AArch64ISelLowering.h revision 97577757c6dc84233ad10cd432664257e593e76d
1//==-- AArch64ISelLowering.h - AArch64 DAG Lowering Interface ----*- C++ -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AArch64 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TARGET_AARCH64_ISELLOWERING_H
16#define LLVM_TARGET_AARCH64_ISELLOWERING_H
17
18#include "Utils/AArch64BaseInfo.h"
19#include "llvm/CodeGen/CallingConvLower.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/IR/Intrinsics.h"
23
24namespace llvm {
25namespace AArch64ISD {
26  enum NodeType {
27    // Start the numbering from where ISD NodeType finishes.
28    FIRST_NUMBER = ISD::BUILTIN_OP_END,
29
30    // This is a conditional branch which also notes the flag needed
31    // (eq/sgt/...). A64 puts this information on the branches rather than
32    // compares as LLVM does.
33    BR_CC,
34
35    // A node to be selected to an actual call operation: either BL or BLR in
36    // the absence of tail calls.
37    Call,
38
39    // Indicates a floating-point immediate which fits into the format required
40    // by the FMOV instructions. First (and only) operand is the 8-bit encoded
41    // value of that immediate.
42    FPMOV,
43
44    // Corresponds directly to an EXTR instruction. Operands are an LHS an RHS
45    // and an LSB.
46    EXTR,
47
48    // Wraps a load from the GOT, which should always be performed with a 64-bit
49    // load instruction. This prevents the DAG combiner folding a truncate to
50    // form a smaller memory access.
51    GOTLoad,
52
53    // Performs a bitfield insert. Arguments are: the value being inserted into;
54    // the value being inserted; least significant bit changed; width of the
55    // field.
56    BFI,
57
58    // Simply a convenient node inserted during ISelLowering to represent
59    // procedure return. Will almost certainly be selected to "RET".
60    Ret,
61
62    /// Extracts a field of contiguous bits from the source and sign extends
63    /// them into a single register. Arguments are: source; immr; imms. Note
64    /// these are pre-encoded since DAG matching can't cope with combining LSB
65    /// and Width into these values itself.
66    SBFX,
67
68    /// This is an A64-ification of the standard LLVM SELECT_CC operation. The
69    /// main difference is that it only has the values and an A64 condition,
70    /// which will be produced by a setcc instruction.
71    SELECT_CC,
72
73    /// This serves most of the functions of the LLVM SETCC instruction, for two
74    /// purposes. First, it prevents optimisations from fiddling with the
75    /// compare after we've moved the CondCode information onto the SELECT_CC or
76    /// BR_CC instructions. Second, it gives a legal instruction for the actual
77    /// comparison.
78    ///
79    /// It keeps a record of the condition flags asked for because certain
80    /// instructions are only valid for a subset of condition codes.
81    SETCC,
82
83    // Designates a node which is a tail call: both a call and a return
84    // instruction as far as selction is concerned. It should be selected to an
85    // unconditional branch. Has the usual plethora of call operands, but: 1st
86    // is callee, 2nd is stack adjustment required immediately before branch.
87    TC_RETURN,
88
89    // Designates a call used to support the TLS descriptor ABI. The call itself
90    // will be indirect ("BLR xN") but a relocation-specifier (".tlsdesccall
91    // var") must be attached somehow during code generation. It takes two
92    // operands: the callee and the symbol to be relocated against.
93    TLSDESCCALL,
94
95    // Leaf node which will be lowered to an appropriate MRS to obtain the
96    // thread pointer: TPIDR_EL0.
97    THREAD_POINTER,
98
99    /// Extracts a field of contiguous bits from the source and zero extends
100    /// them into a single register. Arguments are: source; immr; imms. Note
101    /// these are pre-encoded since DAG matching can't cope with combining LSB
102    /// and Width into these values itself.
103    UBFX,
104
105    // Wraps an address which the ISelLowering phase has decided should be
106    // created using the large memory model style: i.e. a sequence of four
107    // movz/movk instructions.
108    WrapperLarge,
109
110    // Wraps an address which the ISelLowering phase has decided should be
111    // created using the small memory model style: i.e. adrp/add or
112    // adrp/mem-op. This exists to prevent bare TargetAddresses which may never
113    // get selected.
114    WrapperSmall,
115
116    // Vector bitwise select
117    NEON_BSL,
118
119    // Vector move immediate
120    NEON_MOVIMM,
121
122    // Vector Move Inverted Immediate
123    NEON_MVNIMM,
124
125    // Vector FP move immediate
126    NEON_FMOVIMM,
127
128    // Vector Element reverse
129    NEON_REV64,
130    NEON_REV32,
131    NEON_REV16,
132
133    // Vector compare
134    NEON_CMP,
135
136    // Vector compare zero
137    NEON_CMPZ,
138
139    // Vector compare bitwise test
140    NEON_TST,
141
142    // Vector saturating shift
143    NEON_QSHLs,
144    NEON_QSHLu,
145
146    // Vector dup
147    NEON_VDUP,
148
149    // Vector dup by lane
150    NEON_VDUPLANE,
151
152    // Vector extract
153    NEON_VEXTRACT,
154
155    // NEON loads with post-increment base updates:
156    NEON_LD1_UPD = ISD::FIRST_TARGET_MEMORY_OPCODE,
157    NEON_LD2_UPD,
158    NEON_LD3_UPD,
159    NEON_LD4_UPD,
160    NEON_LD1x2_UPD,
161    NEON_LD1x3_UPD,
162    NEON_LD1x4_UPD,
163
164    // NEON stores with post-increment base updates:
165    NEON_ST1_UPD,
166    NEON_ST2_UPD,
167    NEON_ST3_UPD,
168    NEON_ST4_UPD,
169    NEON_ST1x2_UPD,
170    NEON_ST1x3_UPD,
171    NEON_ST1x4_UPD
172  };
173}
174
175
176class AArch64Subtarget;
177class AArch64TargetMachine;
178
179class AArch64TargetLowering : public TargetLowering {
180public:
181  explicit AArch64TargetLowering(AArch64TargetMachine &TM);
182
183  const char *getTargetNodeName(unsigned Opcode) const;
184
185  CCAssignFn *CCAssignFnForNode(CallingConv::ID CC) const;
186
187  SDValue LowerFormalArguments(SDValue Chain,
188                               CallingConv::ID CallConv, bool isVarArg,
189                               const SmallVectorImpl<ISD::InputArg> &Ins,
190                               SDLoc dl, SelectionDAG &DAG,
191                               SmallVectorImpl<SDValue> &InVals) const;
192
193  SDValue LowerReturn(SDValue Chain,
194                      CallingConv::ID CallConv, bool isVarArg,
195                      const SmallVectorImpl<ISD::OutputArg> &Outs,
196                      const SmallVectorImpl<SDValue> &OutVals,
197                      SDLoc dl, SelectionDAG &DAG) const;
198
199  SDValue LowerCall(CallLoweringInfo &CLI,
200                    SmallVectorImpl<SDValue> &InVals) const;
201
202  SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
203                          CallingConv::ID CallConv, bool IsVarArg,
204                          const SmallVectorImpl<ISD::InputArg> &Ins,
205                          SDLoc dl, SelectionDAG &DAG,
206                          SmallVectorImpl<SDValue> &InVals) const;
207
208  SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
209                            const AArch64Subtarget *ST) const;
210
211  SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
212
213  void SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, SDLoc DL,
214                           SDValue &Chain) const;
215
216  /// IsEligibleForTailCallOptimization - Check whether the call is eligible
217  /// for tail call optimization. Targets which want to do tail call
218  /// optimization should implement this function.
219  bool IsEligibleForTailCallOptimization(SDValue Callee,
220                                    CallingConv::ID CalleeCC,
221                                    bool IsVarArg,
222                                    bool IsCalleeStructRet,
223                                    bool IsCallerStructRet,
224                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
225                                    const SmallVectorImpl<SDValue> &OutVals,
226                                    const SmallVectorImpl<ISD::InputArg> &Ins,
227                                    SelectionDAG& DAG) const;
228
229  /// Finds the incoming stack arguments which overlap the given fixed stack
230  /// object and incorporates their load into the current chain. This prevents
231  /// an upcoming store from clobbering the stack argument before it's used.
232  SDValue addTokenForArgument(SDValue Chain, SelectionDAG &DAG,
233                              MachineFrameInfo *MFI, int ClobberedFI) const;
234
235  EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
236
237  bool DoesCalleeRestoreStack(CallingConv::ID CallCC, bool TailCallOpt) const;
238
239  bool IsTailCallConvention(CallingConv::ID CallCC) const;
240
241  SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
242
243  bool isLegalICmpImmediate(int64_t Val) const;
244  SDValue getSelectableIntSetCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
245                         SDValue &A64cc, SelectionDAG &DAG, SDLoc &dl) const;
246
247  virtual MachineBasicBlock *
248  EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
249
250  MachineBasicBlock *
251  emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *MBB,
252                   unsigned Size, unsigned Opcode) const;
253
254  MachineBasicBlock *
255  emitAtomicBinaryMinMax(MachineInstr *MI, MachineBasicBlock *BB,
256                         unsigned Size, unsigned CmpOp,
257                         A64CC::CondCodes Cond) const;
258  MachineBasicBlock *
259  emitAtomicCmpSwap(MachineInstr *MI, MachineBasicBlock *BB,
260                    unsigned Size) const;
261
262  MachineBasicBlock *
263  EmitF128CSEL(MachineInstr *MI, MachineBasicBlock *MBB) const;
264
265  SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
266  SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
267  SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
268  SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
269  SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
270  SDValue LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
271                          RTLIB::Libcall Call) const;
272  SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
273  SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
274  SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, bool IsSigned) const;
275  SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
276  SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
277
278  SDValue LowerGlobalAddressELFSmall(SDValue Op, SelectionDAG &DAG) const;
279  SDValue LowerGlobalAddressELFLarge(SDValue Op, SelectionDAG &DAG) const;
280  SDValue LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) const;
281
282  SDValue LowerTLSDescCall(SDValue SymAddr, SDValue DescAddr, SDLoc DL,
283                           SelectionDAG &DAG) const;
284  SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
285  SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG, bool IsSigned) const;
286  SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
287  SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
288  SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
289  SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
290  SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
291  SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
292
293  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
294
295  /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
296  /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
297  /// expanded to FMAs when this method returns true, otherwise fmuladd is
298  /// expanded to fmul + fadd.
299  virtual bool isFMAFasterThanFMulAndFAdd(EVT VT) const;
300
301  ConstraintType getConstraintType(const std::string &Constraint) const;
302
303  ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &Info,
304                                                  const char *Constraint) const;
305  void LowerAsmOperandForConstraint(SDValue Op,
306                                    std::string &Constraint,
307                                    std::vector<SDValue> &Ops,
308                                    SelectionDAG &DAG) const;
309
310  std::pair<unsigned, const TargetRegisterClass*>
311  getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const;
312
313  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
314                                  unsigned Intrinsic) const LLVM_OVERRIDE;
315
316private:
317  const InstrItineraryData *Itins;
318
319  const AArch64Subtarget *getSubtarget() const {
320    return &getTargetMachine().getSubtarget<AArch64Subtarget>();
321  }
322};
323enum NeonModImmType {
324  Neon_Mov_Imm,
325  Neon_Mvn_Imm
326};
327
328extern SDValue ScanBUILD_VECTOR(SDValue Op, bool &isOnlyLowElement,
329                                bool &usesOnlyOneValue, bool &hasDominantValue,
330                                bool &isConstant, bool &isUNDEF);
331} // namespace llvm
332
333#endif // LLVM_TARGET_AARCH64_ISELLOWERING_H
334