall to
297    // sincos. We want to issue a libcall to __sincos_stret to avoid memory
298    // traffic.
299    setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
300    setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
301  } else {
302    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
303    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
304  }
305
306  // AArch64 does not have floating-point extending loads, i1 sign-extending
307  // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
308  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
309  setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
310  setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
311  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
312  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
313  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
314  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
315  setTruncStoreAction(MVT::f128, MVT::f80, Expand);
316  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
317  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
318  setTruncStoreAction(MVT::f128, MVT::f16, Expand);
319  // Indexed loads and stores are supported.
320  for (unsigned im = (unsigned)ISD::PRE_INC;
321       im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
322    setIndexedLoadAction(im, MVT::i8, Legal);
323    setIndexedLoadAction(im, MVT::i16, Legal);
324    setIndexedLoadAction(im, MVT::i32, Legal);
325    setIndexedLoadAction(im, MVT::i64, Legal);
326    setIndexedLoadAction(im, MVT::f64, Legal);
327    setIndexedLoadAction(im, MVT::f32, Legal);
328    setIndexedStoreAction(im, MVT::i8, Legal);
329    setIndexedStoreAction(im, MVT::i16, Legal);
330    setIndexedStoreAction(im, MVT::i32, Legal);
331    setIndexedStoreAction(im, MVT::i64, Legal);
332    setIndexedStoreAction(im, MVT::f64, Legal);
333    setIndexedStoreAction(im, MVT::f32, Legal);
334  }
335
336  // Trap.
337  setOperationAction(ISD::TRAP, MVT::Other, Legal);
338
339  // We combine OR nodes for bitfield operations.
340  setTargetDAGCombine(ISD::OR);
341
342  // Vector add and sub nodes may conceal a high-half opportunity.
343  // Also, try to fold ADD into CSINC/CSINV..
344  setTargetDAGCombine(ISD::ADD);
345  setTargetDAGCombine(ISD::SUB);
346
347  setTargetDAGCombine(ISD::XOR);
348  setTargetDAGCombine(ISD::SINT_TO_FP);
349  setTargetDAGCombine(ISD::UINT_TO_FP);
350
351  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
352
353  setTargetDAGCombine(ISD::ANY_EXTEND);
354  setTargetDAGCombine(ISD::ZERO_EXTEND);
355  setTargetDAGCombine(ISD::SIGN_EXTEND);
356  setTargetDAGCombine(ISD::BITCAST);
357  setTargetDAGCombine(ISD::CONCAT_VECTORS);
358  setTargetDAGCombine(ISD::STORE);
359
360  setTargetDAGCombine(ISD::MUL);
361
362  setTargetDAGCombine(ISD::SELECT);
363  setTargetDAGCombine(ISD::VSELECT);
364
365  setTargetDAGCombine(ISD::INTRINSIC_VOID);
366  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
367  setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
368
369  MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
370  MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
371  MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
372
373  setStackPointerRegisterToSaveRestore(AArch64::SP);
374
375  setSchedulingPreference(Sched::Hybrid);
376
377  // Enable TBZ/TBNZ
378  MaskAndBranchFoldingIsLegal = true;
379
380  setMinFunctionAlignment(2);
381
382  RequireStrictAlign = (Align == StrictAlign);
383
384  setHasExtractBitsInsn(true);
385
386  if (Subtarget->hasNEON()) {
387    // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
388    // silliness like this:
389    setOperationAction(ISD::FABS, MVT::v1f64, Expand);
390    setOperationAction(ISD::FADD, MVT::v1f64, Expand);
391    setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
392    setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
393    setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
394    setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
395    setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
396    setOperationAction(ISD::FMA, MVT::v1f64, Expand);
397    setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
398    setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
399    setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
400    setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
401    setOperationAction(ISD::FREM, MVT::v1f64, Expand);
402    setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
403    setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
404    setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
405    setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
406    setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
407    setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
408    setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
409    setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
410    setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
411    setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
412    setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
413    setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
414
415    setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
416    setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
417    setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
418    setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
419    setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
420
421    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
422
423    // AArch64 doesn't have a direct vector ->f32 conversion instructions for
424    // elements smaller than i32, so promote the input to i32 first.
425    setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
426    setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
427    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
428    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
429    // Similarly, there is no direct i32 -> f64 vector conversion instruction.
430    setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
431    setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
432    setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
433    setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
434
435    // AArch64 doesn't have MUL.2d:
436    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
437    setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
438    setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
439    // Likewise, narrowing and extending vector loads/stores aren't handled
440    // directly.
441    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
442         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
443
444      setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
445                         Expand);
446
447      setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
448      setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
449      setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
450      setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
451
452      setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
453
454      for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
455           InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
456        setTruncStoreAction((MVT::SimpleValueType)VT,
457                            (MVT::SimpleValueType)InnerVT, Expand);
458      setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
459      setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
460      setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
461    }
462
463    // AArch64 has implementations of a lot of rounding-like FP operations.
464    static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 };
465    for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) {
466      MVT Ty = RoundingVecTypes[I];
467      setOperationAction(ISD::FFLOOR, Ty, Legal);
468      setOperationAction(ISD::FNEARBYINT, Ty, Legal);
469      setOperationAction(ISD::FCEIL, Ty, Legal);
470      setOperationAction(ISD::FRINT, Ty, Legal);
471      setOperationAction(ISD::FTRUNC, Ty, Legal);
472      setOperationAction(ISD::FROUND, Ty, Legal);
473    }
474  }
475}
476
477void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
478  if (VT == MVT::v2f32) {
479    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
480    AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
481
482    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
483    AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
484  } else if (VT == MVT::v2f64 || VT == MVT::v4f32) {
485    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
486    AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
487
488    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
489    AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
490  }
491
492  // Mark vector float intrinsics as expand.
493  if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
494    setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
495    setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
496    setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
497    setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
498    setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
499    setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
500    setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
501    setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
502    setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
503  }
504
505  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
506  setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
507  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
508  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
509  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
510  setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
511  setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
512  setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
513  setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
514  setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
515  setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
516  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
517
518  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
519  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
520  setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
521  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
522
523  // CNT supports only B element sizes.
524  if (VT != MVT::v8i8 && VT != MVT::v16i8)
525    setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
526
527  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
528  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
529  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
530  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
531  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
532
533  setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
534  setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
535
536  if (Subtarget->isLittleEndian()) {
537    for (unsigned im = (unsigned)ISD::PRE_INC;
538         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
539      setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
540      setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
541    }
542  }
543}
544
545void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
546  addRegisterClass(VT, &AArch64::FPR64RegClass);
547  addTypeForNEON(VT, MVT::v2i32);
548}
549
550void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
551  addRegisterClass(VT, &AArch64::FPR128RegClass);
552  addTypeForNEON(VT, MVT::v4i32);
553}
554
555EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
556  if (!VT.isVector())
557    return MVT::i32;
558  return VT.changeVectorElementTypeToInteger();
559}
560
561/// computeKnownBitsForTargetNode - Determine which of the bits specified in
562/// Mask are known to be either zero or one and return them in the
563/// KnownZero/KnownOne bitsets.
564void AArch64TargetLowering::computeKnownBitsForTargetNode(
565    const SDValue Op, APInt &KnownZero, APInt &KnownOne,
566    const SelectionDAG &DAG, unsigned Depth) const {
567  switch (Op.getOpcode()) {
568  default:
569    break;
570  case AArch64ISD::CSEL: {
571    APInt KnownZero2, KnownOne2;
572    DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
573    DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
574    KnownZero &= KnownZero2;
575    KnownOne &= KnownOne2;
576    break;
577  }
578  case ISD::INTRINSIC_W_CHAIN: {
579   ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
580    Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
581    switch (IntID) {
582    default: return;
583    case Intrinsic::aarch64_ldaxr:
584    case Intrinsic::aarch64_ldxr: {
585      unsigned BitWidth = KnownOne.getBitWidth();
586      EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
587      unsigned MemBits = VT.getScalarType().getSizeInBits();
588      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
589      return;
590    }
591    }
592    break;
593  }
594  case ISD::INTRINSIC_WO_CHAIN:
595  case ISD::INTRINSIC_VOID: {
596    unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
597    switch (IntNo) {
598    default:
599      break;
600    case Intrinsic::aarch64_neon_umaxv:
601    case Intrinsic::aarch64_neon_uminv: {
602      // Figure out the datatype of the vector operand. The UMINV instruction
603      // will zero extend the result, so we can mark as known zero all the
604      // bits larger than the element datatype. 32-bit or larget doesn't need
605      // this as those are legal types and will be handled by isel directly.
606      MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
607      unsigned BitWidth = KnownZero.getBitWidth();
608      if (VT == MVT::v8i8 || VT == MVT::v16i8) {
609        assert(BitWidth >= 8 && "Unexpected width!");
610        APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
611        KnownZero |= Mask;
612      } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
613        assert(BitWidth >= 16 && "Unexpected width!");
614        APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
615        KnownZero |= Mask;
616      }
617      break;
618    } break;
619    }
620  }
621  }
622}
623
624MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
625  return MVT::i64;
626}
627
628unsigned AArch64TargetLowering::getMaximalGlobalOffset() const {
629  // FIXME: On AArch64, this depends on the type.
630  // Basically, the addressable offsets are o to 4095 * Ty.getSizeInBytes().
631  // and the offset has to be a multiple of the related size in bytes.
632  return 4095;
633}
634
635FastISel *
636AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
637                                      const TargetLibraryInfo *libInfo) const {
638  return AArch64::createFastISel(funcInfo, libInfo);
639}
640
641const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
642  switch (Opcode) {
643  default:
644    return nullptr;
645  case AArch64ISD::CALL:              return "AArch64ISD::CALL";
646  case AArch64ISD::ADRP:              return "AArch64ISD::ADRP";
647  case AArch64ISD::ADDlow:            return "AArch64ISD::ADDlow";
648  case AArch64ISD::LOADgot:           return "AArch64ISD::LOADgot";
649  case AArch64ISD::RET_FLAG:          return "AArch64ISD::RET_FLAG";
650  case AArch64ISD::BRCOND:            return "AArch64ISD::BRCOND";
651  case AArch64ISD::CSEL:              return "AArch64ISD::CSEL";
652  case AArch64ISD::FCSEL:             return "AArch64ISD::FCSEL";
653  case AArch64ISD::CSINV:             return "AArch64ISD::CSINV";
654  case AArch64ISD::CSNEG:             return "AArch64ISD::CSNEG";
655  case AArch64ISD::CSINC:             return "AArch64ISD::CSINC";
656  case AArch64ISD::THREAD_POINTER:    return "AArch64ISD::THREAD_POINTER";
657  case AArch64ISD::TLSDESC_CALL:      return "AArch64ISD::TLSDESC_CALL";
658  case AArch64ISD::ADC:               return "AArch64ISD::ADC";
659  case AArch64ISD::SBC:               return "AArch64ISD::SBC";
660  case AArch64ISD::ADDS:              return "AArch64ISD::ADDS";
661  case AArch64ISD::SUBS:              return "AArch64ISD::SUBS";
662  case AArch64ISD::ADCS:              return "AArch64ISD::ADCS";
663  case AArch64ISD::SBCS:              return "AArch64ISD::SBCS";
664  case AArch64ISD::ANDS:              return "AArch64ISD::ANDS";
665  case AArch64ISD::FCMP:              return "AArch64ISD::FCMP";
666  case AArch64ISD::FMIN:              return "AArch64ISD::FMIN";
667  case AArch64ISD::FMAX:              return "AArch64ISD::FMAX";
668  case AArch64ISD::DUP:               return "AArch64ISD::DUP";
669  case AArch64ISD::DUPLANE8:          return "AArch64ISD::DUPLANE8";
670  case AArch64ISD::DUPLANE16:         return "AArch64ISD::DUPLANE16";
671  case AArch64ISD::DUPLANE32:         return "AArch64ISD::DUPLANE32";
672  case AArch64ISD::DUPLANE64:         return "AArch64ISD::DUPLANE64";
673  case AArch64ISD::MOVI:              return "AArch64ISD::MOVI";
674  case AArch64ISD::MOVIshift:         return "AArch64ISD::MOVIshift";
675  case AArch64ISD::MOVIedit:          return "AArch64ISD::MOVIedit";
676  case AArch64ISD::MOVImsl:           return "AArch64ISD::MOVImsl";
677  case AArch64ISD::FMOV:              return "AArch64ISD::FMOV";
678  case AArch64ISD::MVNIshift:         return "AArch64ISD::MVNIshift";
679  case AArch64ISD::MVNImsl:           return "AArch64ISD::MVNImsl";
680  case AArch64ISD::BICi:              return "AArch64ISD::BICi";
681  case AArch64ISD::ORRi:              return "AArch64ISD::ORRi";
682  case AArch64ISD::BSL:               return "AArch64ISD::BSL";
683  case AArch64ISD::NEG:               return "AArch64ISD::NEG";
684  case AArch64ISD::EXTR:              return "AArch64ISD::EXTR";
685  case AArch64ISD::ZIP1:              return "AArch64ISD::ZIP1";
686  case AArch64ISD::ZIP2:              return "AArch64ISD::ZIP2";
687  case AArch64ISD::UZP1:              return "AArch64ISD::UZP1";
688  case AArch64ISD::UZP2:              return "AArch64ISD::UZP2";
689  case AArch64ISD::TRN1:              return "AArch64ISD::TRN1";
690  case AArch64ISD::TRN2:              return "AArch64ISD::TRN2";
691  case AArch64ISD::REV16:             return "AArch64ISD::REV16";
692  case AArch64ISD::REV32:             return "AArch64ISD::REV32";
693  case AArch64ISD::REV64:             return "AArch64ISD::REV64";
694  case AArch64ISD::EXT:               return "AArch64ISD::EXT";
695  case AArch64ISD::VSHL:              return "AArch64ISD::VSHL";
696  case AArch64ISD::VLSHR:             return "AArch64ISD::VLSHR";
697  case AArch64ISD::VASHR:             return "AArch64ISD::VASHR";
698  case AArch64ISD::CMEQ:              return "AArch64ISD::CMEQ";
699  case AArch64ISD::CMGE:              return "AArch64ISD::CMGE";
700  case AArch64ISD::CMGT:              return "AArch64ISD::CMGT";
701  case AArch64ISD::CMHI:              return "AArch64ISD::CMHI";
702  case AArch64ISD::CMHS:              return "AArch64ISD::CMHS";
703  case AArch64ISD::FCMEQ:             return "AArch64ISD::FCMEQ";
704  case AArch64ISD::FCMGE:             return "AArch64ISD::FCMGE";
705  case AArch64ISD::FCMGT:             return "AArch64ISD::FCMGT";
706  case AArch64ISD::CMEQz:             return "AArch64ISD::CMEQz";
707  case AArch64ISD::CMGEz:             return "AArch64ISD::CMGEz";
708  case AArch64ISD::CMGTz:             return "AArch64ISD::CMGTz";
709  case AArch64ISD::CMLEz:             return "AArch64ISD::CMLEz";
710  case AArch64ISD::CMLTz:             return "AArch64ISD::CMLTz";
711  case AArch64ISD::FCMEQz:            return "AArch64ISD::FCMEQz";
712  case AArch64ISD::FCMGEz:            return "AArch64ISD::FCMGEz";
713  case AArch64ISD::FCMGTz:            return "AArch64ISD::FCMGTz";
714  case AArch64ISD::FCMLEz:            return "AArch64ISD::FCMLEz";
715  case AArch64ISD::FCMLTz:            return "AArch64ISD::FCMLTz";
716  case AArch64ISD::NOT:               return "AArch64ISD::NOT";
717  case AArch64ISD::BIT:               return "AArch64ISD::BIT";
718  case AArch64ISD::CBZ:               return "AArch64ISD::CBZ";
719  case AArch64ISD::CBNZ:              return "AArch64ISD::CBNZ";
720  case AArch64ISD::TBZ:               return "AArch64ISD::TBZ";
721  case AArch64ISD::TBNZ:              return "AArch64ISD::TBNZ";
722  case AArch64ISD::TC_RETURN:         return "AArch64ISD::TC_RETURN";
723  case AArch64ISD::SITOF:             return "AArch64ISD::SITOF";
724  case AArch64ISD::UITOF:             return "AArch64ISD::UITOF";
725  case AArch64ISD::SQSHL_I:           return "AArch64ISD::SQSHL_I";
726  case AArch64ISD::UQSHL_I:           return "AArch64ISD::UQSHL_I";
727  case AArch64ISD::SRSHR_I:           return "AArch64ISD::SRSHR_I";
728  case AArch64ISD::URSHR_I:           return "AArch64ISD::URSHR_I";
729  case AArch64ISD::SQSHLU_I:          return "AArch64ISD::SQSHLU_I";
730  case AArch64ISD::WrapperLarge:      return "AArch64ISD::WrapperLarge";
731  case AArch64ISD::LD2post:           return "AArch64ISD::LD2post";
732  case AArch64ISD::LD3post:           return "AArch64ISD::LD3post";
733  case AArch64ISD::LD4post:           return "AArch64ISD::LD4post";
734  case AArch64ISD::ST2post:           return "AArch64ISD::ST2post";
735  case AArch64ISD::ST3post:           return "AArch64ISD::ST3post";
736  case AArch64ISD::ST4post:           return "AArch64ISD::ST4post";
737  case AArch64ISD::LD1x2post:         return "AArch64ISD::LD1x2post";
738  case AArch64ISD::LD1x3post:         return "AArch64ISD::LD1x3post";
739  case AArch64ISD::LD1x4post:         return "AArch64ISD::LD1x4post";
740  case AArch64ISD::ST1x2post:         return "AArch64ISD::ST1x2post";
741  case AArch64ISD::ST1x3post:         return "AArch64ISD::ST1x3post";
742  case AArch64ISD::ST1x4post:         return "AArch64ISD::ST1x4post";
743  case AArch64ISD::LD1DUPpost:        return "AArch64ISD::LD1DUPpost";
744  case AArch64ISD::LD2DUPpost:        return "AArch64ISD::LD2DUPpost";
745  case AArch64ISD::LD3DUPpost:        return "AArch64ISD::LD3DUPpost";
746  case AArch64ISD::LD4DUPpost:        return "AArch64ISD::LD4DUPpost";
747  case AArch64ISD::LD1LANEpost:       return "AArch64ISD::LD1LANEpost";
748  case AArch64ISD::LD2LANEpost:       return "AArch64ISD::LD2LANEpost";
749  case AArch64ISD::LD3LANEpost:       return "AArch64ISD::LD3LANEpost";
750  case AArch64ISD::LD4LANEpost:       return "AArch64ISD::LD4LANEpost";
751  case AArch64ISD::ST2LANEpost:       return "AArch64ISD::ST2LANEpost";
752  case AArch64ISD::ST3LANEpost:       return "AArch64ISD::ST3LANEpost";
753  case AArch64ISD::ST4LANEpost:       return "AArch64ISD::ST4LANEpost";
754  }
755}
756
757MachineBasicBlock *
758AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
759                                    MachineBasicBlock *MBB) const {
760  // We materialise the F128CSEL pseudo-instruction as some control flow and a
761  // phi node:
762
763  // OrigBB:
764  //     [... previous instrs leading to comparison ...]
765  //     b.ne TrueBB
766  //     b EndBB
767  // TrueBB:
768  //     ; Fallthrough
769  // EndBB:
770  //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
771
772  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
773  MachineFunction *MF = MBB->getParent();
774  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
775  DebugLoc DL = MI->getDebugLoc();
776  MachineFunction::iterator It = MBB;
777  ++It;
778
779  unsigned DestReg = MI->getOperand(0).getReg();
780  unsigned IfTrueReg = MI->getOperand(1).getReg();
781  unsigned IfFalseReg = MI->getOperand(2).getReg();
782  unsigned CondCode = MI->getOperand(3).getImm();
783  bool NZCVKilled = MI->getOperand(4).isKill();
784
785  MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
786  MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
787  MF->insert(It, TrueBB);
788  MF->insert(It, EndBB);
789
790  // Transfer rest of current basic-block to EndBB
791  EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
792                MBB->end());
793  EndBB->transferSuccessorsAndUpdatePHIs(MBB);
794
795  BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
796  BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
797  MBB->addSuccessor(TrueBB);
798  MBB->addSuccessor(EndBB);
799
800  // TrueBB falls through to the end.
801  TrueBB->addSuccessor(EndBB);
802
803  if (!NZCVKilled) {
804    TrueBB->addLiveIn(AArch64::NZCV);
805    EndBB->addLiveIn(AArch64::NZCV);
806  }
807
808  BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
809      .addReg(IfTrueReg)
810      .addMBB(TrueBB)
811      .addReg(IfFalseReg)
812      .addMBB(MBB);
813
814  MI->eraseFromParent();
815  return EndBB;
816}
817
818MachineBasicBlock *
819AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
820                                                 MachineBasicBlock *BB) const {
821  switch (MI->getOpcode()) {
822  default:
823#ifndef NDEBUG
824    MI->dump();
825#endif
826    assert(0 && "Unexpected instruction for custom inserter!");
827    break;
828
829  case AArch64::F128CSEL:
830    return EmitF128CSEL(MI, BB);
831
832  case TargetOpcode::STACKMAP:
833  case TargetOpcode::PATCHPOINT:
834    return emitPatchPoint(MI, BB);
835  }
836  llvm_unreachable("Unexpected instruction for custom inserter!");
837}
838
839//===----------------------------------------------------------------------===//
840// AArch64 Lowering private implementation.
841//===----------------------------------------------------------------------===//
842
843//===----------------------------------------------------------------------===//
844// Lowering Code
845//===----------------------------------------------------------------------===//
846
847/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
848/// CC
849static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
850  switch (CC) {
851  default:
852    llvm_unreachable("Unknown condition code!");
853  case ISD::SETNE:
854    return AArch64CC::NE;
855  case ISD::SETEQ:
856    return AArch64CC::EQ;
857  case ISD::SETGT:
858    return AArch64CC::GT;
859  case ISD::SETGE:
860    return AArch64CC::GE;
861  case ISD::SETLT:
862    return AArch64CC::LT;
863  case ISD::SETLE:
864    return AArch64CC::LE;
865  case ISD::SETUGT:
866    return AArch64CC::HI;
867  case ISD::SETUGE:
868    return AArch64CC::HS;
869  case ISD::SETULT:
870    return AArch64CC::LO;
871  case ISD::SETULE:
872    return AArch64CC::LS;
873  }
874}
875
876/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
877static void changeFPCCToAArch64CC(ISD::CondCode CC,
878                                  AArch64CC::CondCode &CondCode,
879                                  AArch64CC::CondCode &CondCode2) {
880  CondCode2 = AArch64CC::AL;
881  switch (CC) {
882  default:
883    llvm_unreachable("Unknown FP condition!");
884  case ISD::SETEQ:
885  case ISD::SETOEQ:
886    CondCode = AArch64CC::EQ;
887    break;
888  case ISD::SETGT:
889  case ISD::SETOGT:
890    CondCode = AArch64CC::GT;
891    break;
892  case ISD::SETGE:
893  case ISD::SETOGE:
894    CondCode = AArch64CC::GE;
895    break;
896  case ISD::SETOLT:
897    CondCode = AArch64CC::MI;
898    break;
899  case ISD::SETOLE:
900    CondCode = AArch64CC::LS;
901    break;
902  case ISD::SETONE:
903    CondCode = AArch64CC::MI;
904    CondCode2 = AArch64CC::GT;
905    break;
906  case ISD::SETO:
907    CondCode = AArch64CC::VC;
908    break;
909  case ISD::SETUO:
910    CondCode = AArch64CC::VS;
911    break;
912  case ISD::SETUEQ:
913    CondCode = AArch64CC::EQ;
914    CondCode2 = AArch64CC::VS;
915    break;
916  case ISD::SETUGT:
917    CondCode = AArch64CC::HI;
918    break;
919  case ISD::SETUGE:
920    CondCode = AArch64CC::PL;
921    break;
922  case ISD::SETLT:
923  case ISD::SETULT:
924    CondCode = AArch64CC::LT;
925    break;
926  case ISD::SETLE:
927  case ISD::SETULE:
928    CondCode = AArch64CC::LE;
929    break;
930  case ISD::SETNE:
931  case ISD::SETUNE:
932    CondCode = AArch64CC::NE;
933    break;
934  }
935}
936
937/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
938/// CC usable with the vector instructions. Fewer operations are available
939/// without a real NZCV register, so we have to use less efficient combinations
940/// to get the same effect.
941static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
942                                        AArch64CC::CondCode &CondCode,
943                                        AArch64CC::CondCode &CondCode2,
944                                        bool &Invert) {
945  Invert = false;
946  switch (CC) {
947  default:
948    // Mostly the scalar mappings work fine.
949    changeFPCCToAArch64CC(CC, CondCode, CondCode2);
950    break;
951  case ISD::SETUO:
952    Invert = true; // Fallthrough
953  case ISD::SETO:
954    CondCode = AArch64CC::MI;
955    CondCode2 = AArch64CC::GE;
956    break;
957  case ISD::SETUEQ:
958  case ISD::SETULT:
959  case ISD::SETULE:
960  case ISD::SETUGT:
961  case ISD::SETUGE:
962    // All of the compare-mask comparisons are ordered, but we can switch
963    // between the two by a double inversion. E.g. ULE == !OGT.
964    Invert = true;
965    changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
966    break;
967  }
968}
969
970static bool isLegalArithImmed(uint64_t C) {
971  // Matches AArch64DAGToDAGISel::SelectArithImmed().
972  return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
973}
974
975static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
976                              SDLoc dl, SelectionDAG &DAG) {
977  EVT VT = LHS.getValueType();
978
979  if (VT.isFloatingPoint())
980    return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
981
982  // The CMP instruction is just an alias for SUBS, and representing it as
983  // SUBS means that it's possible to get CSE with subtract operations.
984  // A later phase can perform the optimization of setting the destination
985  // register to WZR/XZR if it ends up being unused.
986  unsigned Opcode = AArch64ISD::SUBS;
987
988  if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
989      cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
990      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
991    // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
992    // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
993    // can be set differently by this operation. It comes down to whether
994    // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
995    // everything is fine. If not then the optimization is wrong. Thus general
996    // comparisons are only valid if op2 != 0.
997
998    // So, finally, the only LLVM-native comparisons that don't mention C and V
999    // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1000    // the absence of information about op2.
1001    Opcode = AArch64ISD::ADDS;
1002    RHS = RHS.getOperand(1);
1003  } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1004             cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1005             !isUnsignedIntSetCC(CC)) {
1006    // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1007    // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1008    // of the signed comparisons.
1009    Opcode = AArch64ISD::ANDS;
1010    RHS = LHS.getOperand(1);
1011    LHS = LHS.getOperand(0);
1012  }
1013
1014  return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
1015      .getValue(1);
1016}
1017
1018static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1019                             SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
1020  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1021    EVT VT = RHS.getValueType();
1022    uint64_t C = RHSC->getZExtValue();
1023    if (!isLegalArithImmed(C)) {
1024      // Constant does not fit, try adjusting it by one?
1025      switch (CC) {
1026      default:
1027        break;
1028      case ISD::SETLT:
1029      case ISD::SETGE:
1030        if ((VT == MVT::i32 && C != 0x80000000 &&
1031             isLegalArithImmed((uint32_t)(C - 1))) ||
1032            (VT == MVT::i64 && C != 0x80000000ULL &&
1033             isLegalArithImmed(C - 1ULL))) {
1034          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1035          C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1036          RHS = DAG.getConstant(C, VT);
1037        }
1038        break;
1039      case ISD::SETULT:
1040      case ISD::SETUGE:
1041        if ((VT == MVT::i32 && C != 0 &&
1042             isLegalArithImmed((uint32_t)(C - 1))) ||
1043            (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1044          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1045          C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1046          RHS = DAG.getConstant(C, VT);
1047        }
1048        break;
1049      case ISD::SETLE:
1050      case ISD::SETGT:
1051        if ((VT == MVT::i32 && C != 0x7fffffff &&
1052             isLegalArithImmed((uint32_t)(C + 1))) ||
1053            (VT == MVT::i64 && C != 0x7ffffffffffffffULL &&
1054             isLegalArithImmed(C + 1ULL))) {
1055          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1056          C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1057          RHS = DAG.getConstant(C, VT);
1058        }
1059        break;
1060      case ISD::SETULE:
1061      case ISD::SETUGT:
1062        if ((VT == MVT::i32 && C != 0xffffffff &&
1063             isLegalArithImmed((uint32_t)(C + 1))) ||
1064            (VT == MVT::i64 && C != 0xfffffffffffffffULL &&
1065             isLegalArithImmed(C + 1ULL))) {
1066          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1067          C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1068          RHS = DAG.getConstant(C, VT);
1069        }
1070        break;
1071      }
1072    }
1073  }
1074
1075  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1076  AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
1077  AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1078  return Cmp;
1079}
1080
1081static std::pair<SDValue, SDValue>
1082getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1083  assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1084         "Unsupported value type");
1085  SDValue Value, Overflow;
1086  SDLoc DL(Op);
1087  SDValue LHS = Op.getOperand(0);
1088  SDValue RHS = Op.getOperand(1);
1089  unsigned Opc = 0;
1090  switch (Op.getOpcode()) {
1091  default:
1092    llvm_unreachable("Unknown overflow instruction!");
1093  case ISD::SADDO:
1094    Opc = AArch64ISD::ADDS;
1095    CC = AArch64CC::VS;
1096    break;
1097  case ISD::UADDO:
1098    Opc = AArch64ISD::ADDS;
1099    CC = AArch64CC::HS;
1100    break;
1101  case ISD::SSUBO:
1102    Opc = AArch64ISD::SUBS;
1103    CC = AArch64CC::VS;
1104    break;
1105  case ISD::USUBO:
1106    Opc = AArch64ISD::SUBS;
1107    CC = AArch64CC::LO;
1108    break;
1109  // Multiply needs a little bit extra work.
1110  case ISD::SMULO:
1111  case ISD::UMULO: {
1112    CC = AArch64CC::NE;
1113    bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
1114    if (Op.getValueType() == MVT::i32) {
1115      unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1116      // For a 32 bit multiply with overflow check we want the instruction
1117      // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1118      // need to generate the following pattern:
1119      // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1120      LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1121      RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1122      SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1123      SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1124                                DAG.getConstant(0, MVT::i64));
1125      // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1126      // operation. We need to clear out the upper 32 bits, because we used a
1127      // widening multiply that wrote all 64 bits. In the end this should be a
1128      // noop.
1129      Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1130      if (IsSigned) {
1131        // The signed overflow check requires more than just a simple check for
1132        // any bit set in the upper 32 bits of the result. These bits could be
1133        // just the sign bits of a negative number. To perform the overflow
1134        // check we have to arithmetic shift right the 32nd bit of the result by
1135        // 31 bits. Then we compare the result to the upper 32 bits.
1136        SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1137                                        DAG.getConstant(32, MVT::i64));
1138        UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1139        SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1140                                        DAG.getConstant(31, MVT::i64));
1141        // It is important that LowerBits is last, otherwise the arithmetic
1142        // shift will not be folded into the compare (SUBS).
1143        SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1144        Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1145                       .getValue(1);
1146      } else {
1147        // The overflow check for unsigned multiply is easy. We only need to
1148        // check if any of the upper 32 bits are set. This can be done with a
1149        // CMP (shifted register). For that we need to generate the following
1150        // pattern:
1151        // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1152        SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1153                                        DAG.getConstant(32, MVT::i64));
1154        SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1155        Overflow =
1156            DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1157                        UpperBits).getValue(1);
1158      }
1159      break;
1160    }
1161    assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1162    // For the 64 bit multiply
1163    Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1164    if (IsSigned) {
1165      SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1166      SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1167                                      DAG.getConstant(63, MVT::i64));
1168      // It is important that LowerBits is last, otherwise the arithmetic
1169      // shift will not be folded into the compare (SUBS).
1170      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1171      Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1172                     .getValue(1);
1173    } else {
1174      SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1175      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1176      Overflow =
1177          DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1178                      UpperBits).getValue(1);
1179    }
1180    break;
1181  }
1182  } // switch (...)
1183
1184  if (Opc) {
1185    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1186
1187    // Emit the AArch64 operation with overflow check.
1188    Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1189    Overflow = Value.getValue(1);
1190  }
1191  return std::make_pair(Value, Overflow);
1192}
1193
1194SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1195                                             RTLIB::Libcall Call) const {
1196  SmallVector<SDValue, 2> Ops;
1197  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1198    Ops.push_back(Op.getOperand(i));
1199
1200  return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1201                     SDLoc(Op)).first;
1202}
1203
1204static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1205  SDValue Sel = Op.getOperand(0);
1206  SDValue Other = Op.getOperand(1);
1207
1208  // If neither operand is a SELECT_CC, give up.
1209  if (Sel.getOpcode() != ISD::SELECT_CC)
1210    std::swap(Sel, Other);
1211  if (Sel.getOpcode() != ISD::SELECT_CC)
1212    return Op;
1213
1214  // The folding we want to perform is:
1215  // (xor x, (select_cc a, b, cc, 0, -1) )
1216  //   -->
1217  // (csel x, (xor x, -1), cc ...)
1218  //
1219  // The latter will get matched to a CSINV instruction.
1220
1221  ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1222  SDValue LHS = Sel.getOperand(0);
1223  SDValue RHS = Sel.getOperand(1);
1224  SDValue TVal = Sel.getOperand(2);
1225  SDValue FVal = Sel.getOperand(3);
1226  SDLoc dl(Sel);
1227
1228  // FIXME: This could be generalized to non-integer comparisons.
1229  if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1230    return Op;
1231
1232  ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1233  ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1234
1235  // The the values aren't constants, this isn't the pattern we're looking for.
1236  if (!CFVal || !CTVal)
1237    return Op;
1238
1239  // We can commute the SELECT_CC by inverting the condition.  This
1240  // might be needed to make this fit into a CSINV pattern.
1241  if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1242    std::swap(TVal, FVal);
1243    std::swap(CTVal, CFVal);
1244    CC = ISD::getSetCCInverse(CC, true);
1245  }
1246
1247  // If the constants line up, perform the transform!
1248  if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1249    SDValue CCVal;
1250    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1251
1252    FVal = Other;
1253    TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1254                       DAG.getConstant(-1ULL, Other.getValueType()));
1255
1256    return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1257                       CCVal, Cmp);
1258  }
1259
1260  return Op;
1261}
1262
1263static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1264  EVT VT = Op.getValueType();
1265
1266  // Let legalize expand this if it isn't a legal type yet.
1267  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1268    return SDValue();
1269
1270  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1271
1272  unsigned Opc;
1273  bool ExtraOp = false;
1274  switch (Op.getOpcode()) {
1275  default:
1276    assert(0 && "Invalid code");
1277  case ISD::ADDC:
1278    Opc = AArch64ISD::ADDS;
1279    break;
1280  case ISD::SUBC:
1281    Opc = AArch64ISD::SUBS;
1282    break;
1283  case ISD::ADDE:
1284    Opc = AArch64ISD::ADCS;
1285    ExtraOp = true;
1286    break;
1287  case ISD::SUBE:
1288    Opc = AArch64ISD::SBCS;
1289    ExtraOp = true;
1290    break;
1291  }
1292
1293  if (!ExtraOp)
1294    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1295  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1296                     Op.getOperand(2));
1297}
1298
1299static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1300  // Let legalize expand this if it isn't a legal type yet.
1301  if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1302    return SDValue();
1303
1304  AArch64CC::CondCode CC;
1305  // The actual operation that sets the overflow or carry flag.
1306  SDValue Value, Overflow;
1307  std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1308
1309  // We use 0 and 1 as false and true values.
1310  SDValue TVal = DAG.getConstant(1, MVT::i32);
1311  SDValue FVal = DAG.getConstant(0, MVT::i32);
1312
1313  // We use an inverted condition, because the conditional select is inverted
1314  // too. This will allow it to be selected to a single instruction:
1315  // CSINC Wd, WZR, WZR, invert(cond).
1316  SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
1317  Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
1318                         CCVal, Overflow);
1319
1320  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1321  return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
1322}
1323
1324// Prefetch operands are:
1325// 1: Address to prefetch
1326// 2: bool isWrite
1327// 3: int locality (0 = no locality ... 3 = extreme locality)
1328// 4: bool isDataCache
1329static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1330  SDLoc DL(Op);
1331  unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1332  unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
1333  // The data thing is not used.
1334  // unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
1335
1336  bool IsStream = !Locality;
1337  // When the locality number is set
1338  if (Locality) {
1339    // The front-end should have filtered out the out-of-range values
1340    assert(Locality <= 3 && "Prefetch locality out-of-range");
1341    // The locality degree is the opposite of the cache speed.
1342    // Put the number the other way around.
1343    // The encoding starts at 0 for level 1
1344    Locality = 3 - Locality;
1345  }
1346
1347  // built the mask value encoding the expected behavior.
1348  unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit
1349                   (Locality << 1) |    // Cache level bits
1350                   (unsigned)IsStream;  // Stream bit
1351  return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1352                     DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
1353}
1354
1355SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1356                                              SelectionDAG &DAG) const {
1357  assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1358
1359  RTLIB::Libcall LC;
1360  LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1361
1362  return LowerF128Call(Op, DAG, LC);
1363}
1364
1365SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1366                                             SelectionDAG &DAG) const {
1367  if (Op.getOperand(0).getValueType() != MVT::f128) {
1368    // It's legal except when f128 is involved
1369    return Op;
1370  }
1371
1372  RTLIB::Libcall LC;
1373  LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1374
1375  // FP_ROUND node has a second operand indicating whether it is known to be
1376  // precise. That doesn't take part in the LibCall so we can't directly use
1377  // LowerF128Call.
1378  SDValue SrcVal = Op.getOperand(0);
1379  return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1380                     /*isSigned*/ false, SDLoc(Op)).first;
1381}
1382
1383static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1384  // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1385  // Any additional optimization in this function should be recorded
1386  // in the cost tables.
1387  EVT InVT = Op.getOperand(0).getValueType();
1388  EVT VT = Op.getValueType();
1389
1390  // FP_TO_XINT conversion from the same type are legal.
1391  if (VT.getSizeInBits() == InVT.getSizeInBits())
1392    return Op;
1393
1394  if (InVT == MVT::v2f64 || InVT == MVT::v4f32) {
1395    SDLoc dl(Op);
1396    SDValue Cv =
1397        DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1398                    Op.getOperand(0));
1399    return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
1400  } else if (InVT == MVT::v2f32) {
1401    SDLoc dl(Op);
1402    SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v2f64, Op.getOperand(0));
1403    return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1404  }
1405
1406  // Type changing conversions are illegal.
1407  return SDValue();
1408}
1409
1410SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1411                                              SelectionDAG &DAG) const {
1412  if (Op.getOperand(0).getValueType().isVector())
1413    return LowerVectorFP_TO_INT(Op, DAG);
1414
1415  if (Op.getOperand(0).getValueType() != MVT::f128) {
1416    // It's legal except when f128 is involved
1417    return Op;
1418  }
1419
1420  RTLIB::Libcall LC;
1421  if (Op.getOpcode() == ISD::FP_TO_SINT)
1422    LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1423  else
1424    LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1425
1426  SmallVector<SDValue, 2> Ops;
1427  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1428    Ops.push_back(Op.getOperand(i));
1429
1430  return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1431                     SDLoc(Op)).first;
1432}
1433
1434static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1435  // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1436  // Any additional optimization in this function should be recorded
1437  // in the cost tables.
1438  EVT VT = Op.getValueType();
1439  SDLoc dl(Op);
1440  SDValue In = Op.getOperand(0);
1441  EVT InVT = In.getValueType();
1442
1443  // v2i32 to v2f32 is legal.
1444  if (VT == MVT::v2f32 && InVT == MVT::v2i32)
1445    return Op;
1446
1447  // This function only handles v2f64 outputs.
1448  if (VT == MVT::v2f64) {
1449    // Extend the input argument to a v2i64 that we can feed into the
1450    // floating point conversion. Zero or sign extend based on whether
1451    // we're doing a signed or unsigned float conversion.
1452    unsigned Opc =
1453        Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
1454    assert(Op.getNumOperands() == 1 && "FP conversions take one argument");
1455    SDValue Promoted = DAG.getNode(Opc, dl, MVT::v2i64, Op.getOperand(0));
1456    return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Promoted);
1457  }
1458
1459  // Scalarize v2i64 to v2f32 conversions.
1460  std::vector<SDValue> BuildVectorOps;
1461  for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
1462    SDValue Sclr = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, In,
1463                               DAG.getConstant(i, MVT::i64));
1464    Sclr = DAG.getNode(Op->getOpcode(), dl, MVT::f32, Sclr);
1465    BuildVectorOps.push_back(Sclr);
1466  }
1467
1468  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, BuildVectorOps);
1469}
1470
1471SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1472                                            SelectionDAG &DAG) const {
1473  if (Op.getValueType().isVector())
1474    return LowerVectorINT_TO_FP(Op, DAG);
1475
1476  // i128 conversions are libcalls.
1477  if (Op.getOperand(0).getValueType() == MVT::i128)
1478    return SDValue();
1479
1480  // Other conversions are legal, unless it's to the completely software-based
1481  // fp128.
1482  if (Op.getValueType() != MVT::f128)
1483    return Op;
1484
1485  RTLIB::Libcall LC;
1486  if (Op.getOpcode() == ISD::SINT_TO_FP)
1487    LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1488  else
1489    LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1490
1491  return LowerF128Call(Op, DAG, LC);
1492}
1493
1494SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1495                                            SelectionDAG &DAG) const {
1496  // For iOS, we want to call an alternative entry point: __sincos_stret,
1497  // which returns the values in two S / D registers.
1498  SDLoc dl(Op);
1499  SDValue Arg = Op.getOperand(0);
1500  EVT ArgVT = Arg.getValueType();
1501  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1502
1503  ArgListTy Args;
1504  ArgListEntry Entry;
1505
1506  Entry.Node = Arg;
1507  Entry.Ty = ArgTy;
1508  Entry.isSExt = false;
1509  Entry.isZExt = false;
1510  Args.push_back(Entry);
1511
1512  const char *LibcallName =
1513      (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1514  SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
1515
1516  StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
1517  TargetLowering::CallLoweringInfo CLI(DAG);
1518  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
1519    .setCallee(CallingConv::Fast, RetTy, Callee, &Args, 0);
1520
1521  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1522  return CallResult.first;
1523}
1524
1525SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
1526                                              SelectionDAG &DAG) const {
1527  switch (Op.getOpcode()) {
1528  default:
1529    llvm_unreachable("unimplemented operand");
1530    return SDValue();
1531  case ISD::GlobalAddress:
1532    return LowerGlobalAddress(Op, DAG);
1533  case ISD::GlobalTLSAddress:
1534    return LowerGlobalTLSAddress(Op, DAG);
1535  case ISD::SETCC:
1536    return LowerSETCC(Op, DAG);
1537  case ISD::BR_CC:
1538    return LowerBR_CC(Op, DAG);
1539  case ISD::SELECT:
1540    return LowerSELECT(Op, DAG);
1541  case ISD::SELECT_CC:
1542    return LowerSELECT_CC(Op, DAG);
1543  case ISD::JumpTable:
1544    return LowerJumpTable(Op, DAG);
1545  case ISD::ConstantPool:
1546    return LowerConstantPool(Op, DAG);
1547  case ISD::BlockAddress:
1548    return LowerBlockAddress(Op, DAG);
1549  case ISD::VASTART:
1550    return LowerVASTART(Op, DAG);
1551  case ISD::VACOPY:
1552    return LowerVACOPY(Op, DAG);
1553  case ISD::VAARG:
1554    return LowerVAARG(Op, DAG);
1555  case ISD::ADDC:
1556  case ISD::ADDE:
1557  case ISD::SUBC:
1558  case ISD::SUBE:
1559    return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1560  case ISD::SADDO:
1561  case ISD::UADDO:
1562  case ISD::SSUBO:
1563  case ISD::USUBO:
1564  case ISD::SMULO:
1565  case ISD::UMULO:
1566    return LowerXALUO(Op, DAG);
1567  case ISD::FADD:
1568    return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
1569  case ISD::FSUB:
1570    return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
1571  case ISD::FMUL:
1572    return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
1573  case ISD::FDIV:
1574    return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
1575  case ISD::FP_ROUND:
1576    return LowerFP_ROUND(Op, DAG);
1577  case ISD::FP_EXTEND:
1578    return LowerFP_EXTEND(Op, DAG);
1579  case ISD::FRAMEADDR:
1580    return LowerFRAMEADDR(Op, DAG);
1581  case ISD::RETURNADDR:
1582    return LowerRETURNADDR(Op, DAG);
1583  case ISD::INSERT_VECTOR_ELT:
1584    return LowerINSERT_VECTOR_ELT(Op, DAG);
1585  case ISD::EXTRACT_VECTOR_ELT:
1586    return LowerEXTRACT_VECTOR_ELT(Op, DAG);
1587  case ISD::BUILD_VECTOR:
1588    return LowerBUILD_VECTOR(Op, DAG);
1589  case ISD::VECTOR_SHUFFLE:
1590    return LowerVECTOR_SHUFFLE(Op, DAG);
1591  case ISD::EXTRACT_SUBVECTOR:
1592    return LowerEXTRACT_SUBVECTOR(Op, DAG);
1593  case ISD::SRA:
1594  case ISD::SRL:
1595  case ISD::SHL:
1596    return LowerVectorSRA_SRL_SHL(Op, DAG);
1597  case ISD::SHL_PARTS:
1598    return LowerShiftLeftParts(Op, DAG);
1599  case ISD::SRL_PARTS:
1600  case ISD::SRA_PARTS:
1601    return LowerShiftRightParts(Op, DAG);
1602  case ISD::CTPOP:
1603    return LowerCTPOP(Op, DAG);
1604  case ISD::FCOPYSIGN:
1605    return LowerFCOPYSIGN(Op, DAG);
1606  case ISD::AND:
1607    return LowerVectorAND(Op, DAG);
1608  case ISD::OR:
1609    return LowerVectorOR(Op, DAG);
1610  case ISD::XOR:
1611    return LowerXOR(Op, DAG);
1612  case ISD::PREFETCH:
1613    return LowerPREFETCH(Op, DAG);
1614  case ISD::SINT_TO_FP:
1615  case ISD::UINT_TO_FP:
1616    return LowerINT_TO_FP(Op, DAG);
1617  case ISD::FP_TO_SINT:
1618  case ISD::FP_TO_UINT:
1619    return LowerFP_TO_INT(Op, DAG);
1620  case ISD::FSINCOS:
1621    return LowerFSINCOS(Op, DAG);
1622  }
1623}
1624
1625/// getFunctionAlignment - Return the Log2 alignment of this function.
1626unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
1627  return 2;
1628}
1629
1630//===----------------------------------------------------------------------===//
1631//                      Calling Convention Implementation
1632//===----------------------------------------------------------------------===//
1633
1634#include "AArch64GenCallingConv.inc"
1635
1636/// Selects the correct CCAssignFn for a the given CallingConvention
1637/// value.
1638CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1639                                                     bool IsVarArg) const {
1640  switch (CC) {
1641  default:
1642    llvm_unreachable("Unsupported calling convention.");
1643  case CallingConv::WebKit_JS:
1644    return CC_AArch64_WebKit_JS;
1645  case CallingConv::C:
1646  case CallingConv::Fast:
1647    if (!Subtarget->isTargetDarwin())
1648      return CC_AArch64_AAPCS;
1649    return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
1650  }
1651}
1652
1653SDValue AArch64TargetLowering::LowerFormalArguments(
1654    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1655    const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
1656    SmallVectorImpl<SDValue> &InVals) const {
1657  MachineFunction &MF = DAG.getMachineFunction();
1658  MachineFrameInfo *MFI = MF.getFrameInfo();
1659
1660  // Assign locations to all of the incoming arguments.
1661  SmallVector<CCValAssign, 16> ArgLocs;
1662  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1663                 getTargetMachine(), ArgLocs, *DAG.getContext());
1664
1665  // At this point, Ins[].VT may already be promoted to i32. To correctly
1666  // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
1667  // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
1668  // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
1669  // we use a special version of AnalyzeFormalArguments to pass in ValVT and
1670  // LocVT.
1671  unsigned NumArgs = Ins.size();
1672  Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
1673  unsigned CurArgIdx = 0;
1674  for (unsigned i = 0; i != NumArgs; ++i) {
1675    MVT ValVT = Ins[i].VT;
1676    std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx);
1677    CurArgIdx = Ins[i].OrigArgIndex;
1678
1679    // Get type of the original argument.
1680    EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
1681    MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
1682    // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
1683    if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
1684      ValVT = MVT::i8;
1685    else if (ActualMVT == MVT::i16)
1686      ValVT = MVT::i16;
1687
1688    CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
1689    bool Res =
1690        AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
1691    assert(!Res && "Call operand has unhandled type");
1692    (void)Res;
1693  }
1694  assert(ArgLocs.size() == Ins.size());
1695  SmallVector<SDValue, 16> ArgValues;
1696  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1697    CCValAssign &VA = ArgLocs[i];
1698
1699    if (Ins[i].Flags.isByVal()) {
1700      // Byval is used for HFAs in the PCS, but the system should work in a
1701      // non-compliant manner for larger structs.
1702      EVT PtrTy = getPointerTy();
1703      int Size = Ins[i].Flags.getByValSize();
1704      unsigned NumRegs = (Size + 7) / 8;
1705
1706      // FIXME: This works on big-endian for composite byvals, which are the common
1707      // case. It should also work for fundamental types too.
1708      unsigned FrameIdx =
1709        MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
1710      SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
1711      InVals.push_back(FrameIdxN);
1712
1713      continue;
1714    } if (VA.isRegLoc()) {
1715      // Arguments stored in registers.
1716      EVT RegVT = VA.getLocVT();
1717
1718      SDValue ArgValue;
1719      const TargetRegisterClass *RC;
1720
1721      if (RegVT == MVT::i32)
1722        RC = &AArch64::GPR32RegClass;
1723      else if (RegVT == MVT::i64)
1724        RC = &AArch64::GPR64RegClass;
1725      else if (RegVT == MVT::f32)
1726        RC = &AArch64::FPR32RegClass;
1727      else if (RegVT == MVT::f64 || RegVT.is64BitVector())
1728        RC = &AArch64::FPR64RegClass;
1729      else if (RegVT == MVT::f128 || RegVT.is128BitVector())
1730        RC = &AArch64::FPR128RegClass;
1731      else
1732        llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
1733
1734      // Transform the arguments in physical registers into virtual ones.
1735      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1736      ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
1737
1738      // If this is an 8, 16 or 32-bit value, it is really passed promoted
1739      // to 64 bits.  Insert an assert[sz]ext to capture this, then
1740      // truncate to the right size.
1741      switch (VA.getLocInfo()) {
1742      default:
1743        llvm_unreachable("Unknown loc info!");
1744      case CCValAssign::Full:
1745        break;
1746      case CCValAssign::BCvt:
1747        ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
1748        break;
1749      case CCValAssign::AExt:
1750      case CCValAssign::SExt:
1751      case CCValAssign::ZExt:
1752        // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
1753        // nodes after our lowering.
1754        assert(RegVT == Ins[i].VT && "incorrect register location selected");
1755        break;
1756      }
1757
1758      InVals.push_back(ArgValue);
1759
1760    } else { // VA.isRegLoc()
1761      assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
1762      unsigned ArgOffset = VA.getLocMemOffset();
1763      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1764
1765      uint32_t BEAlign = 0;
1766      if (ArgSize < 8 && !Subtarget->isLittleEndian())
1767        BEAlign = 8 - ArgSize;
1768
1769      int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
1770
1771      // Create load nodes to retrieve arguments from the stack.
1772      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1773      SDValue ArgValue;
1774
1775      ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1776      switch (VA.getLocInfo()) {
1777      default:
1778        break;
1779      case CCValAssign::SExt:
1780        ExtType = ISD::SEXTLOAD;
1781        break;
1782      case CCValAssign::ZExt:
1783        ExtType = ISD::ZEXTLOAD;
1784        break;
1785      case CCValAssign::AExt:
1786        ExtType = ISD::EXTLOAD;
1787        break;
1788      }
1789
1790      ArgValue = DAG.getExtLoad(ExtType, DL, VA.getValVT(), Chain, FIN,
1791                                MachinePointerInfo::getFixedStack(FI),
1792                                VA.getLocVT(),
1793                                false, false, false, 0);
1794
1795      InVals.push_back(ArgValue);
1796    }
1797  }
1798
1799  // varargs
1800  if (isVarArg) {
1801    if (!Subtarget->isTargetDarwin()) {
1802      // The AAPCS variadic function ABI is identical to the non-variadic
1803      // one. As a result there may be more arguments in registers and we should
1804      // save them for future reference.
1805      saveVarArgRegisters(CCInfo, DAG, DL, Chain);
1806    }
1807
1808    AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1809    // This will point to the next argument passed via stack.
1810    unsigned StackOffset = CCInfo.getNextStackOffset();
1811    // We currently pass all varargs at 8-byte alignment.
1812    StackOffset = ((StackOffset + 7) & ~7);
1813    AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
1814  }
1815
1816  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
1817  unsigned StackArgSize = CCInfo.getNextStackOffset();
1818  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1819  if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
1820    // This is a non-standard ABI so by fiat I say we're allowed to make full
1821    // use of the stack area to be popped, which must be aligned to 16 bytes in
1822    // any case:
1823    StackArgSize = RoundUpToAlignment(StackArgSize, 16);
1824
1825    // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
1826    // a multiple of 16.
1827    FuncInfo->setArgumentStackToRestore(StackArgSize);
1828
1829    // This realignment carries over to the available bytes below. Our own
1830    // callers will guarantee the space is free by giving an aligned value to
1831    // CALLSEQ_START.
1832  }
1833  // Even if we're not expected to free up the space, it's useful to know how
1834  // much is there while considering tail calls (because we can reuse it).
1835  FuncInfo->setBytesInStackArgArea(StackArgSize);
1836
1837  return Chain;
1838}
1839
1840void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
1841                                                SelectionDAG &DAG, SDLoc DL,
1842                                                SDValue &Chain) const {
1843  MachineFunction &MF = DAG.getMachineFunction();
1844  MachineFrameInfo *MFI = MF.getFrameInfo();
1845  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
1846
1847  SmallVector<SDValue, 8> MemOps;
1848
1849  static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
1850                                          AArch64::X3, AArch64::X4, AArch64::X5,
1851                                          AArch64::X6, AArch64::X7 };
1852  static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
1853  unsigned FirstVariadicGPR =
1854      CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs);
1855
1856  unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
1857  int GPRIdx = 0;
1858  if (GPRSaveSize != 0) {
1859    GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
1860
1861    SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
1862
1863    for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
1864      unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
1865      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
1866      SDValue Store =
1867          DAG.getStore(Val.getValue(1), DL, Val, FIN,
1868                       MachinePointerInfo::getStack(i * 8), false, false, 0);
1869      MemOps.push_back(Store);
1870      FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
1871                        DAG.getConstant(8, getPointerTy()));
1872    }
1873  }
1874  FuncInfo->setVarArgsGPRIndex(GPRIdx);
1875  FuncInfo->setVarArgsGPRSize(GPRSaveSize);
1876
1877  if (Subtarget->hasFPARMv8()) {
1878    static const MCPhysReg FPRArgRegs[] = {
1879        AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
1880        AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
1881    static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
1882    unsigned FirstVariadicFPR =
1883        CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs);
1884
1885    unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
1886    int FPRIdx = 0;
1887    if (FPRSaveSize != 0) {
1888      FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
1889
1890      SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
1891
1892      for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
1893        unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
1894        SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
1895
1896        SDValue Store =
1897            DAG.getStore(Val.getValue(1), DL, Val, FIN,
1898                         MachinePointerInfo::getStack(i * 16), false, false, 0);
1899        MemOps.push_back(Store);
1900        FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
1901                          DAG.getConstant(16, getPointerTy()));
1902      }
1903    }
1904    FuncInfo->setVarArgsFPRIndex(FPRIdx);
1905    FuncInfo->setVarArgsFPRSize(FPRSaveSize);
1906  }
1907
1908  if (!MemOps.empty()) {
1909    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1910  }
1911}
1912
1913/// LowerCallResult - Lower the result values of a call into the
1914/// appropriate copies out of appropriate physical registers.
1915SDValue AArch64TargetLowering::LowerCallResult(
1916    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1917    const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
1918    SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1919    SDValue ThisVal) const {
1920  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
1921                          ? RetCC_AArch64_WebKit_JS
1922                          : RetCC_AArch64_AAPCS;
1923  // Assign locations to each value returned by this call.
1924  SmallVector<CCValAssign, 16> RVLocs;
1925  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1926                 getTargetMachine(), RVLocs, *DAG.getContext());
1927  CCInfo.AnalyzeCallResult(Ins, RetCC);
1928
1929  // Copy all of the result registers out of their specified physreg.
1930  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1931    CCValAssign VA = RVLocs[i];
1932
1933    // Pass 'this' value directly from the argument to return value, to avoid
1934    // reg unit interference
1935    if (i == 0 && isThisReturn) {
1936      assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
1937             "unexpected return calling convention register assignment");
1938      InVals.push_back(ThisVal);
1939      continue;
1940    }
1941
1942    SDValue Val =
1943        DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
1944    Chain = Val.getValue(1);
1945    InFlag = Val.getValue(2);
1946
1947    switch (VA.getLocInfo()) {
1948    default:
1949      llvm_unreachable("Unknown loc info!");
1950    case CCValAssign::Full:
1951      break;
1952    case CCValAssign::BCvt:
1953      Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1954      break;
1955    }
1956
1957    InVals.push_back(Val);
1958  }
1959
1960  return Chain;
1961}
1962
1963bool AArch64TargetLowering::isEligibleForTailCallOptimization(
1964    SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
1965    bool isCalleeStructRet, bool isCallerStructRet,
1966    const SmallVectorImpl<ISD::OutputArg> &Outs,
1967    const SmallVectorImpl<SDValue> &OutVals,
1968    const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
1969  // For CallingConv::C this function knows whether the ABI needs
1970  // changing. That's not true for other conventions so they will have to opt in
1971  // manually.
1972  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1973    return false;
1974
1975  const MachineFunction &MF = DAG.getMachineFunction();
1976  const Function *CallerF = MF.getFunction();
1977  CallingConv::ID CallerCC = CallerF->getCallingConv();
1978  bool CCMatch = CallerCC == CalleeCC;
1979
1980  // Byval parameters hand the function a pointer directly into the stack area
1981  // we want to reuse during a tail call. Working around this *is* possible (see
1982  // X86) but less efficient and uglier in LowerCall.
1983  for (Function::const_arg_iterator i = CallerF->arg_begin(),
1984                                    e = CallerF->arg_end();
1985       i != e; ++i)
1986    if (i->hasByValAttr())
1987      return false;
1988
1989  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
1990    if (IsTailCallConvention(CalleeCC) && CCMatch)
1991      return true;
1992    return false;
1993  }
1994
1995  // Now we search for cases where we can use a tail call without changing the
1996  // ABI. Sibcall is used in some places (particularly gcc) to refer to this
1997  // concept.
1998
1999  // I want anyone implementing a new calling convention to think long and hard
2000  // about this assert.
2001  assert((!isVarArg || CalleeCC == CallingConv::C) &&
2002         "Unexpected variadic calling convention");
2003
2004  if (isVarArg && !Outs.empty()) {
2005    // At least two cases here: if caller is fastcc then we can't have any
2006    // memory arguments (we'd be expected to clean up the stack afterwards). If
2007    // caller is C then we could potentially use its argument area.
2008
2009    // FIXME: for now we take the most conservative of these in both cases:
2010    // disallow all variadic memory operands.
2011    SmallVector<CCValAssign, 16> ArgLocs;
2012    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2013                   getTargetMachine(), ArgLocs, *DAG.getContext());
2014
2015    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2016    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2017      if (!ArgLocs[i].isRegLoc())
2018        return false;
2019  }
2020
2021  // If the calling conventions do not match, then we'd better make sure the
2022  // results are returned in the same way as what the caller expects.
2023  if (!CCMatch) {
2024    SmallVector<CCValAssign, 16> RVLocs1;
2025    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2026                    getTargetMachine(), RVLocs1, *DAG.getContext());
2027    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2028
2029    SmallVector<CCValAssign, 16> RVLocs2;
2030    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2031                    getTargetMachine(), RVLocs2, *DAG.getContext());
2032    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2033
2034    if (RVLocs1.size() != RVLocs2.size())
2035      return false;
2036    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2037      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2038        return false;
2039      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2040        return false;
2041      if (RVLocs1[i].isRegLoc()) {
2042        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2043          return false;
2044      } else {
2045        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2046          return false;
2047      }
2048    }
2049  }
2050
2051  // Nothing more to check if the callee is taking no arguments
2052  if (Outs.empty())
2053    return true;
2054
2055  SmallVector<CCValAssign, 16> ArgLocs;
2056  CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2057                 getTargetMachine(), ArgLocs, *DAG.getContext());
2058
2059  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2060
2061  const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2062
2063  // If the stack arguments for this call would fit into our own save area then
2064  // the call can be made tail.
2065  return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2066}
2067
2068SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2069                                                   SelectionDAG &DAG,
2070                                                   MachineFrameInfo *MFI,
2071                                                   int ClobberedFI) const {
2072  SmallVector<SDValue, 8> ArgChains;
2073  int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2074  int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2075
2076  // Include the original chain at the beginning of the list. When this is
2077  // used by target LowerCall hooks, this helps legalize find the
2078  // CALLSEQ_BEGIN node.
2079  ArgChains.push_back(Chain);
2080
2081  // Add a chain value for each stack argument corresponding
2082  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2083                            UE = DAG.getEntryNode().getNode()->use_end();
2084       U != UE; ++U)
2085    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2086      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2087        if (FI->getIndex() < 0) {
2088          int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2089          int64_t InLastByte = InFirstByte;
2090          InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2091
2092          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2093              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2094            ArgChains.push_back(SDValue(L, 1));
2095        }
2096
2097  // Build a tokenfactor for all the chains.
2098  return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2099}
2100
2101bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2102                                                   bool TailCallOpt) const {
2103  return CallCC == CallingConv::Fast && TailCallOpt;
2104}
2105
2106bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2107  return CallCC == CallingConv::Fast;
2108}
2109
2110/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2111/// and add input and output parameter nodes.
2112SDValue
2113AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2114                                 SmallVectorImpl<SDValue> &InVals) const {
2115  SelectionDAG &DAG = CLI.DAG;
2116  SDLoc &DL = CLI.DL;
2117  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2118  SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2119  SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2120  SDValue Chain = CLI.Chain;
2121  SDValue Callee = CLI.Callee;
2122  bool &IsTailCall = CLI.IsTailCall;
2123  CallingConv::ID CallConv = CLI.CallConv;
2124  bool IsVarArg = CLI.IsVarArg;
2125
2126  MachineFunction &MF = DAG.getMachineFunction();
2127  bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2128  bool IsThisReturn = false;
2129
2130  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2131  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2132  bool IsSibCall = false;
2133
2134  if (IsTailCall) {
2135    // Check if it's really possible to do a tail call.
2136    IsTailCall = isEligibleForTailCallOptimization(
2137        Callee, CallConv, IsVarArg, IsStructRet,
2138        MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2139    if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2140      report_fatal_error("failed to perform tail call elimination on a call "
2141                         "site marked musttail");
2142
2143    // A sibling call is one where we're under the usual C ABI and not planning
2144    // to change that but can still do a tail call:
2145    if (!TailCallOpt && IsTailCall)
2146      IsSibCall = true;
2147
2148    if (IsTailCall)
2149      ++NumTailCalls;
2150  }
2151
2152  // Analyze operands of the call, assigning locations to each operand.
2153  SmallVector<CCValAssign, 16> ArgLocs;
2154  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2155                 getTargetMachine(), ArgLocs, *DAG.getContext());
2156
2157  if (IsVarArg) {
2158    // Handle fixed and variable vector arguments differently.
2159    // Variable vector arguments always go into memory.
2160    unsigned NumArgs = Outs.size();
2161
2162    for (unsigned i = 0; i != NumArgs; ++i) {
2163      MVT ArgVT = Outs[i].VT;
2164      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2165      CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2166                                               /*IsVarArg=*/ !Outs[i].IsFixed);
2167      bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2168      assert(!Res && "Call operand has unhandled type");
2169      (void)Res;
2170    }
2171  } else {
2172    // At this point, Outs[].VT may already be promoted to i32. To correctly
2173    // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2174    // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2175    // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2176    // we use a special version of AnalyzeCallOperands to pass in ValVT and
2177    // LocVT.
2178    unsigned NumArgs = Outs.size();
2179    for (unsigned i = 0; i != NumArgs; ++i) {
2180      MVT ValVT = Outs[i].VT;
2181      // Get type of the original argument.
2182      EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2183                                  /*AllowUnknown*/ true);
2184      MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2185      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2186      // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2187      if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2188        ValVT = MVT::i8;
2189      else if (ActualMVT == MVT::i16)
2190        ValVT = MVT::i16;
2191
2192      CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2193      bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
2194      assert(!Res && "Call operand has unhandled type");
2195      (void)Res;
2196    }
2197  }
2198
2199  // Get a count of how many bytes are to be pushed on the stack.
2200  unsigned NumBytes = CCInfo.getNextStackOffset();
2201
2202  if (IsSibCall) {
2203    // Since we're not changing the ABI to make this a tail call, the memory
2204    // operands are already available in the caller's incoming argument space.
2205    NumBytes = 0;
2206  }
2207
2208  // FPDiff is the byte offset of the call's argument area from the callee's.
2209  // Stores to callee stack arguments will be placed in FixedStackSlots offset
2210  // by this amount for a tail call. In a sibling call it must be 0 because the
2211  // caller will deallocate the entire stack and the callee still expects its
2212  // arguments to begin at SP+0. Completely unused for non-tail calls.
2213  int FPDiff = 0;
2214
2215  if (IsTailCall && !IsSibCall) {
2216    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2217
2218    // Since callee will pop argument stack as a tail call, we must keep the
2219    // popped size 16-byte aligned.
2220    NumBytes = RoundUpToAlignment(NumBytes, 16);
2221
2222    // FPDiff will be negative if this tail call requires more space than we
2223    // would automatically have in our incoming argument space. Positive if we
2224    // can actually shrink the stack.
2225    FPDiff = NumReusableBytes - NumBytes;
2226
2227    // The stack pointer must be 16-byte aligned at all times it's used for a
2228    // memory operation, which in practice means at *all* times and in
2229    // particular across call boundaries. Therefore our own arguments started at
2230    // a 16-byte aligned SP and the delta applied for the tail call should
2231    // satisfy the same constraint.
2232    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2233  }
2234
2235  // Adjust the stack pointer for the new arguments...
2236  // These operations are automatically eliminated by the prolog/epilog pass
2237  if (!IsSibCall)
2238    Chain =
2239        DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
2240
2241  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
2242
2243  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2244  SmallVector<SDValue, 8> MemOpChains;
2245
2246  // Walk the register/memloc assignments, inserting copies/loads.
2247  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2248       ++i, ++realArgIdx) {
2249    CCValAssign &VA = ArgLocs[i];
2250    SDValue Arg = OutVals[realArgIdx];
2251    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2252
2253    // Promote the value if needed.
2254    switch (VA.getLocInfo()) {
2255    default:
2256      llvm_unreachable("Unknown loc info!");
2257    case CCValAssign::Full:
2258      break;
2259    case CCValAssign::SExt:
2260      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2261      break;
2262    case CCValAssign::ZExt:
2263      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2264      break;
2265    case CCValAssign::AExt:
2266      if (Outs[realArgIdx].ArgVT == MVT::i1) {
2267        // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2268        Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2269        Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2270      }
2271      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2272      break;
2273    case CCValAssign::BCvt:
2274      Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2275      break;
2276    case CCValAssign::FPExt:
2277      Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2278      break;
2279    }
2280
2281    if (VA.isRegLoc()) {
2282      if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2283        assert(VA.getLocVT() == MVT::i64 &&
2284               "unexpected calling convention register assignment");
2285        assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2286               "unexpected use of 'returned'");
2287        IsThisReturn = true;
2288      }
2289      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2290    } else {
2291      assert(VA.isMemLoc());
2292
2293      SDValue DstAddr;
2294      MachinePointerInfo DstInfo;
2295
2296      // FIXME: This works on big-endian for composite byvals, which are the
2297      // common case. It should also work for fundamental types too.
2298      uint32_t BEAlign = 0;
2299      unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
2300                                        : VA.getLocVT().getSizeInBits();
2301      OpSize = (OpSize + 7) / 8;
2302      if (!Subtarget->isLittleEndian() && !Flags.isByVal()) {
2303        if (OpSize < 8)
2304          BEAlign = 8 - OpSize;
2305      }
2306      unsigned LocMemOffset = VA.getLocMemOffset();
2307      int32_t Offset = LocMemOffset + BEAlign;
2308      SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2309      PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2310
2311      if (IsTailCall) {
2312        Offset = Offset + FPDiff;
2313        int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2314
2315        DstAddr = DAG.getFrameIndex(FI, getPointerTy());
2316        DstInfo = MachinePointerInfo::getFixedStack(FI);
2317
2318        // Make sure any stack arguments overlapping with where we're storing
2319        // are loaded before this eventual operation. Otherwise they'll be
2320        // clobbered.
2321        Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2322      } else {
2323        SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2324
2325        DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2326        DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2327      }
2328
2329      if (Outs[i].Flags.isByVal()) {
2330        SDValue SizeNode =
2331            DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
2332        SDValue Cpy = DAG.getMemcpy(
2333            Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2334            /*isVolatile = */ false,
2335            /*alwaysInline = */ false, DstInfo, MachinePointerInfo());
2336
2337        MemOpChains.push_back(Cpy);
2338      } else {
2339        // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
2340        // promoted to a legal register type i32, we should truncate Arg back to
2341        // i1/i8/i16.
2342        if (Arg.getValueType().isSimple() &&
2343            Arg.getValueType().getSimpleVT() == MVT::i32 &&
2344            (VA.getLocVT() == MVT::i1 || VA.getLocVT() == MVT::i8 ||
2345             VA.getLocVT() == MVT::i16))
2346          Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getLocVT(), Arg);
2347
2348        SDValue Store =
2349            DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
2350        MemOpChains.push_back(Store);
2351      }
2352    }
2353  }
2354
2355  if (!MemOpChains.empty())
2356    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2357
2358  // Build a sequence of copy-to-reg nodes chained together with token chain
2359  // and flag operands which copy the outgoing args into the appropriate regs.
2360  SDValue InFlag;
2361  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2362    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
2363                             RegsToPass[i].second, InFlag);
2364    InFlag = Chain.getValue(1);
2365  }
2366
2367  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2368  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2369  // node so that legalize doesn't hack it.
2370  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
2371      Subtarget->isTargetMachO()) {
2372    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2373      const GlobalValue *GV = G->getGlobal();
2374      bool InternalLinkage = GV->hasInternalLinkage();
2375      if (InternalLinkage)
2376        Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2377      else {
2378        Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
2379                                            AArch64II::MO_GOT);
2380        Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2381      }
2382    } else if (ExternalSymbolSDNode *S =
2383                   dyn_cast<ExternalSymbolSDNode>(Callee)) {
2384      const char *Sym = S->getSymbol();
2385      Callee =
2386          DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
2387      Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2388    }
2389  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2390    const GlobalValue *GV = G->getGlobal();
2391    Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2392  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2393    const char *Sym = S->getSymbol();
2394    Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
2395  }
2396
2397  // We don't usually want to end the call-sequence here because we would tidy
2398  // the frame up *after* the call, however in the ABI-changing tail-call case
2399  // we've carefully laid out the parameters so that when sp is reset they'll be
2400  // in the correct location.
2401  if (IsTailCall && !IsSibCall) {
2402    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2403                               DAG.getIntPtrConstant(0, true), InFlag, DL);
2404    InFlag = Chain.getValue(1);
2405  }
2406
2407  std::vector<SDValue> Ops;
2408  Ops.push_back(Chain);
2409  Ops.push_back(Callee);
2410
2411  if (IsTailCall) {
2412    // Each tail call may have to adjust the stack by a different amount, so
2413    // this information must travel along with the operation for eventual
2414    // consumption by emitEpilogue.
2415    Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
2416  }
2417
2418  // Add argument registers to the end of the list so that they are known live
2419  // into the call.
2420  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2421    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2422                                  RegsToPass[i].second.getValueType()));
2423
2424  // Add a register mask operand representing the call-preserved registers.
2425  const uint32_t *Mask;
2426  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2427  const AArch64RegisterInfo *ARI =
2428      static_cast<const AArch64RegisterInfo *>(TRI);
2429  if (IsThisReturn) {
2430    // For 'this' returns, use the X0-preserving mask if applicable
2431    Mask = ARI->getThisReturnPreservedMask(CallConv);
2432    if (!Mask) {
2433      IsThisReturn = false;
2434      Mask = ARI->getCallPreservedMask(CallConv);
2435    }
2436  } else
2437    Mask = ARI->getCallPreservedMask(CallConv);
2438
2439  assert(Mask && "Missing call preserved mask for calling convention");
2440  Ops.push_back(DAG.getRegisterMask(Mask));
2441
2442  if (InFlag.getNode())
2443    Ops.push_back(InFlag);
2444
2445  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2446
2447  // If we're doing a tall call, use a TC_RETURN here rather than an
2448  // actual call instruction.
2449  if (IsTailCall)
2450    return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
2451
2452  // Returns a chain and a flag for retval copy to use.
2453  Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
2454  InFlag = Chain.getValue(1);
2455
2456  uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
2457                                ? RoundUpToAlignment(NumBytes, 16)
2458                                : 0;
2459
2460  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2461                             DAG.getIntPtrConstant(CalleePopBytes, true),
2462                             InFlag, DL);
2463  if (!Ins.empty())
2464    InFlag = Chain.getValue(1);
2465
2466  // Handle result values, copying them out of physregs into vregs that we
2467  // return.
2468  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2469                         InVals, IsThisReturn,
2470                         IsThisReturn ? OutVals[0] : SDValue());
2471}
2472
2473bool AArch64TargetLowering::CanLowerReturn(
2474    CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2475    const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2476  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2477                          ? RetCC_AArch64_WebKit_JS
2478                          : RetCC_AArch64_AAPCS;
2479  SmallVector<CCValAssign, 16> RVLocs;
2480  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
2481  return CCInfo.CheckReturn(Outs, RetCC);
2482}
2483
2484SDValue
2485AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2486                                   bool isVarArg,
2487                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2488                                   const SmallVectorImpl<SDValue> &OutVals,
2489                                   SDLoc DL, SelectionDAG &DAG) const {
2490  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2491                          ? RetCC_AArch64_WebKit_JS
2492                          : RetCC_AArch64_AAPCS;
2493  SmallVector<CCValAssign, 16> RVLocs;
2494  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2495                 getTargetMachine(), RVLocs, *DAG.getContext());
2496  CCInfo.AnalyzeReturn(Outs, RetCC);
2497
2498  // Copy the result values into the output registers.
2499  SDValue Flag;
2500  SmallVector<SDValue, 4> RetOps(1, Chain);
2501  for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
2502       ++i, ++realRVLocIdx) {
2503    CCValAssign &VA = RVLocs[i];
2504    assert(VA.isRegLoc() && "Can only return in registers!");
2505    SDValue Arg = OutVals[realRVLocIdx];
2506
2507    switch (VA.getLocInfo()) {
2508    default:
2509      llvm_unreachable("Unknown loc info!");
2510    case CCValAssign::Full:
2511      if (Outs[i].ArgVT == MVT::i1) {
2512        // AAPCS requires i1 to be zero-extended to i8 by the producer of the
2513        // value. This is strictly redundant on Darwin (which uses "zeroext
2514        // i1"), but will be optimised out before ISel.
2515        Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2516        Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2517      }
2518      break;
2519    case CCValAssign::BCvt:
2520      Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2521      break;
2522    }
2523
2524    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2525    Flag = Chain.getValue(1);
2526    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2527  }
2528
2529  RetOps[0] = Chain; // Update chain.
2530
2531  // Add the flag if we have it.
2532  if (Flag.getNode())
2533    RetOps.push_back(Flag);
2534
2535  return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
2536}
2537
2538//===----------------------------------------------------------------------===//
2539//  Other Lowering Code
2540//===----------------------------------------------------------------------===//
2541
2542SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
2543                                                  SelectionDAG &DAG) const {
2544  EVT PtrVT = getPointerTy();
2545  SDLoc DL(Op);
2546  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2547  unsigned char OpFlags =
2548      Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
2549
2550  assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
2551         "unexpected offset in global node");
2552
2553  // This also catched the large code model case for Darwin.
2554  if ((OpFlags & AArch64II::MO_GOT) != 0) {
2555    SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2556    // FIXME: Once remat is capable of dealing with instructions with register
2557    // operands, expand this into two nodes instead of using a wrapper node.
2558    return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
2559  }
2560
2561  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2562    const unsigned char MO_NC = AArch64II::MO_NC;
2563    return DAG.getNode(
2564        AArch64ISD::WrapperLarge, DL, PtrVT,
2565        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
2566        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
2567        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
2568        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
2569  } else {
2570    // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
2571    // the only correct model on Darwin.
2572    SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2573                                            OpFlags | AArch64II::MO_PAGE);
2574    unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2575    SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
2576
2577    SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2578    return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2579  }
2580}
2581
2582/// \brief Convert a TLS address reference into the correct sequence of loads
2583/// and calls to compute the variable's address (for Darwin, currently) and
2584/// return an SDValue containing the final node.
2585
2586/// Darwin only has one TLS scheme which must be capable of dealing with the
2587/// fully general situation, in the worst case. This means:
2588///     + "extern __thread" declaration.
2589///     + Defined in a possibly unknown dynamic library.
2590///
2591/// The general system is that each __thread variable has a [3 x i64] descriptor
2592/// which contains information used by the runtime to calculate the address. The
2593/// only part of this the compiler needs to know about is the first xword, which
2594/// contains a function pointer that must be called with the address of the
2595/// entire descriptor in "x0".
2596///
2597/// Since this descriptor may be in a different unit, in general even the
2598/// descriptor must be accessed via an indirect load. The "ideal" code sequence
2599/// is:
2600///     adrp x0, _var@TLVPPAGE
2601///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor
2602///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor,
2603///                                      ; the function pointer
2604///     blr x1                           ; Uses descriptor address in x0
2605///     ; Address of _var is now in x0.
2606///
2607/// If the address of _var's descriptor *is* known to the linker, then it can
2608/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
2609/// a slight efficiency gain.
2610SDValue
2611AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
2612                                                   SelectionDAG &DAG) const {
2613  assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
2614
2615  SDLoc DL(Op);
2616  MVT PtrVT = getPointerTy();
2617  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2618
2619  SDValue TLVPAddr =
2620      DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2621  SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
2622
2623  // The first entry in the descriptor is a function pointer that we must call
2624  // to obtain the address of the variable.
2625  SDValue Chain = DAG.getEntryNode();
2626  SDValue FuncTLVGet =
2627      DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
2628                  false, true, true, 8);
2629  Chain = FuncTLVGet.getValue(1);
2630
2631  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2632  MFI->setAdjustsStack(true);
2633
2634  // TLS calls preserve all registers except those that absolutely must be
2635  // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
2636  // silly).
2637  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2638  const AArch64RegisterInfo *ARI =
2639      static_cast<const AArch64RegisterInfo *>(TRI);
2640  const uint32_t *Mask = ARI->getTLSCallPreservedMask();
2641
2642  // Finally, we can make the call. This is just a degenerate version of a
2643  // normal AArch64 call node: x0 takes the address of the descriptor, and
2644  // returns the address of the variable in this thread.
2645  Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
2646  Chain =
2647      DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2648                  Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
2649                  DAG.getRegisterMask(Mask), Chain.getValue(1));
2650  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
2651}
2652
2653/// When accessing thread-local variables under either the general-dynamic or
2654/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
2655/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
2656/// is a function pointer to carry out the resolution. This function takes the
2657/// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All
2658/// other registers (except LR, NZCV) are preserved.
2659///
2660/// Thus, the ideal call sequence on AArch64 is:
2661///
2662///     adrp x0, :tlsdesc:thread_var
2663///     ldr x8, [x0, :tlsdesc_lo12:thread_var]
2664///     add x0, x0, :tlsdesc_lo12:thread_var
2665///     .tlsdesccall thread_var
2666///     blr x8
2667///     (TPIDR_EL0 offset now in x0).
2668///
2669/// The ".tlsdesccall" directive instructs the assembler to insert a particular
2670/// relocation to help the linker relax this sequence if it turns out to be too
2671/// conservative.
2672///
2673/// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this
2674/// is harmless.
2675SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
2676                                                   SDValue DescAddr, SDLoc DL,
2677                                                   SelectionDAG &DAG) const {
2678  EVT PtrVT = getPointerTy();
2679
2680  // The function we need to call is simply the first entry in the GOT for this
2681  // descriptor, load it in preparation.
2682  SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr);
2683
2684  // TLS calls preserve all registers except those that absolutely must be
2685  // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
2686  // silly).
2687  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2688  const AArch64RegisterInfo *ARI =
2689      static_cast<const AArch64RegisterInfo *>(TRI);
2690  const uint32_t *Mask = ARI->getTLSCallPreservedMask();
2691
2692  // The function takes only one argument: the address of the descriptor itself
2693  // in X0.
2694  SDValue Glue, Chain;
2695  Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
2696  Glue = Chain.getValue(1);
2697
2698  // We're now ready to populate the argument list, as with a normal call:
2699  SmallVector<SDValue, 6> Ops;
2700  Ops.push_back(Chain);
2701  Ops.push_back(Func);
2702  Ops.push_back(SymAddr);
2703  Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
2704  Ops.push_back(DAG.getRegisterMask(Mask));
2705  Ops.push_back(Glue);
2706
2707  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2708  Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops);
2709  Glue = Chain.getValue(1);
2710
2711  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
2712}
2713
2714SDValue
2715AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
2716                                                SelectionDAG &DAG) const {
2717  assert(Subtarget->isTargetELF() && "This function expects an ELF target");
2718  assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
2719         "ELF TLS only supported in small memory model");
2720  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2721
2722  TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
2723
2724  SDValue TPOff;
2725  EVT PtrVT = getPointerTy();
2726  SDLoc DL(Op);
2727  const GlobalValue *GV = GA->getGlobal();
2728
2729  SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
2730
2731  if (Model == TLSModel::LocalExec) {
2732    SDValue HiVar = DAG.getTargetGlobalAddress(
2733        GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
2734    SDValue LoVar = DAG.getTargetGlobalAddress(
2735        GV, DL, PtrVT, 0,
2736        AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
2737
2738    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
2739                                       DAG.getTargetConstant(16, MVT::i32)),
2740                    0);
2741    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
2742                                       DAG.getTargetConstant(0, MVT::i32)),
2743                    0);
2744  } else if (Model == TLSModel::InitialExec) {
2745    TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2746    TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
2747  } else if (Model == TLSModel::LocalDynamic) {
2748    // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2749    // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2750    // the beginning of the module's TLS region, followed by a DTPREL offset
2751    // calculation.
2752
2753    // These accesses will need deduplicating if there's more than one.
2754    AArch64FunctionInfo *MFI =
2755        DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
2756    MFI->incNumLocalDynamicTLSAccesses();
2757
2758    // Accesses used in this sequence go via the TLS descriptor which lives in
2759    // the GOT. Prepare an address we can use to handle this.
2760    SDValue HiDesc = DAG.getTargetExternalSymbol(
2761        "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE);
2762    SDValue LoDesc = DAG.getTargetExternalSymbol(
2763        "_TLS_MODULE_BASE_", PtrVT,
2764        AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2765
2766    // First argument to the descriptor call is the address of the descriptor
2767    // itself.
2768    SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
2769    DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
2770
2771    // The call needs a relocation too for linker relaxation. It doesn't make
2772    // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
2773    // the address.
2774    SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2775                                                  AArch64II::MO_TLS);
2776
2777    // Now we can calculate the offset from TPIDR_EL0 to this module's
2778    // thread-local area.
2779    TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
2780
2781    // Now use :dtprel_whatever: operations to calculate this variable's offset
2782    // in its thread-storage area.
2783    SDValue HiVar = DAG.getTargetGlobalAddress(
2784        GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
2785    SDValue LoVar = DAG.getTargetGlobalAddress(
2786        GV, DL, MVT::i64, 0,
2787        AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
2788
2789    SDValue DTPOff =
2790        SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
2791                                   DAG.getTargetConstant(16, MVT::i32)),
2792                0);
2793    DTPOff =
2794        SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar,
2795                                   DAG.getTargetConstant(0, MVT::i32)),
2796                0);
2797
2798    TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff);
2799  } else if (Model == TLSModel::GeneralDynamic) {
2800    // Accesses used in this sequence go via the TLS descriptor which lives in
2801    // the GOT. Prepare an address we can use to handle this.
2802    SDValue HiDesc = DAG.getTargetGlobalAddress(
2803        GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE);
2804    SDValue LoDesc = DAG.getTargetGlobalAddress(
2805        GV, DL, PtrVT, 0,
2806        AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2807
2808    // First argument to the descriptor call is the address of the descriptor
2809    // itself.
2810    SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
2811    DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
2812
2813    // The call needs a relocation too for linker relaxation. It doesn't make
2814    // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
2815    // the address.
2816    SDValue SymAddr =
2817        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2818
2819    // Finally we can make a call to calculate the offset from tpidr_el0.
2820    TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
2821  } else
2822    llvm_unreachable("Unsupported ELF TLS access model");
2823
2824  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
2825}
2826
2827SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
2828                                                     SelectionDAG &DAG) const {
2829  if (Subtarget->isTargetDarwin())
2830    return LowerDarwinGlobalTLSAddress(Op, DAG);
2831  else if (Subtarget->isTargetELF())
2832    return LowerELFGlobalTLSAddress(Op, DAG);
2833
2834  llvm_unreachable("Unexpected platform trying to use TLS");
2835}
2836SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2837  SDValue Chain = Op.getOperand(0);
2838  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2839  SDValue LHS = Op.getOperand(2);
2840  SDValue RHS = Op.getOperand(3);
2841  SDValue Dest = Op.getOperand(4);
2842  SDLoc dl(Op);
2843
2844  // Handle f128 first, since lowering it will result in comparing the return
2845  // value of a libcall against zero, which is just what the rest of LowerBR_CC
2846  // is expecting to deal with.
2847  if (LHS.getValueType() == MVT::f128) {
2848    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2849
2850    // If softenSetCCOperands returned a scalar, we need to compare the result
2851    // against zero to select between true and false values.
2852    if (!RHS.getNode()) {
2853      RHS = DAG.getConstant(0, LHS.getValueType());
2854      CC = ISD::SETNE;
2855    }
2856  }
2857
2858  // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
2859  // instruction.
2860  unsigned Opc = LHS.getOpcode();
2861  if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
2862      cast<ConstantSDNode>(RHS)->isOne() &&
2863      (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2864       Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
2865    assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
2866           "Unexpected condition code.");
2867    // Only lower legal XALUO ops.
2868    if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
2869      return SDValue();
2870
2871    // The actual operation with overflow check.
2872    AArch64CC::CondCode OFCC;
2873    SDValue Value, Overflow;
2874    std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
2875
2876    if (CC == ISD::SETNE)
2877      OFCC = getInvertedCondCode(OFCC);
2878    SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
2879
2880    return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest,
2881                       CCVal, Overflow);
2882  }
2883
2884  if (LHS.getValueType().isInteger()) {
2885    assert((LHS.getValueType() == RHS.getValueType()) &&
2886           (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
2887
2888    // If the RHS of the comparison is zero, we can potentially fold this
2889    // to a specialized branch.
2890    const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
2891    if (RHSC && RHSC->getZExtValue() == 0) {
2892      if (CC == ISD::SETEQ) {
2893        // See if we can use a TBZ to fold in an AND as well.
2894        // TBZ has a smaller branch displacement than CBZ.  If the offset is
2895        // out of bounds, a late MI-layer pass rewrites branches.
2896        // 403.gcc is an example that hits this case.
2897        if (LHS.getOpcode() == ISD::AND &&
2898            isa<ConstantSDNode>(LHS.getOperand(1)) &&
2899            isPowerOf2_64(LHS.getConstantOperandVal(1))) {
2900          SDValue Test = LHS.getOperand(0);
2901          uint64_t Mask = LHS.getConstantOperandVal(1);
2902
2903          // TBZ only operates on i64's, but the ext should be free.
2904          if (Test.getValueType() == MVT::i32)
2905            Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
2906
2907          return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
2908                             DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
2909        }
2910
2911        return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
2912      } else if (CC == ISD::SETNE) {
2913        // See if we can use a TBZ to fold in an AND as well.
2914        // TBZ has a smaller branch displacement than CBZ.  If the offset is
2915        // out of bounds, a late MI-layer pass rewrites branches.
2916        // 403.gcc is an example that hits this case.
2917        if (LHS.getOpcode() == ISD::AND &&
2918            isa<ConstantSDNode>(LHS.getOperand(1)) &&
2919            isPowerOf2_64(LHS.getConstantOperandVal(1))) {
2920          SDValue Test = LHS.getOperand(0);
2921          uint64_t Mask = LHS.getConstantOperandVal(1);
2922
2923          // TBNZ only operates on i64's, but the ext should be free.
2924          if (Test.getValueType() == MVT::i32)
2925            Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
2926
2927          return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
2928                             DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
2929        }
2930
2931        return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
2932      }
2933    }
2934
2935    SDValue CCVal;
2936    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
2937    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
2938                       Cmp);
2939  }
2940
2941  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2942
2943  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
2944  // clean.  Some of them require two branches to implement.
2945  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
2946  AArch64CC::CondCode CC1, CC2;
2947  changeFPCCToAArch64CC(CC, CC1, CC2);
2948  SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
2949  SDValue BR1 =
2950      DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
2951  if (CC2 != AArch64CC::AL) {
2952    SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
2953    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
2954                       Cmp);
2955  }
2956
2957  return BR1;
2958}
2959
2960SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
2961                                              SelectionDAG &DAG) const {
2962  EVT VT = Op.getValueType();
2963  SDLoc DL(Op);
2964
2965  SDValue In1 = Op.getOperand(0);
2966  SDValue In2 = Op.getOperand(1);
2967  EVT SrcVT = In2.getValueType();
2968  if (SrcVT != VT) {
2969    if (SrcVT == MVT::f32 && VT == MVT::f64)
2970      In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
2971    else if (SrcVT == MVT::f64 && VT == MVT::f32)
2972      In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
2973    else
2974      // FIXME: Src type is different, bail out for now. Can VT really be a
2975      // vector type?
2976      return SDValue();
2977  }
2978
2979  EVT VecVT;
2980  EVT EltVT;
2981  SDValue EltMask, VecVal1, VecVal2;
2982  if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
2983    EltVT = MVT::i32;
2984    VecVT = MVT::v4i32;
2985    EltMask = DAG.getConstant(0x80000000ULL, EltVT);
2986
2987    if (!VT.isVector()) {
2988      VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
2989                                          DAG.getUNDEF(VecVT), In1);
2990      VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
2991                                          DAG.getUNDEF(VecVT), In2);
2992    } else {
2993      VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
2994      VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
2995    }
2996  } else if (VT == MVT::f64 || VT == MVT::v2f64) {
2997    EltVT = MVT::i64;
2998    VecVT = MVT::v2i64;
2999
3000    // We want to materialize a mask with the the high bit set, but the AdvSIMD
3001    // immediate moves cannot materialize that in a single instruction for
3002    // 64-bit elements. Instead, materialize zero and then negate it.
3003    EltMask = DAG.getConstant(0, EltVT);
3004
3005    if (!VT.isVector()) {
3006      VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3007                                          DAG.getUNDEF(VecVT), In1);
3008      VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3009                                          DAG.getUNDEF(VecVT), In2);
3010    } else {
3011      VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3012      VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3013    }
3014  } else {
3015    llvm_unreachable("Invalid type for copysign!");
3016  }
3017
3018  std::vector<SDValue> BuildVectorOps;
3019  for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i)
3020    BuildVectorOps.push_back(EltMask);
3021
3022  SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps);
3023
3024  // If we couldn't materialize the mask above, then the mask vector will be
3025  // the zero vector, and we need to negate it here.
3026  if (VT == MVT::f64 || VT == MVT::v2f64) {
3027    BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3028    BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3029    BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3030  }
3031
3032  SDValue Sel =
3033      DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3034
3035  if (VT == MVT::f32)
3036    return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3037  else if (VT == MVT::f64)
3038    return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3039  else
3040    return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3041}
3042
3043SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
3044  if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
3045          AttributeSet::FunctionIndex, Attribute::NoImplicitFloat))
3046    return SDValue();
3047
3048  // While there is no integer popcount instruction, it can
3049  // be more efficiently lowered to the following sequence that uses
3050  // AdvSIMD registers/instructions as long as the copies to/from
3051  // the AdvSIMD registers are cheap.
3052  //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
3053  //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
3054  //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
3055  //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
3056  SDValue Val = Op.getOperand(0);
3057  SDLoc DL(Op);
3058  EVT VT = Op.getValueType();
3059  SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8);
3060
3061  SDValue VecVal;
3062  if (VT == MVT::i32) {
3063    VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
3064    VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec,
3065                                       VecVal);
3066  } else {
3067    VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
3068  }
3069
3070  SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal);
3071  SDValue UaddLV = DAG.getNode(
3072      ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3073      DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
3074
3075  if (VT == MVT::i64)
3076    UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3077  return UaddLV;
3078}
3079
3080SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3081
3082  if (Op.getValueType().isVector())
3083    return LowerVSETCC(Op, DAG);
3084
3085  SDValue LHS = Op.getOperand(0);
3086  SDValue RHS = Op.getOperand(1);
3087  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3088  SDLoc dl(Op);
3089
3090  // We chose ZeroOrOneBooleanContents, so use zero and one.
3091  EVT VT = Op.getValueType();
3092  SDValue TVal = DAG.getConstant(1, VT);
3093  SDValue FVal = DAG.getConstant(0, VT);
3094
3095  // Handle f128 first, since one possible outcome is a normal integer
3096  // comparison which gets picked up by the next if statement.
3097  if (LHS.getValueType() == MVT::f128) {
3098    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3099
3100    // If softenSetCCOperands returned a scalar, use it.
3101    if (!RHS.getNode()) {
3102      assert(LHS.getValueType() == Op.getValueType() &&
3103             "Unexpected setcc expansion!");
3104      return LHS;
3105    }
3106  }
3107
3108  if (LHS.getValueType().isInteger()) {
3109    SDValue CCVal;
3110    SDValue Cmp =
3111        getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3112
3113    // Note that we inverted the condition above, so we reverse the order of
3114    // the true and false operands here.  This will allow the setcc to be
3115    // matched to a single CSINC instruction.
3116    return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3117  }
3118
3119  // Now we know we're dealing with FP values.
3120  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3121
3122  // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
3123  // and do the comparison.
3124  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3125
3126  AArch64CC::CondCode CC1, CC2;
3127  changeFPCCToAArch64CC(CC, CC1, CC2);
3128  if (CC2 == AArch64CC::AL) {
3129    changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3130    SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3131
3132    // Note that we inverted the condition above, so we reverse the order of
3133    // the true and false operands here.  This will allow the setcc to be
3134    // matched to a single CSINC instruction.
3135    return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3136  } else {
3137    // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3138    // totally clean.  Some of them require two CSELs to implement.  As is in
3139    // this case, we emit the first CSEL and then emit a second using the output
3140    // of the first as the RHS.  We're effectively OR'ing the two CC's together.
3141
3142    // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3143    SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3144    SDValue CS1 =
3145        DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3146
3147    SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3148    return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3149  }
3150}
3151
3152/// A SELECT_CC operation is really some kind of max or min if both values being
3153/// compared are, in some sense, equal to the results in either case. However,
3154/// it is permissible to compare f32 values and produce directly extended f64
3155/// values.
3156///
3157/// Extending the comparison operands would also be allowed, but is less likely
3158/// to happen in practice since their use is right here. Note that truncate
3159/// operations would *not* be semantically equivalent.
3160static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3161  if (Cmp == Result)
3162    return true;
3163
3164  ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3165  ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3166  if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3167      Result.getValueType() == MVT::f64) {
3168    bool Lossy;
3169    APFloat CmpVal = CCmp->getValueAPF();
3170    CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3171    return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3172  }
3173
3174  return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3175}
3176
3177SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3178                                           SelectionDAG &DAG) const {
3179  SDValue CC = Op->getOperand(0);
3180  SDValue TVal = Op->getOperand(1);
3181  SDValue FVal = Op->getOperand(2);
3182  SDLoc DL(Op);
3183
3184  unsigned Opc = CC.getOpcode();
3185  // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3186  // instruction.
3187  if (CC.getResNo() == 1 &&
3188      (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3189       Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3190    // Only lower legal XALUO ops.
3191    if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
3192      return SDValue();
3193
3194    AArch64CC::CondCode OFCC;
3195    SDValue Value, Overflow;
3196    std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
3197    SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3198
3199    return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
3200                       CCVal, Overflow);
3201  }
3202
3203  if (CC.getOpcode() == ISD::SETCC)
3204    return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
3205                           cast<CondCodeSDNode>(CC.getOperand(2))->get());
3206  else
3207    return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
3208                           FVal, ISD::SETNE);
3209}
3210
3211SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3212                                              SelectionDAG &DAG) const {
3213  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3214  SDValue LHS = Op.getOperand(0);
3215  SDValue RHS = Op.getOperand(1);
3216  SDValue TVal = Op.getOperand(2);
3217  SDValue FVal = Op.getOperand(3);
3218  SDLoc dl(Op);
3219
3220  // Handle f128 first, because it will result in a comparison of some RTLIB
3221  // call result against zero.
3222  if (LHS.getValueType() == MVT::f128) {
3223    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3224
3225    // If softenSetCCOperands returned a scalar, we need to compare the result
3226    // against zero to select between true and false values.
3227    if (!RHS.getNode()) {
3228      RHS = DAG.getConstant(0, LHS.getValueType());
3229      CC = ISD::SETNE;
3230    }
3231  }
3232
3233  // Handle integers first.
3234  if (LHS.getValueType().isInteger()) {
3235    assert((LHS.getValueType() == RHS.getValueType()) &&
3236           (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3237
3238    unsigned Opcode = AArch64ISD::CSEL;
3239
3240    // If both the TVal and the FVal are constants, see if we can swap them in
3241    // order to for a CSINV or CSINC out of them.
3242    ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3243    ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3244
3245    if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3246      std::swap(TVal, FVal);
3247      std::swap(CTVal, CFVal);
3248      CC = ISD::getSetCCInverse(CC, true);
3249    } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3250      std::swap(TVal, FVal);
3251      std::swap(CTVal, CFVal);
3252      CC = ISD::getSetCCInverse(CC, true);
3253    } else if (TVal.getOpcode() == ISD::XOR) {
3254      // If TVal is a NOT we want to swap TVal and FVal so that we can match
3255      // with a CSINV rather than a CSEL.
3256      ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3257
3258      if (CVal && CVal->isAllOnesValue()) {
3259        std::swap(TVal, FVal);
3260        std::swap(CTVal, CFVal);
3261        CC = ISD::getSetCCInverse(CC, true);
3262      }
3263    } else if (TVal.getOpcode() == ISD::SUB) {
3264      // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3265      // that we can match with a CSNEG rather than a CSEL.
3266      ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3267
3268      if (CVal && CVal->isNullValue()) {
3269        std::swap(TVal, FVal);
3270        std::swap(CTVal, CFVal);
3271        CC = ISD::getSetCCInverse(CC, true);
3272      }
3273    } else if (CTVal && CFVal) {
3274      const int64_t TrueVal = CTVal->getSExtValue();
3275      const int64_t FalseVal = CFVal->getSExtValue();
3276      bool Swap = false;
3277
3278      // If both TVal and FVal are constants, see if FVal is the
3279      // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3280      // instead of a CSEL in that case.
3281      if (TrueVal == ~FalseVal) {
3282        Opcode = AArch64ISD::CSINV;
3283      } else if (TrueVal == -FalseVal) {
3284        Opcode = AArch64ISD::CSNEG;
3285      } else if (TVal.getValueType() == MVT::i32) {
3286        // If our operands are only 32-bit wide, make sure we use 32-bit
3287        // arithmetic for the check whether we can use CSINC. This ensures that
3288        // the addition in the check will wrap around properly in case there is
3289        // an overflow (which would not be the case if we do the check with
3290        // 64-bit arithmetic).
3291        const uint32_t TrueVal32 = CTVal->getZExtValue();
3292        const uint32_t FalseVal32 = CFVal->getZExtValue();
3293
3294        if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3295          Opcode = AArch64ISD::CSINC;
3296
3297          if (TrueVal32 > FalseVal32) {
3298            Swap = true;
3299          }
3300        }
3301        // 64-bit check whether we can use CSINC.
3302      } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3303        Opcode = AArch64ISD::CSINC;
3304
3305        if (TrueVal > FalseVal) {
3306          Swap = true;
3307        }
3308      }
3309
3310      // Swap TVal and FVal if necessary.
3311      if (Swap) {
3312        std::swap(TVal, FVal);
3313        std::swap(CTVal, CFVal);
3314        CC = ISD::getSetCCInverse(CC, true);
3315      }
3316
3317      if (Opcode != AArch64ISD::CSEL) {
3318        // Drop FVal since we can get its value by simply inverting/negating
3319        // TVal.
3320        FVal = TVal;
3321      }
3322    }
3323
3324    SDValue CCVal;
3325    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3326
3327    EVT VT = Op.getValueType();
3328    return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3329  }
3330
3331  // Now we know we're dealing with FP values.
3332  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3333  assert(LHS.getValueType() == RHS.getValueType());
3334  EVT VT = Op.getValueType();
3335
3336  // Try to match this select into a max/min operation, which have dedicated
3337  // opcode in the instruction set.
3338  // FIXME: This is not correct in the presence of NaNs, so we only enable this
3339  // in no-NaNs mode.
3340  if (getTargetMachine().Options.NoNaNsFPMath) {
3341    SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
3342    if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
3343        selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
3344      CC = ISD::getSetCCSwappedOperands(CC);
3345      std::swap(MinMaxLHS, MinMaxRHS);
3346    }
3347
3348    if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
3349        selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
3350      switch (CC) {
3351      default:
3352        break;
3353      case ISD::SETGT:
3354      case ISD::SETGE:
3355      case ISD::SETUGT:
3356      case ISD::SETUGE:
3357      case ISD::SETOGT:
3358      case ISD::SETOGE:
3359        return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
3360        break;
3361      case ISD::SETLT:
3362      case ISD::SETLE:
3363      case ISD::SETULT:
3364      case ISD::SETULE:
3365      case ISD::SETOLT:
3366      case ISD::SETOLE:
3367        return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
3368        break;
3369      }
3370    }
3371  }
3372
3373  // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
3374  // and do the comparison.
3375  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3376
3377  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3378  // clean.  Some of them require two CSELs to implement.
3379  AArch64CC::CondCode CC1, CC2;
3380  changeFPCCToAArch64CC(CC, CC1, CC2);
3381  SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3382  SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3383
3384  // If we need a second CSEL, emit it, using the output of the first as the
3385  // RHS.  We're effectively OR'ing the two CC's together.
3386  if (CC2 != AArch64CC::AL) {
3387    SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3388    return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3389  }
3390
3391  // Otherwise, return the output of the first CSEL.
3392  return CS1;
3393}
3394
3395SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
3396                                              SelectionDAG &DAG) const {
3397  // Jump table entries as PC relative offsets. No additional tweaking
3398  // is necessary here. Just get the address of the jump table.
3399  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3400  EVT PtrVT = getPointerTy();
3401  SDLoc DL(Op);
3402
3403  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3404      !Subtarget->isTargetMachO()) {
3405    const unsigned char MO_NC = AArch64II::MO_NC;
3406    return DAG.getNode(
3407        AArch64ISD::WrapperLarge, DL, PtrVT,
3408        DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
3409        DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
3410        DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
3411        DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3412                               AArch64II::MO_G0 | MO_NC));
3413  }
3414
3415  SDValue Hi =
3416      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
3417  SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3418                                      AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3419  SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3420  return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3421}
3422
3423SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
3424                                                 SelectionDAG &DAG) const {
3425  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3426  EVT PtrVT = getPointerTy();
3427  SDLoc DL(Op);
3428
3429  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3430    // Use the GOT for the large code model on iOS.
3431    if (Subtarget->isTargetMachO()) {
3432      SDValue GotAddr = DAG.getTargetConstantPool(
3433          CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3434          AArch64II::MO_GOT);
3435      return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3436    }
3437
3438    const unsigned char MO_NC = AArch64II::MO_NC;
3439    return DAG.getNode(
3440        AArch64ISD::WrapperLarge, DL, PtrVT,
3441        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3442                                  CP->getOffset(), AArch64II::MO_G3),
3443        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3444                                  CP->getOffset(), AArch64II::MO_G2 | MO_NC),
3445        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3446                                  CP->getOffset(), AArch64II::MO_G1 | MO_NC),
3447        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3448                                  CP->getOffset(), AArch64II::MO_G0 | MO_NC));
3449  } else {
3450    // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
3451    // ELF, the only valid one on Darwin.
3452    SDValue Hi =
3453        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3454                                  CP->getOffset(), AArch64II::MO_PAGE);
3455    SDValue Lo = DAG.getTargetConstantPool(
3456        CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3457        AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3458
3459    SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3460    return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3461  }
3462}
3463
3464SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
3465                                               SelectionDAG &DAG) const {
3466  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3467  EVT PtrVT = getPointerTy();
3468  SDLoc DL(Op);
3469  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3470      !Subtarget->isTargetMachO()) {
3471    const unsigned char MO_NC = AArch64II::MO_NC;
3472    return DAG.getNode(
3473        AArch64ISD::WrapperLarge, DL, PtrVT,
3474        DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
3475        DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3476        DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3477        DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3478  } else {
3479    SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
3480    SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
3481                                                             AArch64II::MO_NC);
3482    SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3483    return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3484  }
3485}
3486
3487SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
3488                                                 SelectionDAG &DAG) const {
3489  AArch64FunctionInfo *FuncInfo =
3490      DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3491
3492  SDLoc DL(Op);
3493  SDValue FR =
3494      DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3495  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3496  return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3497                      MachinePointerInfo(SV), false, false, 0);
3498}
3499
3500SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
3501                                                SelectionDAG &DAG) const {
3502  // The layout of the va_list struct is specified in the AArch64 Procedure Call
3503  // Standard, section B.3.
3504  MachineFunction &MF = DAG.getMachineFunction();
3505  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3506  SDLoc DL(Op);
3507
3508  SDValue Chain = Op.getOperand(0);
3509  SDValue VAList = Op.getOperand(1);
3510  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3511  SmallVector<SDValue, 4> MemOps;
3512
3513  // void *__stack at offset 0
3514  SDValue Stack =
3515      DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3516  MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
3517                                MachinePointerInfo(SV), false, false, 8));
3518
3519  // void *__gr_top at offset 8
3520  int GPRSize = FuncInfo->getVarArgsGPRSize();
3521  if (GPRSize > 0) {
3522    SDValue GRTop, GRTopAddr;
3523
3524    GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3525                            DAG.getConstant(8, getPointerTy()));
3526
3527    GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
3528    GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
3529                        DAG.getConstant(GPRSize, getPointerTy()));
3530
3531    MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
3532                                  MachinePointerInfo(SV, 8), false, false, 8));
3533  }
3534
3535  // void *__vr_top at offset 16
3536  int FPRSize = FuncInfo->getVarArgsFPRSize();
3537  if (FPRSize > 0) {
3538    SDValue VRTop, VRTopAddr;
3539    VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3540                            DAG.getConstant(16, getPointerTy()));
3541
3542    VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
3543    VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
3544                        DAG.getConstant(FPRSize, getPointerTy()));
3545
3546    MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
3547                                  MachinePointerInfo(SV, 16), false, false, 8));
3548  }
3549
3550  // int __gr_offs at offset 24
3551  SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3552                                   DAG.getConstant(24, getPointerTy()));
3553  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
3554                                GROffsAddr, MachinePointerInfo(SV, 24), false,
3555                                false, 4));
3556
3557  // int __vr_offs at offset 28
3558  SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3559                                   DAG.getConstant(28, getPointerTy()));
3560  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
3561                                VROffsAddr, MachinePointerInfo(SV, 28), false,
3562                                false, 4));
3563
3564  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3565}
3566
3567SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
3568                                            SelectionDAG &DAG) const {
3569  return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
3570                                     : LowerAAPCS_VASTART(Op, DAG);
3571}
3572
3573SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
3574                                           SelectionDAG &DAG) const {
3575  // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
3576  // pointer.
3577  unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
3578  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3579  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3580
3581  return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
3582                       Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
3583                       8, false, false, MachinePointerInfo(DestSV),
3584                       MachinePointerInfo(SrcSV));
3585}
3586
3587SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3588  assert(Subtarget->isTargetDarwin() &&
3589         "automatic va_arg instruction only works on Darwin");
3590
3591  const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3592  EVT VT = Op.getValueType();
3593  SDLoc DL(Op);
3594  SDValue Chain = Op.getOperand(0);
3595  SDValue Addr = Op.getOperand(1);
3596  unsigned Align = Op.getConstantOperandVal(3);
3597
3598  SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
3599                               MachinePointerInfo(V), false, false, false, 0);
3600  Chain = VAList.getValue(1);
3601
3602  if (Align > 8) {
3603    assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
3604    VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3605                         DAG.getConstant(Align - 1, getPointerTy()));
3606    VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
3607                         DAG.getConstant(-(int64_t)Align, getPointerTy()));
3608  }
3609
3610  Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
3611  uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
3612
3613  // Scalar integer and FP values smaller than 64 bits are implicitly extended
3614  // up to 64 bits.  At the very least, we have to increase the striding of the
3615  // vaargs list to match this, and for FP values we need to introduce
3616  // FP_ROUND nodes as well.
3617  if (VT.isInteger() && !VT.isVector())
3618    ArgSize = 8;
3619  bool NeedFPTrunc = false;
3620  if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
3621    ArgSize = 8;
3622    NeedFPTrunc = true;
3623  }
3624
3625  // Increment the pointer, VAList, to the next vaarg
3626  SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3627                               DAG.getConstant(ArgSize, getPointerTy()));
3628  // Store the incremented VAList to the legalized pointer
3629  SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
3630                                 false, false, 0);
3631
3632  // Load the actual argument out of the pointer VAList
3633  if (NeedFPTrunc) {
3634    // Load the value as an f64.
3635    SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
3636                                 MachinePointerInfo(), false, false, false, 0);
3637    // Round the value down to an f32.
3638    SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
3639                                   DAG.getIntPtrConstant(1));
3640    SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
3641    // Merge the rounded value with the chain output of the load.
3642    return DAG.getMergeValues(Ops, DL);
3643  }
3644
3645  return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
3646                     false, false, 0);
3647}
3648
3649SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
3650                                              SelectionDAG &DAG) const {
3651  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3652  MFI->setFrameAddressIsTaken(true);
3653
3654  EVT VT = Op.getValueType();
3655  SDLoc DL(Op);
3656  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3657  SDValue FrameAddr =
3658      DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
3659  while (Depth--)
3660    FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
3661                            MachinePointerInfo(), false, false, false, 0);
3662  return FrameAddr;
3663}
3664
3665// FIXME? Maybe this could be a TableGen attribute on some registers and
3666// this table could be generated automatically from RegInfo.
3667unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
3668                                                  EVT VT) const {
3669  unsigned Reg = StringSwitch<unsigned>(RegName)
3670                       .Case("sp", AArch64::SP)
3671                       .Default(0);
3672  if (Reg)
3673    return Reg;
3674  report_fatal_error("Invalid register name global variable");
3675}
3676
3677SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
3678                                               SelectionDAG &DAG) const {
3679  MachineFunction &MF = DAG.getMachineFunction();
3680  MachineFrameInfo *MFI = MF.getFrameInfo();
3681  MFI->setReturnAddressIsTaken(true);
3682
3683  EVT VT = Op.getValueType();
3684  SDLoc DL(Op);
3685  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3686  if (Depth) {
3687    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3688    SDValue Offset = DAG.getConstant(8, getPointerTy());
3689    return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3690                       DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3691                       MachinePointerInfo(), false, false, false, 0);
3692  }
3693
3694  // Return LR, which contains the return address. Mark it an implicit live-in.
3695  unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
3696  return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
3697}
3698
3699/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3700/// i64 values and take a 2 x i64 value to shift plus a shift amount.
3701SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
3702                                                    SelectionDAG &DAG) const {
3703  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3704  EVT VT = Op.getValueType();
3705  unsigned VTBits = VT.getSizeInBits();
3706  SDLoc dl(Op);
3707  SDValue ShOpLo = Op.getOperand(0);
3708  SDValue ShOpHi = Op.getOperand(1);
3709  SDValue ShAmt = Op.getOperand(2);
3710  SDValue ARMcc;
3711  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3712
3713  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3714
3715  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
3716                                 DAG.getConstant(VTBits, MVT::i64), ShAmt);
3717  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3718  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
3719                                   DAG.getConstant(VTBits, MVT::i64));
3720  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3721
3722  SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
3723                               ISD::SETGE, dl, DAG);
3724  SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
3725
3726  SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3727  SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3728  SDValue Lo =
3729      DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
3730
3731  // AArch64 shifts larger than the register width are wrapped rather than
3732  // clamped, so we can't just emit "hi >> x".
3733  SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3734  SDValue TrueValHi = Opc == ISD::SRA
3735                          ? DAG.getNode(Opc, dl, VT, ShOpHi,
3736                                        DAG.getConstant(VTBits - 1, MVT::i64))
3737                          : DAG.getConstant(0, VT);
3738  SDValue Hi =
3739      DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
3740
3741  SDValue Ops[2] = { Lo, Hi };
3742  return DAG.getMergeValues(Ops, dl);
3743}
3744
3745/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3746/// i64 values and take a 2 x i64 value to shift plus a shift amount.
3747SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
3748                                                 SelectionDAG &DAG) const {
3749  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3750  EVT VT = Op.getValueType();
3751  unsigned VTBits = VT.getSizeInBits();
3752  SDLoc dl(Op);
3753  SDValue ShOpLo = Op.getOperand(0);
3754  SDValue ShOpHi = Op.getOperand(1);
3755  SDValue ShAmt = Op.getOperand(2);
3756  SDValue ARMcc;
3757
3758  assert(Op.getOpcode() == ISD::SHL_PARTS);
3759  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
3760                                 DAG.getConstant(VTBits, MVT::i64), ShAmt);
3761  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3762  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
3763                                   DAG.getConstant(VTBits, MVT::i64));
3764  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3765  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3766
3767  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3768
3769  SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
3770                               ISD::SETGE, dl, DAG);
3771  SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
3772  SDValue Hi =
3773      DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
3774
3775  // AArch64 shifts of larger than register sizes are wrapped rather than
3776  // clamped, so we can't just emit "lo << a" if a is too big.
3777  SDValue TrueValLo = DAG.getConstant(0, VT);
3778  SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3779  SDValue Lo =
3780      DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
3781
3782  SDValue Ops[2] = { Lo, Hi };
3783  return DAG.getMergeValues(Ops, dl);
3784}
3785
3786bool AArch64TargetLowering::isOffsetFoldingLegal(
3787    const GlobalAddressSDNode *GA) const {
3788  // The AArch64 target doesn't support folding offsets into global addresses.
3789  return false;
3790}
3791
3792bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3793  // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
3794  // FIXME: We should be able to handle f128 as well with a clever lowering.
3795  if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
3796    return true;
3797
3798  if (VT == MVT::f64)
3799    return AArch64_AM::getFP64Imm(Imm) != -1;
3800  else if (VT == MVT::f32)
3801    return AArch64_AM::getFP32Imm(Imm) != -1;
3802  return false;
3803}
3804
3805//===----------------------------------------------------------------------===//
3806//                          AArch64 Optimization Hooks
3807//===----------------------------------------------------------------------===//
3808
3809//===----------------------------------------------------------------------===//
3810//                          AArch64 Inline Assembly Support
3811//===----------------------------------------------------------------------===//
3812
3813// Table of Constraints
3814// TODO: This is the current set of constraints supported by ARM for the
3815// compiler, not all of them may make sense, e.g. S may be difficult to support.
3816//
3817// r - A general register
3818// w - An FP/SIMD register of some size in the range v0-v31
3819// x - An FP/SIMD register of some size in the range v0-v15
3820// I - Constant that can be used with an ADD instruction
3821// J - Constant that can be used with a SUB instruction
3822// K - Constant that can be used with a 32-bit logical instruction
3823// L - Constant that can be used with a 64-bit logical instruction
3824// M - Constant that can be used as a 32-bit MOV immediate
3825// N - Constant that can be used as a 64-bit MOV immediate
3826// Q - A memory reference with base register and no offset
3827// S - A symbolic address
3828// Y - Floating point constant zero
3829// Z - Integer constant zero
3830//
3831//   Note that general register operands will be output using their 64-bit x
3832// register name, whatever the size of the variable, unless the asm operand
3833// is prefixed by the %w modifier. Floating-point and SIMD register operands
3834// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
3835// %q modifier.
3836
3837/// getConstraintType - Given a constraint letter, return the type of
3838/// constraint it is for this target.
3839AArch64TargetLowering::ConstraintType
3840AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
3841  if (Constraint.size() == 1) {
3842    switch (Constraint[0]) {
3843    default:
3844      break;
3845    case 'z':
3846      return C_Other;
3847    case 'x':
3848    case 'w':
3849      return C_RegisterClass;
3850    // An address with a single base register. Due to the way we
3851    // currently handle addresses it is the same as 'r'.
3852    case 'Q':
3853      return C_Memory;
3854    }
3855  }
3856  return TargetLowering::getConstraintType(Constraint);
3857}
3858
3859/// Examine constraint type and operand type and determine a weight value.
3860/// This object must already have been set up with the operand type
3861/// and the current alternative constraint selected.
3862TargetLowering::ConstraintWeight
3863AArch64TargetLowering::getSingleConstraintMatchWeight(
3864    AsmOperandInfo &info, const char *constraint) const {
3865  ConstraintWeight weight = CW_Invalid;
3866  Value *CallOperandVal = info.CallOperandVal;
3867  // If we don't have a value, we can't do a match,
3868  // but allow it at the lowest weight.
3869  if (!CallOperandVal)
3870    return CW_Default;
3871  Type *type = CallOperandVal->getType();
3872  // Look at the constraint type.
3873  switch (*constraint) {
3874  default:
3875    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3876    break;
3877  case 'x':
3878  case 'w':
3879    if (type->isFloatingPointTy() || type->isVectorTy())
3880      weight = CW_Register;
3881    break;
3882  case 'z':
3883    weight = CW_Constant;
3884    break;
3885  }
3886  return weight;
3887}
3888
3889std::pair<unsigned, const TargetRegisterClass *>
3890AArch64TargetLowering::getRegForInlineAsmConstraint(
3891    const std::string &Constraint, MVT VT) const {
3892  if (Constraint.size() == 1) {
3893    switch (Constraint[0]) {
3894    case 'r':
3895      if (VT.getSizeInBits() == 64)
3896        return std::make_pair(0U, &AArch64::GPR64commonRegClass);
3897      return std::make_pair(0U, &AArch64::GPR32commonRegClass);
3898    case 'w':
3899      if (VT == MVT::f32)
3900        return std::make_pair(0U, &AArch64::FPR32RegClass);
3901      if (VT.getSizeInBits() == 64)
3902        return std::make_pair(0U, &AArch64::FPR64RegClass);
3903      if (VT.getSizeInBits() == 128)
3904        return std::make_pair(0U, &AArch64::FPR128RegClass);
3905      break;
3906    // The instructions that this constraint is designed for can
3907    // only take 128-bit registers so just use that regclass.
3908    case 'x':
3909      if (VT.getSizeInBits() == 128)
3910        return std::make_pair(0U, &AArch64::FPR128_loRegClass);
3911      break;
3912    }
3913  }
3914  if (StringRef("{cc}").equals_lower(Constraint))
3915    return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
3916
3917  // Use the default implementation in TargetLowering to convert the register
3918  // constraint into a member of a register class.
3919  std::pair<unsigned, const TargetRegisterClass *> Res;
3920  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3921
3922  // Not found as a standard register?
3923  if (!Res.second) {
3924    unsigned Size = Constraint.size();
3925    if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
3926        tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
3927      const std::string Reg =
3928          std::string(&Constraint[2], &Constraint[Size - 1]);
3929      int RegNo = atoi(Reg.c_str());
3930      if (RegNo >= 0 && RegNo <= 31) {
3931        // v0 - v31 are aliases of q0 - q31.
3932        // By default we'll emit v0-v31 for this unless there's a modifier where
3933        // we'll emit the correct register as well.
3934        Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
3935        Res.second = &AArch64::FPR128RegClass;
3936      }
3937    }
3938  }
3939
3940  return Res;
3941}
3942
3943/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3944/// vector.  If it is invalid, don't add anything to Ops.
3945void AArch64TargetLowering::LowerAsmOperandForConstraint(
3946    SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
3947    SelectionDAG &DAG) const {
3948  SDValue Result;
3949
3950  // Currently only support length 1 constraints.
3951  if (Constraint.length() != 1)
3952    return;
3953
3954  char ConstraintLetter = Constraint[0];
3955  switch (ConstraintLetter) {
3956  default:
3957    break;
3958
3959  // This set of constraints deal with valid constants for various instructions.
3960  // Validate and return a target constant for them if we can.
3961  case 'z': {
3962    // 'z' maps to xzr or wzr so it needs an input of 0.
3963    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3964    if (!C || C->getZExtValue() != 0)
3965      return;
3966
3967    if (Op.getValueType() == MVT::i64)
3968      Result = DAG.getRegister(AArch64::XZR, MVT::i64);
3969    else
3970      Result = DAG.getRegister(AArch64::WZR, MVT::i32);
3971    break;
3972  }
3973
3974  case 'I':
3975  case 'J':
3976  case 'K':
3977  case 'L':
3978  case 'M':
3979  case 'N':
3980    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3981    if (!C)
3982      return;
3983
3984    // Grab the value and do some validation.
3985    uint64_t CVal = C->getZExtValue();
3986    switch (ConstraintLetter) {
3987    // The I constraint applies only to simple ADD or SUB immediate operands:
3988    // i.e. 0 to 4095 with optional shift by 12
3989    // The J constraint applies only to ADD or SUB immediates that would be
3990    // valid when negated, i.e. if [an add pattern] were to be output as a SUB
3991    // instruction [or vice versa], in other words -1 to -4095 with optional
3992    // left shift by 12.
3993    case 'I':
3994      if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
3995        break;
3996      return;
3997    case 'J': {
3998      uint64_t NVal = -C->getSExtValue();
3999      if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal))
4000        break;
4001      return;
4002    }
4003    // The K and L constraints apply *only* to logical immediates, including
4004    // what used to be the MOVI alias for ORR (though the MOVI alias has now
4005    // been removed and MOV should be used). So these constraints have to
4006    // distinguish between bit patterns that are valid 32-bit or 64-bit
4007    // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4008    // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4009    // versa.
4010    case 'K':
4011      if (AArch64_AM::isLogicalImmediate(CVal, 32))
4012        break;
4013      return;
4014    case 'L':
4015      if (AArch64_AM::isLogicalImmediate(CVal, 64))
4016        break;
4017      return;
4018    // The M and N constraints are a superset of K and L respectively, for use
4019    // with the MOV (immediate) alias. As well as the logical immediates they
4020    // also match 32 or 64-bit immediates that can be loaded either using a
4021    // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4022    // (M) or 64-bit 0x1234000000000000 (N) etc.
4023    // As a note some of this code is liberally stolen from the asm parser.
4024    case 'M': {
4025      if (!isUInt<32>(CVal))
4026        return;
4027      if (AArch64_AM::isLogicalImmediate(CVal, 32))
4028        break;
4029      if ((CVal & 0xFFFF) == CVal)
4030        break;
4031      if ((CVal & 0xFFFF0000ULL) == CVal)
4032        break;
4033      uint64_t NCVal = ~(uint32_t)CVal;
4034      if ((NCVal & 0xFFFFULL) == NCVal)
4035        break;
4036      if ((NCVal & 0xFFFF0000ULL) == NCVal)
4037        break;
4038      return;
4039    }
4040    case 'N': {
4041      if (AArch64_AM::isLogicalImmediate(CVal, 64))
4042        break;
4043      if ((CVal & 0xFFFFULL) == CVal)
4044        break;
4045      if ((CVal & 0xFFFF0000ULL) == CVal)
4046        break;
4047      if ((CVal & 0xFFFF00000000ULL) == CVal)
4048        break;
4049      if ((CVal & 0xFFFF000000000000ULL) == CVal)
4050        break;
4051      uint64_t NCVal = ~CVal;
4052      if ((NCVal & 0xFFFFULL) == NCVal)
4053        break;
4054      if ((NCVal & 0xFFFF0000ULL) == NCVal)
4055        break;
4056      if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4057        break;
4058      if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4059        break;
4060      return;
4061    }
4062    default:
4063      return;
4064    }
4065
4066    // All assembler immediates are 64-bit integers.
4067    Result = DAG.getTargetConstant(CVal, MVT::i64);
4068    break;
4069  }
4070
4071  if (Result.getNode()) {
4072    Ops.push_back(Result);
4073    return;
4074  }
4075
4076  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4077}
4078
4079//===----------------------------------------------------------------------===//
4080//                     AArch64 Advanced SIMD Support
4081//===----------------------------------------------------------------------===//
4082
4083/// WidenVector - Given a value in the V64 register class, produce the
4084/// equivalent value in the V128 register class.
4085static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4086  EVT VT = V64Reg.getValueType();
4087  unsigned NarrowSize = VT.getVectorNumElements();
4088  MVT EltTy = VT.getVectorElementType().getSimpleVT();
4089  MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4090  SDLoc DL(V64Reg);
4091
4092  return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4093                     V64Reg, DAG.getConstant(0, MVT::i32));
4094}
4095
4096/// getExtFactor - Determine the adjustment factor for the position when
4097/// generating an "extract from vector registers" instruction.
4098static unsigned getExtFactor(SDValue &V) {
4099  EVT EltType = V.getValueType().getVectorElementType();
4100  return EltType.getSizeInBits() / 8;
4101}
4102
4103/// NarrowVector - Given a value in the V128 register class, produce the
4104/// equivalent value in the V64 register class.
4105static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4106  EVT VT = V128Reg.getValueType();
4107  unsigned WideSize = VT.getVectorNumElements();
4108  MVT EltTy = VT.getVectorElementType().getSimpleVT();
4109  MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4110  SDLoc DL(V128Reg);
4111
4112  return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4113}
4114
4115// Gather data to see if the operation can be modelled as a
4116// shuffle in combination with VEXTs.
4117SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4118                                                  SelectionDAG &DAG) const {
4119  SDLoc dl(Op);
4120  EVT VT = Op.getValueType();
4121  unsigned NumElts = VT.getVectorNumElements();
4122
4123  SmallVector<SDValue, 2> SourceVecs;
4124  SmallVector<unsigned, 2> MinElts;
4125  SmallVector<unsigned, 2> MaxElts;
4126
4127  for (unsigned i = 0; i < NumElts; ++i) {
4128    SDValue V = Op.getOperand(i);
4129    if (V.getOpcode() == ISD::UNDEF)
4130      continue;
4131    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4132      // A shuffle can only come from building a vector from various
4133      // elements of other vectors.
4134      return SDValue();
4135    }
4136
4137    // Record this extraction against the appropriate vector if possible...
4138    SDValue SourceVec = V.getOperand(0);
4139    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4140    bool FoundSource = false;
4141    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4142      if (SourceVecs[j] == SourceVec) {
4143        if (MinElts[j] > EltNo)
4144          MinElts[j] = EltNo;
4145        if (MaxElts[j] < EltNo)
4146          MaxElts[j] = EltNo;
4147        FoundSource = true;
4148        break;
4149      }
4150    }
4151
4152    // Or record a new source if not...
4153    if (!FoundSource) {
4154      SourceVecs.push_back(SourceVec);
4155      MinElts.push_back(EltNo);
4156      MaxElts.push_back(EltNo);
4157    }
4158  }
4159
4160  // Currently only do something sane when at most two source vectors
4161  // involved.
4162  if (SourceVecs.size() > 2)
4163    return SDValue();
4164
4165  SDValue ShuffleSrcs[2] = { DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4166  int VEXTOffsets[2] = { 0, 0 };
4167
4168  // This loop extracts the usage patterns of the source vectors
4169  // and prepares appropriate SDValues for a shuffle if possible.
4170  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4171    if (SourceVecs[i].getValueType() == VT) {
4172      // No VEXT necessary
4173      ShuffleSrcs[i] = SourceVecs[i];
4174      VEXTOffsets[i] = 0;
4175      continue;
4176    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4177      // We can pad out the smaller vector for free, so if it's part of a
4178      // shuffle...
4179      ShuffleSrcs[i] = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, SourceVecs[i],
4180                                   DAG.getUNDEF(SourceVecs[i].getValueType()));
4181      continue;
4182    }
4183
4184    // Don't attempt to extract subvectors from BUILD_VECTOR sources
4185    // that expand or trunc the original value.
4186    // TODO: We can try to bitcast and ANY_EXTEND the result but
4187    // we need to consider the cost of vector ANY_EXTEND, and the
4188    // legality of all the types.
4189    if (SourceVecs[i].getValueType().getVectorElementType() !=
4190        VT.getVectorElementType())
4191      return SDValue();
4192
4193    // Since only 64-bit and 128-bit vectors are legal on ARM and
4194    // we've eliminated the other cases...
4195    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2 * NumElts &&
4196           "unexpected vector sizes in ReconstructShuffle");
4197
4198    if (MaxElts[i] - MinElts[i] >= NumElts) {
4199      // Span too large for a VEXT to cope
4200      return SDValue();
4201    }
4202
4203    if (MinElts[i] >= NumElts) {
4204      // The extraction can just take the second half
4205      VEXTOffsets[i] = NumElts;
4206      ShuffleSrcs[i] =
4207          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i],
4208                      DAG.getIntPtrConstant(NumElts));
4209    } else if (MaxElts[i] < NumElts) {
4210      // The extraction can just take the first half
4211      VEXTOffsets[i] = 0;
4212      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4213                                   SourceVecs[i], DAG.getIntPtrConstant(0));
4214    } else {
4215      // An actual VEXT is needed
4216      VEXTOffsets[i] = MinElts[i];
4217      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4218                                     SourceVecs[i], DAG.getIntPtrConstant(0));
4219      SDValue VEXTSrc2 =
4220          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i],
4221                      DAG.getIntPtrConstant(NumElts));
4222      unsigned Imm = VEXTOffsets[i] * getExtFactor(VEXTSrc1);
4223      ShuffleSrcs[i] = DAG.getNode(AArch64ISD::EXT, dl, VT, VEXTSrc1, VEXTSrc2,
4224                                   DAG.getConstant(Imm, MVT::i32));
4225    }
4226  }
4227
4228  SmallVector<int, 8> Mask;
4229
4230  for (unsigned i = 0; i < NumElts; ++i) {
4231    SDValue Entry = Op.getOperand(i);
4232    if (Entry.getOpcode() == ISD::UNDEF) {
4233      Mask.push_back(-1);
4234      continue;
4235    }
4236
4237    SDValue ExtractVec = Entry.getOperand(0);
4238    int ExtractElt =
4239        cast<ConstantSDNode>(Op.getOperand(i).getOperand(1))->getSExtValue();
4240    if (ExtractVec == SourceVecs[0]) {
4241      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4242    } else {
4243      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4244    }
4245  }
4246
4247  // Final check before we try to produce nonsense...
4248  if (isShuffleMaskLegal(Mask, VT))
4249    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4250                                &Mask[0]);
4251
4252  return SDValue();
4253}
4254
4255// check if an EXT instruction can handle the shuffle mask when the
4256// vector sources of the shuffle are the same.
4257static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4258  unsigned NumElts = VT.getVectorNumElements();
4259
4260  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
4261  if (M[0] < 0)
4262    return false;
4263
4264  Imm = M[0];
4265
4266  // If this is a VEXT shuffle, the immediate value is the index of the first
4267  // element.  The other shuffle indices must be the successive elements after
4268  // the first one.
4269  unsigned ExpectedElt = Imm;
4270  for (unsigned i = 1; i < NumElts; ++i) {
4271    // Increment the expected index.  If it wraps around, just follow it
4272    // back to index zero and keep going.
4273    ++ExpectedElt;
4274    if (ExpectedElt == NumElts)
4275      ExpectedElt = 0;
4276
4277    if (M[i] < 0)
4278      continue; // ignore UNDEF indices
4279    if (ExpectedElt != static_cast<unsigned>(M[i]))
4280      return false;
4281  }
4282
4283  return true;
4284}
4285
4286// check if an EXT instruction can handle the shuffle mask when the
4287// vector sources of the shuffle are different.
4288static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4289                      unsigned &Imm) {
4290  // Look for the first non-undef element.
4291  const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4292      [](int Elt) {return Elt >= 0;});
4293
4294  // Benefit form APInt to handle overflow when calculating expected element.
4295  unsigned NumElts = VT.getVectorNumElements();
4296  unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4297  APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4298  // The following shuffle indices must be the successive elements after the
4299  // first real element.
4300  const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4301      [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4302  if (FirstWrongElt != M.end())
4303    return false;
4304
4305  // The index of an EXT is the first element if it is not UNDEF.
4306  // Watch out for the beginning UNDEFs. The EXT index should be the expected
4307  // value of the first element.  E.g.
4308  // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4309  // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4310  // ExpectedElt is the last mask index plus 1.
4311  Imm = ExpectedElt.getZExtValue();
4312
4313  // There are two difference cases requiring to reverse input vectors.
4314  // For example, for vector <4 x i32> we have the following cases,
4315  // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
4316  // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
4317  // For both cases, we finally use mask <5, 6, 7, 0>, which requires
4318  // to reverse two input vectors.
4319  if (Imm < NumElts)
4320    ReverseEXT = true;
4321  else
4322    Imm -= NumElts;
4323
4324  return true;
4325}
4326
4327/// isREVMask - Check if a vector shuffle corresponds to a REV
4328/// instruction with the specified blocksize.  (The order of the elements
4329/// within each block of the vector is reversed.)
4330static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4331  assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4332         "Only possible block sizes for REV are: 16, 32, 64");
4333
4334  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4335  if (EltSz == 64)
4336    return false;
4337
4338  unsigned NumElts = VT.getVectorNumElements();
4339  unsigned BlockElts = M[0] + 1;
4340  // If the first shuffle index is UNDEF, be optimistic.
4341  if (M[0] < 0)
4342    BlockElts = BlockSize / EltSz;
4343
4344  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4345    return false;
4346
4347  for (unsigned i = 0; i < NumElts; ++i) {
4348    if (M[i] < 0)
4349      continue; // ignore UNDEF indices
4350    if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4351      return false;
4352  }
4353
4354  return true;
4355}
4356
4357static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4358  unsigned NumElts = VT.getVectorNumElements();
4359  WhichResult = (M[0] == 0 ? 0 : 1);
4360  unsigned Idx = WhichResult * NumElts / 2;
4361  for (unsigned i = 0; i != NumElts; i += 2) {
4362    if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4363        (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
4364      return false;
4365    Idx += 1;
4366  }
4367
4368  return true;
4369}
4370
4371static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4372  unsigned NumElts = VT.getVectorNumElements();
4373  WhichResult = (M[0] == 0 ? 0 : 1);
4374  for (unsigned i = 0; i != NumElts; ++i) {
4375    if (M[i] < 0)
4376      continue; // ignore UNDEF indices
4377    if ((unsigned)M[i] != 2 * i + WhichResult)
4378      return false;
4379  }
4380
4381  return true;
4382}
4383
4384static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4385  unsigned NumElts = VT.getVectorNumElements();
4386  WhichResult = (M[0] == 0 ? 0 : 1);
4387  for (unsigned i = 0; i < NumElts; i += 2) {
4388    if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4389        (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
4390      return false;
4391  }
4392  return true;
4393}
4394
4395/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
4396/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4397/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4398static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4399  unsigned NumElts = VT.getVectorNumElements();
4400  WhichResult = (M[0] == 0 ? 0 : 1);
4401  unsigned Idx = WhichResult * NumElts / 2;
4402  for (unsigned i = 0; i != NumElts; i += 2) {
4403    if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4404        (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
4405      return false;
4406    Idx += 1;
4407  }
4408
4409  return true;
4410}
4411
4412/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
4413/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4414/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4415static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4416  unsigned Half = VT.getVectorNumElements() / 2;
4417  WhichResult = (M[0] == 0 ? 0 : 1);
4418  for (unsigned j = 0; j != 2; ++j) {
4419    unsigned Idx = WhichResult;
4420    for (unsigned i = 0; i != Half; ++i) {
4421      int MIdx = M[i + j * Half];
4422      if (MIdx >= 0 && (unsigned)MIdx != Idx)
4423        return false;
4424      Idx += 2;
4425    }
4426  }
4427
4428  return true;
4429}
4430
4431/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
4432/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4433/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4434static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4435  unsigned NumElts = VT.getVectorNumElements();
4436  WhichResult = (M[0] == 0 ? 0 : 1);
4437  for (unsigned i = 0; i < NumElts; i += 2) {
4438    if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4439        (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
4440      return false;
4441  }
4442  return true;
4443}
4444
4445static bool isINSMask(ArrayRef<int> M, int NumInputElements,
4446                      bool &DstIsLeft, int &Anomaly) {
4447  if (M.size() != static_cast<size_t>(NumInputElements))
4448    return false;
4449
4450  int NumLHSMatch = 0, NumRHSMatch = 0;
4451  int LastLHSMismatch = -1, LastRHSMismatch = -1;
4452
4453  for (int i = 0; i < NumInputElements; ++i) {
4454    if (M[i] == -1) {
4455      ++NumLHSMatch;
4456      ++NumRHSMatch;
4457      continue;
4458    }
4459
4460    if (M[i] == i)
4461      ++NumLHSMatch;
4462    else
4463      LastLHSMismatch = i;
4464
4465    if (M[i] == i + NumInputElements)
4466      ++NumRHSMatch;
4467    else
4468      LastRHSMismatch = i;
4469  }
4470
4471  if (NumLHSMatch == NumInputElements - 1) {
4472    DstIsLeft = true;
4473    Anomaly = LastLHSMismatch;
4474    return true;
4475  } else if (NumRHSMatch == NumInputElements - 1) {
4476    DstIsLeft = false;
4477    Anomaly = LastRHSMismatch;
4478    return true;
4479  }
4480
4481  return false;
4482}
4483
4484static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
4485  if (VT.getSizeInBits() != 128)
4486    return false;
4487
4488  unsigned NumElts = VT.getVectorNumElements();
4489
4490  for (int I = 0, E = NumElts / 2; I != E; I++) {
4491    if (Mask[I] != I)
4492      return false;
4493  }
4494
4495  int Offset = NumElts / 2;
4496  for (int I = NumElts / 2, E = NumElts; I != E; I++) {
4497    if (Mask[I] != I + SplitLHS * Offset)
4498      return false;
4499  }
4500
4501  return true;
4502}
4503
4504static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
4505  SDLoc DL(Op);
4506  EVT VT = Op.getValueType();
4507  SDValue V0 = Op.getOperand(0);
4508  SDValue V1 = Op.getOperand(1);
4509  ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
4510
4511  if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
4512      VT.getVectorElementType() != V1.getValueType().getVectorElementType())
4513    return SDValue();
4514
4515  bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
4516
4517  if (!isConcatMask(Mask, VT, SplitV0))
4518    return SDValue();
4519
4520  EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4521                                VT.getVectorNumElements() / 2);
4522  if (SplitV0) {
4523    V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
4524                     DAG.getConstant(0, MVT::i64));
4525  }
4526  if (V1.getValueType().getSizeInBits() == 128) {
4527    V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
4528                     DAG.getConstant(0, MVT::i64));
4529  }
4530  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
4531}
4532
4533/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4534/// the specified operations to build the shuffle.
4535static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4536                                      SDValue RHS, SelectionDAG &DAG,
4537                                      SDLoc dl) {
4538  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4539  unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
4540  unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
4541
4542  enum {
4543    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4544    OP_VREV,
4545    OP_VDUP0,
4546    OP_VDUP1,
4547    OP_VDUP2,
4548    OP_VDUP3,
4549    OP_VEXT1,
4550    OP_VEXT2,
4551    OP_VEXT3,
4552    OP_VUZPL, // VUZP, left result
4553    OP_VUZPR, // VUZP, right result
4554    OP_VZIPL, // VZIP, left result
4555    OP_VZIPR, // VZIP, right result
4556    OP_VTRNL, // VTRN, left result
4557    OP_VTRNR  // VTRN, right result
4558  };
4559
4560  if (OpNum == OP_COPY) {
4561    if (LHSID == (1 * 9 + 2) * 9 + 3)
4562      return LHS;
4563    assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
4564    return RHS;
4565  }
4566
4567  SDValue OpLHS, OpRHS;
4568  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4569  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4570  EVT VT = OpLHS.getValueType();
4571
4572  switch (OpNum) {
4573  default:
4574    llvm_unreachable("Unknown shuffle opcode!");
4575  case OP_VREV:
4576    // VREV divides the vector in half and swaps within the half.
4577    if (VT.getVectorElementType() == MVT::i32 ||
4578        VT.getVectorElementType() == MVT::f32)
4579      return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
4580    // vrev <4 x i16> -> REV32
4581    if (VT.getVectorElementType() == MVT::i16)
4582      return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
4583    // vrev <4 x i8> -> REV16
4584    assert(VT.getVectorElementType() == MVT::i8);
4585    return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
4586  case OP_VDUP0:
4587  case OP_VDUP1:
4588  case OP_VDUP2:
4589  case OP_VDUP3: {
4590    EVT EltTy = VT.getVectorElementType();
4591    unsigned Opcode;
4592    if (EltTy == MVT::i8)
4593      Opcode = AArch64ISD::DUPLANE8;
4594    else if (EltTy == MVT::i16)
4595      Opcode = AArch64ISD::DUPLANE16;
4596    else if (EltTy == MVT::i32 || EltTy == MVT::f32)
4597      Opcode = AArch64ISD::DUPLANE32;
4598    else if (EltTy == MVT::i64 || EltTy == MVT::f64)
4599      Opcode = AArch64ISD::DUPLANE64;
4600    else
4601      llvm_unreachable("Invalid vector element type?");
4602
4603    if (VT.getSizeInBits() == 64)
4604      OpLHS = WidenVector(OpLHS, DAG);
4605    SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
4606    return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
4607  }
4608  case OP_VEXT1:
4609  case OP_VEXT2:
4610  case OP_VEXT3: {
4611    unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
4612    return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
4613                       DAG.getConstant(Imm, MVT::i32));
4614  }
4615  case OP_VUZPL:
4616    return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
4617                       OpRHS);
4618  case OP_VUZPR:
4619    return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
4620                       OpRHS);
4621  case OP_VZIPL:
4622    return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
4623                       OpRHS);
4624  case OP_VZIPR:
4625    return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
4626                       OpRHS);
4627  case OP_VTRNL:
4628    return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
4629                       OpRHS);
4630  case OP_VTRNR:
4631    return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
4632                       OpRHS);
4633  }
4634}
4635
4636static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
4637                           SelectionDAG &DAG) {
4638  // Check to see if we can use the TBL instruction.
4639  SDValue V1 = Op.getOperand(0);
4640  SDValue V2 = Op.getOperand(1);
4641  SDLoc DL(Op);
4642
4643  EVT EltVT = Op.getValueType().getVectorElementType();
4644  unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
4645
4646  SmallVector<SDValue, 8> TBLMask;
4647  for (int Val : ShuffleMask) {
4648    for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
4649      unsigned Offset = Byte + Val * BytesPerElt;
4650      TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
4651    }
4652  }
4653
4654  MVT IndexVT = MVT::v8i8;
4655  unsigned IndexLen = 8;
4656  if (Op.getValueType().getSizeInBits() == 128) {
4657    IndexVT = MVT::v16i8;
4658    IndexLen = 16;
4659  }
4660
4661  SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
4662  SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
4663
4664  SDValue Shuffle;
4665  if (V2.getNode()->getOpcode() == ISD::UNDEF) {
4666    if (IndexLen == 8)
4667      V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
4668    Shuffle = DAG.getNode(
4669        ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4670        DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
4671        DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4672                    makeArrayRef(TBLMask.data(), IndexLen)));
4673  } else {
4674    if (IndexLen == 8) {
4675      V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
4676      Shuffle = DAG.getNode(
4677          ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4678          DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
4679          DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4680                      makeArrayRef(TBLMask.data(), IndexLen)));
4681    } else {
4682      // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
4683      // cannot currently represent the register constraints on the input
4684      // table registers.
4685      //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
4686      //                   DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4687      //                               &TBLMask[0], IndexLen));
4688      Shuffle = DAG.getNode(
4689          ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4690          DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
4691          DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4692                      makeArrayRef(TBLMask.data(), IndexLen)));
4693    }
4694  }
4695  return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
4696}
4697
4698static unsigned getDUPLANEOp(EVT EltType) {
4699  if (EltType == MVT::i8)
4700    return AArch64ISD::DUPLANE8;
4701  if (EltType == MVT::i16)
4702    return AArch64ISD::DUPLANE16;
4703  if (EltType == MVT::i32 || EltType == MVT::f32)
4704    return AArch64ISD::DUPLANE32;
4705  if (EltType == MVT::i64 || EltType == MVT::f64)
4706    return AArch64ISD::DUPLANE64;
4707
4708  llvm_unreachable("Invalid vector element type?");
4709}
4710
4711SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4712                                                   SelectionDAG &DAG) const {
4713  SDLoc dl(Op);
4714  EVT VT = Op.getValueType();
4715
4716  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4717
4718  // Convert shuffles that are directly supported on NEON to target-specific
4719  // DAG nodes, instead of keeping them as shuffles and matching them again
4720  // during code selection.  This is more efficient and avoids the possibility
4721  // of inconsistencies between legalization and selection.
4722  ArrayRef<int> ShuffleMask = SVN->getMask();
4723
4724  SDValue V1 = Op.getOperand(0);
4725  SDValue V2 = Op.getOperand(1);
4726
4727  if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
4728                                       V1.getValueType().getSimpleVT())) {
4729    int Lane = SVN->getSplatIndex();
4730    // If this is undef splat, generate it via "just" vdup, if possible.
4731    if (Lane == -1)
4732      Lane = 0;
4733
4734    if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
4735      return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
4736                         V1.getOperand(0));
4737    // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
4738    // constant. If so, we can just reference the lane's definition directly.
4739    if (V1.getOpcode() == ISD::BUILD_VECTOR &&
4740        !isa<ConstantSDNode>(V1.getOperand(Lane)))
4741      return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
4742
4743    // Otherwise, duplicate from the lane of the input vector.
4744    unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
4745
4746    // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
4747    // to make a vector of the same size as this SHUFFLE. We can ignore the
4748    // extract entirely, and canonicalise the concat using WidenVector.
4749    if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
4750      Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
4751      V1 = V1.getOperand(0);
4752    } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
4753      unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
4754      Lane -= Idx * VT.getVectorNumElements() / 2;
4755      V1 = WidenVector(V1.getOperand(Idx), DAG);
4756    } else if (VT.getSizeInBits() == 64)
4757      V1 = WidenVector(V1, DAG);
4758
4759    return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
4760  }
4761
4762  if (isREVMask(ShuffleMask, VT, 64))
4763    return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
4764  if (isREVMask(ShuffleMask, VT, 32))
4765    return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
4766  if (isREVMask(ShuffleMask, VT, 16))
4767    return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
4768
4769  bool ReverseEXT = false;
4770  unsigned Imm;
4771  if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
4772    if (ReverseEXT)
4773      std::swap(V1, V2);
4774    Imm *= getExtFactor(V1);
4775    return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
4776                       DAG.getConstant(Imm, MVT::i32));
4777  } else if (V2->getOpcode() == ISD::UNDEF &&
4778             isSingletonEXTMask(ShuffleMask, VT, Imm)) {
4779    Imm *= getExtFactor(V1);
4780    return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
4781                       DAG.getConstant(Imm, MVT::i32));
4782  }
4783
4784  unsigned WhichResult;
4785  if (isZIPMask(ShuffleMask, VT, WhichResult)) {
4786    unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
4787    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
4788  }
4789  if (isUZPMask(ShuffleMask, VT, WhichResult)) {
4790    unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
4791    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
4792  }
4793  if (isTRNMask(ShuffleMask, VT, WhichResult)) {
4794    unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
4795    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
4796  }
4797
4798  if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
4799    unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
4800    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
4801  }
4802  if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
4803    unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
4804    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
4805  }
4806  if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
4807    unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
4808    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
4809  }
4810
4811  SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
4812  if (Concat.getNode())
4813    return Concat;
4814
4815  bool DstIsLeft;
4816  int Anomaly;
4817  int NumInputElements = V1.getValueType().getVectorNumElements();
4818  if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
4819    SDValue DstVec = DstIsLeft ? V1 : V2;
4820    SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
4821
4822    SDValue SrcVec = V1;
4823    int SrcLane = ShuffleMask[Anomaly];
4824    if (SrcLane >= NumInputElements) {
4825      SrcVec = V2;
4826      SrcLane -= VT.getVectorNumElements();
4827    }
4828    SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
4829
4830    EVT ScalarVT = VT.getVectorElementType();
4831    if (ScalarVT.getSizeInBits() < 32)
4832      ScalarVT = MVT::i32;
4833
4834    return DAG.getNode(
4835        ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
4836        DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
4837        DstLaneV);
4838  }
4839
4840  // If the shuffle is not directly supported and it has 4 elements, use
4841  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4842  unsigned NumElts = VT.getVectorNumElements();
4843  if (NumElts == 4) {
4844    unsigned PFIndexes[4];
4845    for (unsigned i = 0; i != 4; ++i) {
4846      if (ShuffleMask[i] < 0)
4847        PFIndexes[i] = 8;
4848      else
4849        PFIndexes[i] = ShuffleMask[i];
4850    }
4851
4852    // Compute the index in the perfect shuffle table.
4853    unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
4854                            PFIndexes[2] * 9 + PFIndexes[3];
4855    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4856    unsigned Cost = (PFEntry >> 30);
4857
4858    if (Cost <= 4)
4859      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4860  }
4861
4862  return GenerateTBL(Op, ShuffleMask, DAG);
4863}
4864
4865static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
4866                               APInt &UndefBits) {
4867  EVT VT = BVN->getValueType(0);
4868  APInt SplatBits, SplatUndef;
4869  unsigned SplatBitSize;
4870  bool HasAnyUndefs;
4871  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4872    unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
4873
4874    for (unsigned i = 0; i < NumSplats; ++i) {
4875      CnstBits <<= SplatBitSize;
4876      UndefBits <<= SplatBitSize;
4877      CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
4878      UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
4879    }
4880
4881    return true;
4882  }
4883
4884  return false;
4885}
4886
4887SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
4888                                              SelectionDAG &DAG) const {
4889  BuildVectorSDNode *BVN =
4890      dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
4891  SDValue LHS = Op.getOperand(0);
4892  SDLoc dl(Op);
4893  EVT VT = Op.getValueType();
4894
4895  if (!BVN)
4896    return Op;
4897
4898  APInt CnstBits(VT.getSizeInBits(), 0);
4899  APInt UndefBits(VT.getSizeInBits(), 0);
4900  if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
4901    // We only have BIC vector immediate instruction, which is and-not.
4902    CnstBits = ~CnstBits;
4903
4904    // We make use of a little bit of goto ickiness in order to avoid having to
4905    // duplicate the immediate matching logic for the undef toggled case.
4906    bool SecondTry = false;
4907  AttemptModImm:
4908
4909    if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
4910      CnstBits = CnstBits.zextOrTrunc(64);
4911      uint64_t CnstVal = CnstBits.getZExtValue();
4912
4913      if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
4914        CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
4915        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
4916        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4917                                  DAG.getConstant(CnstVal, MVT::i32),
4918                                  DAG.getConstant(0, MVT::i32));
4919        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4920      }
4921
4922      if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
4923        CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
4924        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
4925        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4926                                  DAG.getConstant(CnstVal, MVT::i32),
4927                                  DAG.getConstant(8, MVT::i32));
4928        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4929      }
4930
4931      if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
4932        CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
4933        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
4934        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4935                                  DAG.getConstant(CnstVal, MVT::i32),
4936                                  DAG.getConstant(16, MVT::i32));
4937        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4938      }
4939
4940      if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
4941        CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
4942        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
4943        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4944                                  DAG.getConstant(CnstVal, MVT::i32),
4945                                  DAG.getConstant(24, MVT::i32));
4946        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4947      }
4948
4949      if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
4950        CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
4951        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
4952        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4953                                  DAG.getConstant(CnstVal, MVT::i32),
4954                                  DAG.getConstant(0, MVT::i32));
4955        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4956      }
4957
4958      if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
4959        CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
4960        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
4961        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
4962                                  DAG.getConstant(CnstVal, MVT::i32),
4963                                  DAG.getConstant(8, MVT::i32));
4964        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
4965      }
4966    }
4967
4968    if (SecondTry)
4969      goto FailedModImm;
4970    SecondTry = true;
4971    CnstBits = ~UndefBits;
4972    goto AttemptModImm;
4973  }
4974
4975// We can always fall back to a non-immediate AND.
4976FailedModImm:
4977  return Op;
4978}
4979
4980// Specialized code to quickly find if PotentialBVec is a BuildVector that
4981// consists of only the same constant int value, returned in reference arg
4982// ConstVal
4983static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
4984                                     uint64_t &ConstVal) {
4985  BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
4986  if (!Bvec)
4987    return false;
4988  ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
4989  if (!FirstElt)
4990    return false;
4991  EVT VT = Bvec->getValueType(0);
4992  unsigned NumElts = VT.getVectorNumElements();
4993  for (unsigned i = 1; i < NumElts; ++i)
4994    if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
4995      return false;
4996  ConstVal = FirstElt->getZExtValue();
4997  return true;
4998}
4999
5000static unsigned getIntrinsicID(const SDNode *N) {
5001  unsigned Opcode = N->getOpcode();
5002  switch (Opcode) {
5003  default:
5004    return Intrinsic::not_intrinsic;
5005  case ISD::INTRINSIC_WO_CHAIN: {
5006    unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5007    if (IID < Intrinsic::num_intrinsics)
5008      return IID;
5009    return Intrinsic::not_intrinsic;
5010  }
5011  }
5012}
5013
5014// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5015// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5016// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5017// Also, logical shift right -> sri, with the same structure.
5018static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5019  EVT VT = N->getValueType(0);
5020
5021  if (!VT.isVector())
5022    return SDValue();
5023
5024  SDLoc DL(N);
5025
5026  // Is the first op an AND?
5027  const SDValue And = N->getOperand(0);
5028  if (And.getOpcode() != ISD::AND)
5029    return SDValue();
5030
5031  // Is the second op an shl or lshr?
5032  SDValue Shift = N->getOperand(1);
5033  // This will have been turned into: AArch64ISD::VSHL vector, #shift
5034  // or AArch64ISD::VLSHR vector, #shift
5035  unsigned ShiftOpc = Shift.getOpcode();
5036  if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5037    return SDValue();
5038  bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5039
5040  // Is the shift amount constant?
5041  ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5042  if (!C2node)
5043    return SDValue();
5044
5045  // Is the and mask vector all constant?
5046  uint64_t C1;
5047  if (!isAllConstantBuildVector(And.getOperand(1), C1))
5048    return SDValue();
5049
5050  // Is C1 == ~C2, taking into account how much one can shift elements of a
5051  // particular size?
5052  uint64_t C2 = C2node->getZExtValue();
5053  unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5054  if (C2 > ElemSizeInBits)
5055    return SDValue();
5056  unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5057  if ((C1 & ElemMask) != (~C2 & ElemMask))
5058    return SDValue();
5059
5060  SDValue X = And.getOperand(0);
5061  SDValue Y = Shift.getOperand(0);
5062
5063  unsigned Intrin =
5064      IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5065  SDValue ResultSLI =
5066      DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5067                  DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
5068
5069  DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5070  DEBUG(N->dump(&DAG));
5071  DEBUG(dbgs() << "into: \n");
5072  DEBUG(ResultSLI->dump(&DAG));
5073
5074  ++NumShiftInserts;
5075  return ResultSLI;
5076}
5077
5078SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5079                                             SelectionDAG &DAG) const {
5080  // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5081  if (EnableAArch64SlrGeneration) {
5082    SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5083    if (Res.getNode())
5084      return Res;
5085  }
5086
5087  BuildVectorSDNode *BVN =
5088      dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5089  SDValue LHS = Op.getOperand(1);
5090  SDLoc dl(Op);
5091  EVT VT = Op.getValueType();
5092
5093  // OR commutes, so try swapping the operands.
5094  if (!BVN) {
5095    LHS = Op.getOperand(0);
5096    BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5097  }
5098  if (!BVN)
5099    return Op;
5100
5101  APInt CnstBits(VT.getSizeInBits(), 0);
5102  APInt UndefBits(VT.getSizeInBits(), 0);
5103  if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5104    // We make use of a little bit of goto ickiness in order to avoid having to
5105    // duplicate the immediate matching logic for the undef toggled case.
5106    bool SecondTry = false;
5107  AttemptModImm:
5108
5109    if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5110      CnstBits = CnstBits.zextOrTrunc(64);
5111      uint64_t CnstVal = CnstBits.getZExtValue();
5112
5113      if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5114        CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5115        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5116        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5117                                  DAG.getConstant(CnstVal, MVT::i32),
5118                                  DAG.getConstant(0, MVT::i32));
5119        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5120      }
5121
5122      if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5123        CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5124        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5125        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5126                                  DAG.getConstant(CnstVal, MVT::i32),
5127                                  DAG.getConstant(8, MVT::i32));
5128        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5129      }
5130
5131      if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5132        CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5133        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5134        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5135                                  DAG.getConstant(CnstVal, MVT::i32),
5136                                  DAG.getConstant(16, MVT::i32));
5137        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5138      }
5139
5140      if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5141        CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5142        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5143        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5144                                  DAG.getConstant(CnstVal, MVT::i32),
5145                                  DAG.getConstant(24, MVT::i32));
5146        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5147      }
5148
5149      if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5150        CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5151        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5152        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5153                                  DAG.getConstant(CnstVal, MVT::i32),
5154                                  DAG.getConstant(0, MVT::i32));
5155        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5156      }
5157
5158      if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5159        CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5160        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5161        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5162                                  DAG.getConstant(CnstVal, MVT::i32),
5163                                  DAG.getConstant(8, MVT::i32));
5164        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5165      }
5166    }
5167
5168    if (SecondTry)
5169      goto FailedModImm;
5170    SecondTry = true;
5171    CnstBits = UndefBits;
5172    goto AttemptModImm;
5173  }
5174
5175// We can always fall back to a non-immediate OR.
5176FailedModImm:
5177  return Op;
5178}
5179
5180SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5181                                                 SelectionDAG &DAG) const {
5182  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
5183  SDLoc dl(Op);
5184  EVT VT = Op.getValueType();
5185
5186  APInt CnstBits(VT.getSizeInBits(), 0);
5187  APInt UndefBits(VT.getSizeInBits(), 0);
5188  if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5189    // We make use of a little bit of goto ickiness in order to avoid having to
5190    // duplicate the immediate matching logic for the undef toggled case.
5191    bool SecondTry = false;
5192  AttemptModImm:
5193
5194    if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5195      CnstBits = CnstBits.zextOrTrunc(64);
5196      uint64_t CnstVal = CnstBits.getZExtValue();
5197
5198      // Certain magic vector constants (used to express things like NOT
5199      // and NEG) are passed through unmodified.  This allows codegen patterns
5200      // for these operations to match.  Special-purpose patterns will lower
5201      // these immediates to MOVIs if it proves necessary.
5202      if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5203        return Op;
5204
5205      // The many faces of MOVI...
5206      if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5207        CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5208        if (VT.getSizeInBits() == 128) {
5209          SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
5210                                    DAG.getConstant(CnstVal, MVT::i32));
5211          return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5212        }
5213
5214        // Support the V64 version via subregister insertion.
5215        SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
5216                                  DAG.getConstant(CnstVal, MVT::i32));
5217        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5218      }
5219
5220      if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5221        CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5222        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5223        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5224                                  DAG.getConstant(CnstVal, MVT::i32),
5225                                  DAG.getConstant(0, MVT::i32));
5226        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5227      }
5228
5229      if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5230        CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5231        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5232        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5233                                  DAG.getConstant(CnstVal, MVT::i32),
5234                                  DAG.getConstant(8, MVT::i32));
5235        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5236      }
5237
5238      if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5239        CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5240        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5241        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5242                                  DAG.getConstant(CnstVal, MVT::i32),
5243                                  DAG.getConstant(16, MVT::i32));
5244        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5245      }
5246
5247      if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5248        CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5249        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5250        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5251                                  DAG.getConstant(CnstVal, MVT::i32),
5252                                  DAG.getConstant(24, MVT::i32));
5253        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5254      }
5255
5256      if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5257        CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5258        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5259        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5260                                  DAG.getConstant(CnstVal, MVT::i32),
5261                                  DAG.getConstant(0, MVT::i32));
5262        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5263      }
5264
5265      if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5266        CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5267        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5268        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5269                                  DAG.getConstant(CnstVal, MVT::i32),
5270                                  DAG.getConstant(8, MVT::i32));
5271        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5272      }
5273
5274      if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5275        CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5276        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5277        SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5278                                  DAG.getConstant(CnstVal, MVT::i32),
5279                                  DAG.getConstant(264, MVT::i32));
5280        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5281      }
5282
5283      if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5284        CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5285        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5286        SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5287                                  DAG.getConstant(CnstVal, MVT::i32),
5288                                  DAG.getConstant(272, MVT::i32));
5289        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5290      }
5291
5292      if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
5293        CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
5294        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
5295        SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
5296                                  DAG.getConstant(CnstVal, MVT::i32));
5297        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5298      }
5299
5300      // The few faces of FMOV...
5301      if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
5302        CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
5303        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
5304        SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
5305                                  DAG.getConstant(CnstVal, MVT::i32));
5306        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5307      }
5308
5309      if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
5310          VT.getSizeInBits() == 128) {
5311        CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
5312        SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
5313                                  DAG.getConstant(CnstVal, MVT::i32));
5314        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5315      }
5316
5317      // The many faces of MVNI...
5318      CnstVal = ~CnstVal;
5319      if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5320        CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5321        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5322        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5323                                  DAG.getConstant(CnstVal, MVT::i32),
5324                                  DAG.getConstant(0, MVT::i32));
5325        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5326      }
5327
5328      if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5329        CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5330        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5331        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5332                                  DAG.getConstant(CnstVal, MVT::i32),
5333                                  DAG.getConstant(8, MVT::i32));
5334        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5335      }
5336
5337      if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5338        CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5339        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5340        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5341                                  DAG.getConstant(CnstVal, MVT::i32),
5342                                  DAG.getConstant(16, MVT::i32));
5343        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5344      }
5345
5346      if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5347        CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5348        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5349        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5350                                  DAG.getConstant(CnstVal, MVT::i32),
5351                                  DAG.getConstant(24, MVT::i32));
5352        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5353      }
5354
5355      if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5356        CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5357        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5358        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5359                                  DAG.getConstant(CnstVal, MVT::i32),
5360                                  DAG.getConstant(0, MVT::i32));
5361        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5362      }
5363
5364      if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5365        CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5366        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5367        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5368                                  DAG.getConstant(CnstVal, MVT::i32),
5369                                  DAG.getConstant(8, MVT::i32));
5370        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5371      }
5372
5373      if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5374        CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5375        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5376        SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5377                                  DAG.getConstant(CnstVal, MVT::i32),
5378                                  DAG.getConstant(264, MVT::i32));
5379        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5380      }
5381
5382      if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5383        CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5384        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5385        SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5386                                  DAG.getConstant(CnstVal, MVT::i32),
5387                                  DAG.getConstant(272, MVT::i32));
5388        return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5389      }
5390    }
5391
5392    if (SecondTry)
5393      goto FailedModImm;
5394    SecondTry = true;
5395    CnstBits = UndefBits;
5396    goto AttemptModImm;
5397  }
5398FailedModImm:
5399
5400  // Scan through the operands to find some interesting properties we can
5401  // exploit:
5402  //   1) If only one value is used, we can use a DUP, or
5403  //   2) if only the low element is not undef, we can just insert that, or
5404  //   3) if only one constant value is used (w/ some non-constant lanes),
5405  //      we can splat the constant value into the whole vector then fill
5406  //      in the non-constant lanes.
5407  //   4) FIXME: If different constant values are used, but we can intelligently
5408  //             select the values we'll be overwriting for the non-constant
5409  //             lanes such that we can directly materialize the vector
5410  //             some other way (MOVI, e.g.), we can be sneaky.
5411  unsigned NumElts = VT.getVectorNumElements();
5412  bool isOnlyLowElement = true;
5413  bool usesOnlyOneValue = true;
5414  bool usesOnlyOneConstantValue = true;
5415  bool isConstant = true;
5416  unsigned NumConstantLanes = 0;
5417  SDValue Value;
5418  SDValue ConstantValue;
5419  for (unsigned i = 0; i < NumElts; ++i) {
5420    SDValue V = Op.getOperand(i);
5421    if (V.getOpcode() == ISD::UNDEF)
5422      continue;
5423    if (i > 0)
5424      isOnlyLowElement = false;
5425    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5426      isConstant = false;
5427
5428    if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
5429      ++NumConstantLanes;
5430      if (!ConstantValue.getNode())
5431        ConstantValue = V;
5432      else if (ConstantValue != V)
5433        usesOnlyOneConstantValue = false;
5434    }
5435
5436    if (!Value.getNode())
5437      Value = V;
5438    else if (V != Value)
5439      usesOnlyOneValue = false;
5440  }
5441
5442  if (!Value.getNode())
5443    return DAG.getUNDEF(VT);
5444
5445  if (isOnlyLowElement)
5446    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5447
5448  // Use DUP for non-constant splats.  For f32 constant splats, reduce to
5449  // i32 and try again.
5450  if (usesOnlyOneValue) {
5451    if (!isConstant) {
5452      if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5453          Value.getValueType() != VT)
5454        return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
5455
5456      // This is actually a DUPLANExx operation, which keeps everything vectory.
5457
5458      // DUPLANE works on 128-bit vectors, widen it if necessary.
5459      SDValue Lane = Value.getOperand(1);
5460      Value = Value.getOperand(0);
5461      if (Value.getValueType().getSizeInBits() == 64)
5462        Value = WidenVector(Value, DAG);
5463
5464      unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
5465      return DAG.getNode(Opcode, dl, VT, Value, Lane);
5466    }
5467
5468    if (VT.getVectorElementType().isFloatingPoint()) {
5469      SmallVector<SDValue, 8> Ops;
5470      MVT NewType =
5471          (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5472      for (unsigned i = 0; i < NumElts; ++i)
5473        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
5474      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
5475      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5476      Val = LowerBUILD_VECTOR(Val, DAG);
5477      if (Val.getNode())
5478        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5479    }
5480  }
5481
5482  // If there was only one constant value used and for more than one lane,
5483  // start by splatting that value, then replace the non-constant lanes. This
5484  // is better than the default, which will perform a separate initialization
5485  // for each lane.
5486  if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
5487    SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
5488    // Now insert the non-constant lanes.
5489    for (unsigned i = 0; i < NumElts; ++i) {
5490      SDValue V = Op.getOperand(i);
5491      SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5492      if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
5493        // Note that type legalization likely mucked about with the VT of the
5494        // source operand, so we may have to convert it here before inserting.
5495        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
5496      }
5497    }
5498    return Val;
5499  }
5500
5501  // If all elements are constants and the case above didn't get hit, fall back
5502  // to the default expansion, which will generate a load from the constant
5503  // pool.
5504  if (isConstant)
5505    return SDValue();
5506
5507  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5508  if (NumElts >= 4) {
5509    SDValue shuffle = ReconstructShuffle(Op, DAG);
5510    if (shuffle != SDValue())
5511      return shuffle;
5512  }
5513
5514  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5515  // know the default expansion would otherwise fall back on something even
5516  // worse. For a vector with one or two non-undef values, that's
5517  // scalar_to_vector for the elements followed by a shuffle (provided the
5518  // shuffle is valid for the target) and materialization element by element
5519  // on the stack followed by a load for everything else.
5520  if (!isConstant && !usesOnlyOneValue) {
5521    SDValue Vec = DAG.getUNDEF(VT);
5522    SDValue Op0 = Op.getOperand(0);
5523    unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
5524    unsigned i = 0;
5525    // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
5526    // a) Avoid a RMW dependency on the full vector register, and
5527    // b) Allow the register coalescer to fold away the copy if the
5528    //    value is already in an S or D register.
5529    if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
5530      unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
5531      MachineSDNode *N =
5532          DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
5533                             DAG.getTargetConstant(SubIdx, MVT::i32));
5534      Vec = SDValue(N, 0);
5535      ++i;
5536    }
5537    for (; i < NumElts; ++i) {
5538      SDValue V = Op.getOperand(i);
5539      if (V.getOpcode() == ISD::UNDEF)
5540        continue;
5541      SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5542      Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
5543    }
5544    return Vec;
5545  }
5546
5547  // Just use the default expansion. We failed to find a better alternative.
5548  return SDValue();
5549}
5550
5551SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
5552                                                      SelectionDAG &DAG) const {
5553  assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
5554
5555  // Check for non-constant lane.
5556  if (!isa<ConstantSDNode>(Op.getOperand(2)))
5557    return SDValue();
5558
5559  EVT VT = Op.getOperand(0).getValueType();
5560
5561  // Insertion/extraction are legal for V128 types.
5562  if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
5563      VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
5564    return Op;
5565
5566  if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
5567      VT != MVT::v1i64 && VT != MVT::v2f32)
5568    return SDValue();
5569
5570  // For V64 types, we perform insertion by expanding the value
5571  // to a V128 type and perform the insertion on that.
5572  SDLoc DL(Op);
5573  SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
5574  EVT WideTy = WideVec.getValueType();
5575
5576  SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
5577                             Op.getOperand(1), Op.getOperand(2));
5578  // Re-narrow the resultant vector.
5579  return NarrowVector(Node, DAG);
5580}
5581
5582SDValue
5583AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5584                                               SelectionDAG &DAG) const {
5585  assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
5586
5587  // Check for non-constant lane.
5588  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5589    return SDValue();
5590
5591  EVT VT = Op.getOperand(0).getValueType();
5592
5593  // Insertion/extraction are legal for V128 types.
5594  if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
5595      VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
5596    return Op;
5597
5598  if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
5599      VT != MVT::v1i64 && VT != MVT::v2f32)
5600    return SDValue();
5601
5602  // For V64 types, we perform extraction by expanding the value
5603  // to a V128 type and perform the extraction on that.
5604  SDLoc DL(Op);
5605  SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
5606  EVT WideTy = WideVec.getValueType();
5607
5608  EVT ExtrTy = WideTy.getVectorElementType();
5609  if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
5610    ExtrTy = MVT::i32;
5611
5612  // For extractions, we just return the result directly.
5613  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
5614                     Op.getOperand(1));
5615}
5616
5617SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
5618                                                      SelectionDAG &DAG) const {
5619  EVT VT = Op.getOperand(0).getValueType();
5620  SDLoc dl(Op);
5621  // Just in case...
5622  if (!VT.isVector())
5623    return SDValue();
5624
5625  ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5626  if (!Cst)
5627    return SDValue();
5628  unsigned Val = Cst->getZExtValue();
5629
5630  unsigned Size = Op.getValueType().getSizeInBits();
5631  if (Val == 0) {
5632    switch (Size) {
5633    case 8:
5634      return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
5635                                        Op.getOperand(0));
5636    case 16:
5637      return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
5638                                        Op.getOperand(0));
5639    case 32:
5640      return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
5641                                        Op.getOperand(0));
5642    case 64:
5643      return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
5644                                        Op.getOperand(0));
5645    default:
5646      llvm_unreachable("Unexpected vector type in extract_subvector!");
5647    }
5648  }
5649  // If this is extracting the upper 64-bits of a 128-bit vector, we match
5650  // that directly.
5651  if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
5652    return Op;
5653
5654  return SDValue();
5655}
5656
5657bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
5658                                               EVT VT) const {
5659  if (VT.getVectorNumElements() == 4 &&
5660      (VT.is128BitVector() || VT.is64BitVector())) {
5661    unsigned PFIndexes[4];
5662    for (unsigned i = 0; i != 4; ++i) {
5663      if (M[i] < 0)
5664        PFIndexes[i] = 8;
5665      else
5666        PFIndexes[i] = M[i];
5667    }
5668
5669    // Compute the index in the perfect shuffle table.
5670    unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5671                            PFIndexes[2] * 9 + PFIndexes[3];
5672    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5673    unsigned Cost = (PFEntry >> 30);
5674
5675    if (Cost <= 4)
5676      return true;
5677  }
5678
5679  bool DummyBool;
5680  int DummyInt;
5681  unsigned DummyUnsigned;
5682
5683  return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
5684          isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
5685          isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
5686          // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
5687          isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
5688          isZIPMask(M, VT, DummyUnsigned) ||
5689          isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
5690          isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
5691          isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
5692          isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
5693          isConcatMask(M, VT, VT.getSizeInBits() == 128));
5694}
5695
5696/// getVShiftImm - Check if this is a valid build_vector for the immediate
5697/// operand of a vector shift operation, where all the elements of the
5698/// build_vector must have the same constant integer value.
5699static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
5700  // Ignore bit_converts.
5701  while (Op.getOpcode() == ISD::BITCAST)
5702    Op = Op.getOperand(0);
5703  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5704  APInt SplatBits, SplatUndef;
5705  unsigned SplatBitSize;
5706  bool HasAnyUndefs;
5707  if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
5708                                    HasAnyUndefs, ElementBits) ||
5709      SplatBitSize > ElementBits)
5710    return false;
5711  Cnt = SplatBits.getSExtValue();
5712  return true;
5713}
5714
5715/// isVShiftLImm - Check if this is a valid build_vector for the immediate
5716/// operand of a vector shift left operation.  That value must be in the range:
5717///   0 <= Value < ElementBits for a left shift; or
5718///   0 <= Value <= ElementBits for a long left shift.
5719static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
5720  assert(VT.isVector() && "vector shift count is not a vector type");
5721  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5722  if (!getVShiftImm(Op, ElementBits, Cnt))
5723    return false;
5724  return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
5725}
5726
5727/// isVShiftRImm - Check if this is a valid build_vector for the immediate
5728/// operand of a vector shift right operation.  For a shift opcode, the value
5729/// is positive, but for an intrinsic the value count must be negative. The
5730/// absolute value must be in the range:
5731///   1 <= |Value| <= ElementBits for a right shift; or
5732///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
5733static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
5734                         int64_t &Cnt) {
5735  assert(VT.isVector() && "vector shift count is not a vector type");
5736  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5737  if (!getVShiftImm(Op, ElementBits, Cnt))
5738    return false;
5739  if (isIntrinsic)
5740    Cnt = -Cnt;
5741  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
5742}
5743
5744SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
5745                                                      SelectionDAG &DAG) const {
5746  EVT VT = Op.getValueType();
5747  SDLoc DL(Op);
5748  int64_t Cnt;
5749
5750  if (!Op.getOperand(1).getValueType().isVector())
5751    return Op;
5752  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5753
5754  switch (Op.getOpcode()) {
5755  default:
5756    llvm_unreachable("unexpected shift opcode");
5757
5758  case ISD::SHL:
5759    if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
5760      return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
5761                         DAG.getConstant(Cnt, MVT::i32));
5762    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5763                       DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
5764                       Op.getOperand(0), Op.getOperand(1));
5765  case ISD::SRA:
5766  case ISD::SRL:
5767    // Right shift immediate
5768    if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
5769        Cnt < EltSize) {
5770      unsigned Opc =
5771          (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
5772      return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
5773                         DAG.getConstant(Cnt, MVT::i32));
5774    }
5775
5776    // Right shift register.  Note, there is not a shift right register
5777    // instruction, but the shift left register instruction takes a signed
5778    // value, where negative numbers specify a right shift.
5779    unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
5780                                                : Intrinsic::aarch64_neon_ushl;
5781    // negate the shift amount
5782    SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
5783    SDValue NegShiftLeft =
5784        DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5785                    DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
5786    return NegShiftLeft;
5787  }
5788
5789  return SDValue();
5790}
5791
5792static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
5793                                    AArch64CC::CondCode CC, bool NoNans, EVT VT,
5794                                    SDLoc dl, SelectionDAG &DAG) {
5795  EVT SrcVT = LHS.getValueType();
5796
5797  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
5798  APInt CnstBits(VT.getSizeInBits(), 0);
5799  APInt UndefBits(VT.getSizeInBits(), 0);
5800  bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
5801  bool IsZero = IsCnst && (CnstBits == 0);
5802
5803  if (SrcVT.getVectorElementType().isFloatingPoint()) {
5804    switch (CC) {
5805    default:
5806      return SDValue();
5807    case AArch64CC::NE: {
5808      SDValue Fcmeq;
5809      if (IsZero)
5810        Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
5811      else
5812        Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
5813      return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
5814    }
5815    case AArch64CC::EQ:
5816      if (IsZero)
5817        return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
5818      return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
5819    case AArch64CC::GE:
5820      if (IsZero)
5821        return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
5822      return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
5823    case AArch64CC::GT:
5824      if (IsZero)
5825        return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
5826      return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
5827    case AArch64CC::LS:
5828      if (IsZero)
5829        return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
5830      return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
5831    case AArch64CC::LT:
5832      if (!NoNans)
5833        return SDValue();
5834    // If we ignore NaNs then we can use to the MI implementation.
5835    // Fallthrough.
5836    case AArch64CC::MI:
5837      if (IsZero)
5838        return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
5839      return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
5840    }
5841  }
5842
5843  switch (CC) {
5844  default:
5845    return SDValue();
5846  case AArch64CC::NE: {
5847    SDValue Cmeq;
5848    if (IsZero)
5849      Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
5850    else
5851      Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
5852    return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
5853  }
5854  case AArch64CC::EQ:
5855    if (IsZero)
5856      return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
5857    return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
5858  case AArch64CC::GE:
5859    if (IsZero)
5860      return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
5861    return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
5862  case AArch64CC::GT:
5863    if (IsZero)
5864      return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
5865    return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
5866  case AArch64CC::LE:
5867    if (IsZero)
5868      return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
5869    return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
5870  case AArch64CC::LS:
5871    return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
5872  case AArch64CC::LO:
5873    return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
5874  case AArch64CC::LT:
5875    if (IsZero)
5876      return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
5877    return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
5878  case AArch64CC::HI:
5879    return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
5880  case AArch64CC::HS:
5881    return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
5882  }
5883}
5884
5885SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
5886                                           SelectionDAG &DAG) const {
5887  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5888  SDValue LHS = Op.getOperand(0);
5889  SDValue RHS = Op.getOperand(1);
5890  SDLoc dl(Op);
5891
5892  if (LHS.getValueType().getVectorElementType().isInteger()) {
5893    assert(LHS.getValueType() == RHS.getValueType());
5894    AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
5895    return EmitVectorComparison(LHS, RHS, AArch64CC, false, Op.getValueType(),
5896                                dl, DAG);
5897  }
5898
5899  assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
5900         LHS.getValueType().getVectorElementType() == MVT::f64);
5901
5902  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
5903  // clean.  Some of them require two branches to implement.
5904  AArch64CC::CondCode CC1, CC2;
5905  bool ShouldInvert;
5906  changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
5907
5908  bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
5909  SDValue Cmp =
5910      EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG);
5911  if (!Cmp.getNode())
5912    return SDValue();
5913
5914  if (CC2 != AArch64CC::AL) {
5915    SDValue Cmp2 =
5916        EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG);
5917    if (!Cmp2.getNode())
5918      return SDValue();
5919
5920    Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2);
5921  }
5922
5923  if (ShouldInvert)
5924    return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
5925
5926  return Cmp;
5927}
5928
5929/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
5930/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
5931/// specified in the intrinsic calls.
5932bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
5933                                               const CallInst &I,
5934                                               unsigned Intrinsic) const {
5935  switch (Intrinsic) {
5936  case Intrinsic::aarch64_neon_ld2:
5937  case Intrinsic::aarch64_neon_ld3:
5938  case Intrinsic::aarch64_neon_ld4:
5939  case Intrinsic::aarch64_neon_ld1x2:
5940  case Intrinsic::aarch64_neon_ld1x3:
5941  case Intrinsic::aarch64_neon_ld1x4:
5942  case Intrinsic::aarch64_neon_ld2lane:
5943  case Intrinsic::aarch64_neon_ld3lane:
5944  case Intrinsic::aarch64_neon_ld4lane:
5945  case Intrinsic::aarch64_neon_ld2r:
5946  case Intrinsic::aarch64_neon_ld3r:
5947  case Intrinsic::aarch64_neon_ld4r: {
5948    Info.opc = ISD::INTRINSIC_W_CHAIN;
5949    // Conservatively set memVT to the entire set of vectors loaded.
5950    uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
5951    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5952    Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
5953    Info.offset = 0;
5954    Info.align = 0;
5955    Info.vol = false; // volatile loads with NEON intrinsics not supported
5956    Info.readMem = true;
5957    Info.writeMem = false;
5958    return true;
5959  }
5960  case Intrinsic::aarch64_neon_st2:
5961  case Intrinsic::aarch64_neon_st3:
5962  case Intrinsic::aarch64_neon_st4:
5963  case Intrinsic::aarch64_neon_st1x2:
5964  case Intrinsic::aarch64_neon_st1x3:
5965  case Intrinsic::aarch64_neon_st1x4:
5966  case Intrinsic::aarch64_neon_st2lane:
5967  case Intrinsic::aarch64_neon_st3lane:
5968  case Intrinsic::aarch64_neon_st4lane: {
5969    Info.opc = ISD::INTRINSIC_VOID;
5970    // Conservatively set memVT to the entire set of vectors stored.
5971    unsigned NumElts = 0;
5972    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
5973      Type *ArgTy = I.getArgOperand(ArgI)->getType();
5974      if (!ArgTy->isVectorTy())
5975        break;
5976      NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
5977    }
5978    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5979    Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
5980    Info.offset = 0;
5981    Info.align = 0;
5982    Info.vol = false; // volatile stores with NEON intrinsics not supported
5983    Info.readMem = false;
5984    Info.writeMem = true;
5985    return true;
5986  }
5987  case Intrinsic::aarch64_ldaxr:
5988  case Intrinsic::aarch64_ldxr: {
5989    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
5990    Info.opc = ISD::INTRINSIC_W_CHAIN;
5991    Info.memVT = MVT::getVT(PtrTy->getElementType());
5992    Info.ptrVal = I.getArgOperand(0);
5993    Info.offset = 0;
5994    Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
5995    Info.vol = true;
5996    Info.readMem = true;
5997    Info.writeMem = false;
5998    return true;
5999  }
6000  case Intrinsic::aarch64_stlxr:
6001  case Intrinsic::aarch64_stxr: {
6002    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6003    Info.opc = ISD::INTRINSIC_W_CHAIN;
6004    Info.memVT = MVT::getVT(PtrTy->getElementType());
6005    Info.ptrVal = I.getArgOperand(1);
6006    Info.offset = 0;
6007    Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6008    Info.vol = true;
6009    Info.readMem = false;
6010    Info.writeMem = true;
6011    return true;
6012  }
6013  case Intrinsic::aarch64_ldaxp:
6014  case Intrinsic::aarch64_ldxp: {
6015    Info.opc = ISD::INTRINSIC_W_CHAIN;
6016    Info.memVT = MVT::i128;
6017    Info.ptrVal = I.getArgOperand(0);
6018    Info.offset = 0;
6019    Info.align = 16;
6020    Info.vol = true;
6021    Info.readMem = true;
6022    Info.writeMem = false;
6023    return true;
6024  }
6025  case Intrinsic::aarch64_stlxp:
6026  case Intrinsic::aarch64_stxp: {
6027    Info.opc = ISD::INTRINSIC_W_CHAIN;
6028    Info.memVT = MVT::i128;
6029    Info.ptrVal = I.getArgOperand(2);
6030    Info.offset = 0;
6031    Info.align = 16;
6032    Info.vol = true;
6033    Info.readMem = false;
6034    Info.writeMem = true;
6035    return true;
6036  }
6037  default:
6038    break;
6039  }
6040
6041  return false;
6042}
6043
6044// Truncations from 64-bit GPR to 32-bit GPR is free.
6045bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6046  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6047    return false;
6048  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6049  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6050  if (NumBits1 <= NumBits2)
6051    return false;
6052  return true;
6053}
6054bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
6055  if (!VT1.isInteger() || !VT2.isInteger())
6056    return false;
6057  unsigned NumBits1 = VT1.getSizeInBits();
6058  unsigned NumBits2 = VT2.getSizeInBits();
6059  if (NumBits1 <= NumBits2)
6060    return false;
6061  return true;
6062}
6063
6064// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6065// 64-bit GPR.
6066bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6067  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6068    return false;
6069  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6070  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6071  if (NumBits1 == 32 && NumBits2 == 64)
6072    return true;
6073  return false;
6074}
6075bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
6076  if (!VT1.isInteger() || !VT2.isInteger())
6077    return false;
6078  unsigned NumBits1 = VT1.getSizeInBits();
6079  unsigned NumBits2 = VT2.getSizeInBits();
6080  if (NumBits1 == 32 && NumBits2 == 64)
6081    return true;
6082  return false;
6083}
6084
6085bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6086  EVT VT1 = Val.getValueType();
6087  if (isZExtFree(VT1, VT2)) {
6088    return true;
6089  }
6090
6091  if (Val.getOpcode() != ISD::LOAD)
6092    return false;
6093
6094  // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
6095  return (VT1.isSimple() && VT1.isInteger() && VT2.isSimple() &&
6096          VT2.isInteger() && VT1.getSizeInBits() <= 32);
6097}
6098
6099bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6100                                          unsigned &RequiredAligment) const {
6101  if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6102    return false;
6103  // Cyclone supports unaligned accesses.
6104  RequiredAligment = 0;
6105  unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6106  return NumBits == 32 || NumBits == 64;
6107}
6108
6109bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6110                                          unsigned &RequiredAligment) const {
6111  if (!LoadedType.isSimple() ||
6112      (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6113    return false;
6114  // Cyclone supports unaligned accesses.
6115  RequiredAligment = 0;
6116  unsigned NumBits = LoadedType.getSizeInBits();
6117  return NumBits == 32 || NumBits == 64;
6118}
6119
6120static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
6121                       unsigned AlignCheck) {
6122  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
6123          (DstAlign == 0 || DstAlign % AlignCheck == 0));
6124}
6125
6126EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
6127                                               unsigned SrcAlign, bool IsMemset,
6128                                               bool ZeroMemset,
6129                                               bool MemcpyStrSrc,
6130                                               MachineFunction &MF) const {
6131  // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
6132  // instruction to materialize the v2i64 zero and one store (with restrictive
6133  // addressing mode). Just do two i64 store of zero-registers.
6134  bool Fast;
6135  const Function *F = MF.getFunction();
6136  if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
6137      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
6138                                       Attribute::NoImplicitFloat) &&
6139      (memOpAlign(SrcAlign, DstAlign, 16) ||
6140       (allowsUnalignedMemoryAccesses(MVT::f128, 0, &Fast) && Fast)))
6141    return MVT::f128;
6142
6143  return Size >= 8 ? MVT::i64 : MVT::i32;
6144}
6145
6146// 12-bit optionally shifted immediates are legal for adds.
6147bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
6148  if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
6149    return true;
6150  return false;
6151}
6152
6153// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
6154// immediates is the same as for an add or a sub.
6155bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
6156  if (Immed < 0)
6157    Immed *= -1;
6158  return isLegalAddImmediate(Immed);
6159}
6160
6161/// isLegalAddressingMode - Return true if the addressing mode represented
6162/// by AM is legal for this target, for a load/store of the specified type.
6163bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6164                                                  Type *Ty) const {
6165  // AArch64 has five basic addressing modes:
6166  //  reg
6167  //  reg + 9-bit signed offset
6168  //  reg + SIZE_IN_BYTES * 12-bit unsigned offset
6169  //  reg1 + reg2
6170  //  reg + SIZE_IN_BYTES * reg
6171
6172  // No global is ever allowed as a base.
6173  if (AM.BaseGV)
6174    return false;
6175
6176  // No reg+reg+imm addressing.
6177  if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
6178    return false;
6179
6180  // check reg + imm case:
6181  // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
6182  uint64_t NumBytes = 0;
6183  if (Ty->isSized()) {
6184    uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
6185    NumBytes = NumBits / 8;
6186    if (!isPowerOf2_64(NumBits))
6187      NumBytes = 0;
6188  }
6189
6190  if (!AM.Scale) {
6191    int64_t Offset = AM.BaseOffs;
6192
6193    // 9-bit signed offset
6194    if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
6195      return true;
6196
6197    // 12-bit unsigned offset
6198    unsigned shift = Log2_64(NumBytes);
6199    if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
6200        // Must be a multiple of NumBytes (NumBytes is a power of 2)
6201        (Offset >> shift) << shift == Offset)
6202      return true;
6203    return false;
6204  }
6205
6206  // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
6207
6208  if (!AM.Scale || AM.Scale == 1 ||
6209      (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
6210    return true;
6211  return false;
6212}
6213
6214int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
6215                                                Type *Ty) const {
6216  // Scaling factors are not free at all.
6217  // Operands                     | Rt Latency
6218  // -------------------------------------------
6219  // Rt, [Xn, Xm]                 | 4
6220  // -------------------------------------------
6221  // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
6222  // Rt, [Xn, Wm, <extend> #imm]  |
6223  if (isLegalAddressingMode(AM, Ty))
6224    // Scale represents reg2 * scale, thus account for 1 if
6225    // it is not equal to 0 or 1.
6226    return AM.Scale != 0 && AM.Scale != 1;
6227  return -1;
6228}
6229
6230bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
6231  VT = VT.getScalarType();
6232
6233  if (!VT.isSimple())
6234    return false;
6235
6236  switch (VT.getSimpleVT().SimpleTy) {
6237  case MVT::f32:
6238  case MVT::f64:
6239    return true;
6240  default:
6241    break;
6242  }
6243
6244  return false;
6245}
6246
6247const MCPhysReg *
6248AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
6249  // LR is a callee-save register, but we must treat it as clobbered by any call
6250  // site. Hence we include LR in the scratch registers, which are in turn added
6251  // as implicit-defs for stackmaps and patchpoints.
6252  static const MCPhysReg ScratchRegs[] = {
6253    AArch64::X16, AArch64::X17, AArch64::LR, 0
6254  };
6255  return ScratchRegs;
6256}
6257
6258bool
6259AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
6260  EVT VT = N->getValueType(0);
6261    // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
6262    // it with shift to let it be lowered to UBFX.
6263  if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
6264      isa<ConstantSDNode>(N->getOperand(1))) {
6265    uint64_t TruncMask = N->getConstantOperandVal(1);
6266    if (isMask_64(TruncMask) &&
6267      N->getOperand(0).getOpcode() == ISD::SRL &&
6268      isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
6269      return false;
6270  }
6271  return true;
6272}
6273
6274bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
6275                                                              Type *Ty) const {
6276  assert(Ty->isIntegerTy());
6277
6278  unsigned BitSize = Ty->getPrimitiveSizeInBits();
6279  if (BitSize == 0)
6280    return false;
6281
6282  int64_t Val = Imm.getSExtValue();
6283  if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
6284    return true;
6285
6286  if ((int64_t)Val < 0)
6287    Val = ~Val;
6288  if (BitSize == 32)
6289    Val &= (1LL << 32) - 1;
6290
6291  unsigned LZ = countLeadingZeros((uint64_t)Val);
6292  unsigned Shift = (63 - LZ) / 16;
6293  // MOVZ is free so return true for one or fewer MOVK.
6294  return (Shift < 3) ? true : false;
6295}
6296
6297// Generate SUBS and CSEL for integer abs.
6298static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
6299  EVT VT = N->getValueType(0);
6300
6301  SDValue N0 = N->getOperand(0);
6302  SDValue N1 = N->getOperand(1);
6303  SDLoc DL(N);
6304
6305  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
6306  // and change it to SUB and CSEL.
6307  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
6308      N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
6309      N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
6310    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
6311      if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
6312        SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
6313                                  N0.getOperand(0));
6314        // Generate SUBS & CSEL.
6315        SDValue Cmp =
6316            DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
6317                        N0.getOperand(0), DAG.getConstant(0, VT));
6318        return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
6319                           DAG.getConstant(AArch64CC::PL, MVT::i32),
6320                           SDValue(Cmp.getNode(), 1));
6321      }
6322  return SDValue();
6323}
6324
6325// performXorCombine - Attempts to handle integer ABS.
6326static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
6327                                 TargetLowering::DAGCombinerInfo &DCI,
6328                                 const AArch64Subtarget *Subtarget) {
6329  if (DCI.isBeforeLegalizeOps())
6330    return SDValue();
6331
6332  return performIntegerAbsCombine(N, DAG);
6333}
6334
6335static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
6336                                 TargetLowering::DAGCombinerInfo &DCI,
6337                                 const AArch64Subtarget *Subtarget) {
6338  if (DCI.isBeforeLegalizeOps())
6339    return SDValue();
6340
6341  // Multiplication of a power of two plus/minus one can be done more
6342  // cheaply as as shift+add/sub. For now, this is true unilaterally. If
6343  // future CPUs have a cheaper MADD instruction, this may need to be
6344  // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
6345  // 64-bit is 5 cycles, so this is always a win.
6346  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6347    APInt Value = C->getAPIntValue();
6348    EVT VT = N->getValueType(0);
6349    APInt VP1 = Value + 1;
6350    if (VP1.isPowerOf2()) {
6351      // Multiplying by one less than a power of two, replace with a shift
6352      // and a subtract.
6353      SDValue ShiftedVal =
6354          DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6355                      DAG.getConstant(VP1.logBase2(), MVT::i64));
6356      return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
6357    }
6358    APInt VM1 = Value - 1;
6359    if (VM1.isPowerOf2()) {
6360      // Multiplying by one more than a power of two, replace with a shift
6361      // and an add.
6362      SDValue ShiftedVal =
6363          DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6364                      DAG.getConstant(VM1.logBase2(), MVT::i64));
6365      return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
6366    }
6367  }
6368  return SDValue();
6369}
6370
6371static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) {
6372  EVT VT = N->getValueType(0);
6373  if (VT != MVT::f32 && VT != MVT::f64)
6374    return SDValue();
6375  // Only optimize when the source and destination types have the same width.
6376  if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
6377    return SDValue();
6378
6379  // If the result of an integer load is only used by an integer-to-float
6380  // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
6381  // This eliminates an "integer-to-vector-move UOP and improve throughput.
6382  SDValue N0 = N->getOperand(0);
6383  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6384      // Do not change the width of a volatile load.
6385      !cast<LoadSDNode>(N0)->isVolatile()) {
6386    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6387    SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
6388                               LN0->getPointerInfo(), LN0->isVolatile(),
6389                               LN0->isNonTemporal(), LN0->isInvariant(),
6390                               LN0->getAlignment());
6391
6392    // Make sure successors of the original load stay after it by updating them
6393    // to use the new Chain.
6394    DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
6395
6396    unsigned Opcode =
6397        (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
6398    return DAG.getNode(Opcode, SDLoc(N), VT, Load);
6399  }
6400
6401  return SDValue();
6402}
6403
6404/// An EXTR instruction is made up of two shifts, ORed together. This helper
6405/// searches for and classifies those shifts.
6406static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
6407                         bool &FromHi) {
6408  if (N.getOpcode() == ISD::SHL)
6409    FromHi = false;
6410  else if (N.getOpcode() == ISD::SRL)
6411    FromHi = true;
6412  else
6413    return false;
6414
6415  if (!isa<ConstantSDNode>(N.getOperand(1)))
6416    return false;
6417
6418  ShiftAmount = N->getConstantOperandVal(1);
6419  Src = N->getOperand(0);
6420  return true;
6421}
6422
6423/// EXTR instruction extracts a contiguous chunk of bits from two existing
6424/// registers viewed as a high/low pair. This function looks for the pattern:
6425/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
6426/// EXTR. Can't quite be done in TableGen because the two immediates aren't
6427/// independent.
6428static SDValue tryCombineToEXTR(SDNode *N,
6429                                TargetLowering::DAGCombinerInfo &DCI) {
6430  SelectionDAG &DAG = DCI.DAG;
6431  SDLoc DL(N);
6432  EVT VT = N->getValueType(0);
6433
6434  assert(N->getOpcode() == ISD::OR && "Unexpected root");
6435
6436  if (VT != MVT::i32 && VT != MVT::i64)
6437    return SDValue();
6438
6439  SDValue LHS;
6440  uint32_t ShiftLHS = 0;
6441  bool LHSFromHi = 0;
6442  if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
6443    return SDValue();
6444
6445  SDValue RHS;
6446  uint32_t ShiftRHS = 0;
6447  bool RHSFromHi = 0;
6448  if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
6449    return SDValue();
6450
6451  // If they're both trying to come from the high part of the register, they're
6452  // not really an EXTR.
6453  if (LHSFromHi == RHSFromHi)
6454    return SDValue();
6455
6456  if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
6457    return SDValue();
6458
6459  if (LHSFromHi) {
6460    std::swap(LHS, RHS);
6461    std::swap(ShiftLHS, ShiftRHS);
6462  }
6463
6464  return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
6465                     DAG.getConstant(ShiftRHS, MVT::i64));
6466}
6467
6468static SDValue tryCombineToBSL(SDNode *N,
6469                                TargetLowering::DAGCombinerInfo &DCI) {
6470  EVT VT = N->getValueType(0);
6471  SelectionDAG &DAG = DCI.DAG;
6472  SDLoc DL(N);
6473
6474  if (!VT.isVector())
6475    return SDValue();
6476
6477  SDValue N0 = N->getOperand(0);
6478  if (N0.getOpcode() != ISD::AND)
6479    return SDValue();
6480
6481  SDValue N1 = N->getOperand(1);
6482  if (N1.getOpcode() != ISD::AND)
6483    return SDValue();
6484
6485  // We only have to look for constant vectors here since the general, variable
6486  // case can be handled in TableGen.
6487  unsigned Bits = VT.getVectorElementType().getSizeInBits();
6488  uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
6489  for (int i = 1; i >= 0; --i)
6490    for (int j = 1; j >= 0; --j) {
6491      BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
6492      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
6493      if (!BVN0 || !BVN1)
6494        continue;
6495
6496      bool FoundMatch = true;
6497      for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
6498        ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
6499        ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
6500        if (!CN0 || !CN1 ||
6501            CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
6502          FoundMatch = false;
6503          break;
6504        }
6505      }
6506
6507      if (FoundMatch)
6508        return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
6509                           N0->getOperand(1 - i), N1->getOperand(1 - j));
6510    }
6511
6512  return SDValue();
6513}
6514
6515static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
6516                                const AArch64Subtarget *Subtarget) {
6517  // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
6518  if (!EnableAArch64ExtrGeneration)
6519    return SDValue();
6520  SelectionDAG &DAG = DCI.DAG;
6521  EVT VT = N->getValueType(0);
6522
6523  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6524    return SDValue();
6525
6526  SDValue Res = tryCombineToEXTR(N, DCI);
6527  if (Res.getNode())
6528    return Res;
6529
6530  Res = tryCombineToBSL(N, DCI);
6531  if (Res.getNode())
6532    return Res;
6533
6534  return SDValue();
6535}
6536
6537static SDValue performBitcastCombine(SDNode *N,
6538                                     TargetLowering::DAGCombinerInfo &DCI,
6539                                     SelectionDAG &DAG) {
6540  // Wait 'til after everything is legalized to try this. That way we have
6541  // legal vector types and such.
6542  if (DCI.isBeforeLegalizeOps())
6543    return SDValue();
6544
6545  // Remove extraneous bitcasts around an extract_subvector.
6546  // For example,
6547  //    (v4i16 (bitconvert
6548  //             (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
6549  //  becomes
6550  //    (extract_subvector ((v8i16 ...), (i64 4)))
6551
6552  // Only interested in 64-bit vectors as the ultimate result.
6553  EVT VT = N->getValueType(0);
6554  if (!VT.isVector())
6555    return SDValue();
6556  if (VT.getSimpleVT().getSizeInBits() != 64)
6557    return SDValue();
6558  // Is the operand an extract_subvector starting at the beginning or halfway
6559  // point of the vector? A low half may also come through as an
6560  // EXTRACT_SUBREG, so look for that, too.
6561  SDValue Op0 = N->getOperand(0);
6562  if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
6563      !(Op0->isMachineOpcode() &&
6564        Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
6565    return SDValue();
6566  uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
6567  if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
6568    if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
6569      return SDValue();
6570  } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
6571    if (idx != AArch64::dsub)
6572      return SDValue();
6573    // The dsub reference is equivalent to a lane zero subvector reference.
6574    idx = 0;
6575  }
6576  // Look through the bitcast of the input to the extract.
6577  if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
6578    return SDValue();
6579  SDValue Source = Op0->getOperand(0)->getOperand(0);
6580  // If the source type has twice the number of elements as our destination
6581  // type, we know this is an extract of the high or low half of the vector.
6582  EVT SVT = Source->getValueType(0);
6583  if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
6584    return SDValue();
6585
6586  DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
6587
6588  // Create the simplified form to just extract the low or high half of the
6589  // vector directly rather than bothering with the bitcasts.
6590  SDLoc dl(N);
6591  unsigned NumElements = VT.getVectorNumElements();
6592  if (idx) {
6593    SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
6594    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
6595  } else {
6596    SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
6597    return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
6598                                      Source, SubReg),
6599                   0);
6600  }
6601}
6602
6603static SDValue performConcatVectorsCombine(SDNode *N,
6604                                           TargetLowering::DAGCombinerInfo &DCI,
6605                                           SelectionDAG &DAG) {
6606  // Wait 'til after everything is legalized to try this. That way we have
6607  // legal vector types and such.
6608  if (DCI.isBeforeLegalizeOps())
6609    return SDValue();
6610
6611  SDLoc dl(N);
6612  EVT VT = N->getValueType(0);
6613
6614  // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
6615  // splat. The indexed instructions are going to be expecting a DUPLANE64, so
6616  // canonicalise to that.
6617  if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
6618    assert(VT.getVectorElementType().getSizeInBits() == 64);
6619    return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT,
6620                       WidenVector(N->getOperand(0), DAG),
6621                       DAG.getConstant(0, MVT::i64));
6622  }
6623
6624  // Canonicalise concat_vectors so that the right-hand vector has as few
6625  // bit-casts as possible before its real operation. The primary matching
6626  // destination for these operations will be the narrowing "2" instructions,
6627  // which depend on the operation being performed on this right-hand vector.
6628  // For example,
6629  //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS))))
6630  // becomes
6631  //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
6632
6633  SDValue Op1 = N->getOperand(1);
6634  if (Op1->getOpcode() != ISD::BITCAST)
6635    return SDValue();
6636  SDValue RHS = Op1->getOperand(0);
6637  MVT RHSTy = RHS.getValueType().getSimpleVT();
6638  // If the RHS is not a vector, this is not the pattern we're looking for.
6639  if (!RHSTy.isVector())
6640    return SDValue();
6641
6642  DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
6643
6644  MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
6645                                  RHSTy.getVectorNumElements() * 2);
6646  return DAG.getNode(
6647      ISD::BITCAST, dl, VT,
6648      DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
6649                  DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
6650}
6651
6652static SDValue tryCombineFixedPointConvert(SDNode *N,
6653                                           TargetLowering::DAGCombinerInfo &DCI,
6654                                           SelectionDAG &DAG) {
6655  // Wait 'til after everything is legalized to try this. That way we have
6656  // legal vector types and such.
6657  if (DCI.isBeforeLegalizeOps())
6658    return SDValue();
6659  // Transform a scalar conversion of a value from a lane extract into a
6660  // lane extract of a vector conversion. E.g., from foo1 to foo2:
6661  // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
6662  // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
6663  //
6664  // The second form interacts better with instruction selection and the
6665  // register allocator to avoid cross-class register copies that aren't
6666  // coalescable due to a lane reference.
6667
6668  // Check the operand and see if it originates from a lane extract.
6669  SDValue Op1 = N->getOperand(1);
6670  if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6671    // Yep, no additional predication needed. Perform the transform.
6672    SDValue IID = N->getOperand(0);
6673    SDValue Shift = N->getOperand(2);
6674    SDValue Vec = Op1.getOperand(0);
6675    SDValue Lane = Op1.getOperand(1);
6676    EVT ResTy = N->getValueType(0);
6677    EVT VecResTy;
6678    SDLoc DL(N);
6679
6680    // The vector width should be 128 bits by the time we get here, even
6681    // if it started as 64 bits (the extract_vector handling will have
6682    // done so).
6683    assert(Vec.getValueType().getSizeInBits() == 128 &&
6684           "unexpected vector size on extract_vector_elt!");
6685    if (Vec.getValueType() == MVT::v4i32)
6686      VecResTy = MVT::v4f32;
6687    else if (Vec.getValueType() == MVT::v2i64)
6688      VecResTy = MVT::v2f64;
6689    else
6690      assert(0 && "unexpected vector type!");
6691
6692    SDValue Convert =
6693        DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
6694    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
6695  }
6696  return SDValue();
6697}
6698
6699// AArch64 high-vector "long" operations are formed by performing the non-high
6700// version on an extract_subvector of each operand which gets the high half:
6701//
6702//  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
6703//
6704// However, there are cases which don't have an extract_high explicitly, but
6705// have another operation that can be made compatible with one for free. For
6706// example:
6707//
6708//  (dupv64 scalar) --> (extract_high (dup128 scalar))
6709//
6710// This routine does the actual conversion of such DUPs, once outer routines
6711// have determined that everything else is in order.
6712static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
6713  // We can handle most types of duplicate, but the lane ones have an extra
6714  // operand saying *which* lane, so we need to know.
6715  bool IsDUPLANE;
6716  switch (N.getOpcode()) {
6717  case AArch64ISD::DUP:
6718    IsDUPLANE = false;
6719    break;
6720  case AArch64ISD::DUPLANE8:
6721  case AArch64ISD::DUPLANE16:
6722  case AArch64ISD::DUPLANE32:
6723  case AArch64ISD::DUPLANE64:
6724    IsDUPLANE = true;
6725    break;
6726  default:
6727    return SDValue();
6728  }
6729
6730  MVT NarrowTy = N.getSimpleValueType();
6731  if (!NarrowTy.is64BitVector())
6732    return SDValue();
6733
6734  MVT ElementTy = NarrowTy.getVectorElementType();
6735  unsigned NumElems = NarrowTy.getVectorNumElements();
6736  MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
6737
6738  SDValue NewDUP;
6739  if (IsDUPLANE)
6740    NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
6741                         N.getOperand(1));
6742  else
6743    NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
6744
6745  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
6746                     NewDUP, DAG.getConstant(NumElems, MVT::i64));
6747}
6748
6749static bool isEssentiallyExtractSubvector(SDValue N) {
6750  if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
6751    return true;
6752
6753  return N.getOpcode() == ISD::BITCAST &&
6754         N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
6755}
6756
6757/// \brief Helper structure to keep track of ISD::SET_CC operands.
6758struct GenericSetCCInfo {
6759  const SDValue *Opnd0;
6760  const SDValue *Opnd1;
6761  ISD::CondCode CC;
6762};
6763
6764/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
6765struct AArch64SetCCInfo {
6766  const SDValue *Cmp;
6767  AArch64CC::CondCode CC;
6768};
6769
6770/// \brief Helper structure to keep track of SetCC information.
6771union SetCCInfo {
6772  GenericSetCCInfo Generic;
6773  AArch64SetCCInfo AArch64;
6774};
6775
6776/// \brief Helper structure to be able to read SetCC information.  If set to
6777/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
6778/// GenericSetCCInfo.
6779struct SetCCInfoAndKind {
6780  SetCCInfo Info;
6781  bool IsAArch64;
6782};
6783
6784/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
6785/// an
6786/// AArch64 lowered one.
6787/// \p SetCCInfo is filled accordingly.
6788/// \post SetCCInfo is meanginfull only when this function returns true.
6789/// \return True when Op is a kind of SET_CC operation.
6790static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
6791  // If this is a setcc, this is straight forward.
6792  if (Op.getOpcode() == ISD::SETCC) {
6793    SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
6794    SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
6795    SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6796    SetCCInfo.IsAArch64 = false;
6797    return true;
6798  }
6799  // Otherwise, check if this is a matching csel instruction.
6800  // In other words:
6801  // - csel 1, 0, cc
6802  // - csel 0, 1, !cc
6803  if (Op.getOpcode() != AArch64ISD::CSEL)
6804    return false;
6805  // Set the information about the operands.
6806  // TODO: we want the operands of the Cmp not the csel
6807  SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
6808  SetCCInfo.IsAArch64 = true;
6809  SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
6810      cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
6811
6812  // Check that the operands matches the constraints:
6813  // (1) Both operands must be constants.
6814  // (2) One must be 1 and the other must be 0.
6815  ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
6816  ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6817
6818  // Check (1).
6819  if (!TValue || !FValue)
6820    return false;
6821
6822  // Check (2).
6823  if (!TValue->isOne()) {
6824    // Update the comparison when we are interested in !cc.
6825    std::swap(TValue, FValue);
6826    SetCCInfo.Info.AArch64.CC =
6827        AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
6828  }
6829  return TValue->isOne() && FValue->isNullValue();
6830}
6831
6832// Returns true if Op is setcc or zext of setcc.
6833static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
6834  if (isSetCC(Op, Info))
6835    return true;
6836  return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
6837    isSetCC(Op->getOperand(0), Info));
6838}
6839
6840// The folding we want to perform is:
6841// (add x, [zext] (setcc cc ...) )
6842//   -->
6843// (csel x, (add x, 1), !cc ...)
6844//
6845// The latter will get matched to a CSINC instruction.
6846static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
6847  assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
6848  SDValue LHS = Op->getOperand(0);
6849  SDValue RHS = Op->getOperand(1);
6850  SetCCInfoAndKind InfoAndKind;
6851
6852  // If neither operand is a SET_CC, give up.
6853  if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
6854    std::swap(LHS, RHS);
6855    if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
6856      return SDValue();
6857  }
6858
6859  // FIXME: This could be generatized to work for FP comparisons.
6860  EVT CmpVT = InfoAndKind.IsAArch64
6861                  ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
6862                  : InfoAndKind.Info.Generic.Opnd0->getValueType();
6863  if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
6864    return SDValue();
6865
6866  SDValue CCVal;
6867  SDValue Cmp;
6868  SDLoc dl(Op);
6869  if (InfoAndKind.IsAArch64) {
6870    CCVal = DAG.getConstant(
6871        AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
6872    Cmp = *InfoAndKind.Info.AArch64.Cmp;
6873  } else
6874    Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
6875                      *InfoAndKind.Info.Generic.Opnd1,
6876                      ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
6877                      CCVal, DAG, dl);
6878
6879  EVT VT = Op->getValueType(0);
6880  LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
6881  return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
6882}
6883
6884// The basic add/sub long vector instructions have variants with "2" on the end
6885// which act on the high-half of their inputs. They are normally matched by
6886// patterns like:
6887//
6888// (add (zeroext (extract_high LHS)),
6889//      (zeroext (extract_high RHS)))
6890// -> uaddl2 vD, vN, vM
6891//
6892// However, if one of the extracts is something like a duplicate, this
6893// instruction can still be used profitably. This function puts the DAG into a
6894// more appropriate form for those patterns to trigger.
6895static SDValue performAddSubLongCombine(SDNode *N,
6896                                        TargetLowering::DAGCombinerInfo &DCI,
6897                                        SelectionDAG &DAG) {
6898  if (DCI.isBeforeLegalizeOps())
6899    return SDValue();
6900
6901  MVT VT = N->getSimpleValueType(0);
6902  if (!VT.is128BitVector()) {
6903    if (N->getOpcode() == ISD::ADD)
6904      return performSetccAddFolding(N, DAG);
6905    return SDValue();
6906  }
6907
6908  // Make sure both branches are extended in the same way.
6909  SDValue LHS = N->getOperand(0);
6910  SDValue RHS = N->getOperand(1);
6911  if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
6912       LHS.getOpcode() != ISD::SIGN_EXTEND) ||
6913      LHS.getOpcode() != RHS.getOpcode())
6914    return SDValue();
6915
6916  unsigned ExtType = LHS.getOpcode();
6917
6918  // It's not worth doing if at least one of the inputs isn't already an
6919  // extract, but we don't know which it'll be so we have to try both.
6920  if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
6921    RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
6922    if (!RHS.getNode())
6923      return SDValue();
6924
6925    RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
6926  } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
6927    LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
6928    if (!LHS.getNode())
6929      return SDValue();
6930
6931    LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
6932  }
6933
6934  return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
6935}
6936
6937// Massage DAGs which we can use the high-half "long" operations on into
6938// something isel will recognize better. E.g.
6939//
6940// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
6941//   (aarch64_neon_umull (extract_high (v2i64 vec)))
6942//                     (extract_high (v2i64 (dup128 scalar)))))
6943//
6944static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
6945                                       TargetLowering::DAGCombinerInfo &DCI,
6946                                       SelectionDAG &DAG) {
6947  if (DCI.isBeforeLegalizeOps())
6948    return SDValue();
6949
6950  SDValue LHS = N->getOperand(1);
6951  SDValue RHS = N->getOperand(2);
6952  assert(LHS.getValueType().is64BitVector() &&
6953         RHS.getValueType().is64BitVector() &&
6954         "unexpected shape for long operation");
6955
6956  // Either node could be a DUP, but it's not worth doing both of them (you'd
6957  // just as well use the non-high version) so look for a corresponding extract
6958  // operation on the other "wing".
6959  if (isEssentiallyExtractSubvector(LHS)) {
6960    RHS = tryExtendDUPToExtractHigh(RHS, DAG);
6961    if (!RHS.getNode())
6962      return SDValue();
6963  } else if (isEssentiallyExtractSubvector(RHS)) {
6964    LHS = tryExtendDUPToExtractHigh(LHS, DAG);
6965    if (!LHS.getNode())
6966      return SDValue();
6967  }
6968
6969  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
6970                     N->getOperand(0), LHS, RHS);
6971}
6972
6973static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
6974  MVT ElemTy = N->getSimpleValueType(0).getScalarType();
6975  unsigned ElemBits = ElemTy.getSizeInBits();
6976
6977  int64_t ShiftAmount;
6978  if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
6979    APInt SplatValue, SplatUndef;
6980    unsigned SplatBitSize;
6981    bool HasAnyUndefs;
6982    if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
6983                              HasAnyUndefs, ElemBits) ||
6984        SplatBitSize != ElemBits)
6985      return SDValue();
6986
6987    ShiftAmount = SplatValue.getSExtValue();
6988  } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
6989    ShiftAmount = CVN->getSExtValue();
6990  } else
6991    return SDValue();
6992
6993  unsigned Opcode;
6994  bool IsRightShift;
6995  switch (IID) {
6996  default:
6997    llvm_unreachable("Unknown shift intrinsic");
6998  case Intrinsic::aarch64_neon_sqshl:
6999    Opcode = AArch64ISD::SQSHL_I;
7000    IsRightShift = false;
7001    break;
7002  case Intrinsic::aarch64_neon_uqshl:
7003    Opcode = AArch64ISD::UQSHL_I;
7004    IsRightShift = false;
7005    break;
7006  case Intrinsic::aarch64_neon_srshl:
7007    Opcode = AArch64ISD::SRSHR_I;
7008    IsRightShift = true;
7009    break;
7010  case Intrinsic::aarch64_neon_urshl:
7011    Opcode = AArch64ISD::URSHR_I;
7012    IsRightShift = true;
7013    break;
7014  case Intrinsic::aarch64_neon_sqshlu:
7015    Opcode = AArch64ISD::SQSHLU_I;
7016    IsRightShift = false;
7017    break;
7018  }
7019
7020  if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
7021    return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7022                       DAG.getConstant(-ShiftAmount, MVT::i32));
7023  else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount <= ElemBits)
7024    return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7025                       DAG.getConstant(ShiftAmount, MVT::i32));
7026
7027  return SDValue();
7028}
7029
7030// The CRC32[BH] instructions ignore the high bits of their data operand. Since
7031// the intrinsics must be legal and take an i32, this means there's almost
7032// certainly going to be a zext in the DAG which we can eliminate.
7033static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
7034  SDValue AndN = N->getOperand(2);
7035  if (AndN.getOpcode() != ISD::AND)
7036    return SDValue();
7037
7038  ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
7039  if (!CMask || CMask->getZExtValue() != Mask)
7040    return SDValue();
7041
7042  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
7043                     N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
7044}
7045
7046static SDValue performIntrinsicCombine(SDNode *N,
7047                                       TargetLowering::DAGCombinerInfo &DCI,
7048                                       const AArch64Subtarget *Subtarget) {
7049  SelectionDAG &DAG = DCI.DAG;
7050  unsigned IID = getIntrinsicID(N);
7051  switch (IID) {
7052  default:
7053    break;
7054  case Intrinsic::aarch64_neon_vcvtfxs2fp:
7055  case Intrinsic::aarch64_neon_vcvtfxu2fp:
7056    return tryCombineFixedPointConvert(N, DCI, DAG);
7057    break;
7058  case Intrinsic::aarch64_neon_fmax:
7059    return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
7060                       N->getOperand(1), N->getOperand(2));
7061  case Intrinsic::aarch64_neon_fmin:
7062    return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
7063                       N->getOperand(1), N->getOperand(2));
7064  case Intrinsic::aarch64_neon_smull:
7065  case Intrinsic::aarch64_neon_umull:
7066  case Intrinsic::aarch64_neon_pmull:
7067  case Intrinsic::aarch64_neon_sqdmull:
7068    return tryCombineLongOpWithDup(IID, N, DCI, DAG);
7069  case Intrinsic::aarch64_neon_sqshl:
7070  case Intrinsic::aarch64_neon_uqshl:
7071  case Intrinsic::aarch64_neon_sqshlu:
7072  case Intrinsic::aarch64_neon_srshl:
7073  case Intrinsic::aarch64_neon_urshl:
7074    return tryCombineShiftImm(IID, N, DAG);
7075  case Intrinsic::aarch64_crc32b:
7076  case Intrinsic::aarch64_crc32cb:
7077    return tryCombineCRC32(0xff, N, DAG);
7078  case Intrinsic::aarch64_crc32h:
7079  case Intrinsic::aarch64_crc32ch:
7080    return tryCombineCRC32(0xffff, N, DAG);
7081  }
7082  return SDValue();
7083}
7084
7085static SDValue performExtendCombine(SDNode *N,
7086                                    TargetLowering::DAGCombinerInfo &DCI,
7087                                    SelectionDAG &DAG) {
7088  // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
7089  // we can convert that DUP into another extract_high (of a bigger DUP), which
7090  // helps the backend to decide that an sabdl2 would be useful, saving a real
7091  // extract_high operation.
7092  if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
7093      N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
7094    SDNode *ABDNode = N->getOperand(0).getNode();
7095    unsigned IID = getIntrinsicID(ABDNode);
7096    if (IID == Intrinsic::aarch64_neon_sabd ||
7097        IID == Intrinsic::aarch64_neon_uabd) {
7098      SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
7099      if (!NewABD.getNode())
7100        return SDValue();
7101
7102      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
7103                         NewABD);
7104    }
7105  }
7106
7107  // This is effectively a custom type legalization for AArch64.
7108  //
7109  // Type legalization will split an extend of a small, legal, type to a larger
7110  // illegal type by first splitting the destination type, often creating
7111  // illegal source types, which then get legalized in isel-confusing ways,
7112  // leading to really terrible codegen. E.g.,
7113  //   %result = v8i32 sext v8i8 %value
7114  // becomes
7115  //   %losrc = extract_subreg %value, ...
7116  //   %hisrc = extract_subreg %value, ...
7117  //   %lo = v4i32 sext v4i8 %losrc
7118  //   %hi = v4i32 sext v4i8 %hisrc
7119  // Things go rapidly downhill from there.
7120  //
7121  // For AArch64, the [sz]ext vector instructions can only go up one element
7122  // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
7123  // take two instructions.
7124  //
7125  // This implies that the most efficient way to do the extend from v8i8
7126  // to two v4i32 values is to first extend the v8i8 to v8i16, then do
7127  // the normal splitting to happen for the v8i16->v8i32.
7128
7129  // This is pre-legalization to catch some cases where the default
7130  // type legalization will create ill-tempered code.
7131  if (!DCI.isBeforeLegalizeOps())
7132    return SDValue();
7133
7134  // We're only interested in cleaning things up for non-legal vector types
7135  // here. If both the source and destination are legal, things will just
7136  // work naturally without any fiddling.
7137  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7138  EVT ResVT = N->getValueType(0);
7139  if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
7140    return SDValue();
7141  // If the vector type isn't a simple VT, it's beyond the scope of what
7142  // we're  worried about here. Let legalization do its thing and hope for
7143  // the best.
7144  if (!ResVT.isSimple())
7145    return SDValue();
7146
7147  SDValue Src = N->getOperand(0);
7148  MVT SrcVT = Src->getValueType(0).getSimpleVT();
7149  // If the source VT is a 64-bit vector, we can play games and get the
7150  // better results we want.
7151  if (SrcVT.getSizeInBits() != 64)
7152    return SDValue();
7153
7154  unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
7155  unsigned ElementCount = SrcVT.getVectorNumElements();
7156  SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
7157  SDLoc DL(N);
7158  Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
7159
7160  // Now split the rest of the operation into two halves, each with a 64
7161  // bit source.
7162  EVT LoVT, HiVT;
7163  SDValue Lo, Hi;
7164  unsigned NumElements = ResVT.getVectorNumElements();
7165  assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7166  LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
7167                                 ResVT.getVectorElementType(), NumElements / 2);
7168
7169  EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
7170                               LoVT.getVectorNumElements());
7171  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
7172                   DAG.getIntPtrConstant(0));
7173  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
7174                   DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
7175  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
7176  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
7177
7178  // Now combine the parts back together so we still have a single result
7179  // like the combiner expects.
7180  return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
7181}
7182
7183/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
7184/// value. The load store optimizer pass will merge them to store pair stores.
7185/// This has better performance than a splat of the scalar followed by a split
7186/// vector store. Even if the stores are not merged it is four stores vs a dup,
7187/// followed by an ext.b and two stores.
7188static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
7189  SDValue StVal = St->getValue();
7190  EVT VT = StVal.getValueType();
7191
7192  // Don't replace floating point stores, they possibly won't be transformed to
7193  // stp because of the store pair suppress pass.
7194  if (VT.isFloatingPoint())
7195    return SDValue();
7196
7197  // Check for insert vector elements.
7198  if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
7199    return SDValue();
7200
7201  // We can express a splat as store pair(s) for 2 or 4 elements.
7202  unsigned NumVecElts = VT.getVectorNumElements();
7203  if (NumVecElts != 4 && NumVecElts != 2)
7204    return SDValue();
7205  SDValue SplatVal = StVal.getOperand(1);
7206  unsigned RemainInsertElts = NumVecElts - 1;
7207
7208  // Check that this is a splat.
7209  while (--RemainInsertElts) {
7210    SDValue NextInsertElt = StVal.getOperand(0);
7211    if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
7212      return SDValue();
7213    if (NextInsertElt.getOperand(1) != SplatVal)
7214      return SDValue();
7215    StVal = NextInsertElt;
7216  }
7217  unsigned OrigAlignment = St->getAlignment();
7218  unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
7219  unsigned Alignment = std::min(OrigAlignment, EltOffset);
7220
7221  // Create scalar stores. This is at least as good as the code sequence for a
7222  // split unaligned store wich is a dup.s, ext.b, and two stores.
7223  // Most of the time the three stores should be replaced by store pair
7224  // instructions (stp).
7225  SDLoc DL(St);
7226  SDValue BasePtr = St->getBasePtr();
7227  SDValue NewST1 =
7228      DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
7229                   St->isVolatile(), St->isNonTemporal(), St->getAlignment());
7230
7231  unsigned Offset = EltOffset;
7232  while (--NumVecElts) {
7233    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7234                                    DAG.getConstant(Offset, MVT::i64));
7235    NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
7236                          St->getPointerInfo(), St->isVolatile(),
7237                          St->isNonTemporal(), Alignment);
7238    Offset += EltOffset;
7239  }
7240  return NewST1;
7241}
7242
7243static SDValue performSTORECombine(SDNode *N,
7244                                   TargetLowering::DAGCombinerInfo &DCI,
7245                                   SelectionDAG &DAG,
7246                                   const AArch64Subtarget *Subtarget) {
7247  if (!DCI.isBeforeLegalize())
7248    return SDValue();
7249
7250  StoreSDNode *S = cast<StoreSDNode>(N);
7251  if (S->isVolatile())
7252    return SDValue();
7253
7254  // Cyclone has bad performance on unaligned 16B stores when crossing line and
7255  // page boundries. We want to split such stores.
7256  if (!Subtarget->isCyclone())
7257    return SDValue();
7258
7259  // Don't split at Oz.
7260  MachineFunction &MF = DAG.getMachineFunction();
7261  bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute(
7262      AttributeSet::FunctionIndex, Attribute::MinSize);
7263  if (IsMinSize)
7264    return SDValue();
7265
7266  SDValue StVal = S->getValue();
7267  EVT VT = StVal.getValueType();
7268
7269  // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
7270  // those up regresses performance on micro-benchmarks and olden/bh.
7271  if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
7272    return SDValue();
7273
7274  // Split unaligned 16B stores. They are terrible for performance.
7275  // Don't split stores with alignment of 1 or 2. Code that uses clang vector
7276  // extensions can use this to mark that it does not want splitting to happen
7277  // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
7278  // eliminating alignment hazards is only 1 in 8 for alignment of 2.
7279  if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
7280      S->getAlignment() <= 2)
7281    return SDValue();
7282
7283  // If we get a splat of a scalar convert this vector store to a store of
7284  // scalars. They will be merged into store pairs thereby removing two
7285  // instructions.
7286  SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
7287  if (ReplacedSplat != SDValue())
7288    return ReplacedSplat;
7289
7290  SDLoc DL(S);
7291  unsigned NumElts = VT.getVectorNumElements() / 2;
7292  // Split VT into two.
7293  EVT HalfVT =
7294      EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
7295  SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
7296                                   DAG.getIntPtrConstant(0));
7297  SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
7298                                   DAG.getIntPtrConstant(NumElts));
7299  SDValue BasePtr = S->getBasePtr();
7300  SDValue NewST1 =
7301      DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
7302                   S->isVolatile(), S->isNonTemporal(), S->getAlignment());
7303  SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7304                                  DAG.getConstant(8, MVT::i64));
7305  return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
7306                      S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
7307                      S->getAlignment());
7308}
7309
7310/// Target-specific DAG combine function for post-increment LD1 (lane) and
7311/// post-increment LD1R.
7312static SDValue performPostLD1Combine(SDNode *N,
7313                                     TargetLowering::DAGCombinerInfo &DCI,
7314                                     bool IsLaneOp) {
7315  if (DCI.isBeforeLegalizeOps())
7316    return SDValue();
7317
7318  SelectionDAG &DAG = DCI.DAG;
7319  EVT VT = N->getValueType(0);
7320
7321  unsigned LoadIdx = IsLaneOp ? 1 : 0;
7322  SDNode *LD = N->getOperand(LoadIdx).getNode();
7323  // If it is not LOAD, can not do such combine.
7324  if (LD->getOpcode() != ISD::LOAD)
7325    return SDValue();
7326
7327  LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
7328  EVT MemVT = LoadSDN->getMemoryVT();
7329  // Check if memory operand is the same type as the vector element.
7330  if (MemVT != VT.getVectorElementType())
7331    return SDValue();
7332
7333  // Check if there are other uses. If so, do not combine as it will introduce
7334  // an extra load.
7335  for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
7336       ++UI) {
7337    if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
7338      continue;
7339    if (*UI != N)
7340      return SDValue();
7341  }
7342
7343  SDValue Addr = LD->getOperand(1);
7344  SDValue Vector = N->getOperand(0);
7345  // Search for a use of the address operand that is an increment.
7346  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
7347       Addr.getNode()->use_end(); UI != UE; ++UI) {
7348    SDNode *User = *UI;
7349    if (User->getOpcode() != ISD::ADD
7350        || UI.getUse().getResNo() != Addr.getResNo())
7351      continue;
7352
7353    // Check that the add is independent of the load.  Otherwise, folding it
7354    // would create a cycle.
7355    if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
7356      continue;
7357    // Also check that add is not used in the vector operand.  This would also
7358    // create a cycle.
7359    if (User->isPredecessorOf(Vector.getNode()))
7360      continue;
7361
7362    // If the increment is a constant, it must match the memory ref size.
7363    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7364    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7365      uint32_t IncVal = CInc->getZExtValue();
7366      unsigned NumBytes = VT.getScalarSizeInBits() / 8;
7367      if (IncVal != NumBytes)
7368        continue;
7369      Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7370    }
7371
7372    SmallVector<SDValue, 8> Ops;
7373    Ops.push_back(LD->getOperand(0));  // Chain
7374    if (IsLaneOp) {
7375      Ops.push_back(Vector);           // The vector to be inserted
7376      Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
7377    }
7378    Ops.push_back(Addr);
7379    Ops.push_back(Inc);
7380
7381    EVT Tys[3] = { VT, MVT::i64, MVT::Other };
7382    SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, 3));
7383    unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
7384    SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
7385                                           MemVT,
7386                                           LoadSDN->getMemOperand());
7387
7388    // Update the uses.
7389    std::vector<SDValue> NewResults;
7390    NewResults.push_back(SDValue(LD, 0));             // The result of load
7391    NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
7392    DCI.CombineTo(LD, NewResults);
7393    DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result
7394    DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register
7395
7396    break;
7397  }
7398  return SDValue();
7399}
7400
7401/// Target-specific DAG combine function for NEON load/store intrinsics
7402/// to merge base address updates.
7403static SDValue performNEONPostLDSTCombine(SDNode *N,
7404                                          TargetLowering::DAGCombinerInfo &DCI,
7405                                          SelectionDAG &DAG) {
7406  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7407    return SDValue();
7408
7409  unsigned AddrOpIdx = N->getNumOperands() - 1;
7410  SDValue Addr = N->getOperand(AddrOpIdx);
7411
7412  // Search for a use of the address operand that is an increment.
7413  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7414       UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7415    SDNode *User = *UI;
7416    if (User->getOpcode() != ISD::ADD ||
7417        UI.getUse().getResNo() != Addr.getResNo())
7418      continue;
7419
7420    // Check that the add is independent of the load/store.  Otherwise, folding
7421    // it would create a cycle.
7422    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7423      continue;
7424
7425    // Find the new opcode for the updating load/store.
7426    bool IsStore = false;
7427    bool IsLaneOp = false;
7428    bool IsDupOp = false;
7429    unsigned NewOpc = 0;
7430    unsigned NumVecs = 0;
7431    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7432    switch (IntNo) {
7433    default: llvm_unreachable("unexpected intrinsic for Neon base update");
7434    case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post;
7435      NumVecs = 2; break;
7436    case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post;
7437      NumVecs = 3; break;
7438    case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post;
7439      NumVecs = 4; break;
7440    case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post;
7441      NumVecs = 2; IsStore = true; break;
7442    case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post;
7443      NumVecs = 3; IsStore = true; break;
7444    case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post;
7445      NumVecs = 4; IsStore = true; break;
7446    case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post;
7447      NumVecs = 2; break;
7448    case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post;
7449      NumVecs = 3; break;
7450    case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post;
7451      NumVecs = 4; break;
7452    case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post;
7453      NumVecs = 2; IsStore = true; break;
7454    case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post;
7455      NumVecs = 3; IsStore = true; break;
7456    case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post;
7457      NumVecs = 4; IsStore = true; break;
7458    case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost;
7459      NumVecs = 2; IsDupOp = true; break;
7460    case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost;
7461      NumVecs = 3; IsDupOp = true; break;
7462    case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost;
7463      NumVecs = 4; IsDupOp = true; break;
7464    case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost;
7465      NumVecs = 2; IsLaneOp = true; break;
7466    case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost;
7467      NumVecs = 3; IsLaneOp = true; break;
7468    case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost;
7469      NumVecs = 4; IsLaneOp = true; break;
7470    case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost;
7471      NumVecs = 2; IsStore = true; IsLaneOp = true; break;
7472    case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost;
7473      NumVecs = 3; IsStore = true; IsLaneOp = true; break;
7474    case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost;
7475      NumVecs = 4; IsStore = true; IsLaneOp = true; break;
7476    }
7477
7478    EVT VecTy;
7479    if (IsStore)
7480      VecTy = N->getOperand(2).getValueType();
7481    else
7482      VecTy = N->getValueType(0);
7483
7484    // If the increment is a constant, it must match the memory ref size.
7485    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7486    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7487      uint32_t IncVal = CInc->getZExtValue();
7488      unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7489      if (IsLaneOp || IsDupOp)
7490        NumBytes /= VecTy.getVectorNumElements();
7491      if (IncVal != NumBytes)
7492        continue;
7493      Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7494    }
7495    SmallVector<SDValue, 8> Ops;
7496    Ops.push_back(N->getOperand(0)); // Incoming chain
7497    // Load lane and store have vector list as input.
7498    if (IsLaneOp || IsStore)
7499      for (unsigned i = 2; i < AddrOpIdx; ++i)
7500        Ops.push_back(N->getOperand(i));
7501    Ops.push_back(Addr); // Base register
7502    Ops.push_back(Inc);
7503
7504    // Return Types.
7505    EVT Tys[6];
7506    unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
7507    unsigned n;
7508    for (n = 0; n < NumResultVecs; ++n)
7509      Tys[n] = VecTy;
7510    Tys[n++] = MVT::i64;  // Type of write back register
7511    Tys[n] = MVT::Other;  // Type of the chain
7512    SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs + 2));
7513
7514    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7515    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
7516                                           MemInt->getMemoryVT(),
7517                                           MemInt->getMemOperand());
7518
7519    // Update the uses.
7520    std::vector<SDValue> NewResults;
7521    for (unsigned i = 0; i < NumResultVecs; ++i) {
7522      NewResults.push_back(SDValue(UpdN.getNode(), i));
7523    }
7524    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
7525    DCI.CombineTo(N, NewResults);
7526    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7527
7528    break;
7529  }
7530  return SDValue();
7531}
7532
7533// Optimize compare with zero and branch.
7534static SDValue performBRCONDCombine(SDNode *N,
7535                                    TargetLowering::DAGCombinerInfo &DCI,
7536                                    SelectionDAG &DAG) {
7537  SDValue Chain = N->getOperand(0);
7538  SDValue Dest = N->getOperand(1);
7539  SDValue CCVal = N->getOperand(2);
7540  SDValue Cmp = N->getOperand(3);
7541
7542  assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
7543  unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
7544  if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
7545    return SDValue();
7546
7547  unsigned CmpOpc = Cmp.getOpcode();
7548  if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
7549    return SDValue();
7550
7551  // Only attempt folding if there is only one use of the flag and no use of the
7552  // value.
7553  if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
7554    return SDValue();
7555
7556  SDValue LHS = Cmp.getOperand(0);
7557  SDValue RHS = Cmp.getOperand(1);
7558
7559  assert(LHS.getValueType() == RHS.getValueType() &&
7560         "Expected the value type to be the same for both operands!");
7561  if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
7562    return SDValue();
7563
7564  if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
7565    std::swap(LHS, RHS);
7566
7567  if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
7568    return SDValue();
7569
7570  if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
7571      LHS.getOpcode() == ISD::SRL)
7572    return SDValue();
7573
7574  // Fold the compare into the branch instruction.
7575  SDValue BR;
7576  if (CC == AArch64CC::EQ)
7577    BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
7578  else
7579    BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
7580
7581  // Do not add new nodes to DAG combiner worklist.
7582  DCI.CombineTo(N, BR, false);
7583
7584  return SDValue();
7585}
7586
7587// vselect (v1i1 setcc) ->
7588//     vselect (v1iXX setcc)  (XX is the size of the compared operand type)
7589// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
7590// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
7591// such VSELECT.
7592static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
7593  SDValue N0 = N->getOperand(0);
7594  EVT CCVT = N0.getValueType();
7595
7596  if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
7597      CCVT.getVectorElementType() != MVT::i1)
7598    return SDValue();
7599
7600  EVT ResVT = N->getValueType(0);
7601  EVT CmpVT = N0.getOperand(0).getValueType();
7602  // Only combine when the result type is of the same size as the compared
7603  // operands.
7604  if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
7605    return SDValue();
7606
7607  SDValue IfTrue = N->getOperand(1);
7608  SDValue IfFalse = N->getOperand(2);
7609  SDValue SetCC =
7610      DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
7611                   N0.getOperand(0), N0.getOperand(1),
7612                   cast<CondCodeSDNode>(N0.getOperand(2))->get());
7613  return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
7614                     IfTrue, IfFalse);
7615}
7616
7617/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
7618/// the compare-mask instructions rather than going via NZCV, even if LHS and
7619/// RHS are really scalar. This replaces any scalar setcc in the above pattern
7620/// with a vector one followed by a DUP shuffle on the result.
7621static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
7622  SDValue N0 = N->getOperand(0);
7623  EVT ResVT = N->getValueType(0);
7624
7625  if (!N->getOperand(1).getValueType().isVector())
7626    return SDValue();
7627
7628  if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
7629    return SDValue();
7630
7631  SDLoc DL(N0);
7632
7633  EVT SrcVT = N0.getOperand(0).getValueType();
7634  SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT,
7635                           ResVT.getSizeInBits() / SrcVT.getSizeInBits());
7636  EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
7637
7638  // First perform a vector comparison, where lane 0 is the one we're interested
7639  // in.
7640  SDValue LHS =
7641      DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
7642  SDValue RHS =
7643      DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
7644  SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
7645
7646  // Now duplicate the comparison mask we want across all other lanes.
7647  SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
7648  SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
7649  Mask = DAG.getNode(ISD::BITCAST, DL, ResVT.changeVectorElementTypeToInteger(),
7650                     Mask);
7651
7652  return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
7653}
7654
7655SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
7656                                                 DAGCombinerInfo &DCI) const {
7657  SelectionDAG &DAG = DCI.DAG;
7658  switch (N->getOpcode()) {
7659  default:
7660    break;
7661  case ISD::ADD:
7662  case ISD::SUB:
7663    return performAddSubLongCombine(N, DCI, DAG);
7664  case ISD::XOR:
7665    return performXorCombine(N, DAG, DCI, Subtarget);
7666  case ISD::MUL:
7667    return performMulCombine(N, DAG, DCI, Subtarget);
7668  case ISD::SINT_TO_FP:
7669  case ISD::UINT_TO_FP:
7670    return performIntToFpCombine(N, DAG);
7671  case ISD::OR:
7672    return performORCombine(N, DCI, Subtarget);
7673  case ISD::INTRINSIC_WO_CHAIN:
7674    return performIntrinsicCombine(N, DCI, Subtarget);
7675  case ISD::ANY_EXTEND:
7676  case ISD::ZERO_EXTEND:
7677  case ISD::SIGN_EXTEND:
7678    return performExtendCombine(N, DCI, DAG);
7679  case ISD::BITCAST:
7680    return performBitcastCombine(N, DCI, DAG);
7681  case ISD::CONCAT_VECTORS:
7682    return performConcatVectorsCombine(N, DCI, DAG);
7683  case ISD::SELECT:
7684    return performSelectCombine(N, DAG);
7685  case ISD::VSELECT:
7686    return performVSelectCombine(N, DCI.DAG);
7687  case ISD::STORE:
7688    return performSTORECombine(N, DCI, DAG, Subtarget);
7689  case AArch64ISD::BRCOND:
7690    return performBRCONDCombine(N, DCI, DAG);
7691  case AArch64ISD::DUP:
7692    return performPostLD1Combine(N, DCI, false);
7693  case ISD::INSERT_VECTOR_ELT:
7694    return performPostLD1Combine(N, DCI, true);
7695  case ISD::INTRINSIC_VOID:
7696  case ISD::INTRINSIC_W_CHAIN:
7697    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
7698    case Intrinsic::aarch64_neon_ld2:
7699    case Intrinsic::aarch64_neon_ld3:
7700    case Intrinsic::aarch64_neon_ld4:
7701    case Intrinsic::aarch64_neon_ld1x2:
7702    case Intrinsic::aarch64_neon_ld1x3:
7703    case Intrinsic::aarch64_neon_ld1x4:
7704    case Intrinsic::aarch64_neon_ld2lane:
7705    case Intrinsic::aarch64_neon_ld3lane:
7706    case Intrinsic::aarch64_neon_ld4lane:
7707    case Intrinsic::aarch64_neon_ld2r:
7708    case Intrinsic::aarch64_neon_ld3r:
7709    case Intrinsic::aarch64_neon_ld4r:
7710    case Intrinsic::aarch64_neon_st2:
7711    case Intrinsic::aarch64_neon_st3:
7712    case Intrinsic::aarch64_neon_st4:
7713    case Intrinsic::aarch64_neon_st1x2:
7714    case Intrinsic::aarch64_neon_st1x3:
7715    case Intrinsic::aarch64_neon_st1x4:
7716    case Intrinsic::aarch64_neon_st2lane:
7717    case Intrinsic::aarch64_neon_st3lane:
7718    case Intrinsic::aarch64_neon_st4lane:
7719      return performNEONPostLDSTCombine(N, DCI, DAG);
7720    default:
7721      break;
7722    }
7723  }
7724  return SDValue();
7725}
7726
7727// Check if the return value is used as only a return value, as otherwise
7728// we can't perform a tail-call. In particular, we need to check for
7729// target ISD nodes that are returns and any other "odd" constructs
7730// that the generic analysis code won't necessarily catch.
7731bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
7732                                               SDValue &Chain) const {
7733  if (N->getNumValues() != 1)
7734    return false;
7735  if (!N->hasNUsesOfValue(1, 0))
7736    return false;
7737
7738  SDValue TCChain = Chain;
7739  SDNode *Copy = *N->use_begin();
7740  if (Copy->getOpcode() == ISD::CopyToReg) {
7741    // If the copy has a glue operand, we conservatively assume it isn't safe to
7742    // perform a tail call.
7743    if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
7744        MVT::Glue)
7745      return false;
7746    TCChain = Copy->getOperand(0);
7747  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
7748    return false;
7749
7750  bool HasRet = false;
7751  for (SDNode *Node : Copy->uses()) {
7752    if (Node->getOpcode() != AArch64ISD::RET_FLAG)
7753      return false;
7754    HasRet = true;
7755  }
7756
7757  if (!HasRet)
7758    return false;
7759
7760  Chain = TCChain;
7761  return true;
7762}
7763
7764// Return whether the an instruction can potentially be optimized to a tail
7765// call. This will cause the optimizers to attempt to move, or duplicate,
7766// return instructions to help enable tail call optimizations for this
7767// instruction.
7768bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
7769  if (!CI->isTailCall())
7770    return false;
7771
7772  return true;
7773}
7774
7775bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
7776                                                   SDValue &Offset,
7777                                                   ISD::MemIndexedMode &AM,
7778                                                   bool &IsInc,
7779                                                   SelectionDAG &DAG) const {
7780  if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
7781    return false;
7782
7783  Base = Op->getOperand(0);
7784  // All of the indexed addressing mode instructions take a signed
7785  // 9 bit immediate offset.
7786  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
7787    int64_t RHSC = (int64_t)RHS->getZExtValue();
7788    if (RHSC >= 256 || RHSC <= -256)
7789      return false;
7790    IsInc = (Op->getOpcode() == ISD::ADD);
7791    Offset = Op->getOperand(1);
7792    return true;
7793  }
7794  return false;
7795}
7796
7797bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
7798                                                      SDValue &Offset,
7799                                                      ISD::MemIndexedMode &AM,
7800                                                      SelectionDAG &DAG) const {
7801  EVT VT;
7802  SDValue Ptr;
7803  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7804    VT = LD->getMemoryVT();
7805    Ptr = LD->getBasePtr();
7806  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7807    VT = ST->getMemoryVT();
7808    Ptr = ST->getBasePtr();
7809  } else
7810    return false;
7811
7812  bool IsInc;
7813  if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
7814    return false;
7815  AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
7816  return true;
7817}
7818
7819bool AArch64TargetLowering::getPostIndexedAddressParts(
7820    SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
7821    ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
7822  EVT VT;
7823  SDValue Ptr;
7824  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7825    VT = LD->getMemoryVT();
7826    Ptr = LD->getBasePtr();
7827  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7828    VT = ST->getMemoryVT();
7829    Ptr = ST->getBasePtr();
7830  } else
7831    return false;
7832
7833  bool IsInc;
7834  if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
7835    return false;
7836  // Post-indexing updates the base, so it's not a valid transform
7837  // if that's not the same as the load's pointer.
7838  if (Ptr != Base)
7839    return false;
7840  AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
7841  return true;
7842}
7843
7844void AArch64TargetLowering::ReplaceNodeResults(
7845    SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
7846  switch (N->getOpcode()) {
7847  default:
7848    llvm_unreachable("Don't know how to custom expand this");
7849  case ISD::FP_TO_UINT:
7850  case ISD::FP_TO_SINT:
7851    assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
7852    // Let normal code take care of it by not adding anything to Results.
7853    return;
7854  }
7855}
7856
7857bool AArch64TargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const {
7858  // Loads and stores less than 128-bits are already atomic; ones above that
7859  // are doomed anyway, so defer to the default libcall and blame the OS when
7860  // things go wrong:
7861  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
7862    return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128;
7863  else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
7864    return LI->getType()->getPrimitiveSizeInBits() == 128;
7865
7866  // For the real atomic operations, we have ldxr/stxr up to 128 bits.
7867  return Inst->getType()->getPrimitiveSizeInBits() <= 128;
7868}
7869
7870Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
7871                                             AtomicOrdering Ord) const {
7872  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
7873  Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
7874  bool IsAcquire =
7875      Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent;
7876
7877  // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
7878  // intrinsic must return {i64, i64} and we have to recombine them into a
7879  // single i128 here.
7880  if (ValTy->getPrimitiveSizeInBits() == 128) {
7881    Intrinsic::ID Int =
7882        IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
7883    Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
7884
7885    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
7886    Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
7887
7888    Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
7889    Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
7890    Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
7891    Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
7892    return Builder.CreateOr(
7893        Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
7894  }
7895
7896  Type *Tys[] = { Addr->getType() };
7897  Intrinsic::ID Int =
7898      IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
7899  Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
7900
7901  return Builder.CreateTruncOrBitCast(
7902      Builder.CreateCall(Ldxr, Addr),
7903      cast<PointerType>(Addr->getType())->getElementType());
7904}
7905
7906Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
7907                                                   Value *Val, Value *Addr,
7908                                                   AtomicOrdering Ord) const {
7909  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
7910  bool IsRelease =
7911      Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent;
7912
7913  // Since the intrinsics must have legal type, the i128 intrinsics take two
7914  // parameters: "i64, i64". We must marshal Val into the appropriate form
7915  // before the call.
7916  if (Val->getType()->getPrimitiveSizeInBits() == 128) {
7917    Intrinsic::ID Int =
7918        IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
7919    Function *Stxr = Intrinsic::getDeclaration(M, Int);
7920    Type *Int64Ty = Type::getInt64Ty(M->getContext());
7921
7922    Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
7923    Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
7924    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
7925    return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
7926  }
7927
7928  Intrinsic::ID Int =
7929      IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
7930  Type *Tys[] = { Addr->getType() };
7931  Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
7932
7933  return Builder.CreateCall2(
7934      Stxr, Builder.CreateZExtOrBitCast(
7935                Val, Stxr->getFunctionType()->getParamType(0)),
7936      Addr);
7937}
7938