ARMAsmPrinter.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal representation
11// of machine-dependent LLVM code to GAS-format ARM assembly language.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARMAsmPrinter.h"
16#include "ARM.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMFPUName.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMTargetObjectFile.h"
22#include "InstPrinter/ARMInstPrinter.h"
23#include "MCTargetDesc/ARMAddressingModes.h"
24#include "MCTargetDesc/ARMMCExpr.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/MachineJumpTableInfo.h"
29#include "llvm/CodeGen/MachineModuleInfoImpls.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/DebugInfo.h"
33#include "llvm/IR/Mangler.h"
34#include "llvm/IR/Module.h"
35#include "llvm/IR/Type.h"
36#include "llvm/MC/MCAsmInfo.h"
37#include "llvm/MC/MCAssembler.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCELFStreamer.h"
40#include "llvm/MC/MCInst.h"
41#include "llvm/MC/MCInstBuilder.h"
42#include "llvm/MC/MCObjectStreamer.h"
43#include "llvm/MC/MCSectionMachO.h"
44#include "llvm/MC/MCStreamer.h"
45#include "llvm/MC/MCSymbol.h"
46#include "llvm/Support/ARMBuildAttributes.h"
47#include "llvm/Support/COFF.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ELF.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/TargetRegistry.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetMachine.h"
55#include <cctype>
56using namespace llvm;
57
58#define DEBUG_TYPE "asm-printer"
59
60void ARMAsmPrinter::EmitFunctionBodyEnd() {
61  // Make sure to terminate any constant pools that were at the end
62  // of the function.
63  if (!InConstantPool)
64    return;
65  InConstantPool = false;
66  OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
67}
68
69void ARMAsmPrinter::EmitFunctionEntryLabel() {
70  if (AFI->isThumbFunction()) {
71    OutStreamer.EmitAssemblerFlag(MCAF_Code16);
72    OutStreamer.EmitThumbFunc(CurrentFnSym);
73  }
74
75  OutStreamer.EmitLabel(CurrentFnSym);
76}
77
78void ARMAsmPrinter::EmitXXStructor(const Constant *CV) {
79  uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
80  assert(Size && "C++ constructor pointer had zero size!");
81
82  const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
83  assert(GV && "C++ constructor pointer was not a GlobalValue!");
84
85  const MCExpr *E = MCSymbolRefExpr::Create(GetARMGVSymbol(GV,
86                                                           ARMII::MO_NO_FLAG),
87                                            (Subtarget->isTargetELF()
88                                             ? MCSymbolRefExpr::VK_ARM_TARGET1
89                                             : MCSymbolRefExpr::VK_None),
90                                            OutContext);
91
92  OutStreamer.EmitValue(E, Size);
93}
94
95/// runOnMachineFunction - This uses the EmitInstruction()
96/// method to print assembly for each instruction.
97///
98bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
99  AFI = MF.getInfo<ARMFunctionInfo>();
100  MCP = MF.getConstantPool();
101
102  SetupMachineFunction(MF);
103
104  if (Subtarget->isTargetCOFF()) {
105    bool Internal = MF.getFunction()->hasInternalLinkage();
106    COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
107                                            : COFF::IMAGE_SYM_CLASS_EXTERNAL;
108    int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
109
110    OutStreamer.BeginCOFFSymbolDef(CurrentFnSym);
111    OutStreamer.EmitCOFFSymbolStorageClass(Scl);
112    OutStreamer.EmitCOFFSymbolType(Type);
113    OutStreamer.EndCOFFSymbolDef();
114  }
115
116  // Have common code print out the function header with linkage info etc.
117  EmitFunctionHeader();
118
119  // Emit the rest of the function body.
120  EmitFunctionBody();
121
122  // We didn't modify anything.
123  return false;
124}
125
126void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
127                                 raw_ostream &O, const char *Modifier) {
128  const MachineOperand &MO = MI->getOperand(OpNum);
129  unsigned TF = MO.getTargetFlags();
130
131  switch (MO.getType()) {
132  default: llvm_unreachable("<unknown operand type>");
133  case MachineOperand::MO_Register: {
134    unsigned Reg = MO.getReg();
135    assert(TargetRegisterInfo::isPhysicalRegister(Reg));
136    assert(!MO.getSubReg() && "Subregs should be eliminated!");
137    if(ARM::GPRPairRegClass.contains(Reg)) {
138      const MachineFunction &MF = *MI->getParent()->getParent();
139      const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
140      Reg = TRI->getSubReg(Reg, ARM::gsub_0);
141    }
142    O << ARMInstPrinter::getRegisterName(Reg);
143    break;
144  }
145  case MachineOperand::MO_Immediate: {
146    int64_t Imm = MO.getImm();
147    O << '#';
148    if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
149        (TF == ARMII::MO_LO16))
150      O << ":lower16:";
151    else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
152             (TF == ARMII::MO_HI16))
153      O << ":upper16:";
154    O << Imm;
155    break;
156  }
157  case MachineOperand::MO_MachineBasicBlock:
158    O << *MO.getMBB()->getSymbol();
159    return;
160  case MachineOperand::MO_GlobalAddress: {
161    const GlobalValue *GV = MO.getGlobal();
162    if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
163        (TF & ARMII::MO_LO16))
164      O << ":lower16:";
165    else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
166             (TF & ARMII::MO_HI16))
167      O << ":upper16:";
168    O << *GetARMGVSymbol(GV, TF);
169
170    printOffset(MO.getOffset(), O);
171    if (TF == ARMII::MO_PLT)
172      O << "(PLT)";
173    break;
174  }
175  case MachineOperand::MO_ConstantPoolIndex:
176    O << *GetCPISymbol(MO.getIndex());
177    break;
178  }
179}
180
181//===--------------------------------------------------------------------===//
182
183MCSymbol *ARMAsmPrinter::
184GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
185  const DataLayout *DL = TM.getDataLayout();
186  SmallString<60> Name;
187  raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "JTI"
188    << getFunctionNumber() << '_' << uid << '_' << uid2;
189  return OutContext.GetOrCreateSymbol(Name.str());
190}
191
192
193MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel() const {
194  const DataLayout *DL = TM.getDataLayout();
195  SmallString<60> Name;
196  raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "SJLJEH"
197    << getFunctionNumber();
198  return OutContext.GetOrCreateSymbol(Name.str());
199}
200
201bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
202                                    unsigned AsmVariant, const char *ExtraCode,
203                                    raw_ostream &O) {
204  // Does this asm operand have a single letter operand modifier?
205  if (ExtraCode && ExtraCode[0]) {
206    if (ExtraCode[1] != 0) return true; // Unknown modifier.
207
208    switch (ExtraCode[0]) {
209    default:
210      // See if this is a generic print operand
211      return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
212    case 'a': // Print as a memory address.
213      if (MI->getOperand(OpNum).isReg()) {
214        O << "["
215          << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
216          << "]";
217        return false;
218      }
219      // Fallthrough
220    case 'c': // Don't print "#" before an immediate operand.
221      if (!MI->getOperand(OpNum).isImm())
222        return true;
223      O << MI->getOperand(OpNum).getImm();
224      return false;
225    case 'P': // Print a VFP double precision register.
226    case 'q': // Print a NEON quad precision register.
227      printOperand(MI, OpNum, O);
228      return false;
229    case 'y': // Print a VFP single precision register as indexed double.
230      if (MI->getOperand(OpNum).isReg()) {
231        unsigned Reg = MI->getOperand(OpNum).getReg();
232        const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
233        // Find the 'd' register that has this 's' register as a sub-register,
234        // and determine the lane number.
235        for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
236          if (!ARM::DPRRegClass.contains(*SR))
237            continue;
238          bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
239          O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
240          return false;
241        }
242      }
243      return true;
244    case 'B': // Bitwise inverse of integer or symbol without a preceding #.
245      if (!MI->getOperand(OpNum).isImm())
246        return true;
247      O << ~(MI->getOperand(OpNum).getImm());
248      return false;
249    case 'L': // The low 16 bits of an immediate constant.
250      if (!MI->getOperand(OpNum).isImm())
251        return true;
252      O << (MI->getOperand(OpNum).getImm() & 0xffff);
253      return false;
254    case 'M': { // A register range suitable for LDM/STM.
255      if (!MI->getOperand(OpNum).isReg())
256        return true;
257      const MachineOperand &MO = MI->getOperand(OpNum);
258      unsigned RegBegin = MO.getReg();
259      // This takes advantage of the 2 operand-ness of ldm/stm and that we've
260      // already got the operands in registers that are operands to the
261      // inline asm statement.
262      O << "{";
263      if (ARM::GPRPairRegClass.contains(RegBegin)) {
264        const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
265        unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
266        O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
267        RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
268      }
269      O << ARMInstPrinter::getRegisterName(RegBegin);
270
271      // FIXME: The register allocator not only may not have given us the
272      // registers in sequence, but may not be in ascending registers. This
273      // will require changes in the register allocator that'll need to be
274      // propagated down here if the operands change.
275      unsigned RegOps = OpNum + 1;
276      while (MI->getOperand(RegOps).isReg()) {
277        O << ", "
278          << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
279        RegOps++;
280      }
281
282      O << "}";
283
284      return false;
285    }
286    case 'R': // The most significant register of a pair.
287    case 'Q': { // The least significant register of a pair.
288      if (OpNum == 0)
289        return true;
290      const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
291      if (!FlagsOP.isImm())
292        return true;
293      unsigned Flags = FlagsOP.getImm();
294
295      // This operand may not be the one that actually provides the register. If
296      // it's tied to a previous one then we should refer instead to that one
297      // for registers and their classes.
298      unsigned TiedIdx;
299      if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
300        for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
301          unsigned OpFlags = MI->getOperand(OpNum).getImm();
302          OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
303        }
304        Flags = MI->getOperand(OpNum).getImm();
305
306        // Later code expects OpNum to be pointing at the register rather than
307        // the flags.
308        OpNum += 1;
309      }
310
311      unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
312      unsigned RC;
313      InlineAsm::hasRegClassConstraint(Flags, RC);
314      if (RC == ARM::GPRPairRegClassID) {
315        if (NumVals != 1)
316          return true;
317        const MachineOperand &MO = MI->getOperand(OpNum);
318        if (!MO.isReg())
319          return true;
320        const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
321        unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
322            ARM::gsub_0 : ARM::gsub_1);
323        O << ARMInstPrinter::getRegisterName(Reg);
324        return false;
325      }
326      if (NumVals != 2)
327        return true;
328      unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
329      if (RegOp >= MI->getNumOperands())
330        return true;
331      const MachineOperand &MO = MI->getOperand(RegOp);
332      if (!MO.isReg())
333        return true;
334      unsigned Reg = MO.getReg();
335      O << ARMInstPrinter::getRegisterName(Reg);
336      return false;
337    }
338
339    case 'e': // The low doubleword register of a NEON quad register.
340    case 'f': { // The high doubleword register of a NEON quad register.
341      if (!MI->getOperand(OpNum).isReg())
342        return true;
343      unsigned Reg = MI->getOperand(OpNum).getReg();
344      if (!ARM::QPRRegClass.contains(Reg))
345        return true;
346      const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
347      unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
348                                       ARM::dsub_0 : ARM::dsub_1);
349      O << ARMInstPrinter::getRegisterName(SubReg);
350      return false;
351    }
352
353    // This modifier is not yet supported.
354    case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
355      return true;
356    case 'H': { // The highest-numbered register of a pair.
357      const MachineOperand &MO = MI->getOperand(OpNum);
358      if (!MO.isReg())
359        return true;
360      const MachineFunction &MF = *MI->getParent()->getParent();
361      const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
362      unsigned Reg = MO.getReg();
363      if(!ARM::GPRPairRegClass.contains(Reg))
364        return false;
365      Reg = TRI->getSubReg(Reg, ARM::gsub_1);
366      O << ARMInstPrinter::getRegisterName(Reg);
367      return false;
368    }
369    }
370  }
371
372  printOperand(MI, OpNum, O);
373  return false;
374}
375
376bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
377                                          unsigned OpNum, unsigned AsmVariant,
378                                          const char *ExtraCode,
379                                          raw_ostream &O) {
380  // Does this asm operand have a single letter operand modifier?
381  if (ExtraCode && ExtraCode[0]) {
382    if (ExtraCode[1] != 0) return true; // Unknown modifier.
383
384    switch (ExtraCode[0]) {
385      case 'A': // A memory operand for a VLD1/VST1 instruction.
386      default: return true;  // Unknown modifier.
387      case 'm': // The base register of a memory operand.
388        if (!MI->getOperand(OpNum).isReg())
389          return true;
390        O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
391        return false;
392    }
393  }
394
395  const MachineOperand &MO = MI->getOperand(OpNum);
396  assert(MO.isReg() && "unexpected inline asm memory operand");
397  O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
398  return false;
399}
400
401static bool isThumb(const MCSubtargetInfo& STI) {
402  return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
403}
404
405void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
406                                     const MCSubtargetInfo *EndInfo) const {
407  // If either end mode is unknown (EndInfo == NULL) or different than
408  // the start mode, then restore the start mode.
409  const bool WasThumb = isThumb(StartInfo);
410  if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
411    OutStreamer.EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
412  }
413}
414
415void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
416  if (Subtarget->isTargetMachO()) {
417    Reloc::Model RelocM = TM.getRelocationModel();
418    if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
419      // Declare all the text sections up front (before the DWARF sections
420      // emitted by AsmPrinter::doInitialization) so the assembler will keep
421      // them together at the beginning of the object file.  This helps
422      // avoid out-of-range branches that are due a fundamental limitation of
423      // the way symbol offsets are encoded with the current Darwin ARM
424      // relocations.
425      const TargetLoweringObjectFileMachO &TLOFMacho =
426        static_cast<const TargetLoweringObjectFileMachO &>(
427          getObjFileLowering());
428
429      // Collect the set of sections our functions will go into.
430      SetVector<const MCSection *, SmallVector<const MCSection *, 8>,
431        SmallPtrSet<const MCSection *, 8> > TextSections;
432      // Default text section comes first.
433      TextSections.insert(TLOFMacho.getTextSection());
434      // Now any user defined text sections from function attributes.
435      for (Module::iterator F = M.begin(), e = M.end(); F != e; ++F)
436        if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage())
437          TextSections.insert(TLOFMacho.SectionForGlobal(F, *Mang, TM));
438      // Now the coalescable sections.
439      TextSections.insert(TLOFMacho.getTextCoalSection());
440      TextSections.insert(TLOFMacho.getConstTextCoalSection());
441
442      // Emit the sections in the .s file header to fix the order.
443      for (unsigned i = 0, e = TextSections.size(); i != e; ++i)
444        OutStreamer.SwitchSection(TextSections[i]);
445
446      if (RelocM == Reloc::DynamicNoPIC) {
447        const MCSection *sect =
448          OutContext.getMachOSection("__TEXT", "__symbol_stub4",
449                                     MachO::S_SYMBOL_STUBS,
450                                     12, SectionKind::getText());
451        OutStreamer.SwitchSection(sect);
452      } else {
453        const MCSection *sect =
454          OutContext.getMachOSection("__TEXT", "__picsymbolstub4",
455                                     MachO::S_SYMBOL_STUBS,
456                                     16, SectionKind::getText());
457        OutStreamer.SwitchSection(sect);
458      }
459      const MCSection *StaticInitSect =
460        OutContext.getMachOSection("__TEXT", "__StaticInit",
461                                   MachO::S_REGULAR |
462                                   MachO::S_ATTR_PURE_INSTRUCTIONS,
463                                   SectionKind::getText());
464      OutStreamer.SwitchSection(StaticInitSect);
465    }
466
467    // Compiling with debug info should not affect the code
468    // generation.  Ensure the cstring section comes before the
469    // optional __DWARF secion. Otherwise, PC-relative loads would
470    // have to use different instruction sequences at "-g" in order to
471    // reach global data in the same object file.
472    OutStreamer.SwitchSection(getObjFileLowering().getCStringSection());
473  }
474
475  // Use unified assembler syntax.
476  OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified);
477
478  // Emit ARM Build Attributes
479  if (Subtarget->isTargetELF())
480    emitAttributes();
481}
482
483static void
484emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
485                         MachineModuleInfoImpl::StubValueTy &MCSym) {
486  // L_foo$stub:
487  OutStreamer.EmitLabel(StubLabel);
488  //   .indirect_symbol _foo
489  OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
490
491  if (MCSym.getInt())
492    // External to current translation unit.
493    OutStreamer.EmitIntValue(0, 4/*size*/);
494  else
495    // Internal to current translation unit.
496    //
497    // When we place the LSDA into the TEXT section, the type info
498    // pointers need to be indirect and pc-rel. We accomplish this by
499    // using NLPs; however, sometimes the types are local to the file.
500    // We need to fill in the value for the NLP in those cases.
501    OutStreamer.EmitValue(
502        MCSymbolRefExpr::Create(MCSym.getPointer(), OutStreamer.getContext()),
503        4 /*size*/);
504}
505
506
507void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
508  if (Subtarget->isTargetMachO()) {
509    // All darwin targets use mach-o.
510    const TargetLoweringObjectFileMachO &TLOFMacho =
511      static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
512    MachineModuleInfoMachO &MMIMacho =
513      MMI->getObjFileInfo<MachineModuleInfoMachO>();
514
515    // Output non-lazy-pointers for external and common global variables.
516    MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
517
518    if (!Stubs.empty()) {
519      // Switch with ".non_lazy_symbol_pointer" directive.
520      OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
521      EmitAlignment(2);
522
523      for (auto &Stub : Stubs)
524        emitNonLazySymbolPointer(OutStreamer, Stub.first, Stub.second);
525
526      Stubs.clear();
527      OutStreamer.AddBlankLine();
528    }
529
530    Stubs = MMIMacho.GetHiddenGVStubList();
531    if (!Stubs.empty()) {
532      OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
533      EmitAlignment(2);
534
535      for (auto &Stub : Stubs)
536        emitNonLazySymbolPointer(OutStreamer, Stub.first, Stub.second);
537
538      Stubs.clear();
539      OutStreamer.AddBlankLine();
540    }
541
542    // Funny Darwin hack: This flag tells the linker that no global symbols
543    // contain code that falls through to other global symbols (e.g. the obvious
544    // implementation of multiple entry points).  If this doesn't occur, the
545    // linker can safely perform dead code stripping.  Since LLVM never
546    // generates code that does this, it is always safe to set.
547    OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
548  }
549
550  // Emit a .data.rel section containing any stubs that were created.
551  if (Subtarget->isTargetELF()) {
552    const TargetLoweringObjectFileELF &TLOFELF =
553      static_cast<const TargetLoweringObjectFileELF &>(getObjFileLowering());
554
555    MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
556
557    // Output stubs for external and common global variables.
558    MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
559    if (!Stubs.empty()) {
560      OutStreamer.SwitchSection(TLOFELF.getDataRelSection());
561      const DataLayout *TD = TM.getDataLayout();
562
563      for (auto &stub: Stubs) {
564        OutStreamer.EmitLabel(stub.first);
565        OutStreamer.EmitSymbolValue(stub.second.getPointer(),
566                                    TD->getPointerSize(0));
567      }
568      Stubs.clear();
569    }
570  }
571}
572
573//===----------------------------------------------------------------------===//
574// Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
575// FIXME:
576// The following seem like one-off assembler flags, but they actually need
577// to appear in the .ARM.attributes section in ELF.
578// Instead of subclassing the MCELFStreamer, we do the work here.
579
580static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU,
581                                            const ARMSubtarget *Subtarget) {
582  if (CPU == "xscale")
583    return ARMBuildAttrs::v5TEJ;
584
585  if (Subtarget->hasV8Ops())
586    return ARMBuildAttrs::v8;
587  else if (Subtarget->hasV7Ops()) {
588    if (Subtarget->isMClass() && Subtarget->hasThumb2DSP())
589      return ARMBuildAttrs::v7E_M;
590    return ARMBuildAttrs::v7;
591  } else if (Subtarget->hasV6T2Ops())
592    return ARMBuildAttrs::v6T2;
593  else if (Subtarget->hasV6MOps())
594    return ARMBuildAttrs::v6S_M;
595  else if (Subtarget->hasV6Ops())
596    return ARMBuildAttrs::v6;
597  else if (Subtarget->hasV5TEOps())
598    return ARMBuildAttrs::v5TE;
599  else if (Subtarget->hasV5TOps())
600    return ARMBuildAttrs::v5T;
601  else if (Subtarget->hasV4TOps())
602    return ARMBuildAttrs::v4T;
603  else
604    return ARMBuildAttrs::v4;
605}
606
607void ARMAsmPrinter::emitAttributes() {
608  MCTargetStreamer &TS = *OutStreamer.getTargetStreamer();
609  ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
610
611  ATS.switchVendor("aeabi");
612
613  std::string CPUString = Subtarget->getCPUString();
614
615  // FIXME: remove krait check when GNU tools support krait cpu
616  if (CPUString != "generic" && CPUString != "krait")
617    ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
618
619  ATS.emitAttribute(ARMBuildAttrs::CPU_arch,
620                    getArchForCPU(CPUString, Subtarget));
621
622  // Tag_CPU_arch_profile must have the default value of 0 when "Architecture
623  // profile is not applicable (e.g. pre v7, or cross-profile code)".
624  if (Subtarget->hasV7Ops()) {
625    if (Subtarget->isAClass()) {
626      ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
627                        ARMBuildAttrs::ApplicationProfile);
628    } else if (Subtarget->isRClass()) {
629      ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
630                        ARMBuildAttrs::RealTimeProfile);
631    } else if (Subtarget->isMClass()) {
632      ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
633                        ARMBuildAttrs::MicroControllerProfile);
634    }
635  }
636
637  ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, Subtarget->hasARMOps() ?
638                      ARMBuildAttrs::Allowed : ARMBuildAttrs::Not_Allowed);
639  if (Subtarget->isThumb1Only()) {
640    ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
641                      ARMBuildAttrs::Allowed);
642  } else if (Subtarget->hasThumb2()) {
643    ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
644                      ARMBuildAttrs::AllowThumb32);
645  }
646
647  if (Subtarget->hasNEON()) {
648    /* NEON is not exactly a VFP architecture, but GAS emit one of
649     * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
650    if (Subtarget->hasFPARMv8()) {
651      if (Subtarget->hasCrypto())
652        ATS.emitFPU(ARM::CRYPTO_NEON_FP_ARMV8);
653      else
654        ATS.emitFPU(ARM::NEON_FP_ARMV8);
655    }
656    else if (Subtarget->hasVFP4())
657      ATS.emitFPU(ARM::NEON_VFPV4);
658    else
659      ATS.emitFPU(ARM::NEON);
660    // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
661    if (Subtarget->hasV8Ops())
662      ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
663                        ARMBuildAttrs::AllowNeonARMv8);
664  } else {
665    if (Subtarget->hasFPARMv8())
666      ATS.emitFPU(ARM::FP_ARMV8);
667    else if (Subtarget->hasVFP4())
668      ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV4_D16 : ARM::VFPV4);
669    else if (Subtarget->hasVFP3())
670      ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV3_D16 : ARM::VFPV3);
671    else if (Subtarget->hasVFP2())
672      ATS.emitFPU(ARM::VFPV2);
673  }
674
675  if (TM.getRelocationModel() == Reloc::PIC_) {
676    // PIC specific attributes.
677    ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
678                      ARMBuildAttrs::AddressRWPCRel);
679    ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
680                      ARMBuildAttrs::AddressROPCRel);
681    ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
682                      ARMBuildAttrs::AddressGOT);
683  } else {
684    // Allow direct addressing of imported data for all other relocation models.
685    ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
686                      ARMBuildAttrs::AddressDirect);
687  }
688
689  // Signal various FP modes.
690  if (!TM.Options.UnsafeFPMath) {
691    ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, ARMBuildAttrs::Allowed);
692    ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
693                      ARMBuildAttrs::Allowed);
694  }
695
696  if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
697    ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
698                      ARMBuildAttrs::Allowed);
699  else
700    ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
701                      ARMBuildAttrs::AllowIEE754);
702
703  // FIXME: add more flags to ARMBuildAttributes.h
704  // 8-bytes alignment stuff.
705  ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
706  ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
707
708  // ABI_HardFP_use attribute to indicate single precision FP.
709  if (Subtarget->isFPOnlySP())
710    ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
711                      ARMBuildAttrs::HardFPSinglePrecision);
712
713  // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
714  if (Subtarget->isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
715    ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
716
717  // FIXME: Should we signal R9 usage?
718
719  if (Subtarget->hasFP16())
720      ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
721
722  if (Subtarget->hasMPExtension())
723      ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
724
725  // Hardware divide in ARM mode is part of base arch, starting from ARMv8.
726  // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
727  // It is not possible to produce DisallowDIV: if hwdiv is present in the base
728  // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
729  // AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
730  // otherwise, the default value (AllowDIVIfExists) applies.
731  if (Subtarget->hasDivideInARMMode() && !Subtarget->hasV8Ops())
732      ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
733
734  if (MMI) {
735    if (const Module *SourceModule = MMI->getModule()) {
736      // ABI_PCS_wchar_t to indicate wchar_t width
737      // FIXME: There is no way to emit value 0 (wchar_t prohibited).
738      if (auto WCharWidthValue = cast_or_null<ConstantInt>(
739              SourceModule->getModuleFlag("wchar_size"))) {
740        int WCharWidth = WCharWidthValue->getZExtValue();
741        assert((WCharWidth == 2 || WCharWidth == 4) &&
742               "wchar_t width must be 2 or 4 bytes");
743        ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
744      }
745
746      // ABI_enum_size to indicate enum width
747      // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
748      //        (all enums contain a value needing 32 bits to encode).
749      if (auto EnumWidthValue = cast_or_null<ConstantInt>(
750              SourceModule->getModuleFlag("min_enum_size"))) {
751        int EnumWidth = EnumWidthValue->getZExtValue();
752        assert((EnumWidth == 1 || EnumWidth == 4) &&
753               "Minimum enum width must be 1 or 4 bytes");
754        int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
755        ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
756      }
757    }
758  }
759
760  if (Subtarget->hasTrustZone() && Subtarget->hasVirtualization())
761      ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
762                        ARMBuildAttrs::AllowTZVirtualization);
763  else if (Subtarget->hasTrustZone())
764      ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
765                        ARMBuildAttrs::AllowTZ);
766  else if (Subtarget->hasVirtualization())
767      ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
768                        ARMBuildAttrs::AllowVirtualization);
769
770  ATS.finishAttributeSection();
771}
772
773//===----------------------------------------------------------------------===//
774
775static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
776                             unsigned LabelId, MCContext &Ctx) {
777
778  MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix)
779                       + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
780  return Label;
781}
782
783static MCSymbolRefExpr::VariantKind
784getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
785  switch (Modifier) {
786  case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None;
787  case ARMCP::TLSGD:       return MCSymbolRefExpr::VK_TLSGD;
788  case ARMCP::TPOFF:       return MCSymbolRefExpr::VK_TPOFF;
789  case ARMCP::GOTTPOFF:    return MCSymbolRefExpr::VK_GOTTPOFF;
790  case ARMCP::GOT:         return MCSymbolRefExpr::VK_GOT;
791  case ARMCP::GOTOFF:      return MCSymbolRefExpr::VK_GOTOFF;
792  }
793  llvm_unreachable("Invalid ARMCPModifier!");
794}
795
796MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
797                                        unsigned char TargetFlags) {
798  if (Subtarget->isTargetMachO()) {
799    bool IsIndirect = (TargetFlags & ARMII::MO_NONLAZY) &&
800      Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
801
802    if (!IsIndirect)
803      return getSymbol(GV);
804
805    // FIXME: Remove this when Darwin transition to @GOT like syntax.
806    MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
807    MachineModuleInfoMachO &MMIMachO =
808      MMI->getObjFileInfo<MachineModuleInfoMachO>();
809    MachineModuleInfoImpl::StubValueTy &StubSym =
810      GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym)
811                                : MMIMachO.getGVStubEntry(MCSym);
812    if (!StubSym.getPointer())
813      StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
814                                                   !GV->hasInternalLinkage());
815    return MCSym;
816  } else if (Subtarget->isTargetCOFF()) {
817    assert(Subtarget->isTargetWindows() &&
818           "Windows is the only supported COFF target");
819
820    bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT);
821    if (!IsIndirect)
822      return getSymbol(GV);
823
824    SmallString<128> Name;
825    Name = "__imp_";
826    getNameWithPrefix(Name, GV);
827
828    return OutContext.GetOrCreateSymbol(Name);
829  } else if (Subtarget->isTargetELF()) {
830    return getSymbol(GV);
831  }
832  llvm_unreachable("unexpected target");
833}
834
835void ARMAsmPrinter::
836EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
837  const DataLayout *DL = TM.getDataLayout();
838  int Size = TM.getDataLayout()->getTypeAllocSize(MCPV->getType());
839
840  ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
841
842  MCSymbol *MCSym;
843  if (ACPV->isLSDA()) {
844    SmallString<128> Str;
845    raw_svector_ostream OS(Str);
846    OS << DL->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber();
847    MCSym = OutContext.GetOrCreateSymbol(OS.str());
848  } else if (ACPV->isBlockAddress()) {
849    const BlockAddress *BA =
850      cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
851    MCSym = GetBlockAddressSymbol(BA);
852  } else if (ACPV->isGlobalValue()) {
853    const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
854
855    // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
856    // flag the global as MO_NONLAZY.
857    unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
858    MCSym = GetARMGVSymbol(GV, TF);
859  } else if (ACPV->isMachineBasicBlock()) {
860    const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
861    MCSym = MBB->getSymbol();
862  } else {
863    assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
864    const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
865    MCSym = GetExternalSymbolSymbol(Sym);
866  }
867
868  // Create an MCSymbol for the reference.
869  const MCExpr *Expr =
870    MCSymbolRefExpr::Create(MCSym, getModifierVariantKind(ACPV->getModifier()),
871                            OutContext);
872
873  if (ACPV->getPCAdjustment()) {
874    MCSymbol *PCLabel = getPICLabel(DL->getPrivateGlobalPrefix(),
875                                    getFunctionNumber(),
876                                    ACPV->getLabelId(),
877                                    OutContext);
878    const MCExpr *PCRelExpr = MCSymbolRefExpr::Create(PCLabel, OutContext);
879    PCRelExpr =
880      MCBinaryExpr::CreateAdd(PCRelExpr,
881                              MCConstantExpr::Create(ACPV->getPCAdjustment(),
882                                                     OutContext),
883                              OutContext);
884    if (ACPV->mustAddCurrentAddress()) {
885      // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
886      // label, so just emit a local label end reference that instead.
887      MCSymbol *DotSym = OutContext.CreateTempSymbol();
888      OutStreamer.EmitLabel(DotSym);
889      const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
890      PCRelExpr = MCBinaryExpr::CreateSub(PCRelExpr, DotExpr, OutContext);
891    }
892    Expr = MCBinaryExpr::CreateSub(Expr, PCRelExpr, OutContext);
893  }
894  OutStreamer.EmitValue(Expr, Size);
895}
896
897void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) {
898  unsigned Opcode = MI->getOpcode();
899  int OpNum = 1;
900  if (Opcode == ARM::BR_JTadd)
901    OpNum = 2;
902  else if (Opcode == ARM::BR_JTm)
903    OpNum = 3;
904
905  const MachineOperand &MO1 = MI->getOperand(OpNum);
906  const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
907  unsigned JTI = MO1.getIndex();
908
909  // Emit a label for the jump table.
910  MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
911  OutStreamer.EmitLabel(JTISymbol);
912
913  // Mark the jump table as data-in-code.
914  OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
915
916  // Emit each entry of the table.
917  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
918  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
919  const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
920
921  for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
922    MachineBasicBlock *MBB = JTBBs[i];
923    // Construct an MCExpr for the entry. We want a value of the form:
924    // (BasicBlockAddr - TableBeginAddr)
925    //
926    // For example, a table with entries jumping to basic blocks BB0 and BB1
927    // would look like:
928    // LJTI_0_0:
929    //    .word (LBB0 - LJTI_0_0)
930    //    .word (LBB1 - LJTI_0_0)
931    const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
932
933    if (TM.getRelocationModel() == Reloc::PIC_)
934      Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol,
935                                                                   OutContext),
936                                     OutContext);
937    // If we're generating a table of Thumb addresses in static relocation
938    // model, we need to add one to keep interworking correctly.
939    else if (AFI->isThumbFunction())
940      Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(1,OutContext),
941                                     OutContext);
942    OutStreamer.EmitValue(Expr, 4);
943  }
944  // Mark the end of jump table data-in-code region.
945  OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
946}
947
948void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) {
949  unsigned Opcode = MI->getOpcode();
950  int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1;
951  const MachineOperand &MO1 = MI->getOperand(OpNum);
952  const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
953  unsigned JTI = MO1.getIndex();
954
955  MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
956  OutStreamer.EmitLabel(JTISymbol);
957
958  // Emit each entry of the table.
959  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
960  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
961  const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
962  unsigned OffsetWidth = 4;
963  if (MI->getOpcode() == ARM::t2TBB_JT) {
964    OffsetWidth = 1;
965    // Mark the jump table as data-in-code.
966    OutStreamer.EmitDataRegion(MCDR_DataRegionJT8);
967  } else if (MI->getOpcode() == ARM::t2TBH_JT) {
968    OffsetWidth = 2;
969    // Mark the jump table as data-in-code.
970    OutStreamer.EmitDataRegion(MCDR_DataRegionJT16);
971  }
972
973  for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
974    MachineBasicBlock *MBB = JTBBs[i];
975    const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(),
976                                                          OutContext);
977    // If this isn't a TBB or TBH, the entries are direct branch instructions.
978    if (OffsetWidth == 4) {
979      EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2B)
980        .addExpr(MBBSymbolExpr)
981        .addImm(ARMCC::AL)
982        .addReg(0));
983      continue;
984    }
985    // Otherwise it's an offset from the dispatch instruction. Construct an
986    // MCExpr for the entry. We want a value of the form:
987    // (BasicBlockAddr - TableBeginAddr) / 2
988    //
989    // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
990    // would look like:
991    // LJTI_0_0:
992    //    .byte (LBB0 - LJTI_0_0) / 2
993    //    .byte (LBB1 - LJTI_0_0) / 2
994    const MCExpr *Expr =
995      MCBinaryExpr::CreateSub(MBBSymbolExpr,
996                              MCSymbolRefExpr::Create(JTISymbol, OutContext),
997                              OutContext);
998    Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext),
999                                   OutContext);
1000    OutStreamer.EmitValue(Expr, OffsetWidth);
1001  }
1002  // Mark the end of jump table data-in-code region. 32-bit offsets use
1003  // actual branch instructions here, so we don't mark those as a data-region
1004  // at all.
1005  if (OffsetWidth != 4)
1006    OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1007}
1008
1009void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1010  assert(MI->getFlag(MachineInstr::FrameSetup) &&
1011      "Only instruction which are involved into frame setup code are allowed");
1012
1013  MCTargetStreamer &TS = *OutStreamer.getTargetStreamer();
1014  ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1015  const MachineFunction &MF = *MI->getParent()->getParent();
1016  const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
1017  const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
1018
1019  unsigned FramePtr = RegInfo->getFrameRegister(MF);
1020  unsigned Opc = MI->getOpcode();
1021  unsigned SrcReg, DstReg;
1022
1023  if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1024    // Two special cases:
1025    // 1) tPUSH does not have src/dst regs.
1026    // 2) for Thumb1 code we sometimes materialize the constant via constpool
1027    // load. Yes, this is pretty fragile, but for now I don't see better
1028    // way... :(
1029    SrcReg = DstReg = ARM::SP;
1030  } else {
1031    SrcReg = MI->getOperand(1).getReg();
1032    DstReg = MI->getOperand(0).getReg();
1033  }
1034
1035  // Try to figure out the unwinding opcode out of src / dst regs.
1036  if (MI->mayStore()) {
1037    // Register saves.
1038    assert(DstReg == ARM::SP &&
1039           "Only stack pointer as a destination reg is supported");
1040
1041    SmallVector<unsigned, 4> RegList;
1042    // Skip src & dst reg, and pred ops.
1043    unsigned StartOp = 2 + 2;
1044    // Use all the operands.
1045    unsigned NumOffset = 0;
1046
1047    switch (Opc) {
1048    default:
1049      MI->dump();
1050      llvm_unreachable("Unsupported opcode for unwinding information");
1051    case ARM::tPUSH:
1052      // Special case here: no src & dst reg, but two extra imp ops.
1053      StartOp = 2; NumOffset = 2;
1054    case ARM::STMDB_UPD:
1055    case ARM::t2STMDB_UPD:
1056    case ARM::VSTMDDB_UPD:
1057      assert(SrcReg == ARM::SP &&
1058             "Only stack pointer as a source reg is supported");
1059      for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1060           i != NumOps; ++i) {
1061        const MachineOperand &MO = MI->getOperand(i);
1062        // Actually, there should never be any impdef stuff here. Skip it
1063        // temporary to workaround PR11902.
1064        if (MO.isImplicit())
1065          continue;
1066        RegList.push_back(MO.getReg());
1067      }
1068      break;
1069    case ARM::STR_PRE_IMM:
1070    case ARM::STR_PRE_REG:
1071    case ARM::t2STR_PRE:
1072      assert(MI->getOperand(2).getReg() == ARM::SP &&
1073             "Only stack pointer as a source reg is supported");
1074      RegList.push_back(SrcReg);
1075      break;
1076    }
1077    if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM)
1078      ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1079  } else {
1080    // Changes of stack / frame pointer.
1081    if (SrcReg == ARM::SP) {
1082      int64_t Offset = 0;
1083      switch (Opc) {
1084      default:
1085        MI->dump();
1086        llvm_unreachable("Unsupported opcode for unwinding information");
1087      case ARM::MOVr:
1088      case ARM::tMOVr:
1089        Offset = 0;
1090        break;
1091      case ARM::ADDri:
1092        Offset = -MI->getOperand(2).getImm();
1093        break;
1094      case ARM::SUBri:
1095      case ARM::t2SUBri:
1096        Offset = MI->getOperand(2).getImm();
1097        break;
1098      case ARM::tSUBspi:
1099        Offset = MI->getOperand(2).getImm()*4;
1100        break;
1101      case ARM::tADDspi:
1102      case ARM::tADDrSPi:
1103        Offset = -MI->getOperand(2).getImm()*4;
1104        break;
1105      case ARM::tLDRpci: {
1106        // Grab the constpool index and check, whether it corresponds to
1107        // original or cloned constpool entry.
1108        unsigned CPI = MI->getOperand(1).getIndex();
1109        const MachineConstantPool *MCP = MF.getConstantPool();
1110        if (CPI >= MCP->getConstants().size())
1111          CPI = AFI.getOriginalCPIdx(CPI);
1112        assert(CPI != -1U && "Invalid constpool index");
1113
1114        // Derive the actual offset.
1115        const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1116        assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1117        // FIXME: Check for user, it should be "add" instruction!
1118        Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1119        break;
1120      }
1121      }
1122
1123      if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1124        if (DstReg == FramePtr && FramePtr != ARM::SP)
1125          // Set-up of the frame pointer. Positive values correspond to "add"
1126          // instruction.
1127          ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1128        else if (DstReg == ARM::SP) {
1129          // Change of SP by an offset. Positive values correspond to "sub"
1130          // instruction.
1131          ATS.emitPad(Offset);
1132        } else {
1133          // Move of SP to a register.  Positive values correspond to an "add"
1134          // instruction.
1135          ATS.emitMovSP(DstReg, -Offset);
1136        }
1137      }
1138    } else if (DstReg == ARM::SP) {
1139      MI->dump();
1140      llvm_unreachable("Unsupported opcode for unwinding information");
1141    }
1142    else {
1143      MI->dump();
1144      llvm_unreachable("Unsupported opcode for unwinding information");
1145    }
1146  }
1147}
1148
1149// Simple pseudo-instructions have their lowering (with expansion to real
1150// instructions) auto-generated.
1151#include "ARMGenMCPseudoLowering.inc"
1152
1153void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
1154  const DataLayout *DL = TM.getDataLayout();
1155
1156  // If we just ended a constant pool, mark it as such.
1157  if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1158    OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1159    InConstantPool = false;
1160  }
1161
1162  // Emit unwinding stuff for frame-related instructions
1163  if (Subtarget->isTargetEHABICompatible() &&
1164       MI->getFlag(MachineInstr::FrameSetup))
1165    EmitUnwindingInstruction(MI);
1166
1167  // Do any auto-generated pseudo lowerings.
1168  if (emitPseudoExpansionLowering(OutStreamer, MI))
1169    return;
1170
1171  assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1172         "Pseudo flag setting opcode should be expanded early");
1173
1174  // Check for manual lowerings.
1175  unsigned Opc = MI->getOpcode();
1176  switch (Opc) {
1177  case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1178  case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1179  case ARM::LEApcrel:
1180  case ARM::tLEApcrel:
1181  case ARM::t2LEApcrel: {
1182    // FIXME: Need to also handle globals and externals
1183    MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1184    EmitToStreamer(OutStreamer, MCInstBuilder(MI->getOpcode() ==
1185                                              ARM::t2LEApcrel ? ARM::t2ADR
1186                  : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1187                     : ARM::ADR))
1188      .addReg(MI->getOperand(0).getReg())
1189      .addExpr(MCSymbolRefExpr::Create(CPISymbol, OutContext))
1190      // Add predicate operands.
1191      .addImm(MI->getOperand(2).getImm())
1192      .addReg(MI->getOperand(3).getReg()));
1193    return;
1194  }
1195  case ARM::LEApcrelJT:
1196  case ARM::tLEApcrelJT:
1197  case ARM::t2LEApcrelJT: {
1198    MCSymbol *JTIPICSymbol =
1199      GetARMJTIPICJumpTableLabel2(MI->getOperand(1).getIndex(),
1200                                  MI->getOperand(2).getImm());
1201    EmitToStreamer(OutStreamer, MCInstBuilder(MI->getOpcode() ==
1202                                              ARM::t2LEApcrelJT ? ARM::t2ADR
1203                  : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1204                     : ARM::ADR))
1205      .addReg(MI->getOperand(0).getReg())
1206      .addExpr(MCSymbolRefExpr::Create(JTIPICSymbol, OutContext))
1207      // Add predicate operands.
1208      .addImm(MI->getOperand(3).getImm())
1209      .addReg(MI->getOperand(4).getReg()));
1210    return;
1211  }
1212  // Darwin call instructions are just normal call instructions with different
1213  // clobber semantics (they clobber R9).
1214  case ARM::BX_CALL: {
1215    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr)
1216      .addReg(ARM::LR)
1217      .addReg(ARM::PC)
1218      // Add predicate operands.
1219      .addImm(ARMCC::AL)
1220      .addReg(0)
1221      // Add 's' bit operand (always reg0 for this)
1222      .addReg(0));
1223
1224    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::BX)
1225      .addReg(MI->getOperand(0).getReg()));
1226    return;
1227  }
1228  case ARM::tBX_CALL: {
1229    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr)
1230      .addReg(ARM::LR)
1231      .addReg(ARM::PC)
1232      // Add predicate operands.
1233      .addImm(ARMCC::AL)
1234      .addReg(0));
1235
1236    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX)
1237      .addReg(MI->getOperand(0).getReg())
1238      // Add predicate operands.
1239      .addImm(ARMCC::AL)
1240      .addReg(0));
1241    return;
1242  }
1243  case ARM::BMOVPCRX_CALL: {
1244    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr)
1245      .addReg(ARM::LR)
1246      .addReg(ARM::PC)
1247      // Add predicate operands.
1248      .addImm(ARMCC::AL)
1249      .addReg(0)
1250      // Add 's' bit operand (always reg0 for this)
1251      .addReg(0));
1252
1253    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr)
1254      .addReg(ARM::PC)
1255      .addReg(MI->getOperand(0).getReg())
1256      // Add predicate operands.
1257      .addImm(ARMCC::AL)
1258      .addReg(0)
1259      // Add 's' bit operand (always reg0 for this)
1260      .addReg(0));
1261    return;
1262  }
1263  case ARM::BMOVPCB_CALL: {
1264    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr)
1265      .addReg(ARM::LR)
1266      .addReg(ARM::PC)
1267      // Add predicate operands.
1268      .addImm(ARMCC::AL)
1269      .addReg(0)
1270      // Add 's' bit operand (always reg0 for this)
1271      .addReg(0));
1272
1273    const MachineOperand &Op = MI->getOperand(0);
1274    const GlobalValue *GV = Op.getGlobal();
1275    const unsigned TF = Op.getTargetFlags();
1276    MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1277    const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
1278    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::Bcc)
1279      .addExpr(GVSymExpr)
1280      // Add predicate operands.
1281      .addImm(ARMCC::AL)
1282      .addReg(0));
1283    return;
1284  }
1285  case ARM::MOVi16_ga_pcrel:
1286  case ARM::t2MOVi16_ga_pcrel: {
1287    MCInst TmpInst;
1288    TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1289    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1290
1291    unsigned TF = MI->getOperand(1).getTargetFlags();
1292    const GlobalValue *GV = MI->getOperand(1).getGlobal();
1293    MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1294    const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
1295
1296    MCSymbol *LabelSym = getPICLabel(DL->getPrivateGlobalPrefix(),
1297                                     getFunctionNumber(),
1298                                     MI->getOperand(2).getImm(), OutContext);
1299    const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
1300    unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1301    const MCExpr *PCRelExpr =
1302      ARMMCExpr::CreateLower16(MCBinaryExpr::CreateSub(GVSymExpr,
1303                                      MCBinaryExpr::CreateAdd(LabelSymExpr,
1304                                      MCConstantExpr::Create(PCAdj, OutContext),
1305                                      OutContext), OutContext), OutContext);
1306      TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
1307
1308    // Add predicate operands.
1309    TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1310    TmpInst.addOperand(MCOperand::CreateReg(0));
1311    // Add 's' bit operand (always reg0 for this)
1312    TmpInst.addOperand(MCOperand::CreateReg(0));
1313    EmitToStreamer(OutStreamer, TmpInst);
1314    return;
1315  }
1316  case ARM::MOVTi16_ga_pcrel:
1317  case ARM::t2MOVTi16_ga_pcrel: {
1318    MCInst TmpInst;
1319    TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1320                      ? ARM::MOVTi16 : ARM::t2MOVTi16);
1321    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1322    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
1323
1324    unsigned TF = MI->getOperand(2).getTargetFlags();
1325    const GlobalValue *GV = MI->getOperand(2).getGlobal();
1326    MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1327    const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
1328
1329    MCSymbol *LabelSym = getPICLabel(DL->getPrivateGlobalPrefix(),
1330                                     getFunctionNumber(),
1331                                     MI->getOperand(3).getImm(), OutContext);
1332    const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
1333    unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1334    const MCExpr *PCRelExpr =
1335        ARMMCExpr::CreateUpper16(MCBinaryExpr::CreateSub(GVSymExpr,
1336                                   MCBinaryExpr::CreateAdd(LabelSymExpr,
1337                                      MCConstantExpr::Create(PCAdj, OutContext),
1338                                          OutContext), OutContext), OutContext);
1339      TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
1340    // Add predicate operands.
1341    TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1342    TmpInst.addOperand(MCOperand::CreateReg(0));
1343    // Add 's' bit operand (always reg0 for this)
1344    TmpInst.addOperand(MCOperand::CreateReg(0));
1345    EmitToStreamer(OutStreamer, TmpInst);
1346    return;
1347  }
1348  case ARM::tPICADD: {
1349    // This is a pseudo op for a label + instruction sequence, which looks like:
1350    // LPC0:
1351    //     add r0, pc
1352    // This adds the address of LPC0 to r0.
1353
1354    // Emit the label.
1355    OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(),
1356                          getFunctionNumber(), MI->getOperand(2).getImm(),
1357                          OutContext));
1358
1359    // Form and emit the add.
1360    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tADDhirr)
1361      .addReg(MI->getOperand(0).getReg())
1362      .addReg(MI->getOperand(0).getReg())
1363      .addReg(ARM::PC)
1364      // Add predicate operands.
1365      .addImm(ARMCC::AL)
1366      .addReg(0));
1367    return;
1368  }
1369  case ARM::PICADD: {
1370    // This is a pseudo op for a label + instruction sequence, which looks like:
1371    // LPC0:
1372    //     add r0, pc, r0
1373    // This adds the address of LPC0 to r0.
1374
1375    // Emit the label.
1376    OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(),
1377                          getFunctionNumber(), MI->getOperand(2).getImm(),
1378                          OutContext));
1379
1380    // Form and emit the add.
1381    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDrr)
1382      .addReg(MI->getOperand(0).getReg())
1383      .addReg(ARM::PC)
1384      .addReg(MI->getOperand(1).getReg())
1385      // Add predicate operands.
1386      .addImm(MI->getOperand(3).getImm())
1387      .addReg(MI->getOperand(4).getReg())
1388      // Add 's' bit operand (always reg0 for this)
1389      .addReg(0));
1390    return;
1391  }
1392  case ARM::PICSTR:
1393  case ARM::PICSTRB:
1394  case ARM::PICSTRH:
1395  case ARM::PICLDR:
1396  case ARM::PICLDRB:
1397  case ARM::PICLDRH:
1398  case ARM::PICLDRSB:
1399  case ARM::PICLDRSH: {
1400    // This is a pseudo op for a label + instruction sequence, which looks like:
1401    // LPC0:
1402    //     OP r0, [pc, r0]
1403    // The LCP0 label is referenced by a constant pool entry in order to get
1404    // a PC-relative address at the ldr instruction.
1405
1406    // Emit the label.
1407    OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(),
1408                          getFunctionNumber(), MI->getOperand(2).getImm(),
1409                          OutContext));
1410
1411    // Form and emit the load
1412    unsigned Opcode;
1413    switch (MI->getOpcode()) {
1414    default:
1415      llvm_unreachable("Unexpected opcode!");
1416    case ARM::PICSTR:   Opcode = ARM::STRrs; break;
1417    case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
1418    case ARM::PICSTRH:  Opcode = ARM::STRH; break;
1419    case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
1420    case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
1421    case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
1422    case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1423    case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1424    }
1425    EmitToStreamer(OutStreamer, MCInstBuilder(Opcode)
1426      .addReg(MI->getOperand(0).getReg())
1427      .addReg(ARM::PC)
1428      .addReg(MI->getOperand(1).getReg())
1429      .addImm(0)
1430      // Add predicate operands.
1431      .addImm(MI->getOperand(3).getImm())
1432      .addReg(MI->getOperand(4).getReg()));
1433
1434    return;
1435  }
1436  case ARM::CONSTPOOL_ENTRY: {
1437    /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1438    /// in the function.  The first operand is the ID# for this instruction, the
1439    /// second is the index into the MachineConstantPool that this is, the third
1440    /// is the size in bytes of this constant pool entry.
1441    /// The required alignment is specified on the basic block holding this MI.
1442    unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1443    unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
1444
1445    // If this is the first entry of the pool, mark it.
1446    if (!InConstantPool) {
1447      OutStreamer.EmitDataRegion(MCDR_DataRegion);
1448      InConstantPool = true;
1449    }
1450
1451    OutStreamer.EmitLabel(GetCPISymbol(LabelId));
1452
1453    const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1454    if (MCPE.isMachineConstantPoolEntry())
1455      EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1456    else
1457      EmitGlobalConstant(MCPE.Val.ConstVal);
1458    return;
1459  }
1460  case ARM::t2BR_JT: {
1461    // Lower and emit the instruction itself, then the jump table following it.
1462    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr)
1463      .addReg(ARM::PC)
1464      .addReg(MI->getOperand(0).getReg())
1465      // Add predicate operands.
1466      .addImm(ARMCC::AL)
1467      .addReg(0));
1468
1469    // Output the data for the jump table itself
1470    EmitJump2Table(MI);
1471    return;
1472  }
1473  case ARM::t2TBB_JT: {
1474    // Lower and emit the instruction itself, then the jump table following it.
1475    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2TBB)
1476      .addReg(ARM::PC)
1477      .addReg(MI->getOperand(0).getReg())
1478      // Add predicate operands.
1479      .addImm(ARMCC::AL)
1480      .addReg(0));
1481
1482    // Output the data for the jump table itself
1483    EmitJump2Table(MI);
1484    // Make sure the next instruction is 2-byte aligned.
1485    EmitAlignment(1);
1486    return;
1487  }
1488  case ARM::t2TBH_JT: {
1489    // Lower and emit the instruction itself, then the jump table following it.
1490    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2TBH)
1491      .addReg(ARM::PC)
1492      .addReg(MI->getOperand(0).getReg())
1493      // Add predicate operands.
1494      .addImm(ARMCC::AL)
1495      .addReg(0));
1496
1497    // Output the data for the jump table itself
1498    EmitJump2Table(MI);
1499    return;
1500  }
1501  case ARM::tBR_JTr:
1502  case ARM::BR_JTr: {
1503    // Lower and emit the instruction itself, then the jump table following it.
1504    // mov pc, target
1505    MCInst TmpInst;
1506    unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1507      ARM::MOVr : ARM::tMOVr;
1508    TmpInst.setOpcode(Opc);
1509    TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1510    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1511    // Add predicate operands.
1512    TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1513    TmpInst.addOperand(MCOperand::CreateReg(0));
1514    // Add 's' bit operand (always reg0 for this)
1515    if (Opc == ARM::MOVr)
1516      TmpInst.addOperand(MCOperand::CreateReg(0));
1517    EmitToStreamer(OutStreamer, TmpInst);
1518
1519    // Make sure the Thumb jump table is 4-byte aligned.
1520    if (Opc == ARM::tMOVr)
1521      EmitAlignment(2);
1522
1523    // Output the data for the jump table itself
1524    EmitJumpTable(MI);
1525    return;
1526  }
1527  case ARM::BR_JTm: {
1528    // Lower and emit the instruction itself, then the jump table following it.
1529    // ldr pc, target
1530    MCInst TmpInst;
1531    if (MI->getOperand(1).getReg() == 0) {
1532      // literal offset
1533      TmpInst.setOpcode(ARM::LDRi12);
1534      TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1535      TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1536      TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
1537    } else {
1538      TmpInst.setOpcode(ARM::LDRrs);
1539      TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1540      TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1541      TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
1542      TmpInst.addOperand(MCOperand::CreateImm(0));
1543    }
1544    // Add predicate operands.
1545    TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1546    TmpInst.addOperand(MCOperand::CreateReg(0));
1547    EmitToStreamer(OutStreamer, TmpInst);
1548
1549    // Output the data for the jump table itself
1550    EmitJumpTable(MI);
1551    return;
1552  }
1553  case ARM::BR_JTadd: {
1554    // Lower and emit the instruction itself, then the jump table following it.
1555    // add pc, target, idx
1556    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDrr)
1557      .addReg(ARM::PC)
1558      .addReg(MI->getOperand(0).getReg())
1559      .addReg(MI->getOperand(1).getReg())
1560      // Add predicate operands.
1561      .addImm(ARMCC::AL)
1562      .addReg(0)
1563      // Add 's' bit operand (always reg0 for this)
1564      .addReg(0));
1565
1566    // Output the data for the jump table itself
1567    EmitJumpTable(MI);
1568    return;
1569  }
1570  case ARM::TRAP: {
1571    // Non-Darwin binutils don't yet support the "trap" mnemonic.
1572    // FIXME: Remove this special case when they do.
1573    if (!Subtarget->isTargetMachO()) {
1574      //.long 0xe7ffdefe @ trap
1575      uint32_t Val = 0xe7ffdefeUL;
1576      OutStreamer.AddComment("trap");
1577      OutStreamer.EmitIntValue(Val, 4);
1578      return;
1579    }
1580    break;
1581  }
1582  case ARM::TRAPNaCl: {
1583    //.long 0xe7fedef0 @ trap
1584    uint32_t Val = 0xe7fedef0UL;
1585    OutStreamer.AddComment("trap");
1586    OutStreamer.EmitIntValue(Val, 4);
1587    return;
1588  }
1589  case ARM::tTRAP: {
1590    // Non-Darwin binutils don't yet support the "trap" mnemonic.
1591    // FIXME: Remove this special case when they do.
1592    if (!Subtarget->isTargetMachO()) {
1593      //.short 57086 @ trap
1594      uint16_t Val = 0xdefe;
1595      OutStreamer.AddComment("trap");
1596      OutStreamer.EmitIntValue(Val, 2);
1597      return;
1598    }
1599    break;
1600  }
1601  case ARM::t2Int_eh_sjlj_setjmp:
1602  case ARM::t2Int_eh_sjlj_setjmp_nofp:
1603  case ARM::tInt_eh_sjlj_setjmp: {
1604    // Two incoming args: GPR:$src, GPR:$val
1605    // mov $val, pc
1606    // adds $val, #7
1607    // str $val, [$src, #4]
1608    // movs r0, #0
1609    // b 1f
1610    // movs r0, #1
1611    // 1:
1612    unsigned SrcReg = MI->getOperand(0).getReg();
1613    unsigned ValReg = MI->getOperand(1).getReg();
1614    MCSymbol *Label = GetARMSJLJEHLabel();
1615    OutStreamer.AddComment("eh_setjmp begin");
1616    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr)
1617      .addReg(ValReg)
1618      .addReg(ARM::PC)
1619      // Predicate.
1620      .addImm(ARMCC::AL)
1621      .addReg(0));
1622
1623    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tADDi3)
1624      .addReg(ValReg)
1625      // 's' bit operand
1626      .addReg(ARM::CPSR)
1627      .addReg(ValReg)
1628      .addImm(7)
1629      // Predicate.
1630      .addImm(ARMCC::AL)
1631      .addReg(0));
1632
1633    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tSTRi)
1634      .addReg(ValReg)
1635      .addReg(SrcReg)
1636      // The offset immediate is #4. The operand value is scaled by 4 for the
1637      // tSTR instruction.
1638      .addImm(1)
1639      // Predicate.
1640      .addImm(ARMCC::AL)
1641      .addReg(0));
1642
1643    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVi8)
1644      .addReg(ARM::R0)
1645      .addReg(ARM::CPSR)
1646      .addImm(0)
1647      // Predicate.
1648      .addImm(ARMCC::AL)
1649      .addReg(0));
1650
1651    const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext);
1652    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tB)
1653      .addExpr(SymbolExpr)
1654      .addImm(ARMCC::AL)
1655      .addReg(0));
1656
1657    OutStreamer.AddComment("eh_setjmp end");
1658    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVi8)
1659      .addReg(ARM::R0)
1660      .addReg(ARM::CPSR)
1661      .addImm(1)
1662      // Predicate.
1663      .addImm(ARMCC::AL)
1664      .addReg(0));
1665
1666    OutStreamer.EmitLabel(Label);
1667    return;
1668  }
1669
1670  case ARM::Int_eh_sjlj_setjmp_nofp:
1671  case ARM::Int_eh_sjlj_setjmp: {
1672    // Two incoming args: GPR:$src, GPR:$val
1673    // add $val, pc, #8
1674    // str $val, [$src, #+4]
1675    // mov r0, #0
1676    // add pc, pc, #0
1677    // mov r0, #1
1678    unsigned SrcReg = MI->getOperand(0).getReg();
1679    unsigned ValReg = MI->getOperand(1).getReg();
1680
1681    OutStreamer.AddComment("eh_setjmp begin");
1682    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDri)
1683      .addReg(ValReg)
1684      .addReg(ARM::PC)
1685      .addImm(8)
1686      // Predicate.
1687      .addImm(ARMCC::AL)
1688      .addReg(0)
1689      // 's' bit operand (always reg0 for this).
1690      .addReg(0));
1691
1692    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::STRi12)
1693      .addReg(ValReg)
1694      .addReg(SrcReg)
1695      .addImm(4)
1696      // Predicate.
1697      .addImm(ARMCC::AL)
1698      .addReg(0));
1699
1700    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVi)
1701      .addReg(ARM::R0)
1702      .addImm(0)
1703      // Predicate.
1704      .addImm(ARMCC::AL)
1705      .addReg(0)
1706      // 's' bit operand (always reg0 for this).
1707      .addReg(0));
1708
1709    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDri)
1710      .addReg(ARM::PC)
1711      .addReg(ARM::PC)
1712      .addImm(0)
1713      // Predicate.
1714      .addImm(ARMCC::AL)
1715      .addReg(0)
1716      // 's' bit operand (always reg0 for this).
1717      .addReg(0));
1718
1719    OutStreamer.AddComment("eh_setjmp end");
1720    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVi)
1721      .addReg(ARM::R0)
1722      .addImm(1)
1723      // Predicate.
1724      .addImm(ARMCC::AL)
1725      .addReg(0)
1726      // 's' bit operand (always reg0 for this).
1727      .addReg(0));
1728    return;
1729  }
1730  case ARM::Int_eh_sjlj_longjmp: {
1731    // ldr sp, [$src, #8]
1732    // ldr $scratch, [$src, #4]
1733    // ldr r7, [$src]
1734    // bx $scratch
1735    unsigned SrcReg = MI->getOperand(0).getReg();
1736    unsigned ScratchReg = MI->getOperand(1).getReg();
1737    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12)
1738      .addReg(ARM::SP)
1739      .addReg(SrcReg)
1740      .addImm(8)
1741      // Predicate.
1742      .addImm(ARMCC::AL)
1743      .addReg(0));
1744
1745    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12)
1746      .addReg(ScratchReg)
1747      .addReg(SrcReg)
1748      .addImm(4)
1749      // Predicate.
1750      .addImm(ARMCC::AL)
1751      .addReg(0));
1752
1753    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12)
1754      .addReg(ARM::R7)
1755      .addReg(SrcReg)
1756      .addImm(0)
1757      // Predicate.
1758      .addImm(ARMCC::AL)
1759      .addReg(0));
1760
1761    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::BX)
1762      .addReg(ScratchReg)
1763      // Predicate.
1764      .addImm(ARMCC::AL)
1765      .addReg(0));
1766    return;
1767  }
1768  case ARM::tInt_eh_sjlj_longjmp: {
1769    // ldr $scratch, [$src, #8]
1770    // mov sp, $scratch
1771    // ldr $scratch, [$src, #4]
1772    // ldr r7, [$src]
1773    // bx $scratch
1774    unsigned SrcReg = MI->getOperand(0).getReg();
1775    unsigned ScratchReg = MI->getOperand(1).getReg();
1776    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi)
1777      .addReg(ScratchReg)
1778      .addReg(SrcReg)
1779      // The offset immediate is #8. The operand value is scaled by 4 for the
1780      // tLDR instruction.
1781      .addImm(2)
1782      // Predicate.
1783      .addImm(ARMCC::AL)
1784      .addReg(0));
1785
1786    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr)
1787      .addReg(ARM::SP)
1788      .addReg(ScratchReg)
1789      // Predicate.
1790      .addImm(ARMCC::AL)
1791      .addReg(0));
1792
1793    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi)
1794      .addReg(ScratchReg)
1795      .addReg(SrcReg)
1796      .addImm(1)
1797      // Predicate.
1798      .addImm(ARMCC::AL)
1799      .addReg(0));
1800
1801    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi)
1802      .addReg(ARM::R7)
1803      .addReg(SrcReg)
1804      .addImm(0)
1805      // Predicate.
1806      .addImm(ARMCC::AL)
1807      .addReg(0));
1808
1809    EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX)
1810      .addReg(ScratchReg)
1811      // Predicate.
1812      .addImm(ARMCC::AL)
1813      .addReg(0));
1814    return;
1815  }
1816  }
1817
1818  MCInst TmpInst;
1819  LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
1820
1821  EmitToStreamer(OutStreamer, TmpInst);
1822}
1823
1824//===----------------------------------------------------------------------===//
1825// Target Registry Stuff
1826//===----------------------------------------------------------------------===//
1827
1828// Force static initialization.
1829extern "C" void LLVMInitializeARMAsmPrinter() {
1830  RegisterAsmPrinter<ARMAsmPrinter> X(TheARMLETarget);
1831  RegisterAsmPrinter<ARMAsmPrinter> Y(TheARMBETarget);
1832  RegisterAsmPrinter<ARMAsmPrinter> A(TheThumbLETarget);
1833  RegisterAsmPrinter<ARMAsmPrinter> B(TheThumbBETarget);
1834}
1835