AArch64InstrInfo.cpp revision c8db087b3b6d8767db4fa54057ac8fa448d812ca
1//===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the AArch64 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64InstrInfo.h"
15#include "AArch64Subtarget.h"
16#include "MCTargetDesc/AArch64AddressingModes.h"
17#include "llvm/CodeGen/MachineFrameInfo.h"
18#include "llvm/CodeGen/MachineInstrBuilder.h"
19#include "llvm/CodeGen/MachineMemOperand.h"
20#include "llvm/CodeGen/MachineRegisterInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/MC/MCInst.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/TargetRegistry.h"
25
26using namespace llvm;
27
28#define GET_INSTRINFO_CTOR_DTOR
29#include "AArch64GenInstrInfo.inc"
30
31AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
32    : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP),
33      RI(this, &STI), Subtarget(STI) {}
34
35/// GetInstSize - Return the number of bytes of code the specified
36/// instruction may be.  This returns the maximum number of bytes.
37unsigned AArch64InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
38  const MachineBasicBlock &MBB = *MI->getParent();
39  const MachineFunction *MF = MBB.getParent();
40  const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
41
42  if (MI->getOpcode() == AArch64::INLINEASM)
43    return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
44
45  const MCInstrDesc &Desc = MI->getDesc();
46  switch (Desc.getOpcode()) {
47  default:
48    // Anything not explicitly designated otherwise is a nomal 4-byte insn.
49    return 4;
50  case TargetOpcode::DBG_VALUE:
51  case TargetOpcode::EH_LABEL:
52  case TargetOpcode::IMPLICIT_DEF:
53  case TargetOpcode::KILL:
54    return 0;
55  }
56
57  llvm_unreachable("GetInstSizeInBytes()- Unable to determin insn size");
58}
59
60static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
61                            SmallVectorImpl<MachineOperand> &Cond) {
62  // Block ends with fall-through condbranch.
63  switch (LastInst->getOpcode()) {
64  default:
65    llvm_unreachable("Unknown branch instruction?");
66  case AArch64::Bcc:
67    Target = LastInst->getOperand(1).getMBB();
68    Cond.push_back(LastInst->getOperand(0));
69    break;
70  case AArch64::CBZW:
71  case AArch64::CBZX:
72  case AArch64::CBNZW:
73  case AArch64::CBNZX:
74    Target = LastInst->getOperand(1).getMBB();
75    Cond.push_back(MachineOperand::CreateImm(-1));
76    Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
77    Cond.push_back(LastInst->getOperand(0));
78    break;
79  case AArch64::TBZW:
80  case AArch64::TBZX:
81  case AArch64::TBNZW:
82  case AArch64::TBNZX:
83    Target = LastInst->getOperand(2).getMBB();
84    Cond.push_back(MachineOperand::CreateImm(-1));
85    Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
86    Cond.push_back(LastInst->getOperand(0));
87    Cond.push_back(LastInst->getOperand(1));
88  }
89}
90
91// Branch analysis.
92bool AArch64InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
93                                   MachineBasicBlock *&TBB,
94                                   MachineBasicBlock *&FBB,
95                                   SmallVectorImpl<MachineOperand> &Cond,
96                                   bool AllowModify) const {
97  // If the block has no terminators, it just falls into the block after it.
98  MachineBasicBlock::iterator I = MBB.end();
99  if (I == MBB.begin())
100    return false;
101  --I;
102  while (I->isDebugValue()) {
103    if (I == MBB.begin())
104      return false;
105    --I;
106  }
107  if (!isUnpredicatedTerminator(I))
108    return false;
109
110  // Get the last instruction in the block.
111  MachineInstr *LastInst = I;
112
113  // If there is only one terminator instruction, process it.
114  unsigned LastOpc = LastInst->getOpcode();
115  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
116    if (isUncondBranchOpcode(LastOpc)) {
117      TBB = LastInst->getOperand(0).getMBB();
118      return false;
119    }
120    if (isCondBranchOpcode(LastOpc)) {
121      // Block ends with fall-through condbranch.
122      parseCondBranch(LastInst, TBB, Cond);
123      return false;
124    }
125    return true; // Can't handle indirect branch.
126  }
127
128  // Get the instruction before it if it is a terminator.
129  MachineInstr *SecondLastInst = I;
130  unsigned SecondLastOpc = SecondLastInst->getOpcode();
131
132  // If AllowModify is true and the block ends with two or more unconditional
133  // branches, delete all but the first unconditional branch.
134  if (AllowModify && isUncondBranchOpcode(LastOpc)) {
135    while (isUncondBranchOpcode(SecondLastOpc)) {
136      LastInst->eraseFromParent();
137      LastInst = SecondLastInst;
138      LastOpc = LastInst->getOpcode();
139      if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
140        // Return now the only terminator is an unconditional branch.
141        TBB = LastInst->getOperand(0).getMBB();
142        return false;
143      } else {
144        SecondLastInst = I;
145        SecondLastOpc = SecondLastInst->getOpcode();
146      }
147    }
148  }
149
150  // If there are three terminators, we don't know what sort of block this is.
151  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
152    return true;
153
154  // If the block ends with a B and a Bcc, handle it.
155  if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
156    parseCondBranch(SecondLastInst, TBB, Cond);
157    FBB = LastInst->getOperand(0).getMBB();
158    return false;
159  }
160
161  // If the block ends with two unconditional branches, handle it.  The second
162  // one is not executed, so remove it.
163  if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
164    TBB = SecondLastInst->getOperand(0).getMBB();
165    I = LastInst;
166    if (AllowModify)
167      I->eraseFromParent();
168    return false;
169  }
170
171  // ...likewise if it ends with an indirect branch followed by an unconditional
172  // branch.
173  if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
174    I = LastInst;
175    if (AllowModify)
176      I->eraseFromParent();
177    return true;
178  }
179
180  // Otherwise, can't handle this.
181  return true;
182}
183
184bool AArch64InstrInfo::ReverseBranchCondition(
185    SmallVectorImpl<MachineOperand> &Cond) const {
186  if (Cond[0].getImm() != -1) {
187    // Regular Bcc
188    AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
189    Cond[0].setImm(AArch64CC::getInvertedCondCode(CC));
190  } else {
191    // Folded compare-and-branch
192    switch (Cond[1].getImm()) {
193    default:
194      llvm_unreachable("Unknown conditional branch!");
195    case AArch64::CBZW:
196      Cond[1].setImm(AArch64::CBNZW);
197      break;
198    case AArch64::CBNZW:
199      Cond[1].setImm(AArch64::CBZW);
200      break;
201    case AArch64::CBZX:
202      Cond[1].setImm(AArch64::CBNZX);
203      break;
204    case AArch64::CBNZX:
205      Cond[1].setImm(AArch64::CBZX);
206      break;
207    case AArch64::TBZW:
208      Cond[1].setImm(AArch64::TBNZW);
209      break;
210    case AArch64::TBNZW:
211      Cond[1].setImm(AArch64::TBZW);
212      break;
213    case AArch64::TBZX:
214      Cond[1].setImm(AArch64::TBNZX);
215      break;
216    case AArch64::TBNZX:
217      Cond[1].setImm(AArch64::TBZX);
218      break;
219    }
220  }
221
222  return false;
223}
224
225unsigned AArch64InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
226  MachineBasicBlock::iterator I = MBB.end();
227  if (I == MBB.begin())
228    return 0;
229  --I;
230  while (I->isDebugValue()) {
231    if (I == MBB.begin())
232      return 0;
233    --I;
234  }
235  if (!isUncondBranchOpcode(I->getOpcode()) &&
236      !isCondBranchOpcode(I->getOpcode()))
237    return 0;
238
239  // Remove the branch.
240  I->eraseFromParent();
241
242  I = MBB.end();
243
244  if (I == MBB.begin())
245    return 1;
246  --I;
247  if (!isCondBranchOpcode(I->getOpcode()))
248    return 1;
249
250  // Remove the branch.
251  I->eraseFromParent();
252  return 2;
253}
254
255void AArch64InstrInfo::instantiateCondBranch(
256    MachineBasicBlock &MBB, DebugLoc DL, MachineBasicBlock *TBB,
257    const SmallVectorImpl<MachineOperand> &Cond) const {
258  if (Cond[0].getImm() != -1) {
259    // Regular Bcc
260    BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
261  } else {
262    // Folded compare-and-branch
263    const MachineInstrBuilder MIB =
264        BuildMI(&MBB, DL, get(Cond[1].getImm())).addReg(Cond[2].getReg());
265    if (Cond.size() > 3)
266      MIB.addImm(Cond[3].getImm());
267    MIB.addMBB(TBB);
268  }
269}
270
271unsigned AArch64InstrInfo::InsertBranch(
272    MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
273    const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const {
274  // Shouldn't be a fall through.
275  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
276
277  if (!FBB) {
278    if (Cond.empty()) // Unconditional branch?
279      BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB);
280    else
281      instantiateCondBranch(MBB, DL, TBB, Cond);
282    return 1;
283  }
284
285  // Two-way conditional branch.
286  instantiateCondBranch(MBB, DL, TBB, Cond);
287  BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB);
288  return 2;
289}
290
291// Find the original register that VReg is copied from.
292static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) {
293  while (TargetRegisterInfo::isVirtualRegister(VReg)) {
294    const MachineInstr *DefMI = MRI.getVRegDef(VReg);
295    if (!DefMI->isFullCopy())
296      return VReg;
297    VReg = DefMI->getOperand(1).getReg();
298  }
299  return VReg;
300}
301
302// Determine if VReg is defined by an instruction that can be folded into a
303// csel instruction. If so, return the folded opcode, and the replacement
304// register.
305static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
306                                unsigned *NewVReg = nullptr) {
307  VReg = removeCopies(MRI, VReg);
308  if (!TargetRegisterInfo::isVirtualRegister(VReg))
309    return 0;
310
311  bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg));
312  const MachineInstr *DefMI = MRI.getVRegDef(VReg);
313  unsigned Opc = 0;
314  unsigned SrcOpNum = 0;
315  switch (DefMI->getOpcode()) {
316  case AArch64::ADDSXri:
317  case AArch64::ADDSWri:
318    // if NZCV is used, do not fold.
319    if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
320      return 0;
321  // fall-through to ADDXri and ADDWri.
322  case AArch64::ADDXri:
323  case AArch64::ADDWri:
324    // add x, 1 -> csinc.
325    if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 ||
326        DefMI->getOperand(3).getImm() != 0)
327      return 0;
328    SrcOpNum = 1;
329    Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr;
330    break;
331
332  case AArch64::ORNXrr:
333  case AArch64::ORNWrr: {
334    // not x -> csinv, represented as orn dst, xzr, src.
335    unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
336    if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
337      return 0;
338    SrcOpNum = 2;
339    Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr;
340    break;
341  }
342
343  case AArch64::SUBSXrr:
344  case AArch64::SUBSWrr:
345    // if NZCV is used, do not fold.
346    if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
347      return 0;
348  // fall-through to SUBXrr and SUBWrr.
349  case AArch64::SUBXrr:
350  case AArch64::SUBWrr: {
351    // neg x -> csneg, represented as sub dst, xzr, src.
352    unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
353    if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
354      return 0;
355    SrcOpNum = 2;
356    Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr;
357    break;
358  }
359  default:
360    return 0;
361  }
362  assert(Opc && SrcOpNum && "Missing parameters");
363
364  if (NewVReg)
365    *NewVReg = DefMI->getOperand(SrcOpNum).getReg();
366  return Opc;
367}
368
369bool AArch64InstrInfo::canInsertSelect(
370    const MachineBasicBlock &MBB, const SmallVectorImpl<MachineOperand> &Cond,
371    unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles,
372    int &FalseCycles) const {
373  // Check register classes.
374  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
375  const TargetRegisterClass *RC =
376      RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
377  if (!RC)
378    return false;
379
380  // Expanding cbz/tbz requires an extra cycle of latency on the condition.
381  unsigned ExtraCondLat = Cond.size() != 1;
382
383  // GPRs are handled by csel.
384  // FIXME: Fold in x+1, -x, and ~x when applicable.
385  if (AArch64::GPR64allRegClass.hasSubClassEq(RC) ||
386      AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
387    // Single-cycle csel, csinc, csinv, and csneg.
388    CondCycles = 1 + ExtraCondLat;
389    TrueCycles = FalseCycles = 1;
390    if (canFoldIntoCSel(MRI, TrueReg))
391      TrueCycles = 0;
392    else if (canFoldIntoCSel(MRI, FalseReg))
393      FalseCycles = 0;
394    return true;
395  }
396
397  // Scalar floating point is handled by fcsel.
398  // FIXME: Form fabs, fmin, and fmax when applicable.
399  if (AArch64::FPR64RegClass.hasSubClassEq(RC) ||
400      AArch64::FPR32RegClass.hasSubClassEq(RC)) {
401    CondCycles = 5 + ExtraCondLat;
402    TrueCycles = FalseCycles = 2;
403    return true;
404  }
405
406  // Can't do vectors.
407  return false;
408}
409
410void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
411                                    MachineBasicBlock::iterator I, DebugLoc DL,
412                                    unsigned DstReg,
413                                    const SmallVectorImpl<MachineOperand> &Cond,
414                                    unsigned TrueReg, unsigned FalseReg) const {
415  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
416
417  // Parse the condition code, see parseCondBranch() above.
418  AArch64CC::CondCode CC;
419  switch (Cond.size()) {
420  default:
421    llvm_unreachable("Unknown condition opcode in Cond");
422  case 1: // b.cc
423    CC = AArch64CC::CondCode(Cond[0].getImm());
424    break;
425  case 3: { // cbz/cbnz
426    // We must insert a compare against 0.
427    bool Is64Bit;
428    switch (Cond[1].getImm()) {
429    default:
430      llvm_unreachable("Unknown branch opcode in Cond");
431    case AArch64::CBZW:
432      Is64Bit = 0;
433      CC = AArch64CC::EQ;
434      break;
435    case AArch64::CBZX:
436      Is64Bit = 1;
437      CC = AArch64CC::EQ;
438      break;
439    case AArch64::CBNZW:
440      Is64Bit = 0;
441      CC = AArch64CC::NE;
442      break;
443    case AArch64::CBNZX:
444      Is64Bit = 1;
445      CC = AArch64CC::NE;
446      break;
447    }
448    unsigned SrcReg = Cond[2].getReg();
449    if (Is64Bit) {
450      // cmp reg, #0 is actually subs xzr, reg, #0.
451      MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass);
452      BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR)
453          .addReg(SrcReg)
454          .addImm(0)
455          .addImm(0);
456    } else {
457      MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass);
458      BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR)
459          .addReg(SrcReg)
460          .addImm(0)
461          .addImm(0);
462    }
463    break;
464  }
465  case 4: { // tbz/tbnz
466    // We must insert a tst instruction.
467    switch (Cond[1].getImm()) {
468    default:
469      llvm_unreachable("Unknown branch opcode in Cond");
470    case AArch64::TBZW:
471    case AArch64::TBZX:
472      CC = AArch64CC::EQ;
473      break;
474    case AArch64::TBNZW:
475    case AArch64::TBNZX:
476      CC = AArch64CC::NE;
477      break;
478    }
479    // cmp reg, #foo is actually ands xzr, reg, #1<<foo.
480    if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW)
481      BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR)
482          .addReg(Cond[2].getReg())
483          .addImm(
484              AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32));
485    else
486      BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR)
487          .addReg(Cond[2].getReg())
488          .addImm(
489              AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64));
490    break;
491  }
492  }
493
494  unsigned Opc = 0;
495  const TargetRegisterClass *RC = nullptr;
496  bool TryFold = false;
497  if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) {
498    RC = &AArch64::GPR64RegClass;
499    Opc = AArch64::CSELXr;
500    TryFold = true;
501  } else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) {
502    RC = &AArch64::GPR32RegClass;
503    Opc = AArch64::CSELWr;
504    TryFold = true;
505  } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) {
506    RC = &AArch64::FPR64RegClass;
507    Opc = AArch64::FCSELDrrr;
508  } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) {
509    RC = &AArch64::FPR32RegClass;
510    Opc = AArch64::FCSELSrrr;
511  }
512  assert(RC && "Unsupported regclass");
513
514  // Try folding simple instructions into the csel.
515  if (TryFold) {
516    unsigned NewVReg = 0;
517    unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg);
518    if (FoldedOpc) {
519      // The folded opcodes csinc, csinc and csneg apply the operation to
520      // FalseReg, so we need to invert the condition.
521      CC = AArch64CC::getInvertedCondCode(CC);
522      TrueReg = FalseReg;
523    } else
524      FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg);
525
526    // Fold the operation. Leave any dead instructions for DCE to clean up.
527    if (FoldedOpc) {
528      FalseReg = NewVReg;
529      Opc = FoldedOpc;
530      // The extends the live range of NewVReg.
531      MRI.clearKillFlags(NewVReg);
532    }
533  }
534
535  // Pull all virtual register into the appropriate class.
536  MRI.constrainRegClass(TrueReg, RC);
537  MRI.constrainRegClass(FalseReg, RC);
538
539  // Insert the csel.
540  BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(TrueReg).addReg(FalseReg).addImm(
541      CC);
542}
543
544bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
545                                             unsigned &SrcReg, unsigned &DstReg,
546                                             unsigned &SubIdx) const {
547  switch (MI.getOpcode()) {
548  default:
549    return false;
550  case AArch64::SBFMXri: // aka sxtw
551  case AArch64::UBFMXri: // aka uxtw
552    // Check for the 32 -> 64 bit extension case, these instructions can do
553    // much more.
554    if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31)
555      return false;
556    // This is a signed or unsigned 32 -> 64 bit extension.
557    SrcReg = MI.getOperand(1).getReg();
558    DstReg = MI.getOperand(0).getReg();
559    SubIdx = AArch64::sub_32;
560    return true;
561  }
562}
563
564/// analyzeCompare - For a comparison instruction, return the source registers
565/// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
566/// Return true if the comparison instruction can be analyzed.
567bool AArch64InstrInfo::analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
568                                      unsigned &SrcReg2, int &CmpMask,
569                                      int &CmpValue) const {
570  switch (MI->getOpcode()) {
571  default:
572    break;
573  case AArch64::SUBSWrr:
574  case AArch64::SUBSWrs:
575  case AArch64::SUBSWrx:
576  case AArch64::SUBSXrr:
577  case AArch64::SUBSXrs:
578  case AArch64::SUBSXrx:
579  case AArch64::ADDSWrr:
580  case AArch64::ADDSWrs:
581  case AArch64::ADDSWrx:
582  case AArch64::ADDSXrr:
583  case AArch64::ADDSXrs:
584  case AArch64::ADDSXrx:
585    // Replace SUBSWrr with SUBWrr if NZCV is not used.
586    SrcReg = MI->getOperand(1).getReg();
587    SrcReg2 = MI->getOperand(2).getReg();
588    CmpMask = ~0;
589    CmpValue = 0;
590    return true;
591  case AArch64::SUBSWri:
592  case AArch64::ADDSWri:
593  case AArch64::SUBSXri:
594  case AArch64::ADDSXri:
595    SrcReg = MI->getOperand(1).getReg();
596    SrcReg2 = 0;
597    CmpMask = ~0;
598    CmpValue = MI->getOperand(2).getImm();
599    return true;
600  case AArch64::ANDSWri:
601  case AArch64::ANDSXri:
602    // ANDS does not use the same encoding scheme as the others xxxS
603    // instructions.
604    SrcReg = MI->getOperand(1).getReg();
605    SrcReg2 = 0;
606    CmpMask = ~0;
607    CmpValue = AArch64_AM::decodeLogicalImmediate(
608        MI->getOperand(2).getImm(),
609        MI->getOpcode() == AArch64::ANDSWri ? 32 : 64);
610    return true;
611  }
612
613  return false;
614}
615
616static bool UpdateOperandRegClass(MachineInstr *Instr) {
617  MachineBasicBlock *MBB = Instr->getParent();
618  assert(MBB && "Can't get MachineBasicBlock here");
619  MachineFunction *MF = MBB->getParent();
620  assert(MF && "Can't get MachineFunction here");
621  const TargetMachine *TM = &MF->getTarget();
622  const TargetInstrInfo *TII = TM->getInstrInfo();
623  const TargetRegisterInfo *TRI = TM->getRegisterInfo();
624  MachineRegisterInfo *MRI = &MF->getRegInfo();
625
626  for (unsigned OpIdx = 0, EndIdx = Instr->getNumOperands(); OpIdx < EndIdx;
627       ++OpIdx) {
628    MachineOperand &MO = Instr->getOperand(OpIdx);
629    const TargetRegisterClass *OpRegCstraints =
630        Instr->getRegClassConstraint(OpIdx, TII, TRI);
631
632    // If there's no constraint, there's nothing to do.
633    if (!OpRegCstraints)
634      continue;
635    // If the operand is a frame index, there's nothing to do here.
636    // A frame index operand will resolve correctly during PEI.
637    if (MO.isFI())
638      continue;
639
640    assert(MO.isReg() &&
641           "Operand has register constraints without being a register!");
642
643    unsigned Reg = MO.getReg();
644    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
645      if (!OpRegCstraints->contains(Reg))
646        return false;
647    } else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) &&
648               !MRI->constrainRegClass(Reg, OpRegCstraints))
649      return false;
650  }
651
652  return true;
653}
654
655/// optimizeCompareInstr - Convert the instruction supplying the argument to the
656/// comparison into one that sets the zero bit in the flags register.
657bool AArch64InstrInfo::optimizeCompareInstr(
658    MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
659    int CmpValue, const MachineRegisterInfo *MRI) const {
660
661  // Replace SUBSWrr with SUBWrr if NZCV is not used.
662  int Cmp_NZCV = CmpInstr->findRegisterDefOperandIdx(AArch64::NZCV, true);
663  if (Cmp_NZCV != -1) {
664    unsigned NewOpc;
665    switch (CmpInstr->getOpcode()) {
666    default:
667      return false;
668    case AArch64::ADDSWrr:      NewOpc = AArch64::ADDWrr; break;
669    case AArch64::ADDSWri:      NewOpc = AArch64::ADDWri; break;
670    case AArch64::ADDSWrs:      NewOpc = AArch64::ADDWrs; break;
671    case AArch64::ADDSWrx:      NewOpc = AArch64::ADDWrx; break;
672    case AArch64::ADDSXrr:      NewOpc = AArch64::ADDXrr; break;
673    case AArch64::ADDSXri:      NewOpc = AArch64::ADDXri; break;
674    case AArch64::ADDSXrs:      NewOpc = AArch64::ADDXrs; break;
675    case AArch64::ADDSXrx:      NewOpc = AArch64::ADDXrx; break;
676    case AArch64::SUBSWrr:      NewOpc = AArch64::SUBWrr; break;
677    case AArch64::SUBSWri:      NewOpc = AArch64::SUBWri; break;
678    case AArch64::SUBSWrs:      NewOpc = AArch64::SUBWrs; break;
679    case AArch64::SUBSWrx:      NewOpc = AArch64::SUBWrx; break;
680    case AArch64::SUBSXrr:      NewOpc = AArch64::SUBXrr; break;
681    case AArch64::SUBSXri:      NewOpc = AArch64::SUBXri; break;
682    case AArch64::SUBSXrs:      NewOpc = AArch64::SUBXrs; break;
683    case AArch64::SUBSXrx:      NewOpc = AArch64::SUBXrx; break;
684    }
685
686    const MCInstrDesc &MCID = get(NewOpc);
687    CmpInstr->setDesc(MCID);
688    CmpInstr->RemoveOperand(Cmp_NZCV);
689    bool succeeded = UpdateOperandRegClass(CmpInstr);
690    (void)succeeded;
691    assert(succeeded && "Some operands reg class are incompatible!");
692    return true;
693  }
694
695  // Continue only if we have a "ri" where immediate is zero.
696  if (CmpValue != 0 || SrcReg2 != 0)
697    return false;
698
699  // CmpInstr is a Compare instruction if destination register is not used.
700  if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
701    return false;
702
703  // Get the unique definition of SrcReg.
704  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
705  if (!MI)
706    return false;
707
708  // We iterate backward, starting from the instruction before CmpInstr and
709  // stop when reaching the definition of the source register or done with the
710  // basic block, to check whether NZCV is used or modified in between.
711  MachineBasicBlock::iterator I = CmpInstr, E = MI,
712                              B = CmpInstr->getParent()->begin();
713
714  // Early exit if CmpInstr is at the beginning of the BB.
715  if (I == B)
716    return false;
717
718  // Check whether the definition of SrcReg is in the same basic block as
719  // Compare. If not, we can't optimize away the Compare.
720  if (MI->getParent() != CmpInstr->getParent())
721    return false;
722
723  // Check that NZCV isn't set between the comparison instruction and the one we
724  // want to change.
725  const TargetRegisterInfo *TRI = &getRegisterInfo();
726  for (--I; I != E; --I) {
727    const MachineInstr &Instr = *I;
728
729    if (Instr.modifiesRegister(AArch64::NZCV, TRI) ||
730        Instr.readsRegister(AArch64::NZCV, TRI))
731      // This instruction modifies or uses NZCV after the one we want to
732      // change. We can't do this transformation.
733      return false;
734    if (I == B)
735      // The 'and' is below the comparison instruction.
736      return false;
737  }
738
739  unsigned NewOpc = MI->getOpcode();
740  switch (MI->getOpcode()) {
741  default:
742    return false;
743  case AArch64::ADDSWrr:
744  case AArch64::ADDSWri:
745  case AArch64::ADDSXrr:
746  case AArch64::ADDSXri:
747  case AArch64::SUBSWrr:
748  case AArch64::SUBSWri:
749  case AArch64::SUBSXrr:
750  case AArch64::SUBSXri:
751    break;
752  case AArch64::ADDWrr:    NewOpc = AArch64::ADDSWrr; break;
753  case AArch64::ADDWri:    NewOpc = AArch64::ADDSWri; break;
754  case AArch64::ADDXrr:    NewOpc = AArch64::ADDSXrr; break;
755  case AArch64::ADDXri:    NewOpc = AArch64::ADDSXri; break;
756  case AArch64::ADCWr:     NewOpc = AArch64::ADCSWr; break;
757  case AArch64::ADCXr:     NewOpc = AArch64::ADCSXr; break;
758  case AArch64::SUBWrr:    NewOpc = AArch64::SUBSWrr; break;
759  case AArch64::SUBWri:    NewOpc = AArch64::SUBSWri; break;
760  case AArch64::SUBXrr:    NewOpc = AArch64::SUBSXrr; break;
761  case AArch64::SUBXri:    NewOpc = AArch64::SUBSXri; break;
762  case AArch64::SBCWr:     NewOpc = AArch64::SBCSWr; break;
763  case AArch64::SBCXr:     NewOpc = AArch64::SBCSXr; break;
764  case AArch64::ANDWri:    NewOpc = AArch64::ANDSWri; break;
765  case AArch64::ANDXri:    NewOpc = AArch64::ANDSXri; break;
766  }
767
768  // Scan forward for the use of NZCV.
769  // When checking against MI: if it's a conditional code requires
770  // checking of V bit, then this is not safe to do.
771  // It is safe to remove CmpInstr if NZCV is redefined or killed.
772  // If we are done with the basic block, we need to check whether NZCV is
773  // live-out.
774  bool IsSafe = false;
775  for (MachineBasicBlock::iterator I = CmpInstr,
776                                   E = CmpInstr->getParent()->end();
777       !IsSafe && ++I != E;) {
778    const MachineInstr &Instr = *I;
779    for (unsigned IO = 0, EO = Instr.getNumOperands(); !IsSafe && IO != EO;
780         ++IO) {
781      const MachineOperand &MO = Instr.getOperand(IO);
782      if (MO.isRegMask() && MO.clobbersPhysReg(AArch64::NZCV)) {
783        IsSafe = true;
784        break;
785      }
786      if (!MO.isReg() || MO.getReg() != AArch64::NZCV)
787        continue;
788      if (MO.isDef()) {
789        IsSafe = true;
790        break;
791      }
792
793      // Decode the condition code.
794      unsigned Opc = Instr.getOpcode();
795      AArch64CC::CondCode CC;
796      switch (Opc) {
797      default:
798        return false;
799      case AArch64::Bcc:
800        CC = (AArch64CC::CondCode)Instr.getOperand(IO - 2).getImm();
801        break;
802      case AArch64::CSINVWr:
803      case AArch64::CSINVXr:
804      case AArch64::CSINCWr:
805      case AArch64::CSINCXr:
806      case AArch64::CSELWr:
807      case AArch64::CSELXr:
808      case AArch64::CSNEGWr:
809      case AArch64::CSNEGXr:
810      case AArch64::FCSELSrrr:
811      case AArch64::FCSELDrrr:
812        CC = (AArch64CC::CondCode)Instr.getOperand(IO - 1).getImm();
813        break;
814      }
815
816      // It is not safe to remove Compare instruction if Overflow(V) is used.
817      switch (CC) {
818      default:
819        // NZCV can be used multiple times, we should continue.
820        break;
821      case AArch64CC::VS:
822      case AArch64CC::VC:
823      case AArch64CC::GE:
824      case AArch64CC::LT:
825      case AArch64CC::GT:
826      case AArch64CC::LE:
827        return false;
828      }
829    }
830  }
831
832  // If NZCV is not killed nor re-defined, we should check whether it is
833  // live-out. If it is live-out, do not optimize.
834  if (!IsSafe) {
835    MachineBasicBlock *ParentBlock = CmpInstr->getParent();
836    for (auto *MBB : ParentBlock->successors())
837      if (MBB->isLiveIn(AArch64::NZCV))
838        return false;
839  }
840
841  // Update the instruction to set NZCV.
842  MI->setDesc(get(NewOpc));
843  CmpInstr->eraseFromParent();
844  bool succeeded = UpdateOperandRegClass(MI);
845  (void)succeeded;
846  assert(succeeded && "Some operands reg class are incompatible!");
847  MI->addRegisterDefined(AArch64::NZCV, TRI);
848  return true;
849}
850
851/// Return true if this is this instruction has a non-zero immediate
852bool AArch64InstrInfo::hasShiftedReg(const MachineInstr *MI) const {
853  switch (MI->getOpcode()) {
854  default:
855    break;
856  case AArch64::ADDSWrs:
857  case AArch64::ADDSXrs:
858  case AArch64::ADDWrs:
859  case AArch64::ADDXrs:
860  case AArch64::ANDSWrs:
861  case AArch64::ANDSXrs:
862  case AArch64::ANDWrs:
863  case AArch64::ANDXrs:
864  case AArch64::BICSWrs:
865  case AArch64::BICSXrs:
866  case AArch64::BICWrs:
867  case AArch64::BICXrs:
868  case AArch64::CRC32Brr:
869  case AArch64::CRC32CBrr:
870  case AArch64::CRC32CHrr:
871  case AArch64::CRC32CWrr:
872  case AArch64::CRC32CXrr:
873  case AArch64::CRC32Hrr:
874  case AArch64::CRC32Wrr:
875  case AArch64::CRC32Xrr:
876  case AArch64::EONWrs:
877  case AArch64::EONXrs:
878  case AArch64::EORWrs:
879  case AArch64::EORXrs:
880  case AArch64::ORNWrs:
881  case AArch64::ORNXrs:
882  case AArch64::ORRWrs:
883  case AArch64::ORRXrs:
884  case AArch64::SUBSWrs:
885  case AArch64::SUBSXrs:
886  case AArch64::SUBWrs:
887  case AArch64::SUBXrs:
888    if (MI->getOperand(3).isImm()) {
889      unsigned val = MI->getOperand(3).getImm();
890      return (val != 0);
891    }
892    break;
893  }
894  return false;
895}
896
897/// Return true if this is this instruction has a non-zero immediate
898bool AArch64InstrInfo::hasExtendedReg(const MachineInstr *MI) const {
899  switch (MI->getOpcode()) {
900  default:
901    break;
902  case AArch64::ADDSWrx:
903  case AArch64::ADDSXrx:
904  case AArch64::ADDSXrx64:
905  case AArch64::ADDWrx:
906  case AArch64::ADDXrx:
907  case AArch64::ADDXrx64:
908  case AArch64::SUBSWrx:
909  case AArch64::SUBSXrx:
910  case AArch64::SUBSXrx64:
911  case AArch64::SUBWrx:
912  case AArch64::SUBXrx:
913  case AArch64::SUBXrx64:
914    if (MI->getOperand(3).isImm()) {
915      unsigned val = MI->getOperand(3).getImm();
916      return (val != 0);
917    }
918    break;
919  }
920
921  return false;
922}
923
924// Return true if this instruction simply sets its single destination register
925// to zero. This is equivalent to a register rename of the zero-register.
926bool AArch64InstrInfo::isGPRZero(const MachineInstr *MI) const {
927  switch (MI->getOpcode()) {
928  default:
929    break;
930  case AArch64::MOVZWi:
931  case AArch64::MOVZXi: // movz Rd, #0 (LSL #0)
932    if (MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) {
933      assert(MI->getDesc().getNumOperands() == 3 &&
934             MI->getOperand(2).getImm() == 0 && "invalid MOVZi operands");
935      return true;
936    }
937    break;
938  case AArch64::ANDWri: // and Rd, Rzr, #imm
939    return MI->getOperand(1).getReg() == AArch64::WZR;
940  case AArch64::ANDXri:
941    return MI->getOperand(1).getReg() == AArch64::XZR;
942  case TargetOpcode::COPY:
943    return MI->getOperand(1).getReg() == AArch64::WZR;
944  }
945  return false;
946}
947
948// Return true if this instruction simply renames a general register without
949// modifying bits.
950bool AArch64InstrInfo::isGPRCopy(const MachineInstr *MI) const {
951  switch (MI->getOpcode()) {
952  default:
953    break;
954  case TargetOpcode::COPY: {
955    // GPR32 copies will by lowered to ORRXrs
956    unsigned DstReg = MI->getOperand(0).getReg();
957    return (AArch64::GPR32RegClass.contains(DstReg) ||
958            AArch64::GPR64RegClass.contains(DstReg));
959  }
960  case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0)
961    if (MI->getOperand(1).getReg() == AArch64::XZR) {
962      assert(MI->getDesc().getNumOperands() == 4 &&
963             MI->getOperand(3).getImm() == 0 && "invalid ORRrs operands");
964      return true;
965    }
966  case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0)
967    if (MI->getOperand(2).getImm() == 0) {
968      assert(MI->getDesc().getNumOperands() == 4 &&
969             MI->getOperand(3).getImm() == 0 && "invalid ADDXri operands");
970      return true;
971    }
972  }
973  return false;
974}
975
976// Return true if this instruction simply renames a general register without
977// modifying bits.
978bool AArch64InstrInfo::isFPRCopy(const MachineInstr *MI) const {
979  switch (MI->getOpcode()) {
980  default:
981    break;
982  case TargetOpcode::COPY: {
983    // FPR64 copies will by lowered to ORR.16b
984    unsigned DstReg = MI->getOperand(0).getReg();
985    return (AArch64::FPR64RegClass.contains(DstReg) ||
986            AArch64::FPR128RegClass.contains(DstReg));
987  }
988  case AArch64::ORRv16i8:
989    if (MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) {
990      assert(MI->getDesc().getNumOperands() == 3 && MI->getOperand(0).isReg() &&
991             "invalid ORRv16i8 operands");
992      return true;
993    }
994  }
995  return false;
996}
997
998unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
999                                               int &FrameIndex) const {
1000  switch (MI->getOpcode()) {
1001  default:
1002    break;
1003  case AArch64::LDRWui:
1004  case AArch64::LDRXui:
1005  case AArch64::LDRBui:
1006  case AArch64::LDRHui:
1007  case AArch64::LDRSui:
1008  case AArch64::LDRDui:
1009  case AArch64::LDRQui:
1010    if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
1011        MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
1012      FrameIndex = MI->getOperand(1).getIndex();
1013      return MI->getOperand(0).getReg();
1014    }
1015    break;
1016  }
1017
1018  return 0;
1019}
1020
1021unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
1022                                              int &FrameIndex) const {
1023  switch (MI->getOpcode()) {
1024  default:
1025    break;
1026  case AArch64::STRWui:
1027  case AArch64::STRXui:
1028  case AArch64::STRBui:
1029  case AArch64::STRHui:
1030  case AArch64::STRSui:
1031  case AArch64::STRDui:
1032  case AArch64::STRQui:
1033    if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
1034        MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
1035      FrameIndex = MI->getOperand(1).getIndex();
1036      return MI->getOperand(0).getReg();
1037    }
1038    break;
1039  }
1040  return 0;
1041}
1042
1043/// Return true if this is load/store scales or extends its register offset.
1044/// This refers to scaling a dynamic index as opposed to scaled immediates.
1045/// MI should be a memory op that allows scaled addressing.
1046bool AArch64InstrInfo::isScaledAddr(const MachineInstr *MI) const {
1047  switch (MI->getOpcode()) {
1048  default:
1049    break;
1050  case AArch64::LDRBBroW:
1051  case AArch64::LDRBroW:
1052  case AArch64::LDRDroW:
1053  case AArch64::LDRHHroW:
1054  case AArch64::LDRHroW:
1055  case AArch64::LDRQroW:
1056  case AArch64::LDRSBWroW:
1057  case AArch64::LDRSBXroW:
1058  case AArch64::LDRSHWroW:
1059  case AArch64::LDRSHXroW:
1060  case AArch64::LDRSWroW:
1061  case AArch64::LDRSroW:
1062  case AArch64::LDRWroW:
1063  case AArch64::LDRXroW:
1064  case AArch64::STRBBroW:
1065  case AArch64::STRBroW:
1066  case AArch64::STRDroW:
1067  case AArch64::STRHHroW:
1068  case AArch64::STRHroW:
1069  case AArch64::STRQroW:
1070  case AArch64::STRSroW:
1071  case AArch64::STRWroW:
1072  case AArch64::STRXroW:
1073  case AArch64::LDRBBroX:
1074  case AArch64::LDRBroX:
1075  case AArch64::LDRDroX:
1076  case AArch64::LDRHHroX:
1077  case AArch64::LDRHroX:
1078  case AArch64::LDRQroX:
1079  case AArch64::LDRSBWroX:
1080  case AArch64::LDRSBXroX:
1081  case AArch64::LDRSHWroX:
1082  case AArch64::LDRSHXroX:
1083  case AArch64::LDRSWroX:
1084  case AArch64::LDRSroX:
1085  case AArch64::LDRWroX:
1086  case AArch64::LDRXroX:
1087  case AArch64::STRBBroX:
1088  case AArch64::STRBroX:
1089  case AArch64::STRDroX:
1090  case AArch64::STRHHroX:
1091  case AArch64::STRHroX:
1092  case AArch64::STRQroX:
1093  case AArch64::STRSroX:
1094  case AArch64::STRWroX:
1095  case AArch64::STRXroX:
1096
1097    unsigned Val = MI->getOperand(3).getImm();
1098    AArch64_AM::ShiftExtendType ExtType = AArch64_AM::getMemExtendType(Val);
1099    return (ExtType != AArch64_AM::UXTX) || AArch64_AM::getMemDoShift(Val);
1100  }
1101  return false;
1102}
1103
1104/// Check all MachineMemOperands for a hint to suppress pairing.
1105bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr *MI) const {
1106  assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
1107         "Too many target MO flags");
1108  for (auto *MM : MI->memoperands()) {
1109    if (MM->getFlags() &
1110        (MOSuppressPair << MachineMemOperand::MOTargetStartBit)) {
1111      return true;
1112    }
1113  }
1114  return false;
1115}
1116
1117/// Set a flag on the first MachineMemOperand to suppress pairing.
1118void AArch64InstrInfo::suppressLdStPair(MachineInstr *MI) const {
1119  if (MI->memoperands_empty())
1120    return;
1121
1122  assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
1123         "Too many target MO flags");
1124  (*MI->memoperands_begin())
1125      ->setFlags(MOSuppressPair << MachineMemOperand::MOTargetStartBit);
1126}
1127
1128bool
1129AArch64InstrInfo::getLdStBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg,
1130                                       unsigned &Offset,
1131                                       const TargetRegisterInfo *TRI) const {
1132  switch (LdSt->getOpcode()) {
1133  default:
1134    return false;
1135  case AArch64::STRSui:
1136  case AArch64::STRDui:
1137  case AArch64::STRQui:
1138  case AArch64::STRXui:
1139  case AArch64::STRWui:
1140  case AArch64::LDRSui:
1141  case AArch64::LDRDui:
1142  case AArch64::LDRQui:
1143  case AArch64::LDRXui:
1144  case AArch64::LDRWui:
1145    if (!LdSt->getOperand(1).isReg() || !LdSt->getOperand(2).isImm())
1146      return false;
1147    BaseReg = LdSt->getOperand(1).getReg();
1148    MachineFunction &MF = *LdSt->getParent()->getParent();
1149    unsigned Width = getRegClass(LdSt->getDesc(), 0, TRI, MF)->getSize();
1150    Offset = LdSt->getOperand(2).getImm() * Width;
1151    return true;
1152  };
1153}
1154
1155/// Detect opportunities for ldp/stp formation.
1156///
1157/// Only called for LdSt for which getLdStBaseRegImmOfs returns true.
1158bool AArch64InstrInfo::shouldClusterLoads(MachineInstr *FirstLdSt,
1159                                          MachineInstr *SecondLdSt,
1160                                          unsigned NumLoads) const {
1161  // Only cluster up to a single pair.
1162  if (NumLoads > 1)
1163    return false;
1164  if (FirstLdSt->getOpcode() != SecondLdSt->getOpcode())
1165    return false;
1166  // getLdStBaseRegImmOfs guarantees that oper 2 isImm.
1167  unsigned Ofs1 = FirstLdSt->getOperand(2).getImm();
1168  // Allow 6 bits of positive range.
1169  if (Ofs1 > 64)
1170    return false;
1171  // The caller should already have ordered First/SecondLdSt by offset.
1172  unsigned Ofs2 = SecondLdSt->getOperand(2).getImm();
1173  return Ofs1 + 1 == Ofs2;
1174}
1175
1176bool AArch64InstrInfo::shouldScheduleAdjacent(MachineInstr *First,
1177                                              MachineInstr *Second) const {
1178  // Cyclone can fuse CMN, CMP followed by Bcc.
1179
1180  // FIXME: B0 can also fuse:
1181  // AND, BIC, ORN, ORR, or EOR (optional S) followed by Bcc or CBZ or CBNZ.
1182  if (Second->getOpcode() != AArch64::Bcc)
1183    return false;
1184  switch (First->getOpcode()) {
1185  default:
1186    return false;
1187  case AArch64::SUBSWri:
1188  case AArch64::ADDSWri:
1189  case AArch64::ANDSWri:
1190  case AArch64::SUBSXri:
1191  case AArch64::ADDSXri:
1192  case AArch64::ANDSXri:
1193    return true;
1194  }
1195}
1196
1197MachineInstr *AArch64InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
1198                                                         int FrameIx,
1199                                                         uint64_t Offset,
1200                                                         const MDNode *MDPtr,
1201                                                         DebugLoc DL) const {
1202  MachineInstrBuilder MIB = BuildMI(MF, DL, get(AArch64::DBG_VALUE))
1203                                .addFrameIndex(FrameIx)
1204                                .addImm(0)
1205                                .addImm(Offset)
1206                                .addMetadata(MDPtr);
1207  return &*MIB;
1208}
1209
1210static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB,
1211                                            unsigned Reg, unsigned SubIdx,
1212                                            unsigned State,
1213                                            const TargetRegisterInfo *TRI) {
1214  if (!SubIdx)
1215    return MIB.addReg(Reg, State);
1216
1217  if (TargetRegisterInfo::isPhysicalRegister(Reg))
1218    return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1219  return MIB.addReg(Reg, State, SubIdx);
1220}
1221
1222static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
1223                                        unsigned NumRegs) {
1224  // We really want the positive remainder mod 32 here, that happens to be
1225  // easily obtainable with a mask.
1226  return ((DestReg - SrcReg) & 0x1f) < NumRegs;
1227}
1228
1229void AArch64InstrInfo::copyPhysRegTuple(
1230    MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL,
1231    unsigned DestReg, unsigned SrcReg, bool KillSrc, unsigned Opcode,
1232    llvm::ArrayRef<unsigned> Indices) const {
1233  assert(Subtarget.hasNEON() &&
1234         "Unexpected register copy without NEON");
1235  const TargetRegisterInfo *TRI = &getRegisterInfo();
1236  uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
1237  uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
1238  unsigned NumRegs = Indices.size();
1239
1240  int SubReg = 0, End = NumRegs, Incr = 1;
1241  if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) {
1242    SubReg = NumRegs - 1;
1243    End = -1;
1244    Incr = -1;
1245  }
1246
1247  for (; SubReg != End; SubReg += Incr) {
1248    const MachineInstrBuilder &MIB = BuildMI(MBB, I, DL, get(Opcode));
1249    AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
1250    AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI);
1251    AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
1252  }
1253}
1254
1255void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1256                                   MachineBasicBlock::iterator I, DebugLoc DL,
1257                                   unsigned DestReg, unsigned SrcReg,
1258                                   bool KillSrc) const {
1259  if (AArch64::GPR32spRegClass.contains(DestReg) &&
1260      (AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) {
1261    const TargetRegisterInfo *TRI = &getRegisterInfo();
1262
1263    if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
1264      // If either operand is WSP, expand to ADD #0.
1265      if (Subtarget.hasZeroCycleRegMove()) {
1266        // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
1267        unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
1268                                                     &AArch64::GPR64spRegClass);
1269        unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
1270                                                    &AArch64::GPR64spRegClass);
1271        // This instruction is reading and writing X registers.  This may upset
1272        // the register scavenger and machine verifier, so we need to indicate
1273        // that we are reading an undefined value from SrcRegX, but a proper
1274        // value from SrcReg.
1275        BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX)
1276            .addReg(SrcRegX, RegState::Undef)
1277            .addImm(0)
1278            .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1279            .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
1280      } else {
1281        BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg)
1282            .addReg(SrcReg, getKillRegState(KillSrc))
1283            .addImm(0)
1284            .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
1285      }
1286    } else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroing()) {
1287      BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg).addImm(0).addImm(
1288          AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
1289    } else {
1290      if (Subtarget.hasZeroCycleRegMove()) {
1291        // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
1292        unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
1293                                                     &AArch64::GPR64spRegClass);
1294        unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
1295                                                    &AArch64::GPR64spRegClass);
1296        // This instruction is reading and writing X registers.  This may upset
1297        // the register scavenger and machine verifier, so we need to indicate
1298        // that we are reading an undefined value from SrcRegX, but a proper
1299        // value from SrcReg.
1300        BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX)
1301            .addReg(AArch64::XZR)
1302            .addReg(SrcRegX, RegState::Undef)
1303            .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
1304      } else {
1305        // Otherwise, expand to ORR WZR.
1306        BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg)
1307            .addReg(AArch64::WZR)
1308            .addReg(SrcReg, getKillRegState(KillSrc));
1309      }
1310    }
1311    return;
1312  }
1313
1314  if (AArch64::GPR64spRegClass.contains(DestReg) &&
1315      (AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) {
1316    if (DestReg == AArch64::SP || SrcReg == AArch64::SP) {
1317      // If either operand is SP, expand to ADD #0.
1318      BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg)
1319          .addReg(SrcReg, getKillRegState(KillSrc))
1320          .addImm(0)
1321          .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
1322    } else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroing()) {
1323      BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg).addImm(0).addImm(
1324          AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
1325    } else {
1326      // Otherwise, expand to ORR XZR.
1327      BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg)
1328          .addReg(AArch64::XZR)
1329          .addReg(SrcReg, getKillRegState(KillSrc));
1330    }
1331    return;
1332  }
1333
1334  // Copy a DDDD register quad by copying the individual sub-registers.
1335  if (AArch64::DDDDRegClass.contains(DestReg) &&
1336      AArch64::DDDDRegClass.contains(SrcReg)) {
1337    static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
1338                                        AArch64::dsub2, AArch64::dsub3 };
1339    copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
1340                     Indices);
1341    return;
1342  }
1343
1344  // Copy a DDD register triple by copying the individual sub-registers.
1345  if (AArch64::DDDRegClass.contains(DestReg) &&
1346      AArch64::DDDRegClass.contains(SrcReg)) {
1347    static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
1348                                        AArch64::dsub2 };
1349    copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
1350                     Indices);
1351    return;
1352  }
1353
1354  // Copy a DD register pair by copying the individual sub-registers.
1355  if (AArch64::DDRegClass.contains(DestReg) &&
1356      AArch64::DDRegClass.contains(SrcReg)) {
1357    static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1 };
1358    copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
1359                     Indices);
1360    return;
1361  }
1362
1363  // Copy a QQQQ register quad by copying the individual sub-registers.
1364  if (AArch64::QQQQRegClass.contains(DestReg) &&
1365      AArch64::QQQQRegClass.contains(SrcReg)) {
1366    static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
1367                                        AArch64::qsub2, AArch64::qsub3 };
1368    copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
1369                     Indices);
1370    return;
1371  }
1372
1373  // Copy a QQQ register triple by copying the individual sub-registers.
1374  if (AArch64::QQQRegClass.contains(DestReg) &&
1375      AArch64::QQQRegClass.contains(SrcReg)) {
1376    static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
1377                                        AArch64::qsub2 };
1378    copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
1379                     Indices);
1380    return;
1381  }
1382
1383  // Copy a QQ register pair by copying the individual sub-registers.
1384  if (AArch64::QQRegClass.contains(DestReg) &&
1385      AArch64::QQRegClass.contains(SrcReg)) {
1386    static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1 };
1387    copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
1388                     Indices);
1389    return;
1390  }
1391
1392  if (AArch64::FPR128RegClass.contains(DestReg) &&
1393      AArch64::FPR128RegClass.contains(SrcReg)) {
1394    if(Subtarget.hasNEON()) {
1395      BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1396          .addReg(SrcReg)
1397          .addReg(SrcReg, getKillRegState(KillSrc));
1398    } else {
1399      BuildMI(MBB, I, DL, get(AArch64::STRQpre))
1400        .addReg(AArch64::SP, RegState::Define)
1401        .addReg(SrcReg, getKillRegState(KillSrc))
1402        .addReg(AArch64::SP)
1403        .addImm(-16);
1404      BuildMI(MBB, I, DL, get(AArch64::LDRQpre))
1405        .addReg(AArch64::SP, RegState::Define)
1406        .addReg(DestReg, RegState::Define)
1407        .addReg(AArch64::SP)
1408        .addImm(16);
1409    }
1410    return;
1411  }
1412
1413  if (AArch64::FPR64RegClass.contains(DestReg) &&
1414      AArch64::FPR64RegClass.contains(SrcReg)) {
1415    if(Subtarget.hasNEON()) {
1416      DestReg = RI.getMatchingSuperReg(DestReg, AArch64::dsub,
1417                                       &AArch64::FPR128RegClass);
1418      SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::dsub,
1419                                      &AArch64::FPR128RegClass);
1420      BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1421          .addReg(SrcReg)
1422          .addReg(SrcReg, getKillRegState(KillSrc));
1423    } else {
1424      BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg)
1425          .addReg(SrcReg, getKillRegState(KillSrc));
1426    }
1427    return;
1428  }
1429
1430  if (AArch64::FPR32RegClass.contains(DestReg) &&
1431      AArch64::FPR32RegClass.contains(SrcReg)) {
1432    if(Subtarget.hasNEON()) {
1433      DestReg = RI.getMatchingSuperReg(DestReg, AArch64::ssub,
1434                                       &AArch64::FPR128RegClass);
1435      SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::ssub,
1436                                      &AArch64::FPR128RegClass);
1437      BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1438          .addReg(SrcReg)
1439          .addReg(SrcReg, getKillRegState(KillSrc));
1440    } else {
1441      BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
1442          .addReg(SrcReg, getKillRegState(KillSrc));
1443    }
1444    return;
1445  }
1446
1447  if (AArch64::FPR16RegClass.contains(DestReg) &&
1448      AArch64::FPR16RegClass.contains(SrcReg)) {
1449    if(Subtarget.hasNEON()) {
1450      DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
1451                                       &AArch64::FPR128RegClass);
1452      SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
1453                                      &AArch64::FPR128RegClass);
1454      BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1455          .addReg(SrcReg)
1456          .addReg(SrcReg, getKillRegState(KillSrc));
1457    } else {
1458      DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
1459                                       &AArch64::FPR32RegClass);
1460      SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
1461                                      &AArch64::FPR32RegClass);
1462      BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
1463          .addReg(SrcReg, getKillRegState(KillSrc));
1464    }
1465    return;
1466  }
1467
1468  if (AArch64::FPR8RegClass.contains(DestReg) &&
1469      AArch64::FPR8RegClass.contains(SrcReg)) {
1470    if(Subtarget.hasNEON()) {
1471      DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
1472                                       &AArch64::FPR128RegClass);
1473      SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
1474                                      &AArch64::FPR128RegClass);
1475      BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1476          .addReg(SrcReg)
1477          .addReg(SrcReg, getKillRegState(KillSrc));
1478    } else {
1479      DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
1480                                       &AArch64::FPR32RegClass);
1481      SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
1482                                      &AArch64::FPR32RegClass);
1483      BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
1484          .addReg(SrcReg, getKillRegState(KillSrc));
1485    }
1486    return;
1487  }
1488
1489  // Copies between GPR64 and FPR64.
1490  if (AArch64::FPR64RegClass.contains(DestReg) &&
1491      AArch64::GPR64RegClass.contains(SrcReg)) {
1492    BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg)
1493        .addReg(SrcReg, getKillRegState(KillSrc));
1494    return;
1495  }
1496  if (AArch64::GPR64RegClass.contains(DestReg) &&
1497      AArch64::FPR64RegClass.contains(SrcReg)) {
1498    BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg)
1499        .addReg(SrcReg, getKillRegState(KillSrc));
1500    return;
1501  }
1502  // Copies between GPR32 and FPR32.
1503  if (AArch64::FPR32RegClass.contains(DestReg) &&
1504      AArch64::GPR32RegClass.contains(SrcReg)) {
1505    BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg)
1506        .addReg(SrcReg, getKillRegState(KillSrc));
1507    return;
1508  }
1509  if (AArch64::GPR32RegClass.contains(DestReg) &&
1510      AArch64::FPR32RegClass.contains(SrcReg)) {
1511    BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg)
1512        .addReg(SrcReg, getKillRegState(KillSrc));
1513    return;
1514  }
1515
1516  if (DestReg == AArch64::NZCV) {
1517    assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy");
1518    BuildMI(MBB, I, DL, get(AArch64::MSR))
1519      .addImm(AArch64SysReg::NZCV)
1520      .addReg(SrcReg, getKillRegState(KillSrc))
1521      .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
1522    return;
1523  }
1524
1525  if (SrcReg == AArch64::NZCV) {
1526    assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy");
1527    BuildMI(MBB, I, DL, get(AArch64::MRS))
1528      .addReg(DestReg)
1529      .addImm(AArch64SysReg::NZCV)
1530      .addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
1531    return;
1532  }
1533
1534  llvm_unreachable("unimplemented reg-to-reg copy");
1535}
1536
1537void AArch64InstrInfo::storeRegToStackSlot(
1538    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
1539    bool isKill, int FI, const TargetRegisterClass *RC,
1540    const TargetRegisterInfo *TRI) const {
1541  DebugLoc DL;
1542  if (MBBI != MBB.end())
1543    DL = MBBI->getDebugLoc();
1544  MachineFunction &MF = *MBB.getParent();
1545  MachineFrameInfo &MFI = *MF.getFrameInfo();
1546  unsigned Align = MFI.getObjectAlignment(FI);
1547
1548  MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI));
1549  MachineMemOperand *MMO = MF.getMachineMemOperand(
1550      PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align);
1551  unsigned Opc = 0;
1552  bool Offset = true;
1553  switch (RC->getSize()) {
1554  case 1:
1555    if (AArch64::FPR8RegClass.hasSubClassEq(RC))
1556      Opc = AArch64::STRBui;
1557    break;
1558  case 2:
1559    if (AArch64::FPR16RegClass.hasSubClassEq(RC))
1560      Opc = AArch64::STRHui;
1561    break;
1562  case 4:
1563    if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
1564      Opc = AArch64::STRWui;
1565      if (TargetRegisterInfo::isVirtualRegister(SrcReg))
1566        MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
1567      else
1568        assert(SrcReg != AArch64::WSP);
1569    } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
1570      Opc = AArch64::STRSui;
1571    break;
1572  case 8:
1573    if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
1574      Opc = AArch64::STRXui;
1575      if (TargetRegisterInfo::isVirtualRegister(SrcReg))
1576        MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
1577      else
1578        assert(SrcReg != AArch64::SP);
1579    } else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
1580      Opc = AArch64::STRDui;
1581    break;
1582  case 16:
1583    if (AArch64::FPR128RegClass.hasSubClassEq(RC))
1584      Opc = AArch64::STRQui;
1585    else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
1586      assert(Subtarget.hasNEON() &&
1587             "Unexpected register store without NEON");
1588      Opc = AArch64::ST1Twov1d, Offset = false;
1589    }
1590    break;
1591  case 24:
1592    if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
1593      assert(Subtarget.hasNEON() &&
1594             "Unexpected register store without NEON");
1595      Opc = AArch64::ST1Threev1d, Offset = false;
1596    }
1597    break;
1598  case 32:
1599    if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
1600      assert(Subtarget.hasNEON() &&
1601             "Unexpected register store without NEON");
1602      Opc = AArch64::ST1Fourv1d, Offset = false;
1603    } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
1604      assert(Subtarget.hasNEON() &&
1605             "Unexpected register store without NEON");
1606      Opc = AArch64::ST1Twov2d, Offset = false;
1607    }
1608    break;
1609  case 48:
1610    if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
1611      assert(Subtarget.hasNEON() &&
1612             "Unexpected register store without NEON");
1613      Opc = AArch64::ST1Threev2d, Offset = false;
1614    }
1615    break;
1616  case 64:
1617    if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
1618      assert(Subtarget.hasNEON() &&
1619             "Unexpected register store without NEON");
1620      Opc = AArch64::ST1Fourv2d, Offset = false;
1621    }
1622    break;
1623  }
1624  assert(Opc && "Unknown register class");
1625
1626  const MachineInstrBuilder &MI = BuildMI(MBB, MBBI, DL, get(Opc))
1627                                      .addReg(SrcReg, getKillRegState(isKill))
1628                                      .addFrameIndex(FI);
1629
1630  if (Offset)
1631    MI.addImm(0);
1632  MI.addMemOperand(MMO);
1633}
1634
1635void AArch64InstrInfo::loadRegFromStackSlot(
1636    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
1637    int FI, const TargetRegisterClass *RC,
1638    const TargetRegisterInfo *TRI) const {
1639  DebugLoc DL;
1640  if (MBBI != MBB.end())
1641    DL = MBBI->getDebugLoc();
1642  MachineFunction &MF = *MBB.getParent();
1643  MachineFrameInfo &MFI = *MF.getFrameInfo();
1644  unsigned Align = MFI.getObjectAlignment(FI);
1645  MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI));
1646  MachineMemOperand *MMO = MF.getMachineMemOperand(
1647      PtrInfo, MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align);
1648
1649  unsigned Opc = 0;
1650  bool Offset = true;
1651  switch (RC->getSize()) {
1652  case 1:
1653    if (AArch64::FPR8RegClass.hasSubClassEq(RC))
1654      Opc = AArch64::LDRBui;
1655    break;
1656  case 2:
1657    if (AArch64::FPR16RegClass.hasSubClassEq(RC))
1658      Opc = AArch64::LDRHui;
1659    break;
1660  case 4:
1661    if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
1662      Opc = AArch64::LDRWui;
1663      if (TargetRegisterInfo::isVirtualRegister(DestReg))
1664        MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass);
1665      else
1666        assert(DestReg != AArch64::WSP);
1667    } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
1668      Opc = AArch64::LDRSui;
1669    break;
1670  case 8:
1671    if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
1672      Opc = AArch64::LDRXui;
1673      if (TargetRegisterInfo::isVirtualRegister(DestReg))
1674        MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass);
1675      else
1676        assert(DestReg != AArch64::SP);
1677    } else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
1678      Opc = AArch64::LDRDui;
1679    break;
1680  case 16:
1681    if (AArch64::FPR128RegClass.hasSubClassEq(RC))
1682      Opc = AArch64::LDRQui;
1683    else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
1684      assert(Subtarget.hasNEON() &&
1685             "Unexpected register load without NEON");
1686      Opc = AArch64::LD1Twov1d, Offset = false;
1687    }
1688    break;
1689  case 24:
1690    if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
1691      assert(Subtarget.hasNEON() &&
1692             "Unexpected register load without NEON");
1693      Opc = AArch64::LD1Threev1d, Offset = false;
1694    }
1695    break;
1696  case 32:
1697    if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
1698      assert(Subtarget.hasNEON() &&
1699             "Unexpected register load without NEON");
1700      Opc = AArch64::LD1Fourv1d, Offset = false;
1701    } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
1702      assert(Subtarget.hasNEON() &&
1703             "Unexpected register load without NEON");
1704      Opc = AArch64::LD1Twov2d, Offset = false;
1705    }
1706    break;
1707  case 48:
1708    if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
1709      assert(Subtarget.hasNEON() &&
1710             "Unexpected register load without NEON");
1711      Opc = AArch64::LD1Threev2d, Offset = false;
1712    }
1713    break;
1714  case 64:
1715    if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
1716      assert(Subtarget.hasNEON() &&
1717             "Unexpected register load without NEON");
1718      Opc = AArch64::LD1Fourv2d, Offset = false;
1719    }
1720    break;
1721  }
1722  assert(Opc && "Unknown register class");
1723
1724  const MachineInstrBuilder &MI = BuildMI(MBB, MBBI, DL, get(Opc))
1725                                      .addReg(DestReg, getDefRegState(true))
1726                                      .addFrameIndex(FI);
1727  if (Offset)
1728    MI.addImm(0);
1729  MI.addMemOperand(MMO);
1730}
1731
1732void llvm::emitFrameOffset(MachineBasicBlock &MBB,
1733                           MachineBasicBlock::iterator MBBI, DebugLoc DL,
1734                           unsigned DestReg, unsigned SrcReg, int Offset,
1735                           const TargetInstrInfo *TII,
1736                           MachineInstr::MIFlag Flag, bool SetNZCV) {
1737  if (DestReg == SrcReg && Offset == 0)
1738    return;
1739
1740  bool isSub = Offset < 0;
1741  if (isSub)
1742    Offset = -Offset;
1743
1744  // FIXME: If the offset won't fit in 24-bits, compute the offset into a
1745  // scratch register.  If DestReg is a virtual register, use it as the
1746  // scratch register; otherwise, create a new virtual register (to be
1747  // replaced by the scavenger at the end of PEI).  That case can be optimized
1748  // slightly if DestReg is SP which is always 16-byte aligned, so the scratch
1749  // register can be loaded with offset%8 and the add/sub can use an extending
1750  // instruction with LSL#3.
1751  // Currently the function handles any offsets but generates a poor sequence
1752  // of code.
1753  //  assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
1754
1755  unsigned Opc;
1756  if (SetNZCV)
1757    Opc = isSub ? AArch64::SUBSXri : AArch64::ADDSXri;
1758  else
1759    Opc = isSub ? AArch64::SUBXri : AArch64::ADDXri;
1760  const unsigned MaxEncoding = 0xfff;
1761  const unsigned ShiftSize = 12;
1762  const unsigned MaxEncodableValue = MaxEncoding << ShiftSize;
1763  while (((unsigned)Offset) >= (1 << ShiftSize)) {
1764    unsigned ThisVal;
1765    if (((unsigned)Offset) > MaxEncodableValue) {
1766      ThisVal = MaxEncodableValue;
1767    } else {
1768      ThisVal = Offset & MaxEncodableValue;
1769    }
1770    assert((ThisVal >> ShiftSize) <= MaxEncoding &&
1771           "Encoding cannot handle value that big");
1772    BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
1773        .addReg(SrcReg)
1774        .addImm(ThisVal >> ShiftSize)
1775        .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftSize))
1776        .setMIFlag(Flag);
1777
1778    SrcReg = DestReg;
1779    Offset -= ThisVal;
1780    if (Offset == 0)
1781      return;
1782  }
1783  BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
1784      .addReg(SrcReg)
1785      .addImm(Offset)
1786      .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1787      .setMIFlag(Flag);
1788}
1789
1790MachineInstr *
1791AArch64InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
1792                                        const SmallVectorImpl<unsigned> &Ops,
1793                                        int FrameIndex) const {
1794  // This is a bit of a hack. Consider this instruction:
1795  //
1796  //   %vreg0<def> = COPY %SP; GPR64all:%vreg0
1797  //
1798  // We explicitly chose GPR64all for the virtual register so such a copy might
1799  // be eliminated by RegisterCoalescer. However, that may not be possible, and
1800  // %vreg0 may even spill. We can't spill %SP, and since it is in the GPR64all
1801  // register class, TargetInstrInfo::foldMemoryOperand() is going to try.
1802  //
1803  // To prevent that, we are going to constrain the %vreg0 register class here.
1804  //
1805  // <rdar://problem/11522048>
1806  //
1807  if (MI->isCopy()) {
1808    unsigned DstReg = MI->getOperand(0).getReg();
1809    unsigned SrcReg = MI->getOperand(1).getReg();
1810    if (SrcReg == AArch64::SP &&
1811        TargetRegisterInfo::isVirtualRegister(DstReg)) {
1812      MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass);
1813      return nullptr;
1814    }
1815    if (DstReg == AArch64::SP &&
1816        TargetRegisterInfo::isVirtualRegister(SrcReg)) {
1817      MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
1818      return nullptr;
1819    }
1820  }
1821
1822  // Cannot fold.
1823  return nullptr;
1824}
1825
1826int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI, int &Offset,
1827                                    bool *OutUseUnscaledOp,
1828                                    unsigned *OutUnscaledOp,
1829                                    int *EmittableOffset) {
1830  int Scale = 1;
1831  bool IsSigned = false;
1832  // The ImmIdx should be changed case by case if it is not 2.
1833  unsigned ImmIdx = 2;
1834  unsigned UnscaledOp = 0;
1835  // Set output values in case of early exit.
1836  if (EmittableOffset)
1837    *EmittableOffset = 0;
1838  if (OutUseUnscaledOp)
1839    *OutUseUnscaledOp = false;
1840  if (OutUnscaledOp)
1841    *OutUnscaledOp = 0;
1842  switch (MI.getOpcode()) {
1843  default:
1844    llvm_unreachable("unhandled opcode in rewriteAArch64FrameIndex");
1845  // Vector spills/fills can't take an immediate offset.
1846  case AArch64::LD1Twov2d:
1847  case AArch64::LD1Threev2d:
1848  case AArch64::LD1Fourv2d:
1849  case AArch64::LD1Twov1d:
1850  case AArch64::LD1Threev1d:
1851  case AArch64::LD1Fourv1d:
1852  case AArch64::ST1Twov2d:
1853  case AArch64::ST1Threev2d:
1854  case AArch64::ST1Fourv2d:
1855  case AArch64::ST1Twov1d:
1856  case AArch64::ST1Threev1d:
1857  case AArch64::ST1Fourv1d:
1858    return AArch64FrameOffsetCannotUpdate;
1859  case AArch64::PRFMui:
1860    Scale = 8;
1861    UnscaledOp = AArch64::PRFUMi;
1862    break;
1863  case AArch64::LDRXui:
1864    Scale = 8;
1865    UnscaledOp = AArch64::LDURXi;
1866    break;
1867  case AArch64::LDRWui:
1868    Scale = 4;
1869    UnscaledOp = AArch64::LDURWi;
1870    break;
1871  case AArch64::LDRBui:
1872    Scale = 1;
1873    UnscaledOp = AArch64::LDURBi;
1874    break;
1875  case AArch64::LDRHui:
1876    Scale = 2;
1877    UnscaledOp = AArch64::LDURHi;
1878    break;
1879  case AArch64::LDRSui:
1880    Scale = 4;
1881    UnscaledOp = AArch64::LDURSi;
1882    break;
1883  case AArch64::LDRDui:
1884    Scale = 8;
1885    UnscaledOp = AArch64::LDURDi;
1886    break;
1887  case AArch64::LDRQui:
1888    Scale = 16;
1889    UnscaledOp = AArch64::LDURQi;
1890    break;
1891  case AArch64::LDRBBui:
1892    Scale = 1;
1893    UnscaledOp = AArch64::LDURBBi;
1894    break;
1895  case AArch64::LDRHHui:
1896    Scale = 2;
1897    UnscaledOp = AArch64::LDURHHi;
1898    break;
1899  case AArch64::LDRSBXui:
1900    Scale = 1;
1901    UnscaledOp = AArch64::LDURSBXi;
1902    break;
1903  case AArch64::LDRSBWui:
1904    Scale = 1;
1905    UnscaledOp = AArch64::LDURSBWi;
1906    break;
1907  case AArch64::LDRSHXui:
1908    Scale = 2;
1909    UnscaledOp = AArch64::LDURSHXi;
1910    break;
1911  case AArch64::LDRSHWui:
1912    Scale = 2;
1913    UnscaledOp = AArch64::LDURSHWi;
1914    break;
1915  case AArch64::LDRSWui:
1916    Scale = 4;
1917    UnscaledOp = AArch64::LDURSWi;
1918    break;
1919
1920  case AArch64::STRXui:
1921    Scale = 8;
1922    UnscaledOp = AArch64::STURXi;
1923    break;
1924  case AArch64::STRWui:
1925    Scale = 4;
1926    UnscaledOp = AArch64::STURWi;
1927    break;
1928  case AArch64::STRBui:
1929    Scale = 1;
1930    UnscaledOp = AArch64::STURBi;
1931    break;
1932  case AArch64::STRHui:
1933    Scale = 2;
1934    UnscaledOp = AArch64::STURHi;
1935    break;
1936  case AArch64::STRSui:
1937    Scale = 4;
1938    UnscaledOp = AArch64::STURSi;
1939    break;
1940  case AArch64::STRDui:
1941    Scale = 8;
1942    UnscaledOp = AArch64::STURDi;
1943    break;
1944  case AArch64::STRQui:
1945    Scale = 16;
1946    UnscaledOp = AArch64::STURQi;
1947    break;
1948  case AArch64::STRBBui:
1949    Scale = 1;
1950    UnscaledOp = AArch64::STURBBi;
1951    break;
1952  case AArch64::STRHHui:
1953    Scale = 2;
1954    UnscaledOp = AArch64::STURHHi;
1955    break;
1956
1957  case AArch64::LDPXi:
1958  case AArch64::LDPDi:
1959  case AArch64::STPXi:
1960  case AArch64::STPDi:
1961    IsSigned = true;
1962    Scale = 8;
1963    break;
1964  case AArch64::LDPQi:
1965  case AArch64::STPQi:
1966    IsSigned = true;
1967    Scale = 16;
1968    break;
1969  case AArch64::LDPWi:
1970  case AArch64::LDPSi:
1971  case AArch64::STPWi:
1972  case AArch64::STPSi:
1973    IsSigned = true;
1974    Scale = 4;
1975    break;
1976
1977  case AArch64::LDURXi:
1978  case AArch64::LDURWi:
1979  case AArch64::LDURBi:
1980  case AArch64::LDURHi:
1981  case AArch64::LDURSi:
1982  case AArch64::LDURDi:
1983  case AArch64::LDURQi:
1984  case AArch64::LDURHHi:
1985  case AArch64::LDURBBi:
1986  case AArch64::LDURSBXi:
1987  case AArch64::LDURSBWi:
1988  case AArch64::LDURSHXi:
1989  case AArch64::LDURSHWi:
1990  case AArch64::LDURSWi:
1991  case AArch64::STURXi:
1992  case AArch64::STURWi:
1993  case AArch64::STURBi:
1994  case AArch64::STURHi:
1995  case AArch64::STURSi:
1996  case AArch64::STURDi:
1997  case AArch64::STURQi:
1998  case AArch64::STURBBi:
1999  case AArch64::STURHHi:
2000    Scale = 1;
2001    break;
2002  }
2003
2004  Offset += MI.getOperand(ImmIdx).getImm() * Scale;
2005
2006  bool useUnscaledOp = false;
2007  // If the offset doesn't match the scale, we rewrite the instruction to
2008  // use the unscaled instruction instead. Likewise, if we have a negative
2009  // offset (and have an unscaled op to use).
2010  if ((Offset & (Scale - 1)) != 0 || (Offset < 0 && UnscaledOp != 0))
2011    useUnscaledOp = true;
2012
2013  // Use an unscaled addressing mode if the instruction has a negative offset
2014  // (or if the instruction is already using an unscaled addressing mode).
2015  unsigned MaskBits;
2016  if (IsSigned) {
2017    // ldp/stp instructions.
2018    MaskBits = 7;
2019    Offset /= Scale;
2020  } else if (UnscaledOp == 0 || useUnscaledOp) {
2021    MaskBits = 9;
2022    IsSigned = true;
2023    Scale = 1;
2024  } else {
2025    MaskBits = 12;
2026    IsSigned = false;
2027    Offset /= Scale;
2028  }
2029
2030  // Attempt to fold address computation.
2031  int MaxOff = (1 << (MaskBits - IsSigned)) - 1;
2032  int MinOff = (IsSigned ? (-MaxOff - 1) : 0);
2033  if (Offset >= MinOff && Offset <= MaxOff) {
2034    if (EmittableOffset)
2035      *EmittableOffset = Offset;
2036    Offset = 0;
2037  } else {
2038    int NewOff = Offset < 0 ? MinOff : MaxOff;
2039    if (EmittableOffset)
2040      *EmittableOffset = NewOff;
2041    Offset = (Offset - NewOff) * Scale;
2042  }
2043  if (OutUseUnscaledOp)
2044    *OutUseUnscaledOp = useUnscaledOp;
2045  if (OutUnscaledOp)
2046    *OutUnscaledOp = UnscaledOp;
2047  return AArch64FrameOffsetCanUpdate |
2048         (Offset == 0 ? AArch64FrameOffsetIsLegal : 0);
2049}
2050
2051bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2052                                    unsigned FrameReg, int &Offset,
2053                                    const AArch64InstrInfo *TII) {
2054  unsigned Opcode = MI.getOpcode();
2055  unsigned ImmIdx = FrameRegIdx + 1;
2056
2057  if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) {
2058    Offset += MI.getOperand(ImmIdx).getImm();
2059    emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(),
2060                    MI.getOperand(0).getReg(), FrameReg, Offset, TII,
2061                    MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri));
2062    MI.eraseFromParent();
2063    Offset = 0;
2064    return true;
2065  }
2066
2067  int NewOffset;
2068  unsigned UnscaledOp;
2069  bool UseUnscaledOp;
2070  int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp,
2071                                         &UnscaledOp, &NewOffset);
2072  if (Status & AArch64FrameOffsetCanUpdate) {
2073    if (Status & AArch64FrameOffsetIsLegal)
2074      // Replace the FrameIndex with FrameReg.
2075      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2076    if (UseUnscaledOp)
2077      MI.setDesc(TII->get(UnscaledOp));
2078
2079    MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset);
2080    return Offset == 0;
2081  }
2082
2083  return false;
2084}
2085
2086void AArch64InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
2087  NopInst.setOpcode(AArch64::HINT);
2088  NopInst.addOperand(MCOperand::CreateImm(0));
2089}
2090