AArch64AddressingModes.h revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the AArch64 addressing mode implementation stuff.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_AArch64_AArch64ADDRESSINGMODES_H
15#define LLVM_TARGET_AArch64_AArch64ADDRESSINGMODES_H
16
17#include "llvm/ADT/APFloat.h"
18#include "llvm/ADT/APInt.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22
23namespace llvm {
24
25/// AArch64_AM - AArch64 Addressing Mode Stuff
26namespace AArch64_AM {
27
28//===----------------------------------------------------------------------===//
29// Shifts
30//
31
32enum ShiftExtendType {
33  InvalidShiftExtend = -1,
34  LSL = 0,
35  LSR,
36  ASR,
37  ROR,
38  MSL,
39
40  UXTB,
41  UXTH,
42  UXTW,
43  UXTX,
44
45  SXTB,
46  SXTH,
47  SXTW,
48  SXTX,
49};
50
51/// getShiftName - Get the string encoding for the shift type.
52static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
53  switch (ST) {
54  default: assert(false && "unhandled shift type!");
55  case AArch64_AM::LSL: return "lsl";
56  case AArch64_AM::LSR: return "lsr";
57  case AArch64_AM::ASR: return "asr";
58  case AArch64_AM::ROR: return "ror";
59  case AArch64_AM::MSL: return "msl";
60  case AArch64_AM::UXTB: return "uxtb";
61  case AArch64_AM::UXTH: return "uxth";
62  case AArch64_AM::UXTW: return "uxtw";
63  case AArch64_AM::UXTX: return "uxtx";
64  case AArch64_AM::SXTB: return "sxtb";
65  case AArch64_AM::SXTH: return "sxth";
66  case AArch64_AM::SXTW: return "sxtw";
67  case AArch64_AM::SXTX: return "sxtx";
68  }
69  return nullptr;
70}
71
72/// getShiftType - Extract the shift type.
73static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
74  switch ((Imm >> 6) & 0x7) {
75  default: return AArch64_AM::InvalidShiftExtend;
76  case 0: return AArch64_AM::LSL;
77  case 1: return AArch64_AM::LSR;
78  case 2: return AArch64_AM::ASR;
79  case 3: return AArch64_AM::ROR;
80  case 4: return AArch64_AM::MSL;
81  }
82}
83
84/// getShiftValue - Extract the shift value.
85static inline unsigned getShiftValue(unsigned Imm) {
86  return Imm & 0x3f;
87}
88
89/// getShifterImm - Encode the shift type and amount:
90///   imm:     6-bit shift amount
91///   shifter: 000 ==> lsl
92///            001 ==> lsr
93///            010 ==> asr
94///            011 ==> ror
95///            100 ==> msl
96///   {8-6}  = shifter
97///   {5-0}  = imm
98static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
99                                     unsigned Imm) {
100  assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
101  unsigned STEnc = 0;
102  switch (ST) {
103  default:  llvm_unreachable("Invalid shift requested");
104  case AArch64_AM::LSL: STEnc = 0; break;
105  case AArch64_AM::LSR: STEnc = 1; break;
106  case AArch64_AM::ASR: STEnc = 2; break;
107  case AArch64_AM::ROR: STEnc = 3; break;
108  case AArch64_AM::MSL: STEnc = 4; break;
109  }
110  return (STEnc << 6) | (Imm & 0x3f);
111}
112
113//===----------------------------------------------------------------------===//
114// Extends
115//
116
117/// getArithShiftValue - get the arithmetic shift value.
118static inline unsigned getArithShiftValue(unsigned Imm) {
119  return Imm & 0x7;
120}
121
122/// getExtendType - Extract the extend type for operands of arithmetic ops.
123static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
124  assert((Imm & 0x7) == Imm && "invalid immediate!");
125  switch (Imm) {
126  default: llvm_unreachable("Compiler bug!");
127  case 0: return AArch64_AM::UXTB;
128  case 1: return AArch64_AM::UXTH;
129  case 2: return AArch64_AM::UXTW;
130  case 3: return AArch64_AM::UXTX;
131  case 4: return AArch64_AM::SXTB;
132  case 5: return AArch64_AM::SXTH;
133  case 6: return AArch64_AM::SXTW;
134  case 7: return AArch64_AM::SXTX;
135  }
136}
137
138static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
139  return getExtendType((Imm >> 3) & 0x7);
140}
141
142/// Mapping from extend bits to required operation:
143///   shifter: 000 ==> uxtb
144///            001 ==> uxth
145///            010 ==> uxtw
146///            011 ==> uxtx
147///            100 ==> sxtb
148///            101 ==> sxth
149///            110 ==> sxtw
150///            111 ==> sxtx
151inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
152  switch (ET) {
153  default: llvm_unreachable("Invalid extend type requested");
154  case AArch64_AM::UXTB: return 0; break;
155  case AArch64_AM::UXTH: return 1; break;
156  case AArch64_AM::UXTW: return 2; break;
157  case AArch64_AM::UXTX: return 3; break;
158  case AArch64_AM::SXTB: return 4; break;
159  case AArch64_AM::SXTH: return 5; break;
160  case AArch64_AM::SXTW: return 6; break;
161  case AArch64_AM::SXTX: return 7; break;
162  }
163}
164
165/// getArithExtendImm - Encode the extend type and shift amount for an
166///                     arithmetic instruction:
167///   imm:     3-bit extend amount
168///   {5-3}  = shifter
169///   {2-0}  = imm3
170static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
171                                         unsigned Imm) {
172  assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
173  return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
174}
175
176/// getMemDoShift - Extract the "do shift" flag value for load/store
177/// instructions.
178static inline bool getMemDoShift(unsigned Imm) {
179  return (Imm & 0x1) != 0;
180}
181
182/// getExtendType - Extract the extend type for the offset operand of
183/// loads/stores.
184static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
185  return getExtendType((Imm >> 1) & 0x7);
186}
187
188/// getExtendImm - Encode the extend type and amount for a load/store inst:
189///   doshift:     should the offset be scaled by the access size
190///   shifter: 000 ==> uxtb
191///            001 ==> uxth
192///            010 ==> uxtw
193///            011 ==> uxtx
194///            100 ==> sxtb
195///            101 ==> sxth
196///            110 ==> sxtw
197///            111 ==> sxtx
198///   {3-1}  = shifter
199///   {0}  = doshift
200static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
201                                       bool DoShift) {
202  return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
203}
204
205static inline uint64_t ror(uint64_t elt, unsigned size) {
206  return ((elt & 1) << (size-1)) | (elt >> 1);
207}
208
209/// processLogicalImmediate - Determine if an immediate value can be encoded
210/// as the immediate operand of a logical instruction for the given register
211/// size.  If so, return true with "encoding" set to the encoded value in
212/// the form N:immr:imms.
213static inline bool processLogicalImmediate(uint64_t imm, unsigned regSize,
214                                           uint64_t &encoding) {
215  if (imm == 0ULL || imm == ~0ULL ||
216      (regSize != 64 && (imm >> regSize != 0 || imm == ~0U)))
217    return false;
218
219  unsigned size = 2;
220  uint64_t eltVal = imm;
221
222  // First, determine the element size.
223  while (size < regSize) {
224    unsigned numElts = regSize / size;
225    unsigned mask = (1ULL << size) - 1;
226    uint64_t lowestEltVal = imm & mask;
227
228    bool allMatched = true;
229    for (unsigned i = 1; i < numElts; ++i) {
230     uint64_t currEltVal = (imm >> (i*size)) & mask;
231      if (currEltVal != lowestEltVal) {
232        allMatched = false;
233        break;
234      }
235    }
236
237    if (allMatched) {
238      eltVal = lowestEltVal;
239      break;
240    }
241
242    size *= 2;
243  }
244
245  // Second, determine the rotation to make the element be: 0^m 1^n.
246  for (unsigned i = 0; i < size; ++i) {
247    eltVal = ror(eltVal, size);
248    uint32_t clz = countLeadingZeros(eltVal) - (64 - size);
249    uint32_t cto = CountTrailingOnes_64(eltVal);
250
251    if (clz + cto == size) {
252      // Encode in immr the number of RORs it would take to get *from* this
253      // element value to our target value, where i+1 is the number of RORs
254      // to go the opposite direction.
255      unsigned immr = size - (i + 1);
256
257      // If size has a 1 in the n'th bit, create a value that has zeroes in
258      // bits [0, n] and ones above that.
259      uint64_t nimms = ~(size-1) << 1;
260
261      // Or the CTO value into the low bits, which must be below the Nth bit
262      // bit mentioned above.
263      nimms |= (cto-1);
264
265      // Extract the seventh bit and toggle it to create the N field.
266      unsigned N = ((nimms >> 6) & 1) ^ 1;
267
268      encoding = (N << 12) | (immr << 6) | (nimms & 0x3f);
269      return true;
270    }
271  }
272
273  return false;
274}
275
276/// isLogicalImmediate - Return true if the immediate is valid for a logical
277/// immediate instruction of the given register size. Return false otherwise.
278static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
279  uint64_t encoding;
280  return processLogicalImmediate(imm, regSize, encoding);
281}
282
283/// encodeLogicalImmediate - Return the encoded immediate value for a logical
284/// immediate instruction of the given register size.
285static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
286  uint64_t encoding = 0;
287  bool res = processLogicalImmediate(imm, regSize, encoding);
288  assert(res && "invalid logical immediate");
289  (void)res;
290  return encoding;
291}
292
293/// decodeLogicalImmediate - Decode a logical immediate value in the form
294/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
295/// integer value it represents with regSize bits.
296static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
297  // Extract the N, imms, and immr fields.
298  unsigned N = (val >> 12) & 1;
299  unsigned immr = (val >> 6) & 0x3f;
300  unsigned imms = val & 0x3f;
301
302  assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
303  int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
304  assert(len >= 0 && "undefined logical immediate encoding");
305  unsigned size = (1 << len);
306  unsigned R = immr & (size - 1);
307  unsigned S = imms & (size - 1);
308  assert(S != size - 1 && "undefined logical immediate encoding");
309  uint64_t pattern = (1ULL << (S + 1)) - 1;
310  for (unsigned i = 0; i < R; ++i)
311    pattern = ror(pattern, size);
312
313  // Replicate the pattern to fill the regSize.
314  while (size != regSize) {
315    pattern |= (pattern << size);
316    size *= 2;
317  }
318  return pattern;
319}
320
321/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
322/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
323/// is a valid encoding for an integer value with regSize bits.
324static inline bool isValidDecodeLogicalImmediate(uint64_t val,
325                                                 unsigned regSize) {
326  // Extract the N and imms fields needed for checking.
327  unsigned N = (val >> 12) & 1;
328  unsigned imms = val & 0x3f;
329
330  if (regSize == 32 && N != 0) // undefined logical immediate encoding
331    return false;
332  int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
333  if (len < 0) // undefined logical immediate encoding
334    return false;
335  unsigned size = (1 << len);
336  unsigned S = imms & (size - 1);
337  if (S == size - 1) // undefined logical immediate encoding
338    return false;
339
340  return true;
341}
342
343//===----------------------------------------------------------------------===//
344// Floating-point Immediates
345//
346static inline float getFPImmFloat(unsigned Imm) {
347  // We expect an 8-bit binary encoding of a floating-point number here.
348  union {
349    uint32_t I;
350    float F;
351  } FPUnion;
352
353  uint8_t Sign = (Imm >> 7) & 0x1;
354  uint8_t Exp = (Imm >> 4) & 0x7;
355  uint8_t Mantissa = Imm & 0xf;
356
357  //   8-bit FP    iEEEE Float Encoding
358  //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
359  //
360  // where B = NOT(b);
361
362  FPUnion.I = 0;
363  FPUnion.I |= Sign << 31;
364  FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
365  FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
366  FPUnion.I |= (Exp & 0x3) << 23;
367  FPUnion.I |= Mantissa << 19;
368  return FPUnion.F;
369}
370
371/// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
372/// floating-point value. If the value cannot be represented as an 8-bit
373/// floating-point value, then return -1.
374static inline int getFP32Imm(const APInt &Imm) {
375  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
376  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
377  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
378
379  // We can handle 4 bits of mantissa.
380  // mantissa = (16+UInt(e:f:g:h))/16.
381  if (Mantissa & 0x7ffff)
382    return -1;
383  Mantissa >>= 19;
384  if ((Mantissa & 0xf) != Mantissa)
385    return -1;
386
387  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
388  if (Exp < -3 || Exp > 4)
389    return -1;
390  Exp = ((Exp+3) & 0x7) ^ 4;
391
392  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
393}
394
395static inline int getFP32Imm(const APFloat &FPImm) {
396  return getFP32Imm(FPImm.bitcastToAPInt());
397}
398
399/// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
400/// floating-point value. If the value cannot be represented as an 8-bit
401/// floating-point value, then return -1.
402static inline int getFP64Imm(const APInt &Imm) {
403  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
404  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
405  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
406
407  // We can handle 4 bits of mantissa.
408  // mantissa = (16+UInt(e:f:g:h))/16.
409  if (Mantissa & 0xffffffffffffULL)
410    return -1;
411  Mantissa >>= 48;
412  if ((Mantissa & 0xf) != Mantissa)
413    return -1;
414
415  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
416  if (Exp < -3 || Exp > 4)
417    return -1;
418  Exp = ((Exp+3) & 0x7) ^ 4;
419
420  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
421}
422
423static inline int getFP64Imm(const APFloat &FPImm) {
424  return getFP64Imm(FPImm.bitcastToAPInt());
425}
426
427//===--------------------------------------------------------------------===//
428// AdvSIMD Modified Immediates
429//===--------------------------------------------------------------------===//
430
431// 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
432static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
433  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
434         ((Imm & 0xffffff00ffffff00ULL) == 0);
435}
436
437static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
438  return (Imm & 0xffULL);
439}
440
441static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
442  uint64_t EncVal = Imm;
443  return (EncVal << 32) | EncVal;
444}
445
446// 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
447static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
448  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
449         ((Imm & 0xffff00ffffff00ffULL) == 0);
450}
451
452static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
453  return (Imm & 0xff00ULL) >> 8;
454}
455
456static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
457  uint64_t EncVal = Imm;
458  return (EncVal << 40) | (EncVal << 8);
459}
460
461// 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
462static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
463  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
464         ((Imm & 0xff00ffffff00ffffULL) == 0);
465}
466
467static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
468  return (Imm & 0xff0000ULL) >> 16;
469}
470
471static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
472  uint64_t EncVal = Imm;
473  return (EncVal << 48) | (EncVal << 16);
474}
475
476// abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
477static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
478  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
479         ((Imm & 0x00ffffff00ffffffULL) == 0);
480}
481
482static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
483  return (Imm & 0xff000000ULL) >> 24;
484}
485
486static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
487  uint64_t EncVal = Imm;
488  return (EncVal << 56) | (EncVal << 24);
489}
490
491// 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
492static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
493  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
494         (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
495         ((Imm & 0xff00ff00ff00ff00ULL) == 0);
496}
497
498static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
499  return (Imm & 0xffULL);
500}
501
502static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
503  uint64_t EncVal = Imm;
504  return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
505}
506
507// abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
508static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
509  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
510         (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
511         ((Imm & 0x00ff00ff00ff00ffULL) == 0);
512}
513
514static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
515  return (Imm & 0xff00ULL) >> 8;
516}
517
518static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
519  uint64_t EncVal = Imm;
520  return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
521}
522
523// 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
524static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
525  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
526         ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
527}
528
529static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
530  return (Imm & 0xff00ULL) >> 8;
531}
532
533static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
534  uint64_t EncVal = Imm;
535  return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
536}
537
538// 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
539static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
540  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
541         ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
542}
543
544static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
545  uint64_t EncVal = Imm;
546  return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
547}
548
549static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
550  return (Imm & 0x00ff0000ULL) >> 16;
551}
552
553// abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
554static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
555  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
556         ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
557         ((Imm >> 56) == (Imm & 0x000000ffULL));
558}
559
560static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
561  return (Imm & 0xffULL);
562}
563
564static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
565  uint64_t EncVal = Imm;
566  EncVal |= (EncVal << 8);
567  EncVal |= (EncVal << 16);
568  EncVal |= (EncVal << 32);
569  return EncVal;
570}
571
572// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
573// cmode: 1110, op: 1
574static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
575  uint64_t ByteA = Imm & 0xff00000000000000ULL;
576  uint64_t ByteB = Imm & 0x00ff000000000000ULL;
577  uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
578  uint64_t ByteD = Imm & 0x000000ff00000000ULL;
579  uint64_t ByteE = Imm & 0x00000000ff000000ULL;
580  uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
581  uint64_t ByteG = Imm & 0x000000000000ff00ULL;
582  uint64_t ByteH = Imm & 0x00000000000000ffULL;
583
584  return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
585         (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
586         (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
587         (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
588         (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
589         (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
590         (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
591         (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
592}
593
594static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
595  uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
596  uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
597  uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
598  uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
599  uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
600  uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
601  uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
602  uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
603
604  uint8_t EncVal = BitA;
605  EncVal <<= 1;
606  EncVal |= BitB;
607  EncVal <<= 1;
608  EncVal |= BitC;
609  EncVal <<= 1;
610  EncVal |= BitD;
611  EncVal <<= 1;
612  EncVal |= BitE;
613  EncVal <<= 1;
614  EncVal |= BitF;
615  EncVal <<= 1;
616  EncVal |= BitG;
617  EncVal <<= 1;
618  EncVal |= BitH;
619  return EncVal;
620}
621
622static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
623  uint64_t EncVal = 0;
624  if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
625  if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
626  if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
627  if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
628  if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
629  if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
630  if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
631  if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
632  return EncVal;
633}
634
635// aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
636static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
637  uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
638  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
639         (BString == 0x1f || BString == 0x20) &&
640         ((Imm & 0x0007ffff0007ffffULL) == 0);
641}
642
643static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
644  uint8_t BitA = (Imm & 0x80000000ULL) != 0;
645  uint8_t BitB = (Imm & 0x20000000ULL) != 0;
646  uint8_t BitC = (Imm & 0x01000000ULL) != 0;
647  uint8_t BitD = (Imm & 0x00800000ULL) != 0;
648  uint8_t BitE = (Imm & 0x00400000ULL) != 0;
649  uint8_t BitF = (Imm & 0x00200000ULL) != 0;
650  uint8_t BitG = (Imm & 0x00100000ULL) != 0;
651  uint8_t BitH = (Imm & 0x00080000ULL) != 0;
652
653  uint8_t EncVal = BitA;
654  EncVal <<= 1;
655  EncVal |= BitB;
656  EncVal <<= 1;
657  EncVal |= BitC;
658  EncVal <<= 1;
659  EncVal |= BitD;
660  EncVal <<= 1;
661  EncVal |= BitE;
662  EncVal <<= 1;
663  EncVal |= BitF;
664  EncVal <<= 1;
665  EncVal |= BitG;
666  EncVal <<= 1;
667  EncVal |= BitH;
668  return EncVal;
669}
670
671static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
672  uint64_t EncVal = 0;
673  if (Imm & 0x80) EncVal |= 0x80000000ULL;
674  if (Imm & 0x40) EncVal |= 0x3e000000ULL;
675  else            EncVal |= 0x40000000ULL;
676  if (Imm & 0x20) EncVal |= 0x01000000ULL;
677  if (Imm & 0x10) EncVal |= 0x00800000ULL;
678  if (Imm & 0x08) EncVal |= 0x00400000ULL;
679  if (Imm & 0x04) EncVal |= 0x00200000ULL;
680  if (Imm & 0x02) EncVal |= 0x00100000ULL;
681  if (Imm & 0x01) EncVal |= 0x00080000ULL;
682  return (EncVal << 32) | EncVal;
683}
684
685// aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
686static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
687  uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
688  return ((BString == 0xff || BString == 0x100) &&
689         ((Imm & 0x0000ffffffffffffULL) == 0));
690}
691
692static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
693  uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
694  uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
695  uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
696  uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
697  uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
698  uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
699  uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
700  uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
701
702  uint8_t EncVal = BitA;
703  EncVal <<= 1;
704  EncVal |= BitB;
705  EncVal <<= 1;
706  EncVal |= BitC;
707  EncVal <<= 1;
708  EncVal |= BitD;
709  EncVal <<= 1;
710  EncVal |= BitE;
711  EncVal <<= 1;
712  EncVal |= BitF;
713  EncVal <<= 1;
714  EncVal |= BitG;
715  EncVal <<= 1;
716  EncVal |= BitH;
717  return EncVal;
718}
719
720static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
721  uint64_t EncVal = 0;
722  if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
723  if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
724  else            EncVal |= 0x4000000000000000ULL;
725  if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
726  if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
727  if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
728  if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
729  if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
730  if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
731  return (EncVal << 32) | EncVal;
732}
733
734} // end namespace AArch64_AM
735
736} // end namespace llvm
737
738#endif
739