ARMBaseInstrInfo.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Base ARM implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARM.h"
15#include "ARMBaseInstrInfo.h"
16#include "ARMBaseRegisterInfo.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMFeatures.h"
19#include "ARMHazardRecognizer.h"
20#include "ARMMachineFunctionInfo.h"
21#include "MCTargetDesc/ARMAddressingModes.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineJumpTableInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/SelectionDAGNodes.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/GlobalValue.h"
34#include "llvm/MC/MCAsmInfo.h"
35#include "llvm/Support/BranchProbability.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39
40#define GET_INSTRINFO_CTOR_DTOR
41#include "ARMGenInstrInfo.inc"
42
43using namespace llvm;
44
45static cl::opt<bool>
46EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
47               cl::desc("Enable ARM 2-addr to 3-addr conv"));
48
49static cl::opt<bool>
50WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
51           cl::desc("Widen ARM vmovs to vmovd when possible"));
52
53static cl::opt<unsigned>
54SwiftPartialUpdateClearance("swift-partial-update-clearance",
55     cl::Hidden, cl::init(12),
56     cl::desc("Clearance before partial register updates"));
57
58/// ARM_MLxEntry - Record information about MLA / MLS instructions.
59struct ARM_MLxEntry {
60  uint16_t MLxOpc;     // MLA / MLS opcode
61  uint16_t MulOpc;     // Expanded multiplication opcode
62  uint16_t AddSubOpc;  // Expanded add / sub opcode
63  bool NegAcc;         // True if the acc is negated before the add / sub.
64  bool HasLane;        // True if instruction has an extra "lane" operand.
65};
66
67static const ARM_MLxEntry ARM_MLxTable[] = {
68  // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
69  // fp scalar ops
70  { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
71  { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
72  { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
73  { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
74  { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
75  { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
76  { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
77  { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
78
79  // fp SIMD ops
80  { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
81  { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
82  { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
83  { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
84  { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
85  { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
86  { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
87  { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
88};
89
90ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
91  : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
92    Subtarget(STI) {
93  for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
94    if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
95      assert(false && "Duplicated entries?");
96    MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
97    MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
98  }
99}
100
101// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
102// currently defaults to no prepass hazard recognizer.
103ScheduleHazardRecognizer *ARMBaseInstrInfo::
104CreateTargetHazardRecognizer(const TargetMachine *TM,
105                             const ScheduleDAG *DAG) const {
106  if (usePreRAHazardRecognizer()) {
107    const InstrItineraryData *II = TM->getInstrItineraryData();
108    return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
109  }
110  return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG);
111}
112
113ScheduleHazardRecognizer *ARMBaseInstrInfo::
114CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
115                                   const ScheduleDAG *DAG) const {
116  if (Subtarget.isThumb2() || Subtarget.hasVFP2())
117    return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
118  return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
119}
120
121MachineInstr *
122ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
123                                        MachineBasicBlock::iterator &MBBI,
124                                        LiveVariables *LV) const {
125  // FIXME: Thumb2 support.
126
127  if (!EnableARM3Addr)
128    return NULL;
129
130  MachineInstr *MI = MBBI;
131  MachineFunction &MF = *MI->getParent()->getParent();
132  uint64_t TSFlags = MI->getDesc().TSFlags;
133  bool isPre = false;
134  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
135  default: return NULL;
136  case ARMII::IndexModePre:
137    isPre = true;
138    break;
139  case ARMII::IndexModePost:
140    break;
141  }
142
143  // Try splitting an indexed load/store to an un-indexed one plus an add/sub
144  // operation.
145  unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
146  if (MemOpc == 0)
147    return NULL;
148
149  MachineInstr *UpdateMI = NULL;
150  MachineInstr *MemMI = NULL;
151  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
152  const MCInstrDesc &MCID = MI->getDesc();
153  unsigned NumOps = MCID.getNumOperands();
154  bool isLoad = !MI->mayStore();
155  const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
156  const MachineOperand &Base = MI->getOperand(2);
157  const MachineOperand &Offset = MI->getOperand(NumOps-3);
158  unsigned WBReg = WB.getReg();
159  unsigned BaseReg = Base.getReg();
160  unsigned OffReg = Offset.getReg();
161  unsigned OffImm = MI->getOperand(NumOps-2).getImm();
162  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
163  switch (AddrMode) {
164  default: llvm_unreachable("Unknown indexed op!");
165  case ARMII::AddrMode2: {
166    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
167    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
168    if (OffReg == 0) {
169      if (ARM_AM::getSOImmVal(Amt) == -1)
170        // Can't encode it in a so_imm operand. This transformation will
171        // add more than 1 instruction. Abandon!
172        return NULL;
173      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
174                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
175        .addReg(BaseReg).addImm(Amt)
176        .addImm(Pred).addReg(0).addReg(0);
177    } else if (Amt != 0) {
178      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
179      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
180      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
181                         get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
182        .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
183        .addImm(Pred).addReg(0).addReg(0);
184    } else
185      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
186                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
187        .addReg(BaseReg).addReg(OffReg)
188        .addImm(Pred).addReg(0).addReg(0);
189    break;
190  }
191  case ARMII::AddrMode3 : {
192    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
193    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
194    if (OffReg == 0)
195      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
196      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
197                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
198        .addReg(BaseReg).addImm(Amt)
199        .addImm(Pred).addReg(0).addReg(0);
200    else
201      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
202                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
203        .addReg(BaseReg).addReg(OffReg)
204        .addImm(Pred).addReg(0).addReg(0);
205    break;
206  }
207  }
208
209  std::vector<MachineInstr*> NewMIs;
210  if (isPre) {
211    if (isLoad)
212      MemMI = BuildMI(MF, MI->getDebugLoc(),
213                      get(MemOpc), MI->getOperand(0).getReg())
214        .addReg(WBReg).addImm(0).addImm(Pred);
215    else
216      MemMI = BuildMI(MF, MI->getDebugLoc(),
217                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
218        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
219    NewMIs.push_back(MemMI);
220    NewMIs.push_back(UpdateMI);
221  } else {
222    if (isLoad)
223      MemMI = BuildMI(MF, MI->getDebugLoc(),
224                      get(MemOpc), MI->getOperand(0).getReg())
225        .addReg(BaseReg).addImm(0).addImm(Pred);
226    else
227      MemMI = BuildMI(MF, MI->getDebugLoc(),
228                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
229        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
230    if (WB.isDead())
231      UpdateMI->getOperand(0).setIsDead();
232    NewMIs.push_back(UpdateMI);
233    NewMIs.push_back(MemMI);
234  }
235
236  // Transfer LiveVariables states, kill / dead info.
237  if (LV) {
238    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
239      MachineOperand &MO = MI->getOperand(i);
240      if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
241        unsigned Reg = MO.getReg();
242
243        LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
244        if (MO.isDef()) {
245          MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
246          if (MO.isDead())
247            LV->addVirtualRegisterDead(Reg, NewMI);
248        }
249        if (MO.isUse() && MO.isKill()) {
250          for (unsigned j = 0; j < 2; ++j) {
251            // Look at the two new MI's in reverse order.
252            MachineInstr *NewMI = NewMIs[j];
253            if (!NewMI->readsRegister(Reg))
254              continue;
255            LV->addVirtualRegisterKilled(Reg, NewMI);
256            if (VI.removeKill(MI))
257              VI.Kills.push_back(NewMI);
258            break;
259          }
260        }
261      }
262    }
263  }
264
265  MFI->insert(MBBI, NewMIs[1]);
266  MFI->insert(MBBI, NewMIs[0]);
267  return NewMIs[0];
268}
269
270// Branch analysis.
271bool
272ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
273                                MachineBasicBlock *&FBB,
274                                SmallVectorImpl<MachineOperand> &Cond,
275                                bool AllowModify) const {
276  TBB = 0;
277  FBB = 0;
278
279  MachineBasicBlock::iterator I = MBB.end();
280  if (I == MBB.begin())
281    return false; // Empty blocks are easy.
282  --I;
283
284  // Walk backwards from the end of the basic block until the branch is
285  // analyzed or we give up.
286  while (isPredicated(I) || I->isTerminator() || I->isDebugValue()) {
287
288    // Flag to be raised on unanalyzeable instructions. This is useful in cases
289    // where we want to clean up on the end of the basic block before we bail
290    // out.
291    bool CantAnalyze = false;
292
293    // Skip over DEBUG values and predicated nonterminators.
294    while (I->isDebugValue() || !I->isTerminator()) {
295      if (I == MBB.begin())
296        return false;
297      --I;
298    }
299
300    if (isIndirectBranchOpcode(I->getOpcode()) ||
301        isJumpTableBranchOpcode(I->getOpcode())) {
302      // Indirect branches and jump tables can't be analyzed, but we still want
303      // to clean up any instructions at the tail of the basic block.
304      CantAnalyze = true;
305    } else if (isUncondBranchOpcode(I->getOpcode())) {
306      TBB = I->getOperand(0).getMBB();
307    } else if (isCondBranchOpcode(I->getOpcode())) {
308      // Bail out if we encounter multiple conditional branches.
309      if (!Cond.empty())
310        return true;
311
312      assert(!FBB && "FBB should have been null.");
313      FBB = TBB;
314      TBB = I->getOperand(0).getMBB();
315      Cond.push_back(I->getOperand(1));
316      Cond.push_back(I->getOperand(2));
317    } else if (I->isReturn()) {
318      // Returns can't be analyzed, but we should run cleanup.
319      CantAnalyze = !isPredicated(I);
320    } else {
321      // We encountered other unrecognized terminator. Bail out immediately.
322      return true;
323    }
324
325    // Cleanup code - to be run for unpredicated unconditional branches and
326    //                returns.
327    if (!isPredicated(I) &&
328          (isUncondBranchOpcode(I->getOpcode()) ||
329           isIndirectBranchOpcode(I->getOpcode()) ||
330           isJumpTableBranchOpcode(I->getOpcode()) ||
331           I->isReturn())) {
332      // Forget any previous condition branch information - it no longer applies.
333      Cond.clear();
334      FBB = 0;
335
336      // If we can modify the function, delete everything below this
337      // unconditional branch.
338      if (AllowModify) {
339        MachineBasicBlock::iterator DI = std::next(I);
340        while (DI != MBB.end()) {
341          MachineInstr *InstToDelete = DI;
342          ++DI;
343          InstToDelete->eraseFromParent();
344        }
345      }
346    }
347
348    if (CantAnalyze)
349      return true;
350
351    if (I == MBB.begin())
352      return false;
353
354    --I;
355  }
356
357  // We made it past the terminators without bailing out - we must have
358  // analyzed this branch successfully.
359  return false;
360}
361
362
363unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
364  MachineBasicBlock::iterator I = MBB.end();
365  if (I == MBB.begin()) return 0;
366  --I;
367  while (I->isDebugValue()) {
368    if (I == MBB.begin())
369      return 0;
370    --I;
371  }
372  if (!isUncondBranchOpcode(I->getOpcode()) &&
373      !isCondBranchOpcode(I->getOpcode()))
374    return 0;
375
376  // Remove the branch.
377  I->eraseFromParent();
378
379  I = MBB.end();
380
381  if (I == MBB.begin()) return 1;
382  --I;
383  if (!isCondBranchOpcode(I->getOpcode()))
384    return 1;
385
386  // Remove the branch.
387  I->eraseFromParent();
388  return 2;
389}
390
391unsigned
392ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
393                               MachineBasicBlock *FBB,
394                               const SmallVectorImpl<MachineOperand> &Cond,
395                               DebugLoc DL) const {
396  ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
397  int BOpc   = !AFI->isThumbFunction()
398    ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
399  int BccOpc = !AFI->isThumbFunction()
400    ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
401  bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
402
403  // Shouldn't be a fall through.
404  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
405  assert((Cond.size() == 2 || Cond.size() == 0) &&
406         "ARM branch conditions have two components!");
407
408  if (FBB == 0) {
409    if (Cond.empty()) { // Unconditional branch?
410      if (isThumb)
411        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
412      else
413        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
414    } else
415      BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
416        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
417    return 1;
418  }
419
420  // Two-way conditional branch.
421  BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
422    .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
423  if (isThumb)
424    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
425  else
426    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
427  return 2;
428}
429
430bool ARMBaseInstrInfo::
431ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
432  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
433  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
434  return false;
435}
436
437bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
438  if (MI->isBundle()) {
439    MachineBasicBlock::const_instr_iterator I = MI;
440    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
441    while (++I != E && I->isInsideBundle()) {
442      int PIdx = I->findFirstPredOperandIdx();
443      if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
444        return true;
445    }
446    return false;
447  }
448
449  int PIdx = MI->findFirstPredOperandIdx();
450  return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
451}
452
453bool ARMBaseInstrInfo::
454PredicateInstruction(MachineInstr *MI,
455                     const SmallVectorImpl<MachineOperand> &Pred) const {
456  unsigned Opc = MI->getOpcode();
457  if (isUncondBranchOpcode(Opc)) {
458    MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
459    MachineInstrBuilder(*MI->getParent()->getParent(), MI)
460      .addImm(Pred[0].getImm())
461      .addReg(Pred[1].getReg());
462    return true;
463  }
464
465  int PIdx = MI->findFirstPredOperandIdx();
466  if (PIdx != -1) {
467    MachineOperand &PMO = MI->getOperand(PIdx);
468    PMO.setImm(Pred[0].getImm());
469    MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
470    return true;
471  }
472  return false;
473}
474
475bool ARMBaseInstrInfo::
476SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
477                  const SmallVectorImpl<MachineOperand> &Pred2) const {
478  if (Pred1.size() > 2 || Pred2.size() > 2)
479    return false;
480
481  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
482  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
483  if (CC1 == CC2)
484    return true;
485
486  switch (CC1) {
487  default:
488    return false;
489  case ARMCC::AL:
490    return true;
491  case ARMCC::HS:
492    return CC2 == ARMCC::HI;
493  case ARMCC::LS:
494    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
495  case ARMCC::GE:
496    return CC2 == ARMCC::GT;
497  case ARMCC::LE:
498    return CC2 == ARMCC::LT;
499  }
500}
501
502bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
503                                    std::vector<MachineOperand> &Pred) const {
504  bool Found = false;
505  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
506    const MachineOperand &MO = MI->getOperand(i);
507    if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
508        (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
509      Pred.push_back(MO);
510      Found = true;
511    }
512  }
513
514  return Found;
515}
516
517/// isPredicable - Return true if the specified instruction can be predicated.
518/// By default, this returns true for every instruction with a
519/// PredicateOperand.
520bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
521  if (!MI->isPredicable())
522    return false;
523
524  ARMFunctionInfo *AFI =
525    MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
526
527  if (AFI->isThumb2Function()) {
528    if (getSubtarget().restrictIT())
529      return isV8EligibleForIT(MI);
530  } else { // non-Thumb
531    if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
532      return false;
533  }
534
535  return true;
536}
537
538template<> bool IsCPSRDead<MachineInstr>(MachineInstr* MI) {
539  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
540    const MachineOperand &MO = MI->getOperand(i);
541    if (!MO.isReg() || MO.isUndef() || MO.isUse())
542      continue;
543    if (MO.getReg() != ARM::CPSR)
544      continue;
545    if (!MO.isDead())
546      return false;
547  }
548  // all definitions of CPSR are dead
549  return true;
550}
551
552/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
553LLVM_ATTRIBUTE_NOINLINE
554static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
555                                unsigned JTI);
556static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
557                                unsigned JTI) {
558  assert(JTI < JT.size());
559  return JT[JTI].MBBs.size();
560}
561
562/// GetInstSize - Return the size of the specified MachineInstr.
563///
564unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
565  const MachineBasicBlock &MBB = *MI->getParent();
566  const MachineFunction *MF = MBB.getParent();
567  const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
568
569  const MCInstrDesc &MCID = MI->getDesc();
570  if (MCID.getSize())
571    return MCID.getSize();
572
573  // If this machine instr is an inline asm, measure it.
574  if (MI->getOpcode() == ARM::INLINEASM)
575    return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
576  unsigned Opc = MI->getOpcode();
577  switch (Opc) {
578  default:
579    // pseudo-instruction sizes are zero.
580    return 0;
581  case TargetOpcode::BUNDLE:
582    return getInstBundleLength(MI);
583  case ARM::MOVi16_ga_pcrel:
584  case ARM::MOVTi16_ga_pcrel:
585  case ARM::t2MOVi16_ga_pcrel:
586  case ARM::t2MOVTi16_ga_pcrel:
587    return 4;
588  case ARM::MOVi32imm:
589  case ARM::t2MOVi32imm:
590    return 8;
591  case ARM::CONSTPOOL_ENTRY:
592    // If this machine instr is a constant pool entry, its size is recorded as
593    // operand #2.
594    return MI->getOperand(2).getImm();
595  case ARM::Int_eh_sjlj_longjmp:
596    return 16;
597  case ARM::tInt_eh_sjlj_longjmp:
598    return 10;
599  case ARM::Int_eh_sjlj_setjmp:
600  case ARM::Int_eh_sjlj_setjmp_nofp:
601    return 20;
602  case ARM::tInt_eh_sjlj_setjmp:
603  case ARM::t2Int_eh_sjlj_setjmp:
604  case ARM::t2Int_eh_sjlj_setjmp_nofp:
605    return 12;
606  case ARM::BR_JTr:
607  case ARM::BR_JTm:
608  case ARM::BR_JTadd:
609  case ARM::tBR_JTr:
610  case ARM::t2BR_JT:
611  case ARM::t2TBB_JT:
612  case ARM::t2TBH_JT: {
613    // These are jumptable branches, i.e. a branch followed by an inlined
614    // jumptable. The size is 4 + 4 * number of entries. For TBB, each
615    // entry is one byte; TBH two byte each.
616    unsigned EntrySize = (Opc == ARM::t2TBB_JT)
617      ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
618    unsigned NumOps = MCID.getNumOperands();
619    MachineOperand JTOP =
620      MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
621    unsigned JTI = JTOP.getIndex();
622    const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
623    assert(MJTI != 0);
624    const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
625    assert(JTI < JT.size());
626    // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
627    // 4 aligned. The assembler / linker may add 2 byte padding just before
628    // the JT entries.  The size does not include this padding; the
629    // constant islands pass does separate bookkeeping for it.
630    // FIXME: If we know the size of the function is less than (1 << 16) *2
631    // bytes, we can use 16-bit entries instead. Then there won't be an
632    // alignment issue.
633    unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
634    unsigned NumEntries = getNumJTEntries(JT, JTI);
635    if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
636      // Make sure the instruction that follows TBB is 2-byte aligned.
637      // FIXME: Constant island pass should insert an "ALIGN" instruction
638      // instead.
639      ++NumEntries;
640    return NumEntries * EntrySize + InstSize;
641  }
642  }
643}
644
645unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
646  unsigned Size = 0;
647  MachineBasicBlock::const_instr_iterator I = MI;
648  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
649  while (++I != E && I->isInsideBundle()) {
650    assert(!I->isBundle() && "No nested bundle!");
651    Size += GetInstSizeInBytes(&*I);
652  }
653  return Size;
654}
655
656void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
657                                   MachineBasicBlock::iterator I, DebugLoc DL,
658                                   unsigned DestReg, unsigned SrcReg,
659                                   bool KillSrc) const {
660  bool GPRDest = ARM::GPRRegClass.contains(DestReg);
661  bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
662
663  if (GPRDest && GPRSrc) {
664    AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
665                                    .addReg(SrcReg, getKillRegState(KillSrc))));
666    return;
667  }
668
669  bool SPRDest = ARM::SPRRegClass.contains(DestReg);
670  bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
671
672  unsigned Opc = 0;
673  if (SPRDest && SPRSrc)
674    Opc = ARM::VMOVS;
675  else if (GPRDest && SPRSrc)
676    Opc = ARM::VMOVRS;
677  else if (SPRDest && GPRSrc)
678    Opc = ARM::VMOVSR;
679  else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
680    Opc = ARM::VMOVD;
681  else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
682    Opc = ARM::VORRq;
683
684  if (Opc) {
685    MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
686    MIB.addReg(SrcReg, getKillRegState(KillSrc));
687    if (Opc == ARM::VORRq)
688      MIB.addReg(SrcReg, getKillRegState(KillSrc));
689    AddDefaultPred(MIB);
690    return;
691  }
692
693  // Handle register classes that require multiple instructions.
694  unsigned BeginIdx = 0;
695  unsigned SubRegs = 0;
696  int Spacing = 1;
697
698  // Use VORRq when possible.
699  if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
700    Opc = ARM::VORRq;
701    BeginIdx = ARM::qsub_0;
702    SubRegs = 2;
703  } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
704    Opc = ARM::VORRq;
705    BeginIdx = ARM::qsub_0;
706    SubRegs = 4;
707  // Fall back to VMOVD.
708  } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
709    Opc = ARM::VMOVD;
710    BeginIdx = ARM::dsub_0;
711    SubRegs = 2;
712  } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
713    Opc = ARM::VMOVD;
714    BeginIdx = ARM::dsub_0;
715    SubRegs = 3;
716  } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
717    Opc = ARM::VMOVD;
718    BeginIdx = ARM::dsub_0;
719    SubRegs = 4;
720  } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
721    Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
722    BeginIdx = ARM::gsub_0;
723    SubRegs = 2;
724  } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
725    Opc = ARM::VMOVD;
726    BeginIdx = ARM::dsub_0;
727    SubRegs = 2;
728    Spacing = 2;
729  } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
730    Opc = ARM::VMOVD;
731    BeginIdx = ARM::dsub_0;
732    SubRegs = 3;
733    Spacing = 2;
734  } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
735    Opc = ARM::VMOVD;
736    BeginIdx = ARM::dsub_0;
737    SubRegs = 4;
738    Spacing = 2;
739  }
740
741  assert(Opc && "Impossible reg-to-reg copy");
742
743  const TargetRegisterInfo *TRI = &getRegisterInfo();
744  MachineInstrBuilder Mov;
745
746  // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
747  if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
748    BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
749    Spacing = -Spacing;
750  }
751#ifndef NDEBUG
752  SmallSet<unsigned, 4> DstRegs;
753#endif
754  for (unsigned i = 0; i != SubRegs; ++i) {
755    unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
756    unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
757    assert(Dst && Src && "Bad sub-register");
758#ifndef NDEBUG
759    assert(!DstRegs.count(Src) && "destructive vector copy");
760    DstRegs.insert(Dst);
761#endif
762    Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
763    // VORR takes two source operands.
764    if (Opc == ARM::VORRq)
765      Mov.addReg(Src);
766    Mov = AddDefaultPred(Mov);
767    // MOVr can set CC.
768    if (Opc == ARM::MOVr)
769      Mov = AddDefaultCC(Mov);
770  }
771  // Add implicit super-register defs and kills to the last instruction.
772  Mov->addRegisterDefined(DestReg, TRI);
773  if (KillSrc)
774    Mov->addRegisterKilled(SrcReg, TRI);
775}
776
777const MachineInstrBuilder &
778ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
779                          unsigned SubIdx, unsigned State,
780                          const TargetRegisterInfo *TRI) const {
781  if (!SubIdx)
782    return MIB.addReg(Reg, State);
783
784  if (TargetRegisterInfo::isPhysicalRegister(Reg))
785    return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
786  return MIB.addReg(Reg, State, SubIdx);
787}
788
789void ARMBaseInstrInfo::
790storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
791                    unsigned SrcReg, bool isKill, int FI,
792                    const TargetRegisterClass *RC,
793                    const TargetRegisterInfo *TRI) const {
794  DebugLoc DL;
795  if (I != MBB.end()) DL = I->getDebugLoc();
796  MachineFunction &MF = *MBB.getParent();
797  MachineFrameInfo &MFI = *MF.getFrameInfo();
798  unsigned Align = MFI.getObjectAlignment(FI);
799
800  MachineMemOperand *MMO =
801    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
802                            MachineMemOperand::MOStore,
803                            MFI.getObjectSize(FI),
804                            Align);
805
806  switch (RC->getSize()) {
807    case 4:
808      if (ARM::GPRRegClass.hasSubClassEq(RC)) {
809        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
810                   .addReg(SrcReg, getKillRegState(isKill))
811                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
812      } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
813        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
814                   .addReg(SrcReg, getKillRegState(isKill))
815                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
816      } else
817        llvm_unreachable("Unknown reg class!");
818      break;
819    case 8:
820      if (ARM::DPRRegClass.hasSubClassEq(RC)) {
821        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
822                   .addReg(SrcReg, getKillRegState(isKill))
823                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
824      } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
825        if (Subtarget.hasV5TEOps()) {
826          MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
827          AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
828          AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
829          MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
830
831          AddDefaultPred(MIB);
832        } else {
833          // Fallback to STM instruction, which has existed since the dawn of
834          // time.
835          MachineInstrBuilder MIB =
836            AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA))
837                             .addFrameIndex(FI).addMemOperand(MMO));
838          AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
839          AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
840        }
841      } else
842        llvm_unreachable("Unknown reg class!");
843      break;
844    case 16:
845      if (ARM::DPairRegClass.hasSubClassEq(RC)) {
846        // Use aligned spills if the stack can be realigned.
847        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
848          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
849                     .addFrameIndex(FI).addImm(16)
850                     .addReg(SrcReg, getKillRegState(isKill))
851                     .addMemOperand(MMO));
852        } else {
853          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
854                     .addReg(SrcReg, getKillRegState(isKill))
855                     .addFrameIndex(FI)
856                     .addMemOperand(MMO));
857        }
858      } else
859        llvm_unreachable("Unknown reg class!");
860      break;
861    case 24:
862      if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
863        // Use aligned spills if the stack can be realigned.
864        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
865          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
866                     .addFrameIndex(FI).addImm(16)
867                     .addReg(SrcReg, getKillRegState(isKill))
868                     .addMemOperand(MMO));
869        } else {
870          MachineInstrBuilder MIB =
871          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
872                       .addFrameIndex(FI))
873                       .addMemOperand(MMO);
874          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
875          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
876          AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
877        }
878      } else
879        llvm_unreachable("Unknown reg class!");
880      break;
881    case 32:
882      if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
883        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
884          // FIXME: It's possible to only store part of the QQ register if the
885          // spilled def has a sub-register index.
886          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
887                     .addFrameIndex(FI).addImm(16)
888                     .addReg(SrcReg, getKillRegState(isKill))
889                     .addMemOperand(MMO));
890        } else {
891          MachineInstrBuilder MIB =
892          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
893                       .addFrameIndex(FI))
894                       .addMemOperand(MMO);
895          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
896          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
897          MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
898                AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
899        }
900      } else
901        llvm_unreachable("Unknown reg class!");
902      break;
903    case 64:
904      if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
905        MachineInstrBuilder MIB =
906          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
907                         .addFrameIndex(FI))
908                         .addMemOperand(MMO);
909        MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
910        MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
911        MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
912        MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
913        MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
914        MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
915        MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
916              AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
917      } else
918        llvm_unreachable("Unknown reg class!");
919      break;
920    default:
921      llvm_unreachable("Unknown reg class!");
922  }
923}
924
925unsigned
926ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
927                                     int &FrameIndex) const {
928  switch (MI->getOpcode()) {
929  default: break;
930  case ARM::STRrs:
931  case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
932    if (MI->getOperand(1).isFI() &&
933        MI->getOperand(2).isReg() &&
934        MI->getOperand(3).isImm() &&
935        MI->getOperand(2).getReg() == 0 &&
936        MI->getOperand(3).getImm() == 0) {
937      FrameIndex = MI->getOperand(1).getIndex();
938      return MI->getOperand(0).getReg();
939    }
940    break;
941  case ARM::STRi12:
942  case ARM::t2STRi12:
943  case ARM::tSTRspi:
944  case ARM::VSTRD:
945  case ARM::VSTRS:
946    if (MI->getOperand(1).isFI() &&
947        MI->getOperand(2).isImm() &&
948        MI->getOperand(2).getImm() == 0) {
949      FrameIndex = MI->getOperand(1).getIndex();
950      return MI->getOperand(0).getReg();
951    }
952    break;
953  case ARM::VST1q64:
954  case ARM::VST1d64TPseudo:
955  case ARM::VST1d64QPseudo:
956    if (MI->getOperand(0).isFI() &&
957        MI->getOperand(2).getSubReg() == 0) {
958      FrameIndex = MI->getOperand(0).getIndex();
959      return MI->getOperand(2).getReg();
960    }
961    break;
962  case ARM::VSTMQIA:
963    if (MI->getOperand(1).isFI() &&
964        MI->getOperand(0).getSubReg() == 0) {
965      FrameIndex = MI->getOperand(1).getIndex();
966      return MI->getOperand(0).getReg();
967    }
968    break;
969  }
970
971  return 0;
972}
973
974unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
975                                                    int &FrameIndex) const {
976  const MachineMemOperand *Dummy;
977  return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
978}
979
980void ARMBaseInstrInfo::
981loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
982                     unsigned DestReg, int FI,
983                     const TargetRegisterClass *RC,
984                     const TargetRegisterInfo *TRI) const {
985  DebugLoc DL;
986  if (I != MBB.end()) DL = I->getDebugLoc();
987  MachineFunction &MF = *MBB.getParent();
988  MachineFrameInfo &MFI = *MF.getFrameInfo();
989  unsigned Align = MFI.getObjectAlignment(FI);
990  MachineMemOperand *MMO =
991    MF.getMachineMemOperand(
992                    MachinePointerInfo::getFixedStack(FI),
993                            MachineMemOperand::MOLoad,
994                            MFI.getObjectSize(FI),
995                            Align);
996
997  switch (RC->getSize()) {
998  case 4:
999    if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1000      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1001                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1002
1003    } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1004      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1005                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1006    } else
1007      llvm_unreachable("Unknown reg class!");
1008    break;
1009  case 8:
1010    if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1011      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1012                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1013    } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1014      MachineInstrBuilder MIB;
1015
1016      if (Subtarget.hasV5TEOps()) {
1017        MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1018        AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1019        AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1020        MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
1021
1022        AddDefaultPred(MIB);
1023      } else {
1024        // Fallback to LDM instruction, which has existed since the dawn of
1025        // time.
1026        MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA))
1027                                 .addFrameIndex(FI).addMemOperand(MMO));
1028        MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1029        MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1030      }
1031
1032      if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1033        MIB.addReg(DestReg, RegState::ImplicitDefine);
1034    } else
1035      llvm_unreachable("Unknown reg class!");
1036    break;
1037  case 16:
1038    if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1039      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1040        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1041                     .addFrameIndex(FI).addImm(16)
1042                     .addMemOperand(MMO));
1043      } else {
1044        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1045                       .addFrameIndex(FI)
1046                       .addMemOperand(MMO));
1047      }
1048    } else
1049      llvm_unreachable("Unknown reg class!");
1050    break;
1051  case 24:
1052    if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1053      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1054        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1055                     .addFrameIndex(FI).addImm(16)
1056                     .addMemOperand(MMO));
1057      } else {
1058        MachineInstrBuilder MIB =
1059          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1060                         .addFrameIndex(FI)
1061                         .addMemOperand(MMO));
1062        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1063        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1064        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1065        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1066          MIB.addReg(DestReg, RegState::ImplicitDefine);
1067      }
1068    } else
1069      llvm_unreachable("Unknown reg class!");
1070    break;
1071   case 32:
1072    if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1073      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1074        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1075                     .addFrameIndex(FI).addImm(16)
1076                     .addMemOperand(MMO));
1077      } else {
1078        MachineInstrBuilder MIB =
1079        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1080                       .addFrameIndex(FI))
1081                       .addMemOperand(MMO);
1082        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1083        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1084        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1085        MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1086        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1087          MIB.addReg(DestReg, RegState::ImplicitDefine);
1088      }
1089    } else
1090      llvm_unreachable("Unknown reg class!");
1091    break;
1092  case 64:
1093    if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1094      MachineInstrBuilder MIB =
1095      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1096                     .addFrameIndex(FI))
1097                     .addMemOperand(MMO);
1098      MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1099      MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1100      MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1101      MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1102      MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1103      MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1104      MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1105      MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1106      if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1107        MIB.addReg(DestReg, RegState::ImplicitDefine);
1108    } else
1109      llvm_unreachable("Unknown reg class!");
1110    break;
1111  default:
1112    llvm_unreachable("Unknown regclass!");
1113  }
1114}
1115
1116unsigned
1117ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1118                                      int &FrameIndex) const {
1119  switch (MI->getOpcode()) {
1120  default: break;
1121  case ARM::LDRrs:
1122  case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1123    if (MI->getOperand(1).isFI() &&
1124        MI->getOperand(2).isReg() &&
1125        MI->getOperand(3).isImm() &&
1126        MI->getOperand(2).getReg() == 0 &&
1127        MI->getOperand(3).getImm() == 0) {
1128      FrameIndex = MI->getOperand(1).getIndex();
1129      return MI->getOperand(0).getReg();
1130    }
1131    break;
1132  case ARM::LDRi12:
1133  case ARM::t2LDRi12:
1134  case ARM::tLDRspi:
1135  case ARM::VLDRD:
1136  case ARM::VLDRS:
1137    if (MI->getOperand(1).isFI() &&
1138        MI->getOperand(2).isImm() &&
1139        MI->getOperand(2).getImm() == 0) {
1140      FrameIndex = MI->getOperand(1).getIndex();
1141      return MI->getOperand(0).getReg();
1142    }
1143    break;
1144  case ARM::VLD1q64:
1145  case ARM::VLD1d64TPseudo:
1146  case ARM::VLD1d64QPseudo:
1147    if (MI->getOperand(1).isFI() &&
1148        MI->getOperand(0).getSubReg() == 0) {
1149      FrameIndex = MI->getOperand(1).getIndex();
1150      return MI->getOperand(0).getReg();
1151    }
1152    break;
1153  case ARM::VLDMQIA:
1154    if (MI->getOperand(1).isFI() &&
1155        MI->getOperand(0).getSubReg() == 0) {
1156      FrameIndex = MI->getOperand(1).getIndex();
1157      return MI->getOperand(0).getReg();
1158    }
1159    break;
1160  }
1161
1162  return 0;
1163}
1164
1165unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1166                                             int &FrameIndex) const {
1167  const MachineMemOperand *Dummy;
1168  return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1169}
1170
1171bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
1172  // This hook gets to expand COPY instructions before they become
1173  // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1174  // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1175  // changed into a VORR that can go down the NEON pipeline.
1176  if (!WidenVMOVS || !MI->isCopy() || Subtarget.isCortexA15())
1177    return false;
1178
1179  // Look for a copy between even S-registers.  That is where we keep floats
1180  // when using NEON v2f32 instructions for f32 arithmetic.
1181  unsigned DstRegS = MI->getOperand(0).getReg();
1182  unsigned SrcRegS = MI->getOperand(1).getReg();
1183  if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1184    return false;
1185
1186  const TargetRegisterInfo *TRI = &getRegisterInfo();
1187  unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1188                                              &ARM::DPRRegClass);
1189  unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1190                                              &ARM::DPRRegClass);
1191  if (!DstRegD || !SrcRegD)
1192    return false;
1193
1194  // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1195  // legal if the COPY already defines the full DstRegD, and it isn't a
1196  // sub-register insertion.
1197  if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
1198    return false;
1199
1200  // A dead copy shouldn't show up here, but reject it just in case.
1201  if (MI->getOperand(0).isDead())
1202    return false;
1203
1204  // All clear, widen the COPY.
1205  DEBUG(dbgs() << "widening:    " << *MI);
1206  MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
1207
1208  // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
1209  // or some other super-register.
1210  int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
1211  if (ImpDefIdx != -1)
1212    MI->RemoveOperand(ImpDefIdx);
1213
1214  // Change the opcode and operands.
1215  MI->setDesc(get(ARM::VMOVD));
1216  MI->getOperand(0).setReg(DstRegD);
1217  MI->getOperand(1).setReg(SrcRegD);
1218  AddDefaultPred(MIB);
1219
1220  // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1221  // register scavenger and machine verifier, so we need to indicate that we
1222  // are reading an undefined value from SrcRegD, but a proper value from
1223  // SrcRegS.
1224  MI->getOperand(1).setIsUndef();
1225  MIB.addReg(SrcRegS, RegState::Implicit);
1226
1227  // SrcRegD may actually contain an unrelated value in the ssub_1
1228  // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1229  if (MI->getOperand(1).isKill()) {
1230    MI->getOperand(1).setIsKill(false);
1231    MI->addRegisterKilled(SrcRegS, TRI, true);
1232  }
1233
1234  DEBUG(dbgs() << "replaced by: " << *MI);
1235  return true;
1236}
1237
1238/// Create a copy of a const pool value. Update CPI to the new index and return
1239/// the label UID.
1240static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1241  MachineConstantPool *MCP = MF.getConstantPool();
1242  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1243
1244  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1245  assert(MCPE.isMachineConstantPoolEntry() &&
1246         "Expecting a machine constantpool entry!");
1247  ARMConstantPoolValue *ACPV =
1248    static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1249
1250  unsigned PCLabelId = AFI->createPICLabelUId();
1251  ARMConstantPoolValue *NewCPV = 0;
1252
1253  // FIXME: The below assumes PIC relocation model and that the function
1254  // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1255  // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1256  // instructions, so that's probably OK, but is PIC always correct when
1257  // we get here?
1258  if (ACPV->isGlobalValue())
1259    NewCPV = ARMConstantPoolConstant::
1260      Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
1261             ARMCP::CPValue, 4);
1262  else if (ACPV->isExtSymbol())
1263    NewCPV = ARMConstantPoolSymbol::
1264      Create(MF.getFunction()->getContext(),
1265             cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1266  else if (ACPV->isBlockAddress())
1267    NewCPV = ARMConstantPoolConstant::
1268      Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1269             ARMCP::CPBlockAddress, 4);
1270  else if (ACPV->isLSDA())
1271    NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1272                                             ARMCP::CPLSDA, 4);
1273  else if (ACPV->isMachineBasicBlock())
1274    NewCPV = ARMConstantPoolMBB::
1275      Create(MF.getFunction()->getContext(),
1276             cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1277  else
1278    llvm_unreachable("Unexpected ARM constantpool value type!!");
1279  CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1280  return PCLabelId;
1281}
1282
1283void ARMBaseInstrInfo::
1284reMaterialize(MachineBasicBlock &MBB,
1285              MachineBasicBlock::iterator I,
1286              unsigned DestReg, unsigned SubIdx,
1287              const MachineInstr *Orig,
1288              const TargetRegisterInfo &TRI) const {
1289  unsigned Opcode = Orig->getOpcode();
1290  switch (Opcode) {
1291  default: {
1292    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1293    MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1294    MBB.insert(I, MI);
1295    break;
1296  }
1297  case ARM::tLDRpci_pic:
1298  case ARM::t2LDRpci_pic: {
1299    MachineFunction &MF = *MBB.getParent();
1300    unsigned CPI = Orig->getOperand(1).getIndex();
1301    unsigned PCLabelId = duplicateCPV(MF, CPI);
1302    MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1303                                      DestReg)
1304      .addConstantPoolIndex(CPI).addImm(PCLabelId);
1305    MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1306    break;
1307  }
1308  }
1309}
1310
1311MachineInstr *
1312ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1313  MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF);
1314  switch(Orig->getOpcode()) {
1315  case ARM::tLDRpci_pic:
1316  case ARM::t2LDRpci_pic: {
1317    unsigned CPI = Orig->getOperand(1).getIndex();
1318    unsigned PCLabelId = duplicateCPV(MF, CPI);
1319    Orig->getOperand(1).setIndex(CPI);
1320    Orig->getOperand(2).setImm(PCLabelId);
1321    break;
1322  }
1323  }
1324  return MI;
1325}
1326
1327bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1328                                        const MachineInstr *MI1,
1329                                        const MachineRegisterInfo *MRI) const {
1330  int Opcode = MI0->getOpcode();
1331  if (Opcode == ARM::t2LDRpci ||
1332      Opcode == ARM::t2LDRpci_pic ||
1333      Opcode == ARM::tLDRpci ||
1334      Opcode == ARM::tLDRpci_pic ||
1335      Opcode == ARM::LDRLIT_ga_pcrel ||
1336      Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1337      Opcode == ARM::tLDRLIT_ga_pcrel ||
1338      Opcode == ARM::MOV_ga_pcrel ||
1339      Opcode == ARM::MOV_ga_pcrel_ldr ||
1340      Opcode == ARM::t2MOV_ga_pcrel) {
1341    if (MI1->getOpcode() != Opcode)
1342      return false;
1343    if (MI0->getNumOperands() != MI1->getNumOperands())
1344      return false;
1345
1346    const MachineOperand &MO0 = MI0->getOperand(1);
1347    const MachineOperand &MO1 = MI1->getOperand(1);
1348    if (MO0.getOffset() != MO1.getOffset())
1349      return false;
1350
1351    if (Opcode == ARM::LDRLIT_ga_pcrel ||
1352        Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1353        Opcode == ARM::tLDRLIT_ga_pcrel ||
1354        Opcode == ARM::MOV_ga_pcrel ||
1355        Opcode == ARM::MOV_ga_pcrel_ldr ||
1356        Opcode == ARM::t2MOV_ga_pcrel)
1357      // Ignore the PC labels.
1358      return MO0.getGlobal() == MO1.getGlobal();
1359
1360    const MachineFunction *MF = MI0->getParent()->getParent();
1361    const MachineConstantPool *MCP = MF->getConstantPool();
1362    int CPI0 = MO0.getIndex();
1363    int CPI1 = MO1.getIndex();
1364    const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1365    const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1366    bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1367    bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1368    if (isARMCP0 && isARMCP1) {
1369      ARMConstantPoolValue *ACPV0 =
1370        static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1371      ARMConstantPoolValue *ACPV1 =
1372        static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1373      return ACPV0->hasSameValue(ACPV1);
1374    } else if (!isARMCP0 && !isARMCP1) {
1375      return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1376    }
1377    return false;
1378  } else if (Opcode == ARM::PICLDR) {
1379    if (MI1->getOpcode() != Opcode)
1380      return false;
1381    if (MI0->getNumOperands() != MI1->getNumOperands())
1382      return false;
1383
1384    unsigned Addr0 = MI0->getOperand(1).getReg();
1385    unsigned Addr1 = MI1->getOperand(1).getReg();
1386    if (Addr0 != Addr1) {
1387      if (!MRI ||
1388          !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1389          !TargetRegisterInfo::isVirtualRegister(Addr1))
1390        return false;
1391
1392      // This assumes SSA form.
1393      MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1394      MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1395      // Check if the loaded value, e.g. a constantpool of a global address, are
1396      // the same.
1397      if (!produceSameValue(Def0, Def1, MRI))
1398        return false;
1399    }
1400
1401    for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
1402      // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1403      const MachineOperand &MO0 = MI0->getOperand(i);
1404      const MachineOperand &MO1 = MI1->getOperand(i);
1405      if (!MO0.isIdenticalTo(MO1))
1406        return false;
1407    }
1408    return true;
1409  }
1410
1411  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1412}
1413
1414/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1415/// determine if two loads are loading from the same base address. It should
1416/// only return true if the base pointers are the same and the only differences
1417/// between the two addresses is the offset. It also returns the offsets by
1418/// reference.
1419///
1420/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1421/// is permanently disabled.
1422bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1423                                               int64_t &Offset1,
1424                                               int64_t &Offset2) const {
1425  // Don't worry about Thumb: just ARM and Thumb2.
1426  if (Subtarget.isThumb1Only()) return false;
1427
1428  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1429    return false;
1430
1431  switch (Load1->getMachineOpcode()) {
1432  default:
1433    return false;
1434  case ARM::LDRi12:
1435  case ARM::LDRBi12:
1436  case ARM::LDRD:
1437  case ARM::LDRH:
1438  case ARM::LDRSB:
1439  case ARM::LDRSH:
1440  case ARM::VLDRD:
1441  case ARM::VLDRS:
1442  case ARM::t2LDRi8:
1443  case ARM::t2LDRBi8:
1444  case ARM::t2LDRDi8:
1445  case ARM::t2LDRSHi8:
1446  case ARM::t2LDRi12:
1447  case ARM::t2LDRBi12:
1448  case ARM::t2LDRSHi12:
1449    break;
1450  }
1451
1452  switch (Load2->getMachineOpcode()) {
1453  default:
1454    return false;
1455  case ARM::LDRi12:
1456  case ARM::LDRBi12:
1457  case ARM::LDRD:
1458  case ARM::LDRH:
1459  case ARM::LDRSB:
1460  case ARM::LDRSH:
1461  case ARM::VLDRD:
1462  case ARM::VLDRS:
1463  case ARM::t2LDRi8:
1464  case ARM::t2LDRBi8:
1465  case ARM::t2LDRSHi8:
1466  case ARM::t2LDRi12:
1467  case ARM::t2LDRBi12:
1468  case ARM::t2LDRSHi12:
1469    break;
1470  }
1471
1472  // Check if base addresses and chain operands match.
1473  if (Load1->getOperand(0) != Load2->getOperand(0) ||
1474      Load1->getOperand(4) != Load2->getOperand(4))
1475    return false;
1476
1477  // Index should be Reg0.
1478  if (Load1->getOperand(3) != Load2->getOperand(3))
1479    return false;
1480
1481  // Determine the offsets.
1482  if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1483      isa<ConstantSDNode>(Load2->getOperand(1))) {
1484    Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1485    Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1486    return true;
1487  }
1488
1489  return false;
1490}
1491
1492/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1493/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1494/// be scheduled togther. On some targets if two loads are loading from
1495/// addresses in the same cache line, it's better if they are scheduled
1496/// together. This function takes two integers that represent the load offsets
1497/// from the common base address. It returns true if it decides it's desirable
1498/// to schedule the two loads together. "NumLoads" is the number of loads that
1499/// have already been scheduled after Load1.
1500///
1501/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1502/// is permanently disabled.
1503bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1504                                               int64_t Offset1, int64_t Offset2,
1505                                               unsigned NumLoads) const {
1506  // Don't worry about Thumb: just ARM and Thumb2.
1507  if (Subtarget.isThumb1Only()) return false;
1508
1509  assert(Offset2 > Offset1);
1510
1511  if ((Offset2 - Offset1) / 8 > 64)
1512    return false;
1513
1514  // Check if the machine opcodes are different. If they are different
1515  // then we consider them to not be of the same base address,
1516  // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1517  // In this case, they are considered to be the same because they are different
1518  // encoding forms of the same basic instruction.
1519  if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1520      !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1521         Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1522        (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1523         Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1524    return false;  // FIXME: overly conservative?
1525
1526  // Four loads in a row should be sufficient.
1527  if (NumLoads >= 3)
1528    return false;
1529
1530  return true;
1531}
1532
1533bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1534                                            const MachineBasicBlock *MBB,
1535                                            const MachineFunction &MF) const {
1536  // Debug info is never a scheduling boundary. It's necessary to be explicit
1537  // due to the special treatment of IT instructions below, otherwise a
1538  // dbg_value followed by an IT will result in the IT instruction being
1539  // considered a scheduling hazard, which is wrong. It should be the actual
1540  // instruction preceding the dbg_value instruction(s), just like it is
1541  // when debug info is not present.
1542  if (MI->isDebugValue())
1543    return false;
1544
1545  // Terminators and labels can't be scheduled around.
1546  if (MI->isTerminator() || MI->isPosition())
1547    return true;
1548
1549  // Treat the start of the IT block as a scheduling boundary, but schedule
1550  // t2IT along with all instructions following it.
1551  // FIXME: This is a big hammer. But the alternative is to add all potential
1552  // true and anti dependencies to IT block instructions as implicit operands
1553  // to the t2IT instruction. The added compile time and complexity does not
1554  // seem worth it.
1555  MachineBasicBlock::const_iterator I = MI;
1556  // Make sure to skip any dbg_value instructions
1557  while (++I != MBB->end() && I->isDebugValue())
1558    ;
1559  if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1560    return true;
1561
1562  // Don't attempt to schedule around any instruction that defines
1563  // a stack-oriented pointer, as it's unlikely to be profitable. This
1564  // saves compile time, because it doesn't require every single
1565  // stack slot reference to depend on the instruction that does the
1566  // modification.
1567  // Calls don't actually change the stack pointer, even if they have imp-defs.
1568  // No ARM calling conventions change the stack pointer. (X86 calling
1569  // conventions sometimes do).
1570  if (!MI->isCall() && MI->definesRegister(ARM::SP))
1571    return true;
1572
1573  return false;
1574}
1575
1576bool ARMBaseInstrInfo::
1577isProfitableToIfCvt(MachineBasicBlock &MBB,
1578                    unsigned NumCycles, unsigned ExtraPredCycles,
1579                    const BranchProbability &Probability) const {
1580  if (!NumCycles)
1581    return false;
1582
1583  // Attempt to estimate the relative costs of predication versus branching.
1584  unsigned UnpredCost = Probability.getNumerator() * NumCycles;
1585  UnpredCost /= Probability.getDenominator();
1586  UnpredCost += 1; // The branch itself
1587  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1588
1589  return (NumCycles + ExtraPredCycles) <= UnpredCost;
1590}
1591
1592bool ARMBaseInstrInfo::
1593isProfitableToIfCvt(MachineBasicBlock &TMBB,
1594                    unsigned TCycles, unsigned TExtra,
1595                    MachineBasicBlock &FMBB,
1596                    unsigned FCycles, unsigned FExtra,
1597                    const BranchProbability &Probability) const {
1598  if (!TCycles || !FCycles)
1599    return false;
1600
1601  // Attempt to estimate the relative costs of predication versus branching.
1602  unsigned TUnpredCost = Probability.getNumerator() * TCycles;
1603  TUnpredCost /= Probability.getDenominator();
1604
1605  uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
1606  unsigned FUnpredCost = Comp * FCycles;
1607  FUnpredCost /= Probability.getDenominator();
1608
1609  unsigned UnpredCost = TUnpredCost + FUnpredCost;
1610  UnpredCost += 1; // The branch itself
1611  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1612
1613  return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
1614}
1615
1616bool
1617ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
1618                                            MachineBasicBlock &FMBB) const {
1619  // Reduce false anti-dependencies to let Swift's out-of-order execution
1620  // engine do its thing.
1621  return Subtarget.isSwift();
1622}
1623
1624/// getInstrPredicate - If instruction is predicated, returns its predicate
1625/// condition, otherwise returns AL. It also returns the condition code
1626/// register by reference.
1627ARMCC::CondCodes
1628llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1629  int PIdx = MI->findFirstPredOperandIdx();
1630  if (PIdx == -1) {
1631    PredReg = 0;
1632    return ARMCC::AL;
1633  }
1634
1635  PredReg = MI->getOperand(PIdx+1).getReg();
1636  return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1637}
1638
1639
1640int llvm::getMatchingCondBranchOpcode(int Opc) {
1641  if (Opc == ARM::B)
1642    return ARM::Bcc;
1643  if (Opc == ARM::tB)
1644    return ARM::tBcc;
1645  if (Opc == ARM::t2B)
1646    return ARM::t2Bcc;
1647
1648  llvm_unreachable("Unknown unconditional branch opcode!");
1649}
1650
1651/// commuteInstruction - Handle commutable instructions.
1652MachineInstr *
1653ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1654  switch (MI->getOpcode()) {
1655  case ARM::MOVCCr:
1656  case ARM::t2MOVCCr: {
1657    // MOVCC can be commuted by inverting the condition.
1658    unsigned PredReg = 0;
1659    ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
1660    // MOVCC AL can't be inverted. Shouldn't happen.
1661    if (CC == ARMCC::AL || PredReg != ARM::CPSR)
1662      return NULL;
1663    MI = TargetInstrInfo::commuteInstruction(MI, NewMI);
1664    if (!MI)
1665      return NULL;
1666    // After swapping the MOVCC operands, also invert the condition.
1667    MI->getOperand(MI->findFirstPredOperandIdx())
1668      .setImm(ARMCC::getOppositeCondition(CC));
1669    return MI;
1670  }
1671  }
1672  return TargetInstrInfo::commuteInstruction(MI, NewMI);
1673}
1674
1675/// Identify instructions that can be folded into a MOVCC instruction, and
1676/// return the defining instruction.
1677static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
1678                                      const MachineRegisterInfo &MRI,
1679                                      const TargetInstrInfo *TII) {
1680  if (!TargetRegisterInfo::isVirtualRegister(Reg))
1681    return 0;
1682  if (!MRI.hasOneNonDBGUse(Reg))
1683    return 0;
1684  MachineInstr *MI = MRI.getVRegDef(Reg);
1685  if (!MI)
1686    return 0;
1687  // MI is folded into the MOVCC by predicating it.
1688  if (!MI->isPredicable())
1689    return 0;
1690  // Check if MI has any non-dead defs or physreg uses. This also detects
1691  // predicated instructions which will be reading CPSR.
1692  for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
1693    const MachineOperand &MO = MI->getOperand(i);
1694    // Reject frame index operands, PEI can't handle the predicated pseudos.
1695    if (MO.isFI() || MO.isCPI() || MO.isJTI())
1696      return 0;
1697    if (!MO.isReg())
1698      continue;
1699    // MI can't have any tied operands, that would conflict with predication.
1700    if (MO.isTied())
1701      return 0;
1702    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1703      return 0;
1704    if (MO.isDef() && !MO.isDead())
1705      return 0;
1706  }
1707  bool DontMoveAcrossStores = true;
1708  if (!MI->isSafeToMove(TII, /* AliasAnalysis = */ 0, DontMoveAcrossStores))
1709    return 0;
1710  return MI;
1711}
1712
1713bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
1714                                     SmallVectorImpl<MachineOperand> &Cond,
1715                                     unsigned &TrueOp, unsigned &FalseOp,
1716                                     bool &Optimizable) const {
1717  assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1718         "Unknown select instruction");
1719  // MOVCC operands:
1720  // 0: Def.
1721  // 1: True use.
1722  // 2: False use.
1723  // 3: Condition code.
1724  // 4: CPSR use.
1725  TrueOp = 1;
1726  FalseOp = 2;
1727  Cond.push_back(MI->getOperand(3));
1728  Cond.push_back(MI->getOperand(4));
1729  // We can always fold a def.
1730  Optimizable = true;
1731  return false;
1732}
1733
1734MachineInstr *ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
1735                                               bool PreferFalse) const {
1736  assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1737         "Unknown select instruction");
1738  MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1739  MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this);
1740  bool Invert = !DefMI;
1741  if (!DefMI)
1742    DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this);
1743  if (!DefMI)
1744    return 0;
1745
1746  // Find new register class to use.
1747  MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1);
1748  unsigned       DestReg  = MI->getOperand(0).getReg();
1749  const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
1750  if (!MRI.constrainRegClass(DestReg, PreviousClass))
1751    return 0;
1752
1753  // Create a new predicated version of DefMI.
1754  // Rfalse is the first use.
1755  MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1756                                      DefMI->getDesc(), DestReg);
1757
1758  // Copy all the DefMI operands, excluding its (null) predicate.
1759  const MCInstrDesc &DefDesc = DefMI->getDesc();
1760  for (unsigned i = 1, e = DefDesc.getNumOperands();
1761       i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
1762    NewMI.addOperand(DefMI->getOperand(i));
1763
1764  unsigned CondCode = MI->getOperand(3).getImm();
1765  if (Invert)
1766    NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
1767  else
1768    NewMI.addImm(CondCode);
1769  NewMI.addOperand(MI->getOperand(4));
1770
1771  // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
1772  if (NewMI->hasOptionalDef())
1773    AddDefaultCC(NewMI);
1774
1775  // The output register value when the predicate is false is an implicit
1776  // register operand tied to the first def.
1777  // The tie makes the register allocator ensure the FalseReg is allocated the
1778  // same register as operand 0.
1779  FalseReg.setImplicit();
1780  NewMI.addOperand(FalseReg);
1781  NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
1782
1783  // The caller will erase MI, but not DefMI.
1784  DefMI->eraseFromParent();
1785  return NewMI;
1786}
1787
1788/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1789/// instruction is encoded with an 'S' bit is determined by the optional CPSR
1790/// def operand.
1791///
1792/// This will go away once we can teach tblgen how to set the optional CPSR def
1793/// operand itself.
1794struct AddSubFlagsOpcodePair {
1795  uint16_t PseudoOpc;
1796  uint16_t MachineOpc;
1797};
1798
1799static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1800  {ARM::ADDSri, ARM::ADDri},
1801  {ARM::ADDSrr, ARM::ADDrr},
1802  {ARM::ADDSrsi, ARM::ADDrsi},
1803  {ARM::ADDSrsr, ARM::ADDrsr},
1804
1805  {ARM::SUBSri, ARM::SUBri},
1806  {ARM::SUBSrr, ARM::SUBrr},
1807  {ARM::SUBSrsi, ARM::SUBrsi},
1808  {ARM::SUBSrsr, ARM::SUBrsr},
1809
1810  {ARM::RSBSri, ARM::RSBri},
1811  {ARM::RSBSrsi, ARM::RSBrsi},
1812  {ARM::RSBSrsr, ARM::RSBrsr},
1813
1814  {ARM::t2ADDSri, ARM::t2ADDri},
1815  {ARM::t2ADDSrr, ARM::t2ADDrr},
1816  {ARM::t2ADDSrs, ARM::t2ADDrs},
1817
1818  {ARM::t2SUBSri, ARM::t2SUBri},
1819  {ARM::t2SUBSrr, ARM::t2SUBrr},
1820  {ARM::t2SUBSrs, ARM::t2SUBrs},
1821
1822  {ARM::t2RSBSri, ARM::t2RSBri},
1823  {ARM::t2RSBSrs, ARM::t2RSBrs},
1824};
1825
1826unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1827  for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
1828    if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
1829      return AddSubFlagsOpcodeMap[i].MachineOpc;
1830  return 0;
1831}
1832
1833void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1834                               MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1835                               unsigned DestReg, unsigned BaseReg, int NumBytes,
1836                               ARMCC::CondCodes Pred, unsigned PredReg,
1837                               const ARMBaseInstrInfo &TII, unsigned MIFlags) {
1838  if (NumBytes == 0 && DestReg != BaseReg) {
1839    BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
1840      .addReg(BaseReg, RegState::Kill)
1841      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1842      .setMIFlags(MIFlags);
1843    return;
1844  }
1845
1846  bool isSub = NumBytes < 0;
1847  if (isSub) NumBytes = -NumBytes;
1848
1849  while (NumBytes) {
1850    unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1851    unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1852    assert(ThisVal && "Didn't extract field correctly");
1853
1854    // We will handle these bits from offset, clear them.
1855    NumBytes &= ~ThisVal;
1856
1857    assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1858
1859    // Build the new ADD / SUB.
1860    unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1861    BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1862      .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1863      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1864      .setMIFlags(MIFlags);
1865    BaseReg = DestReg;
1866  }
1867}
1868
1869static bool isAnySubRegLive(unsigned Reg, const TargetRegisterInfo *TRI,
1870                      MachineInstr *MI) {
1871  for (MCSubRegIterator Subreg(Reg, TRI, /* IncludeSelf */ true);
1872       Subreg.isValid(); ++Subreg)
1873    if (MI->getParent()->computeRegisterLiveness(TRI, *Subreg, MI) !=
1874        MachineBasicBlock::LQR_Dead)
1875      return true;
1876  return false;
1877}
1878bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
1879                                      MachineFunction &MF, MachineInstr *MI,
1880                                      unsigned NumBytes) {
1881  // This optimisation potentially adds lots of load and store
1882  // micro-operations, it's only really a great benefit to code-size.
1883  if (!Subtarget.isMinSize())
1884    return false;
1885
1886  // If only one register is pushed/popped, LLVM can use an LDR/STR
1887  // instead. We can't modify those so make sure we're dealing with an
1888  // instruction we understand.
1889  bool IsPop = isPopOpcode(MI->getOpcode());
1890  bool IsPush = isPushOpcode(MI->getOpcode());
1891  if (!IsPush && !IsPop)
1892    return false;
1893
1894  bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
1895                      MI->getOpcode() == ARM::VLDMDIA_UPD;
1896  bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
1897                     MI->getOpcode() == ARM::tPOP ||
1898                     MI->getOpcode() == ARM::tPOP_RET;
1899
1900  assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
1901                          MI->getOperand(1).getReg() == ARM::SP)) &&
1902         "trying to fold sp update into non-sp-updating push/pop");
1903
1904  // The VFP push & pop act on D-registers, so we can only fold an adjustment
1905  // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
1906  // if this is violated.
1907  if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
1908    return false;
1909
1910  // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
1911  // pred) so the list starts at 4. Thumb1 starts after the predicate.
1912  int RegListIdx = IsT1PushPop ? 2 : 4;
1913
1914  // Calculate the space we'll need in terms of registers.
1915  unsigned FirstReg = MI->getOperand(RegListIdx).getReg();
1916  unsigned RD0Reg, RegsNeeded;
1917  if (IsVFPPushPop) {
1918    RD0Reg = ARM::D0;
1919    RegsNeeded = NumBytes / 8;
1920  } else {
1921    RD0Reg = ARM::R0;
1922    RegsNeeded = NumBytes / 4;
1923  }
1924
1925  // We're going to have to strip all list operands off before
1926  // re-adding them since the order matters, so save the existing ones
1927  // for later.
1928  SmallVector<MachineOperand, 4> RegList;
1929  for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
1930    RegList.push_back(MI->getOperand(i));
1931
1932  const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
1933  const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
1934
1935  // Now try to find enough space in the reglist to allocate NumBytes.
1936  for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded;
1937       --CurReg) {
1938    if (!IsPop) {
1939      // Pushing any register is completely harmless, mark the
1940      // register involved as undef since we don't care about it in
1941      // the slightest.
1942      RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
1943                                                  false, false, true));
1944      --RegsNeeded;
1945      continue;
1946    }
1947
1948    // However, we can only pop an extra register if it's not live. For
1949    // registers live within the function we might clobber a return value
1950    // register; the other way a register can be live here is if it's
1951    // callee-saved.
1952    // TODO: Currently, computeRegisterLiveness() does not report "live" if a
1953    // sub reg is live. When computeRegisterLiveness() works for sub reg, it
1954    // can replace isAnySubRegLive().
1955    if (isCalleeSavedRegister(CurReg, CSRegs) ||
1956        isAnySubRegLive(CurReg, TRI, MI)) {
1957      // VFP pops don't allow holes in the register list, so any skip is fatal
1958      // for our transformation. GPR pops do, so we should just keep looking.
1959      if (IsVFPPushPop)
1960        return false;
1961      else
1962        continue;
1963    }
1964
1965    // Mark the unimportant registers as <def,dead> in the POP.
1966    RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
1967                                                true));
1968    --RegsNeeded;
1969  }
1970
1971  if (RegsNeeded > 0)
1972    return false;
1973
1974  // Finally we know we can profitably perform the optimisation so go
1975  // ahead: strip all existing registers off and add them back again
1976  // in the right order.
1977  for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
1978    MI->RemoveOperand(i);
1979
1980  // Add the complete list back in.
1981  MachineInstrBuilder MIB(MF, &*MI);
1982  for (int i = RegList.size() - 1; i >= 0; --i)
1983    MIB.addOperand(RegList[i]);
1984
1985  return true;
1986}
1987
1988bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
1989                                unsigned FrameReg, int &Offset,
1990                                const ARMBaseInstrInfo &TII) {
1991  unsigned Opcode = MI.getOpcode();
1992  const MCInstrDesc &Desc = MI.getDesc();
1993  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
1994  bool isSub = false;
1995
1996  // Memory operands in inline assembly always use AddrMode2.
1997  if (Opcode == ARM::INLINEASM)
1998    AddrMode = ARMII::AddrMode2;
1999
2000  if (Opcode == ARM::ADDri) {
2001    Offset += MI.getOperand(FrameRegIdx+1).getImm();
2002    if (Offset == 0) {
2003      // Turn it into a move.
2004      MI.setDesc(TII.get(ARM::MOVr));
2005      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2006      MI.RemoveOperand(FrameRegIdx+1);
2007      Offset = 0;
2008      return true;
2009    } else if (Offset < 0) {
2010      Offset = -Offset;
2011      isSub = true;
2012      MI.setDesc(TII.get(ARM::SUBri));
2013    }
2014
2015    // Common case: small offset, fits into instruction.
2016    if (ARM_AM::getSOImmVal(Offset) != -1) {
2017      // Replace the FrameIndex with sp / fp
2018      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2019      MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2020      Offset = 0;
2021      return true;
2022    }
2023
2024    // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2025    // as possible.
2026    unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2027    unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2028
2029    // We will handle these bits from offset, clear them.
2030    Offset &= ~ThisImmVal;
2031
2032    // Get the properly encoded SOImmVal field.
2033    assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2034           "Bit extraction didn't work?");
2035    MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2036 } else {
2037    unsigned ImmIdx = 0;
2038    int InstrOffs = 0;
2039    unsigned NumBits = 0;
2040    unsigned Scale = 1;
2041    switch (AddrMode) {
2042    case ARMII::AddrMode_i12: {
2043      ImmIdx = FrameRegIdx + 1;
2044      InstrOffs = MI.getOperand(ImmIdx).getImm();
2045      NumBits = 12;
2046      break;
2047    }
2048    case ARMII::AddrMode2: {
2049      ImmIdx = FrameRegIdx+2;
2050      InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2051      if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2052        InstrOffs *= -1;
2053      NumBits = 12;
2054      break;
2055    }
2056    case ARMII::AddrMode3: {
2057      ImmIdx = FrameRegIdx+2;
2058      InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2059      if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2060        InstrOffs *= -1;
2061      NumBits = 8;
2062      break;
2063    }
2064    case ARMII::AddrMode4:
2065    case ARMII::AddrMode6:
2066      // Can't fold any offset even if it's zero.
2067      return false;
2068    case ARMII::AddrMode5: {
2069      ImmIdx = FrameRegIdx+1;
2070      InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2071      if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2072        InstrOffs *= -1;
2073      NumBits = 8;
2074      Scale = 4;
2075      break;
2076    }
2077    default:
2078      llvm_unreachable("Unsupported addressing mode!");
2079    }
2080
2081    Offset += InstrOffs * Scale;
2082    assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2083    if (Offset < 0) {
2084      Offset = -Offset;
2085      isSub = true;
2086    }
2087
2088    // Attempt to fold address comp. if opcode has offset bits
2089    if (NumBits > 0) {
2090      // Common case: small offset, fits into instruction.
2091      MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2092      int ImmedOffset = Offset / Scale;
2093      unsigned Mask = (1 << NumBits) - 1;
2094      if ((unsigned)Offset <= Mask * Scale) {
2095        // Replace the FrameIndex with sp
2096        MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2097        // FIXME: When addrmode2 goes away, this will simplify (like the
2098        // T2 version), as the LDR.i12 versions don't need the encoding
2099        // tricks for the offset value.
2100        if (isSub) {
2101          if (AddrMode == ARMII::AddrMode_i12)
2102            ImmedOffset = -ImmedOffset;
2103          else
2104            ImmedOffset |= 1 << NumBits;
2105        }
2106        ImmOp.ChangeToImmediate(ImmedOffset);
2107        Offset = 0;
2108        return true;
2109      }
2110
2111      // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2112      ImmedOffset = ImmedOffset & Mask;
2113      if (isSub) {
2114        if (AddrMode == ARMII::AddrMode_i12)
2115          ImmedOffset = -ImmedOffset;
2116        else
2117          ImmedOffset |= 1 << NumBits;
2118      }
2119      ImmOp.ChangeToImmediate(ImmedOffset);
2120      Offset &= ~(Mask*Scale);
2121    }
2122  }
2123
2124  Offset = (isSub) ? -Offset : Offset;
2125  return Offset == 0;
2126}
2127
2128/// analyzeCompare - For a comparison instruction, return the source registers
2129/// in SrcReg and SrcReg2 if having two register operands, and the value it
2130/// compares against in CmpValue. Return true if the comparison instruction
2131/// can be analyzed.
2132bool ARMBaseInstrInfo::
2133analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
2134               int &CmpMask, int &CmpValue) const {
2135  switch (MI->getOpcode()) {
2136  default: break;
2137  case ARM::CMPri:
2138  case ARM::t2CMPri:
2139    SrcReg = MI->getOperand(0).getReg();
2140    SrcReg2 = 0;
2141    CmpMask = ~0;
2142    CmpValue = MI->getOperand(1).getImm();
2143    return true;
2144  case ARM::CMPrr:
2145  case ARM::t2CMPrr:
2146    SrcReg = MI->getOperand(0).getReg();
2147    SrcReg2 = MI->getOperand(1).getReg();
2148    CmpMask = ~0;
2149    CmpValue = 0;
2150    return true;
2151  case ARM::TSTri:
2152  case ARM::t2TSTri:
2153    SrcReg = MI->getOperand(0).getReg();
2154    SrcReg2 = 0;
2155    CmpMask = MI->getOperand(1).getImm();
2156    CmpValue = 0;
2157    return true;
2158  }
2159
2160  return false;
2161}
2162
2163/// isSuitableForMask - Identify a suitable 'and' instruction that
2164/// operates on the given source register and applies the same mask
2165/// as a 'tst' instruction. Provide a limited look-through for copies.
2166/// When successful, MI will hold the found instruction.
2167static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2168                              int CmpMask, bool CommonUse) {
2169  switch (MI->getOpcode()) {
2170    case ARM::ANDri:
2171    case ARM::t2ANDri:
2172      if (CmpMask != MI->getOperand(2).getImm())
2173        return false;
2174      if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2175        return true;
2176      break;
2177    case ARM::COPY: {
2178      // Walk down one instruction which is potentially an 'and'.
2179      const MachineInstr &Copy = *MI;
2180      MachineBasicBlock::iterator AND(
2181        std::next(MachineBasicBlock::iterator(MI)));
2182      if (AND == MI->getParent()->end()) return false;
2183      MI = AND;
2184      return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
2185                               CmpMask, true);
2186    }
2187  }
2188
2189  return false;
2190}
2191
2192/// getSwappedCondition - assume the flags are set by MI(a,b), return
2193/// the condition code if we modify the instructions such that flags are
2194/// set by MI(b,a).
2195inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2196  switch (CC) {
2197  default: return ARMCC::AL;
2198  case ARMCC::EQ: return ARMCC::EQ;
2199  case ARMCC::NE: return ARMCC::NE;
2200  case ARMCC::HS: return ARMCC::LS;
2201  case ARMCC::LO: return ARMCC::HI;
2202  case ARMCC::HI: return ARMCC::LO;
2203  case ARMCC::LS: return ARMCC::HS;
2204  case ARMCC::GE: return ARMCC::LE;
2205  case ARMCC::LT: return ARMCC::GT;
2206  case ARMCC::GT: return ARMCC::LT;
2207  case ARMCC::LE: return ARMCC::GE;
2208  }
2209}
2210
2211/// isRedundantFlagInstr - check whether the first instruction, whose only
2212/// purpose is to update flags, can be made redundant.
2213/// CMPrr can be made redundant by SUBrr if the operands are the same.
2214/// CMPri can be made redundant by SUBri if the operands are the same.
2215/// This function can be extended later on.
2216inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
2217                                        unsigned SrcReg2, int ImmValue,
2218                                        MachineInstr *OI) {
2219  if ((CmpI->getOpcode() == ARM::CMPrr ||
2220       CmpI->getOpcode() == ARM::t2CMPrr) &&
2221      (OI->getOpcode() == ARM::SUBrr ||
2222       OI->getOpcode() == ARM::t2SUBrr) &&
2223      ((OI->getOperand(1).getReg() == SrcReg &&
2224        OI->getOperand(2).getReg() == SrcReg2) ||
2225       (OI->getOperand(1).getReg() == SrcReg2 &&
2226        OI->getOperand(2).getReg() == SrcReg)))
2227    return true;
2228
2229  if ((CmpI->getOpcode() == ARM::CMPri ||
2230       CmpI->getOpcode() == ARM::t2CMPri) &&
2231      (OI->getOpcode() == ARM::SUBri ||
2232       OI->getOpcode() == ARM::t2SUBri) &&
2233      OI->getOperand(1).getReg() == SrcReg &&
2234      OI->getOperand(2).getImm() == ImmValue)
2235    return true;
2236  return false;
2237}
2238
2239/// optimizeCompareInstr - Convert the instruction supplying the argument to the
2240/// comparison into one that sets the zero bit in the flags register;
2241/// Remove a redundant Compare instruction if an earlier instruction can set the
2242/// flags in the same way as Compare.
2243/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2244/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2245/// condition code of instructions which use the flags.
2246bool ARMBaseInstrInfo::
2247optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
2248                     int CmpMask, int CmpValue,
2249                     const MachineRegisterInfo *MRI) const {
2250  // Get the unique definition of SrcReg.
2251  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2252  if (!MI) return false;
2253
2254  // Masked compares sometimes use the same register as the corresponding 'and'.
2255  if (CmpMask != ~0) {
2256    if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) {
2257      MI = 0;
2258      for (MachineRegisterInfo::use_instr_iterator
2259           UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2260           UI != UE; ++UI) {
2261        if (UI->getParent() != CmpInstr->getParent()) continue;
2262        MachineInstr *PotentialAND = &*UI;
2263        if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2264            isPredicated(PotentialAND))
2265          continue;
2266        MI = PotentialAND;
2267        break;
2268      }
2269      if (!MI) return false;
2270    }
2271  }
2272
2273  // Get ready to iterate backward from CmpInstr.
2274  MachineBasicBlock::iterator I = CmpInstr, E = MI,
2275                              B = CmpInstr->getParent()->begin();
2276
2277  // Early exit if CmpInstr is at the beginning of the BB.
2278  if (I == B) return false;
2279
2280  // There are two possible candidates which can be changed to set CPSR:
2281  // One is MI, the other is a SUB instruction.
2282  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2283  // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2284  MachineInstr *Sub = NULL;
2285  if (SrcReg2 != 0)
2286    // MI is not a candidate for CMPrr.
2287    MI = NULL;
2288  else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
2289    // Conservatively refuse to convert an instruction which isn't in the same
2290    // BB as the comparison.
2291    // For CMPri, we need to check Sub, thus we can't return here.
2292    if (CmpInstr->getOpcode() == ARM::CMPri ||
2293       CmpInstr->getOpcode() == ARM::t2CMPri)
2294      MI = NULL;
2295    else
2296      return false;
2297  }
2298
2299  // Check that CPSR isn't set between the comparison instruction and the one we
2300  // want to change. At the same time, search for Sub.
2301  const TargetRegisterInfo *TRI = &getRegisterInfo();
2302  --I;
2303  for (; I != E; --I) {
2304    const MachineInstr &Instr = *I;
2305
2306    if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2307        Instr.readsRegister(ARM::CPSR, TRI))
2308      // This instruction modifies or uses CPSR after the one we want to
2309      // change. We can't do this transformation.
2310      return false;
2311
2312    // Check whether CmpInstr can be made redundant by the current instruction.
2313    if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
2314      Sub = &*I;
2315      break;
2316    }
2317
2318    if (I == B)
2319      // The 'and' is below the comparison instruction.
2320      return false;
2321  }
2322
2323  // Return false if no candidates exist.
2324  if (!MI && !Sub)
2325    return false;
2326
2327  // The single candidate is called MI.
2328  if (!MI) MI = Sub;
2329
2330  // We can't use a predicated instruction - it doesn't always write the flags.
2331  if (isPredicated(MI))
2332    return false;
2333
2334  switch (MI->getOpcode()) {
2335  default: break;
2336  case ARM::RSBrr:
2337  case ARM::RSBri:
2338  case ARM::RSCrr:
2339  case ARM::RSCri:
2340  case ARM::ADDrr:
2341  case ARM::ADDri:
2342  case ARM::ADCrr:
2343  case ARM::ADCri:
2344  case ARM::SUBrr:
2345  case ARM::SUBri:
2346  case ARM::SBCrr:
2347  case ARM::SBCri:
2348  case ARM::t2RSBri:
2349  case ARM::t2ADDrr:
2350  case ARM::t2ADDri:
2351  case ARM::t2ADCrr:
2352  case ARM::t2ADCri:
2353  case ARM::t2SUBrr:
2354  case ARM::t2SUBri:
2355  case ARM::t2SBCrr:
2356  case ARM::t2SBCri:
2357  case ARM::ANDrr:
2358  case ARM::ANDri:
2359  case ARM::t2ANDrr:
2360  case ARM::t2ANDri:
2361  case ARM::ORRrr:
2362  case ARM::ORRri:
2363  case ARM::t2ORRrr:
2364  case ARM::t2ORRri:
2365  case ARM::EORrr:
2366  case ARM::EORri:
2367  case ARM::t2EORrr:
2368  case ARM::t2EORri: {
2369    // Scan forward for the use of CPSR
2370    // When checking against MI: if it's a conditional code requires
2371    // checking of V bit, then this is not safe to do.
2372    // It is safe to remove CmpInstr if CPSR is redefined or killed.
2373    // If we are done with the basic block, we need to check whether CPSR is
2374    // live-out.
2375    SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2376        OperandsToUpdate;
2377    bool isSafe = false;
2378    I = CmpInstr;
2379    E = CmpInstr->getParent()->end();
2380    while (!isSafe && ++I != E) {
2381      const MachineInstr &Instr = *I;
2382      for (unsigned IO = 0, EO = Instr.getNumOperands();
2383           !isSafe && IO != EO; ++IO) {
2384        const MachineOperand &MO = Instr.getOperand(IO);
2385        if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2386          isSafe = true;
2387          break;
2388        }
2389        if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2390          continue;
2391        if (MO.isDef()) {
2392          isSafe = true;
2393          break;
2394        }
2395        // Condition code is after the operand before CPSR except for VSELs.
2396        ARMCC::CondCodes CC;
2397        bool IsInstrVSel = true;
2398        switch (Instr.getOpcode()) {
2399        default:
2400          IsInstrVSel = false;
2401          CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
2402          break;
2403        case ARM::VSELEQD:
2404        case ARM::VSELEQS:
2405          CC = ARMCC::EQ;
2406          break;
2407        case ARM::VSELGTD:
2408        case ARM::VSELGTS:
2409          CC = ARMCC::GT;
2410          break;
2411        case ARM::VSELGED:
2412        case ARM::VSELGES:
2413          CC = ARMCC::GE;
2414          break;
2415        case ARM::VSELVSS:
2416        case ARM::VSELVSD:
2417          CC = ARMCC::VS;
2418          break;
2419        }
2420
2421        if (Sub) {
2422          ARMCC::CondCodes NewCC = getSwappedCondition(CC);
2423          if (NewCC == ARMCC::AL)
2424            return false;
2425          // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2426          // on CMP needs to be updated to be based on SUB.
2427          // Push the condition code operands to OperandsToUpdate.
2428          // If it is safe to remove CmpInstr, the condition code of these
2429          // operands will be modified.
2430          if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2431              Sub->getOperand(2).getReg() == SrcReg) {
2432            // VSel doesn't support condition code update.
2433            if (IsInstrVSel)
2434              return false;
2435            OperandsToUpdate.push_back(
2436                std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
2437          }
2438        } else
2439          switch (CC) {
2440          default:
2441            // CPSR can be used multiple times, we should continue.
2442            break;
2443          case ARMCC::VS:
2444          case ARMCC::VC:
2445          case ARMCC::GE:
2446          case ARMCC::LT:
2447          case ARMCC::GT:
2448          case ARMCC::LE:
2449            return false;
2450          }
2451      }
2452    }
2453
2454    // If CPSR is not killed nor re-defined, we should check whether it is
2455    // live-out. If it is live-out, do not optimize.
2456    if (!isSafe) {
2457      MachineBasicBlock *MBB = CmpInstr->getParent();
2458      for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2459               SE = MBB->succ_end(); SI != SE; ++SI)
2460        if ((*SI)->isLiveIn(ARM::CPSR))
2461          return false;
2462    }
2463
2464    // Toggle the optional operand to CPSR.
2465    MI->getOperand(5).setReg(ARM::CPSR);
2466    MI->getOperand(5).setIsDef(true);
2467    assert(!isPredicated(MI) && "Can't use flags from predicated instruction");
2468    CmpInstr->eraseFromParent();
2469
2470    // Modify the condition code of operands in OperandsToUpdate.
2471    // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2472    // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2473    for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2474      OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2475    return true;
2476  }
2477  }
2478
2479  return false;
2480}
2481
2482bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
2483                                     MachineInstr *DefMI, unsigned Reg,
2484                                     MachineRegisterInfo *MRI) const {
2485  // Fold large immediates into add, sub, or, xor.
2486  unsigned DefOpc = DefMI->getOpcode();
2487  if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2488    return false;
2489  if (!DefMI->getOperand(1).isImm())
2490    // Could be t2MOVi32imm <ga:xx>
2491    return false;
2492
2493  if (!MRI->hasOneNonDBGUse(Reg))
2494    return false;
2495
2496  const MCInstrDesc &DefMCID = DefMI->getDesc();
2497  if (DefMCID.hasOptionalDef()) {
2498    unsigned NumOps = DefMCID.getNumOperands();
2499    const MachineOperand &MO = DefMI->getOperand(NumOps-1);
2500    if (MO.getReg() == ARM::CPSR && !MO.isDead())
2501      // If DefMI defines CPSR and it is not dead, it's obviously not safe
2502      // to delete DefMI.
2503      return false;
2504  }
2505
2506  const MCInstrDesc &UseMCID = UseMI->getDesc();
2507  if (UseMCID.hasOptionalDef()) {
2508    unsigned NumOps = UseMCID.getNumOperands();
2509    if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
2510      // If the instruction sets the flag, do not attempt this optimization
2511      // since it may change the semantics of the code.
2512      return false;
2513  }
2514
2515  unsigned UseOpc = UseMI->getOpcode();
2516  unsigned NewUseOpc = 0;
2517  uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
2518  uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
2519  bool Commute = false;
2520  switch (UseOpc) {
2521  default: return false;
2522  case ARM::SUBrr:
2523  case ARM::ADDrr:
2524  case ARM::ORRrr:
2525  case ARM::EORrr:
2526  case ARM::t2SUBrr:
2527  case ARM::t2ADDrr:
2528  case ARM::t2ORRrr:
2529  case ARM::t2EORrr: {
2530    Commute = UseMI->getOperand(2).getReg() != Reg;
2531    switch (UseOpc) {
2532    default: break;
2533    case ARM::SUBrr: {
2534      if (Commute)
2535        return false;
2536      ImmVal = -ImmVal;
2537      NewUseOpc = ARM::SUBri;
2538      // Fallthrough
2539    }
2540    case ARM::ADDrr:
2541    case ARM::ORRrr:
2542    case ARM::EORrr: {
2543      if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
2544        return false;
2545      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
2546      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
2547      switch (UseOpc) {
2548      default: break;
2549      case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
2550      case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
2551      case ARM::EORrr: NewUseOpc = ARM::EORri; break;
2552      }
2553      break;
2554    }
2555    case ARM::t2SUBrr: {
2556      if (Commute)
2557        return false;
2558      ImmVal = -ImmVal;
2559      NewUseOpc = ARM::t2SUBri;
2560      // Fallthrough
2561    }
2562    case ARM::t2ADDrr:
2563    case ARM::t2ORRrr:
2564    case ARM::t2EORrr: {
2565      if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
2566        return false;
2567      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
2568      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
2569      switch (UseOpc) {
2570      default: break;
2571      case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
2572      case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
2573      case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
2574      }
2575      break;
2576    }
2577    }
2578  }
2579  }
2580
2581  unsigned OpIdx = Commute ? 2 : 1;
2582  unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
2583  bool isKill = UseMI->getOperand(OpIdx).isKill();
2584  unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
2585  AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
2586                                      UseMI, UseMI->getDebugLoc(),
2587                                      get(NewUseOpc), NewReg)
2588                              .addReg(Reg1, getKillRegState(isKill))
2589                              .addImm(SOImmValV1)));
2590  UseMI->setDesc(get(NewUseOpc));
2591  UseMI->getOperand(1).setReg(NewReg);
2592  UseMI->getOperand(1).setIsKill();
2593  UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
2594  DefMI->eraseFromParent();
2595  return true;
2596}
2597
2598static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
2599                                        const MachineInstr *MI) {
2600  switch (MI->getOpcode()) {
2601  default: {
2602    const MCInstrDesc &Desc = MI->getDesc();
2603    int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
2604    assert(UOps >= 0 && "bad # UOps");
2605    return UOps;
2606  }
2607
2608  case ARM::LDRrs:
2609  case ARM::LDRBrs:
2610  case ARM::STRrs:
2611  case ARM::STRBrs: {
2612    unsigned ShOpVal = MI->getOperand(3).getImm();
2613    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2614    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2615    if (!isSub &&
2616        (ShImm == 0 ||
2617         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2618          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2619      return 1;
2620    return 2;
2621  }
2622
2623  case ARM::LDRH:
2624  case ARM::STRH: {
2625    if (!MI->getOperand(2).getReg())
2626      return 1;
2627
2628    unsigned ShOpVal = MI->getOperand(3).getImm();
2629    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2630    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2631    if (!isSub &&
2632        (ShImm == 0 ||
2633         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2634          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2635      return 1;
2636    return 2;
2637  }
2638
2639  case ARM::LDRSB:
2640  case ARM::LDRSH:
2641    return (ARM_AM::getAM3Op(MI->getOperand(3).getImm()) == ARM_AM::sub) ? 3:2;
2642
2643  case ARM::LDRSB_POST:
2644  case ARM::LDRSH_POST: {
2645    unsigned Rt = MI->getOperand(0).getReg();
2646    unsigned Rm = MI->getOperand(3).getReg();
2647    return (Rt == Rm) ? 4 : 3;
2648  }
2649
2650  case ARM::LDR_PRE_REG:
2651  case ARM::LDRB_PRE_REG: {
2652    unsigned Rt = MI->getOperand(0).getReg();
2653    unsigned Rm = MI->getOperand(3).getReg();
2654    if (Rt == Rm)
2655      return 3;
2656    unsigned ShOpVal = MI->getOperand(4).getImm();
2657    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2658    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2659    if (!isSub &&
2660        (ShImm == 0 ||
2661         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2662          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2663      return 2;
2664    return 3;
2665  }
2666
2667  case ARM::STR_PRE_REG:
2668  case ARM::STRB_PRE_REG: {
2669    unsigned ShOpVal = MI->getOperand(4).getImm();
2670    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2671    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2672    if (!isSub &&
2673        (ShImm == 0 ||
2674         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2675          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2676      return 2;
2677    return 3;
2678  }
2679
2680  case ARM::LDRH_PRE:
2681  case ARM::STRH_PRE: {
2682    unsigned Rt = MI->getOperand(0).getReg();
2683    unsigned Rm = MI->getOperand(3).getReg();
2684    if (!Rm)
2685      return 2;
2686    if (Rt == Rm)
2687      return 3;
2688    return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub)
2689      ? 3 : 2;
2690  }
2691
2692  case ARM::LDR_POST_REG:
2693  case ARM::LDRB_POST_REG:
2694  case ARM::LDRH_POST: {
2695    unsigned Rt = MI->getOperand(0).getReg();
2696    unsigned Rm = MI->getOperand(3).getReg();
2697    return (Rt == Rm) ? 3 : 2;
2698  }
2699
2700  case ARM::LDR_PRE_IMM:
2701  case ARM::LDRB_PRE_IMM:
2702  case ARM::LDR_POST_IMM:
2703  case ARM::LDRB_POST_IMM:
2704  case ARM::STRB_POST_IMM:
2705  case ARM::STRB_POST_REG:
2706  case ARM::STRB_PRE_IMM:
2707  case ARM::STRH_POST:
2708  case ARM::STR_POST_IMM:
2709  case ARM::STR_POST_REG:
2710  case ARM::STR_PRE_IMM:
2711    return 2;
2712
2713  case ARM::LDRSB_PRE:
2714  case ARM::LDRSH_PRE: {
2715    unsigned Rm = MI->getOperand(3).getReg();
2716    if (Rm == 0)
2717      return 3;
2718    unsigned Rt = MI->getOperand(0).getReg();
2719    if (Rt == Rm)
2720      return 4;
2721    unsigned ShOpVal = MI->getOperand(4).getImm();
2722    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2723    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2724    if (!isSub &&
2725        (ShImm == 0 ||
2726         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2727          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2728      return 3;
2729    return 4;
2730  }
2731
2732  case ARM::LDRD: {
2733    unsigned Rt = MI->getOperand(0).getReg();
2734    unsigned Rn = MI->getOperand(2).getReg();
2735    unsigned Rm = MI->getOperand(3).getReg();
2736    if (Rm)
2737      return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
2738    return (Rt == Rn) ? 3 : 2;
2739  }
2740
2741  case ARM::STRD: {
2742    unsigned Rm = MI->getOperand(3).getReg();
2743    if (Rm)
2744      return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
2745    return 2;
2746  }
2747
2748  case ARM::LDRD_POST:
2749  case ARM::t2LDRD_POST:
2750    return 3;
2751
2752  case ARM::STRD_POST:
2753  case ARM::t2STRD_POST:
2754    return 4;
2755
2756  case ARM::LDRD_PRE: {
2757    unsigned Rt = MI->getOperand(0).getReg();
2758    unsigned Rn = MI->getOperand(3).getReg();
2759    unsigned Rm = MI->getOperand(4).getReg();
2760    if (Rm)
2761      return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
2762    return (Rt == Rn) ? 4 : 3;
2763  }
2764
2765  case ARM::t2LDRD_PRE: {
2766    unsigned Rt = MI->getOperand(0).getReg();
2767    unsigned Rn = MI->getOperand(3).getReg();
2768    return (Rt == Rn) ? 4 : 3;
2769  }
2770
2771  case ARM::STRD_PRE: {
2772    unsigned Rm = MI->getOperand(4).getReg();
2773    if (Rm)
2774      return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
2775    return 3;
2776  }
2777
2778  case ARM::t2STRD_PRE:
2779    return 3;
2780
2781  case ARM::t2LDR_POST:
2782  case ARM::t2LDRB_POST:
2783  case ARM::t2LDRB_PRE:
2784  case ARM::t2LDRSBi12:
2785  case ARM::t2LDRSBi8:
2786  case ARM::t2LDRSBpci:
2787  case ARM::t2LDRSBs:
2788  case ARM::t2LDRH_POST:
2789  case ARM::t2LDRH_PRE:
2790  case ARM::t2LDRSBT:
2791  case ARM::t2LDRSB_POST:
2792  case ARM::t2LDRSB_PRE:
2793  case ARM::t2LDRSH_POST:
2794  case ARM::t2LDRSH_PRE:
2795  case ARM::t2LDRSHi12:
2796  case ARM::t2LDRSHi8:
2797  case ARM::t2LDRSHpci:
2798  case ARM::t2LDRSHs:
2799    return 2;
2800
2801  case ARM::t2LDRDi8: {
2802    unsigned Rt = MI->getOperand(0).getReg();
2803    unsigned Rn = MI->getOperand(2).getReg();
2804    return (Rt == Rn) ? 3 : 2;
2805  }
2806
2807  case ARM::t2STRB_POST:
2808  case ARM::t2STRB_PRE:
2809  case ARM::t2STRBs:
2810  case ARM::t2STRDi8:
2811  case ARM::t2STRH_POST:
2812  case ARM::t2STRH_PRE:
2813  case ARM::t2STRHs:
2814  case ARM::t2STR_POST:
2815  case ARM::t2STR_PRE:
2816  case ARM::t2STRs:
2817    return 2;
2818  }
2819}
2820
2821// Return the number of 32-bit words loaded by LDM or stored by STM. If this
2822// can't be easily determined return 0 (missing MachineMemOperand).
2823//
2824// FIXME: The current MachineInstr design does not support relying on machine
2825// mem operands to determine the width of a memory access. Instead, we expect
2826// the target to provide this information based on the instruction opcode and
2827// operands. However, using MachineMemOperand is a the best solution now for
2828// two reasons:
2829//
2830// 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
2831// operands. This is much more dangerous than using the MachineMemOperand
2832// sizes because CodeGen passes can insert/remove optional machine operands. In
2833// fact, it's totally incorrect for preRA passes and appears to be wrong for
2834// postRA passes as well.
2835//
2836// 2) getNumLDMAddresses is only used by the scheduling machine model and any
2837// machine model that calls this should handle the unknown (zero size) case.
2838//
2839// Long term, we should require a target hook that verifies MachineMemOperand
2840// sizes during MC lowering. That target hook should be local to MC lowering
2841// because we can't ensure that it is aware of other MI forms. Doing this will
2842// ensure that MachineMemOperands are correctly propagated through all passes.
2843unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr *MI) const {
2844  unsigned Size = 0;
2845  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
2846         E = MI->memoperands_end(); I != E; ++I) {
2847    Size += (*I)->getSize();
2848  }
2849  return Size / 4;
2850}
2851
2852unsigned
2853ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
2854                                 const MachineInstr *MI) const {
2855  if (!ItinData || ItinData->isEmpty())
2856    return 1;
2857
2858  const MCInstrDesc &Desc = MI->getDesc();
2859  unsigned Class = Desc.getSchedClass();
2860  int ItinUOps = ItinData->getNumMicroOps(Class);
2861  if (ItinUOps >= 0) {
2862    if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
2863      return getNumMicroOpsSwiftLdSt(ItinData, MI);
2864
2865    return ItinUOps;
2866  }
2867
2868  unsigned Opc = MI->getOpcode();
2869  switch (Opc) {
2870  default:
2871    llvm_unreachable("Unexpected multi-uops instruction!");
2872  case ARM::VLDMQIA:
2873  case ARM::VSTMQIA:
2874    return 2;
2875
2876  // The number of uOps for load / store multiple are determined by the number
2877  // registers.
2878  //
2879  // On Cortex-A8, each pair of register loads / stores can be scheduled on the
2880  // same cycle. The scheduling for the first load / store must be done
2881  // separately by assuming the address is not 64-bit aligned.
2882  //
2883  // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
2884  // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
2885  // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
2886  case ARM::VLDMDIA:
2887  case ARM::VLDMDIA_UPD:
2888  case ARM::VLDMDDB_UPD:
2889  case ARM::VLDMSIA:
2890  case ARM::VLDMSIA_UPD:
2891  case ARM::VLDMSDB_UPD:
2892  case ARM::VSTMDIA:
2893  case ARM::VSTMDIA_UPD:
2894  case ARM::VSTMDDB_UPD:
2895  case ARM::VSTMSIA:
2896  case ARM::VSTMSIA_UPD:
2897  case ARM::VSTMSDB_UPD: {
2898    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
2899    return (NumRegs / 2) + (NumRegs % 2) + 1;
2900  }
2901
2902  case ARM::LDMIA_RET:
2903  case ARM::LDMIA:
2904  case ARM::LDMDA:
2905  case ARM::LDMDB:
2906  case ARM::LDMIB:
2907  case ARM::LDMIA_UPD:
2908  case ARM::LDMDA_UPD:
2909  case ARM::LDMDB_UPD:
2910  case ARM::LDMIB_UPD:
2911  case ARM::STMIA:
2912  case ARM::STMDA:
2913  case ARM::STMDB:
2914  case ARM::STMIB:
2915  case ARM::STMIA_UPD:
2916  case ARM::STMDA_UPD:
2917  case ARM::STMDB_UPD:
2918  case ARM::STMIB_UPD:
2919  case ARM::tLDMIA:
2920  case ARM::tLDMIA_UPD:
2921  case ARM::tSTMIA_UPD:
2922  case ARM::tPOP_RET:
2923  case ARM::tPOP:
2924  case ARM::tPUSH:
2925  case ARM::t2LDMIA_RET:
2926  case ARM::t2LDMIA:
2927  case ARM::t2LDMDB:
2928  case ARM::t2LDMIA_UPD:
2929  case ARM::t2LDMDB_UPD:
2930  case ARM::t2STMIA:
2931  case ARM::t2STMDB:
2932  case ARM::t2STMIA_UPD:
2933  case ARM::t2STMDB_UPD: {
2934    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
2935    if (Subtarget.isSwift()) {
2936      int UOps = 1 + NumRegs;  // One for address computation, one for each ld / st.
2937      switch (Opc) {
2938      default: break;
2939      case ARM::VLDMDIA_UPD:
2940      case ARM::VLDMDDB_UPD:
2941      case ARM::VLDMSIA_UPD:
2942      case ARM::VLDMSDB_UPD:
2943      case ARM::VSTMDIA_UPD:
2944      case ARM::VSTMDDB_UPD:
2945      case ARM::VSTMSIA_UPD:
2946      case ARM::VSTMSDB_UPD:
2947      case ARM::LDMIA_UPD:
2948      case ARM::LDMDA_UPD:
2949      case ARM::LDMDB_UPD:
2950      case ARM::LDMIB_UPD:
2951      case ARM::STMIA_UPD:
2952      case ARM::STMDA_UPD:
2953      case ARM::STMDB_UPD:
2954      case ARM::STMIB_UPD:
2955      case ARM::tLDMIA_UPD:
2956      case ARM::tSTMIA_UPD:
2957      case ARM::t2LDMIA_UPD:
2958      case ARM::t2LDMDB_UPD:
2959      case ARM::t2STMIA_UPD:
2960      case ARM::t2STMDB_UPD:
2961        ++UOps; // One for base register writeback.
2962        break;
2963      case ARM::LDMIA_RET:
2964      case ARM::tPOP_RET:
2965      case ARM::t2LDMIA_RET:
2966        UOps += 2; // One for base reg wb, one for write to pc.
2967        break;
2968      }
2969      return UOps;
2970    } else if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
2971      if (NumRegs < 4)
2972        return 2;
2973      // 4 registers would be issued: 2, 2.
2974      // 5 registers would be issued: 2, 2, 1.
2975      int A8UOps = (NumRegs / 2);
2976      if (NumRegs % 2)
2977        ++A8UOps;
2978      return A8UOps;
2979    } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
2980      int A9UOps = (NumRegs / 2);
2981      // If there are odd number of registers or if it's not 64-bit aligned,
2982      // then it takes an extra AGU (Address Generation Unit) cycle.
2983      if ((NumRegs % 2) ||
2984          !MI->hasOneMemOperand() ||
2985          (*MI->memoperands_begin())->getAlignment() < 8)
2986        ++A9UOps;
2987      return A9UOps;
2988    } else {
2989      // Assume the worst.
2990      return NumRegs;
2991    }
2992  }
2993  }
2994}
2995
2996int
2997ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
2998                                  const MCInstrDesc &DefMCID,
2999                                  unsigned DefClass,
3000                                  unsigned DefIdx, unsigned DefAlign) const {
3001  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3002  if (RegNo <= 0)
3003    // Def is the address writeback.
3004    return ItinData->getOperandCycle(DefClass, DefIdx);
3005
3006  int DefCycle;
3007  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3008    // (regno / 2) + (regno % 2) + 1
3009    DefCycle = RegNo / 2 + 1;
3010    if (RegNo % 2)
3011      ++DefCycle;
3012  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3013    DefCycle = RegNo;
3014    bool isSLoad = false;
3015
3016    switch (DefMCID.getOpcode()) {
3017    default: break;
3018    case ARM::VLDMSIA:
3019    case ARM::VLDMSIA_UPD:
3020    case ARM::VLDMSDB_UPD:
3021      isSLoad = true;
3022      break;
3023    }
3024
3025    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3026    // then it takes an extra cycle.
3027    if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3028      ++DefCycle;
3029  } else {
3030    // Assume the worst.
3031    DefCycle = RegNo + 2;
3032  }
3033
3034  return DefCycle;
3035}
3036
3037int
3038ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3039                                 const MCInstrDesc &DefMCID,
3040                                 unsigned DefClass,
3041                                 unsigned DefIdx, unsigned DefAlign) const {
3042  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3043  if (RegNo <= 0)
3044    // Def is the address writeback.
3045    return ItinData->getOperandCycle(DefClass, DefIdx);
3046
3047  int DefCycle;
3048  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3049    // 4 registers would be issued: 1, 2, 1.
3050    // 5 registers would be issued: 1, 2, 2.
3051    DefCycle = RegNo / 2;
3052    if (DefCycle < 1)
3053      DefCycle = 1;
3054    // Result latency is issue cycle + 2: E2.
3055    DefCycle += 2;
3056  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3057    DefCycle = (RegNo / 2);
3058    // If there are odd number of registers or if it's not 64-bit aligned,
3059    // then it takes an extra AGU (Address Generation Unit) cycle.
3060    if ((RegNo % 2) || DefAlign < 8)
3061      ++DefCycle;
3062    // Result latency is AGU cycles + 2.
3063    DefCycle += 2;
3064  } else {
3065    // Assume the worst.
3066    DefCycle = RegNo + 2;
3067  }
3068
3069  return DefCycle;
3070}
3071
3072int
3073ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3074                                  const MCInstrDesc &UseMCID,
3075                                  unsigned UseClass,
3076                                  unsigned UseIdx, unsigned UseAlign) const {
3077  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3078  if (RegNo <= 0)
3079    return ItinData->getOperandCycle(UseClass, UseIdx);
3080
3081  int UseCycle;
3082  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3083    // (regno / 2) + (regno % 2) + 1
3084    UseCycle = RegNo / 2 + 1;
3085    if (RegNo % 2)
3086      ++UseCycle;
3087  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3088    UseCycle = RegNo;
3089    bool isSStore = false;
3090
3091    switch (UseMCID.getOpcode()) {
3092    default: break;
3093    case ARM::VSTMSIA:
3094    case ARM::VSTMSIA_UPD:
3095    case ARM::VSTMSDB_UPD:
3096      isSStore = true;
3097      break;
3098    }
3099
3100    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3101    // then it takes an extra cycle.
3102    if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3103      ++UseCycle;
3104  } else {
3105    // Assume the worst.
3106    UseCycle = RegNo + 2;
3107  }
3108
3109  return UseCycle;
3110}
3111
3112int
3113ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3114                                 const MCInstrDesc &UseMCID,
3115                                 unsigned UseClass,
3116                                 unsigned UseIdx, unsigned UseAlign) const {
3117  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3118  if (RegNo <= 0)
3119    return ItinData->getOperandCycle(UseClass, UseIdx);
3120
3121  int UseCycle;
3122  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3123    UseCycle = RegNo / 2;
3124    if (UseCycle < 2)
3125      UseCycle = 2;
3126    // Read in E3.
3127    UseCycle += 2;
3128  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3129    UseCycle = (RegNo / 2);
3130    // If there are odd number of registers or if it's not 64-bit aligned,
3131    // then it takes an extra AGU (Address Generation Unit) cycle.
3132    if ((RegNo % 2) || UseAlign < 8)
3133      ++UseCycle;
3134  } else {
3135    // Assume the worst.
3136    UseCycle = 1;
3137  }
3138  return UseCycle;
3139}
3140
3141int
3142ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3143                                    const MCInstrDesc &DefMCID,
3144                                    unsigned DefIdx, unsigned DefAlign,
3145                                    const MCInstrDesc &UseMCID,
3146                                    unsigned UseIdx, unsigned UseAlign) const {
3147  unsigned DefClass = DefMCID.getSchedClass();
3148  unsigned UseClass = UseMCID.getSchedClass();
3149
3150  if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3151    return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3152
3153  // This may be a def / use of a variable_ops instruction, the operand
3154  // latency might be determinable dynamically. Let the target try to
3155  // figure it out.
3156  int DefCycle = -1;
3157  bool LdmBypass = false;
3158  switch (DefMCID.getOpcode()) {
3159  default:
3160    DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3161    break;
3162
3163  case ARM::VLDMDIA:
3164  case ARM::VLDMDIA_UPD:
3165  case ARM::VLDMDDB_UPD:
3166  case ARM::VLDMSIA:
3167  case ARM::VLDMSIA_UPD:
3168  case ARM::VLDMSDB_UPD:
3169    DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3170    break;
3171
3172  case ARM::LDMIA_RET:
3173  case ARM::LDMIA:
3174  case ARM::LDMDA:
3175  case ARM::LDMDB:
3176  case ARM::LDMIB:
3177  case ARM::LDMIA_UPD:
3178  case ARM::LDMDA_UPD:
3179  case ARM::LDMDB_UPD:
3180  case ARM::LDMIB_UPD:
3181  case ARM::tLDMIA:
3182  case ARM::tLDMIA_UPD:
3183  case ARM::tPUSH:
3184  case ARM::t2LDMIA_RET:
3185  case ARM::t2LDMIA:
3186  case ARM::t2LDMDB:
3187  case ARM::t2LDMIA_UPD:
3188  case ARM::t2LDMDB_UPD:
3189    LdmBypass = 1;
3190    DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3191    break;
3192  }
3193
3194  if (DefCycle == -1)
3195    // We can't seem to determine the result latency of the def, assume it's 2.
3196    DefCycle = 2;
3197
3198  int UseCycle = -1;
3199  switch (UseMCID.getOpcode()) {
3200  default:
3201    UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3202    break;
3203
3204  case ARM::VSTMDIA:
3205  case ARM::VSTMDIA_UPD:
3206  case ARM::VSTMDDB_UPD:
3207  case ARM::VSTMSIA:
3208  case ARM::VSTMSIA_UPD:
3209  case ARM::VSTMSDB_UPD:
3210    UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3211    break;
3212
3213  case ARM::STMIA:
3214  case ARM::STMDA:
3215  case ARM::STMDB:
3216  case ARM::STMIB:
3217  case ARM::STMIA_UPD:
3218  case ARM::STMDA_UPD:
3219  case ARM::STMDB_UPD:
3220  case ARM::STMIB_UPD:
3221  case ARM::tSTMIA_UPD:
3222  case ARM::tPOP_RET:
3223  case ARM::tPOP:
3224  case ARM::t2STMIA:
3225  case ARM::t2STMDB:
3226  case ARM::t2STMIA_UPD:
3227  case ARM::t2STMDB_UPD:
3228    UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3229    break;
3230  }
3231
3232  if (UseCycle == -1)
3233    // Assume it's read in the first stage.
3234    UseCycle = 1;
3235
3236  UseCycle = DefCycle - UseCycle + 1;
3237  if (UseCycle > 0) {
3238    if (LdmBypass) {
3239      // It's a variable_ops instruction so we can't use DefIdx here. Just use
3240      // first def operand.
3241      if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3242                                          UseClass, UseIdx))
3243        --UseCycle;
3244    } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3245                                               UseClass, UseIdx)) {
3246      --UseCycle;
3247    }
3248  }
3249
3250  return UseCycle;
3251}
3252
3253static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3254                                           const MachineInstr *MI, unsigned Reg,
3255                                           unsigned &DefIdx, unsigned &Dist) {
3256  Dist = 0;
3257
3258  MachineBasicBlock::const_iterator I = MI; ++I;
3259  MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
3260  assert(II->isInsideBundle() && "Empty bundle?");
3261
3262  int Idx = -1;
3263  while (II->isInsideBundle()) {
3264    Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
3265    if (Idx != -1)
3266      break;
3267    --II;
3268    ++Dist;
3269  }
3270
3271  assert(Idx != -1 && "Cannot find bundled definition!");
3272  DefIdx = Idx;
3273  return II;
3274}
3275
3276static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
3277                                           const MachineInstr *MI, unsigned Reg,
3278                                           unsigned &UseIdx, unsigned &Dist) {
3279  Dist = 0;
3280
3281  MachineBasicBlock::const_instr_iterator II = MI; ++II;
3282  assert(II->isInsideBundle() && "Empty bundle?");
3283  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
3284
3285  // FIXME: This doesn't properly handle multiple uses.
3286  int Idx = -1;
3287  while (II != E && II->isInsideBundle()) {
3288    Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
3289    if (Idx != -1)
3290      break;
3291    if (II->getOpcode() != ARM::t2IT)
3292      ++Dist;
3293    ++II;
3294  }
3295
3296  if (Idx == -1) {
3297    Dist = 0;
3298    return 0;
3299  }
3300
3301  UseIdx = Idx;
3302  return II;
3303}
3304
3305/// Return the number of cycles to add to (or subtract from) the static
3306/// itinerary based on the def opcode and alignment. The caller will ensure that
3307/// adjusted latency is at least one cycle.
3308static int adjustDefLatency(const ARMSubtarget &Subtarget,
3309                            const MachineInstr *DefMI,
3310                            const MCInstrDesc *DefMCID, unsigned DefAlign) {
3311  int Adjust = 0;
3312  if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
3313    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3314    // variants are one cycle cheaper.
3315    switch (DefMCID->getOpcode()) {
3316    default: break;
3317    case ARM::LDRrs:
3318    case ARM::LDRBrs: {
3319      unsigned ShOpVal = DefMI->getOperand(3).getImm();
3320      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3321      if (ShImm == 0 ||
3322          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3323        --Adjust;
3324      break;
3325    }
3326    case ARM::t2LDRs:
3327    case ARM::t2LDRBs:
3328    case ARM::t2LDRHs:
3329    case ARM::t2LDRSHs: {
3330      // Thumb2 mode: lsl only.
3331      unsigned ShAmt = DefMI->getOperand(3).getImm();
3332      if (ShAmt == 0 || ShAmt == 2)
3333        --Adjust;
3334      break;
3335    }
3336    }
3337  } else if (Subtarget.isSwift()) {
3338    // FIXME: Properly handle all of the latency adjustments for address
3339    // writeback.
3340    switch (DefMCID->getOpcode()) {
3341    default: break;
3342    case ARM::LDRrs:
3343    case ARM::LDRBrs: {
3344      unsigned ShOpVal = DefMI->getOperand(3).getImm();
3345      bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3346      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3347      if (!isSub &&
3348          (ShImm == 0 ||
3349           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3350            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3351        Adjust -= 2;
3352      else if (!isSub &&
3353               ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3354        --Adjust;
3355      break;
3356    }
3357    case ARM::t2LDRs:
3358    case ARM::t2LDRBs:
3359    case ARM::t2LDRHs:
3360    case ARM::t2LDRSHs: {
3361      // Thumb2 mode: lsl only.
3362      unsigned ShAmt = DefMI->getOperand(3).getImm();
3363      if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
3364        Adjust -= 2;
3365      break;
3366    }
3367    }
3368  }
3369
3370  if (DefAlign < 8 && Subtarget.isLikeA9()) {
3371    switch (DefMCID->getOpcode()) {
3372    default: break;
3373    case ARM::VLD1q8:
3374    case ARM::VLD1q16:
3375    case ARM::VLD1q32:
3376    case ARM::VLD1q64:
3377    case ARM::VLD1q8wb_fixed:
3378    case ARM::VLD1q16wb_fixed:
3379    case ARM::VLD1q32wb_fixed:
3380    case ARM::VLD1q64wb_fixed:
3381    case ARM::VLD1q8wb_register:
3382    case ARM::VLD1q16wb_register:
3383    case ARM::VLD1q32wb_register:
3384    case ARM::VLD1q64wb_register:
3385    case ARM::VLD2d8:
3386    case ARM::VLD2d16:
3387    case ARM::VLD2d32:
3388    case ARM::VLD2q8:
3389    case ARM::VLD2q16:
3390    case ARM::VLD2q32:
3391    case ARM::VLD2d8wb_fixed:
3392    case ARM::VLD2d16wb_fixed:
3393    case ARM::VLD2d32wb_fixed:
3394    case ARM::VLD2q8wb_fixed:
3395    case ARM::VLD2q16wb_fixed:
3396    case ARM::VLD2q32wb_fixed:
3397    case ARM::VLD2d8wb_register:
3398    case ARM::VLD2d16wb_register:
3399    case ARM::VLD2d32wb_register:
3400    case ARM::VLD2q8wb_register:
3401    case ARM::VLD2q16wb_register:
3402    case ARM::VLD2q32wb_register:
3403    case ARM::VLD3d8:
3404    case ARM::VLD3d16:
3405    case ARM::VLD3d32:
3406    case ARM::VLD1d64T:
3407    case ARM::VLD3d8_UPD:
3408    case ARM::VLD3d16_UPD:
3409    case ARM::VLD3d32_UPD:
3410    case ARM::VLD1d64Twb_fixed:
3411    case ARM::VLD1d64Twb_register:
3412    case ARM::VLD3q8_UPD:
3413    case ARM::VLD3q16_UPD:
3414    case ARM::VLD3q32_UPD:
3415    case ARM::VLD4d8:
3416    case ARM::VLD4d16:
3417    case ARM::VLD4d32:
3418    case ARM::VLD1d64Q:
3419    case ARM::VLD4d8_UPD:
3420    case ARM::VLD4d16_UPD:
3421    case ARM::VLD4d32_UPD:
3422    case ARM::VLD1d64Qwb_fixed:
3423    case ARM::VLD1d64Qwb_register:
3424    case ARM::VLD4q8_UPD:
3425    case ARM::VLD4q16_UPD:
3426    case ARM::VLD4q32_UPD:
3427    case ARM::VLD1DUPq8:
3428    case ARM::VLD1DUPq16:
3429    case ARM::VLD1DUPq32:
3430    case ARM::VLD1DUPq8wb_fixed:
3431    case ARM::VLD1DUPq16wb_fixed:
3432    case ARM::VLD1DUPq32wb_fixed:
3433    case ARM::VLD1DUPq8wb_register:
3434    case ARM::VLD1DUPq16wb_register:
3435    case ARM::VLD1DUPq32wb_register:
3436    case ARM::VLD2DUPd8:
3437    case ARM::VLD2DUPd16:
3438    case ARM::VLD2DUPd32:
3439    case ARM::VLD2DUPd8wb_fixed:
3440    case ARM::VLD2DUPd16wb_fixed:
3441    case ARM::VLD2DUPd32wb_fixed:
3442    case ARM::VLD2DUPd8wb_register:
3443    case ARM::VLD2DUPd16wb_register:
3444    case ARM::VLD2DUPd32wb_register:
3445    case ARM::VLD4DUPd8:
3446    case ARM::VLD4DUPd16:
3447    case ARM::VLD4DUPd32:
3448    case ARM::VLD4DUPd8_UPD:
3449    case ARM::VLD4DUPd16_UPD:
3450    case ARM::VLD4DUPd32_UPD:
3451    case ARM::VLD1LNd8:
3452    case ARM::VLD1LNd16:
3453    case ARM::VLD1LNd32:
3454    case ARM::VLD1LNd8_UPD:
3455    case ARM::VLD1LNd16_UPD:
3456    case ARM::VLD1LNd32_UPD:
3457    case ARM::VLD2LNd8:
3458    case ARM::VLD2LNd16:
3459    case ARM::VLD2LNd32:
3460    case ARM::VLD2LNq16:
3461    case ARM::VLD2LNq32:
3462    case ARM::VLD2LNd8_UPD:
3463    case ARM::VLD2LNd16_UPD:
3464    case ARM::VLD2LNd32_UPD:
3465    case ARM::VLD2LNq16_UPD:
3466    case ARM::VLD2LNq32_UPD:
3467    case ARM::VLD4LNd8:
3468    case ARM::VLD4LNd16:
3469    case ARM::VLD4LNd32:
3470    case ARM::VLD4LNq16:
3471    case ARM::VLD4LNq32:
3472    case ARM::VLD4LNd8_UPD:
3473    case ARM::VLD4LNd16_UPD:
3474    case ARM::VLD4LNd32_UPD:
3475    case ARM::VLD4LNq16_UPD:
3476    case ARM::VLD4LNq32_UPD:
3477      // If the address is not 64-bit aligned, the latencies of these
3478      // instructions increases by one.
3479      ++Adjust;
3480      break;
3481    }
3482  }
3483  return Adjust;
3484}
3485
3486
3487
3488int
3489ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3490                                    const MachineInstr *DefMI, unsigned DefIdx,
3491                                    const MachineInstr *UseMI,
3492                                    unsigned UseIdx) const {
3493  // No operand latency. The caller may fall back to getInstrLatency.
3494  if (!ItinData || ItinData->isEmpty())
3495    return -1;
3496
3497  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
3498  unsigned Reg = DefMO.getReg();
3499  const MCInstrDesc *DefMCID = &DefMI->getDesc();
3500  const MCInstrDesc *UseMCID = &UseMI->getDesc();
3501
3502  unsigned DefAdj = 0;
3503  if (DefMI->isBundle()) {
3504    DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
3505    DefMCID = &DefMI->getDesc();
3506  }
3507  if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
3508      DefMI->isRegSequence() || DefMI->isImplicitDef()) {
3509    return 1;
3510  }
3511
3512  unsigned UseAdj = 0;
3513  if (UseMI->isBundle()) {
3514    unsigned NewUseIdx;
3515    const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
3516                                                   Reg, NewUseIdx, UseAdj);
3517    if (!NewUseMI)
3518      return -1;
3519
3520    UseMI = NewUseMI;
3521    UseIdx = NewUseIdx;
3522    UseMCID = &UseMI->getDesc();
3523  }
3524
3525  if (Reg == ARM::CPSR) {
3526    if (DefMI->getOpcode() == ARM::FMSTAT) {
3527      // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
3528      return Subtarget.isLikeA9() ? 1 : 20;
3529    }
3530
3531    // CPSR set and branch can be paired in the same cycle.
3532    if (UseMI->isBranch())
3533      return 0;
3534
3535    // Otherwise it takes the instruction latency (generally one).
3536    unsigned Latency = getInstrLatency(ItinData, DefMI);
3537
3538    // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
3539    // its uses. Instructions which are otherwise scheduled between them may
3540    // incur a code size penalty (not able to use the CPSR setting 16-bit
3541    // instructions).
3542    if (Latency > 0 && Subtarget.isThumb2()) {
3543      const MachineFunction *MF = DefMI->getParent()->getParent();
3544      if (MF->getFunction()->getAttributes().
3545            hasAttribute(AttributeSet::FunctionIndex,
3546                         Attribute::OptimizeForSize))
3547        --Latency;
3548    }
3549    return Latency;
3550  }
3551
3552  if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
3553    return -1;
3554
3555  unsigned DefAlign = DefMI->hasOneMemOperand()
3556    ? (*DefMI->memoperands_begin())->getAlignment() : 0;
3557  unsigned UseAlign = UseMI->hasOneMemOperand()
3558    ? (*UseMI->memoperands_begin())->getAlignment() : 0;
3559
3560  // Get the itinerary's latency if possible, and handle variable_ops.
3561  int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
3562                                  *UseMCID, UseIdx, UseAlign);
3563  // Unable to find operand latency. The caller may resort to getInstrLatency.
3564  if (Latency < 0)
3565    return Latency;
3566
3567  // Adjust for IT block position.
3568  int Adj = DefAdj + UseAdj;
3569
3570  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3571  Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
3572  if (Adj >= 0 || (int)Latency > -Adj) {
3573    return Latency + Adj;
3574  }
3575  // Return the itinerary latency, which may be zero but not less than zero.
3576  return Latency;
3577}
3578
3579int
3580ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3581                                    SDNode *DefNode, unsigned DefIdx,
3582                                    SDNode *UseNode, unsigned UseIdx) const {
3583  if (!DefNode->isMachineOpcode())
3584    return 1;
3585
3586  const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
3587
3588  if (isZeroCost(DefMCID.Opcode))
3589    return 0;
3590
3591  if (!ItinData || ItinData->isEmpty())
3592    return DefMCID.mayLoad() ? 3 : 1;
3593
3594  if (!UseNode->isMachineOpcode()) {
3595    int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
3596    if (Subtarget.isLikeA9() || Subtarget.isSwift())
3597      return Latency <= 2 ? 1 : Latency - 1;
3598    else
3599      return Latency <= 3 ? 1 : Latency - 2;
3600  }
3601
3602  const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
3603  const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
3604  unsigned DefAlign = !DefMN->memoperands_empty()
3605    ? (*DefMN->memoperands_begin())->getAlignment() : 0;
3606  const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
3607  unsigned UseAlign = !UseMN->memoperands_empty()
3608    ? (*UseMN->memoperands_begin())->getAlignment() : 0;
3609  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
3610                                  UseMCID, UseIdx, UseAlign);
3611
3612  if (Latency > 1 &&
3613      (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
3614       Subtarget.isCortexA7())) {
3615    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3616    // variants are one cycle cheaper.
3617    switch (DefMCID.getOpcode()) {
3618    default: break;
3619    case ARM::LDRrs:
3620    case ARM::LDRBrs: {
3621      unsigned ShOpVal =
3622        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3623      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3624      if (ShImm == 0 ||
3625          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3626        --Latency;
3627      break;
3628    }
3629    case ARM::t2LDRs:
3630    case ARM::t2LDRBs:
3631    case ARM::t2LDRHs:
3632    case ARM::t2LDRSHs: {
3633      // Thumb2 mode: lsl only.
3634      unsigned ShAmt =
3635        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3636      if (ShAmt == 0 || ShAmt == 2)
3637        --Latency;
3638      break;
3639    }
3640    }
3641  } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
3642    // FIXME: Properly handle all of the latency adjustments for address
3643    // writeback.
3644    switch (DefMCID.getOpcode()) {
3645    default: break;
3646    case ARM::LDRrs:
3647    case ARM::LDRBrs: {
3648      unsigned ShOpVal =
3649        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3650      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3651      if (ShImm == 0 ||
3652          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3653           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3654        Latency -= 2;
3655      else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3656        --Latency;
3657      break;
3658    }
3659    case ARM::t2LDRs:
3660    case ARM::t2LDRBs:
3661    case ARM::t2LDRHs:
3662    case ARM::t2LDRSHs: {
3663      // Thumb2 mode: lsl 0-3 only.
3664      Latency -= 2;
3665      break;
3666    }
3667    }
3668  }
3669
3670  if (DefAlign < 8 && Subtarget.isLikeA9())
3671    switch (DefMCID.getOpcode()) {
3672    default: break;
3673    case ARM::VLD1q8:
3674    case ARM::VLD1q16:
3675    case ARM::VLD1q32:
3676    case ARM::VLD1q64:
3677    case ARM::VLD1q8wb_register:
3678    case ARM::VLD1q16wb_register:
3679    case ARM::VLD1q32wb_register:
3680    case ARM::VLD1q64wb_register:
3681    case ARM::VLD1q8wb_fixed:
3682    case ARM::VLD1q16wb_fixed:
3683    case ARM::VLD1q32wb_fixed:
3684    case ARM::VLD1q64wb_fixed:
3685    case ARM::VLD2d8:
3686    case ARM::VLD2d16:
3687    case ARM::VLD2d32:
3688    case ARM::VLD2q8Pseudo:
3689    case ARM::VLD2q16Pseudo:
3690    case ARM::VLD2q32Pseudo:
3691    case ARM::VLD2d8wb_fixed:
3692    case ARM::VLD2d16wb_fixed:
3693    case ARM::VLD2d32wb_fixed:
3694    case ARM::VLD2q8PseudoWB_fixed:
3695    case ARM::VLD2q16PseudoWB_fixed:
3696    case ARM::VLD2q32PseudoWB_fixed:
3697    case ARM::VLD2d8wb_register:
3698    case ARM::VLD2d16wb_register:
3699    case ARM::VLD2d32wb_register:
3700    case ARM::VLD2q8PseudoWB_register:
3701    case ARM::VLD2q16PseudoWB_register:
3702    case ARM::VLD2q32PseudoWB_register:
3703    case ARM::VLD3d8Pseudo:
3704    case ARM::VLD3d16Pseudo:
3705    case ARM::VLD3d32Pseudo:
3706    case ARM::VLD1d64TPseudo:
3707    case ARM::VLD1d64TPseudoWB_fixed:
3708    case ARM::VLD3d8Pseudo_UPD:
3709    case ARM::VLD3d16Pseudo_UPD:
3710    case ARM::VLD3d32Pseudo_UPD:
3711    case ARM::VLD3q8Pseudo_UPD:
3712    case ARM::VLD3q16Pseudo_UPD:
3713    case ARM::VLD3q32Pseudo_UPD:
3714    case ARM::VLD3q8oddPseudo:
3715    case ARM::VLD3q16oddPseudo:
3716    case ARM::VLD3q32oddPseudo:
3717    case ARM::VLD3q8oddPseudo_UPD:
3718    case ARM::VLD3q16oddPseudo_UPD:
3719    case ARM::VLD3q32oddPseudo_UPD:
3720    case ARM::VLD4d8Pseudo:
3721    case ARM::VLD4d16Pseudo:
3722    case ARM::VLD4d32Pseudo:
3723    case ARM::VLD1d64QPseudo:
3724    case ARM::VLD1d64QPseudoWB_fixed:
3725    case ARM::VLD4d8Pseudo_UPD:
3726    case ARM::VLD4d16Pseudo_UPD:
3727    case ARM::VLD4d32Pseudo_UPD:
3728    case ARM::VLD4q8Pseudo_UPD:
3729    case ARM::VLD4q16Pseudo_UPD:
3730    case ARM::VLD4q32Pseudo_UPD:
3731    case ARM::VLD4q8oddPseudo:
3732    case ARM::VLD4q16oddPseudo:
3733    case ARM::VLD4q32oddPseudo:
3734    case ARM::VLD4q8oddPseudo_UPD:
3735    case ARM::VLD4q16oddPseudo_UPD:
3736    case ARM::VLD4q32oddPseudo_UPD:
3737    case ARM::VLD1DUPq8:
3738    case ARM::VLD1DUPq16:
3739    case ARM::VLD1DUPq32:
3740    case ARM::VLD1DUPq8wb_fixed:
3741    case ARM::VLD1DUPq16wb_fixed:
3742    case ARM::VLD1DUPq32wb_fixed:
3743    case ARM::VLD1DUPq8wb_register:
3744    case ARM::VLD1DUPq16wb_register:
3745    case ARM::VLD1DUPq32wb_register:
3746    case ARM::VLD2DUPd8:
3747    case ARM::VLD2DUPd16:
3748    case ARM::VLD2DUPd32:
3749    case ARM::VLD2DUPd8wb_fixed:
3750    case ARM::VLD2DUPd16wb_fixed:
3751    case ARM::VLD2DUPd32wb_fixed:
3752    case ARM::VLD2DUPd8wb_register:
3753    case ARM::VLD2DUPd16wb_register:
3754    case ARM::VLD2DUPd32wb_register:
3755    case ARM::VLD4DUPd8Pseudo:
3756    case ARM::VLD4DUPd16Pseudo:
3757    case ARM::VLD4DUPd32Pseudo:
3758    case ARM::VLD4DUPd8Pseudo_UPD:
3759    case ARM::VLD4DUPd16Pseudo_UPD:
3760    case ARM::VLD4DUPd32Pseudo_UPD:
3761    case ARM::VLD1LNq8Pseudo:
3762    case ARM::VLD1LNq16Pseudo:
3763    case ARM::VLD1LNq32Pseudo:
3764    case ARM::VLD1LNq8Pseudo_UPD:
3765    case ARM::VLD1LNq16Pseudo_UPD:
3766    case ARM::VLD1LNq32Pseudo_UPD:
3767    case ARM::VLD2LNd8Pseudo:
3768    case ARM::VLD2LNd16Pseudo:
3769    case ARM::VLD2LNd32Pseudo:
3770    case ARM::VLD2LNq16Pseudo:
3771    case ARM::VLD2LNq32Pseudo:
3772    case ARM::VLD2LNd8Pseudo_UPD:
3773    case ARM::VLD2LNd16Pseudo_UPD:
3774    case ARM::VLD2LNd32Pseudo_UPD:
3775    case ARM::VLD2LNq16Pseudo_UPD:
3776    case ARM::VLD2LNq32Pseudo_UPD:
3777    case ARM::VLD4LNd8Pseudo:
3778    case ARM::VLD4LNd16Pseudo:
3779    case ARM::VLD4LNd32Pseudo:
3780    case ARM::VLD4LNq16Pseudo:
3781    case ARM::VLD4LNq32Pseudo:
3782    case ARM::VLD4LNd8Pseudo_UPD:
3783    case ARM::VLD4LNd16Pseudo_UPD:
3784    case ARM::VLD4LNd32Pseudo_UPD:
3785    case ARM::VLD4LNq16Pseudo_UPD:
3786    case ARM::VLD4LNq32Pseudo_UPD:
3787      // If the address is not 64-bit aligned, the latencies of these
3788      // instructions increases by one.
3789      ++Latency;
3790      break;
3791    }
3792
3793  return Latency;
3794}
3795
3796unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr *MI) const {
3797   if (MI->isCopyLike() || MI->isInsertSubreg() ||
3798      MI->isRegSequence() || MI->isImplicitDef())
3799    return 0;
3800
3801  if (MI->isBundle())
3802    return 0;
3803
3804  const MCInstrDesc &MCID = MI->getDesc();
3805
3806  if (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) {
3807    // When predicated, CPSR is an additional source operand for CPSR updating
3808    // instructions, this apparently increases their latencies.
3809    return 1;
3810  }
3811  return 0;
3812}
3813
3814unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3815                                           const MachineInstr *MI,
3816                                           unsigned *PredCost) const {
3817  if (MI->isCopyLike() || MI->isInsertSubreg() ||
3818      MI->isRegSequence() || MI->isImplicitDef())
3819    return 1;
3820
3821  // An instruction scheduler typically runs on unbundled instructions, however
3822  // other passes may query the latency of a bundled instruction.
3823  if (MI->isBundle()) {
3824    unsigned Latency = 0;
3825    MachineBasicBlock::const_instr_iterator I = MI;
3826    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
3827    while (++I != E && I->isInsideBundle()) {
3828      if (I->getOpcode() != ARM::t2IT)
3829        Latency += getInstrLatency(ItinData, I, PredCost);
3830    }
3831    return Latency;
3832  }
3833
3834  const MCInstrDesc &MCID = MI->getDesc();
3835  if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
3836    // When predicated, CPSR is an additional source operand for CPSR updating
3837    // instructions, this apparently increases their latencies.
3838    *PredCost = 1;
3839  }
3840  // Be sure to call getStageLatency for an empty itinerary in case it has a
3841  // valid MinLatency property.
3842  if (!ItinData)
3843    return MI->mayLoad() ? 3 : 1;
3844
3845  unsigned Class = MCID.getSchedClass();
3846
3847  // For instructions with variable uops, use uops as latency.
3848  if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
3849    return getNumMicroOps(ItinData, MI);
3850
3851  // For the common case, fall back on the itinerary's latency.
3852  unsigned Latency = ItinData->getStageLatency(Class);
3853
3854  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3855  unsigned DefAlign = MI->hasOneMemOperand()
3856    ? (*MI->memoperands_begin())->getAlignment() : 0;
3857  int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
3858  if (Adj >= 0 || (int)Latency > -Adj) {
3859    return Latency + Adj;
3860  }
3861  return Latency;
3862}
3863
3864int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3865                                      SDNode *Node) const {
3866  if (!Node->isMachineOpcode())
3867    return 1;
3868
3869  if (!ItinData || ItinData->isEmpty())
3870    return 1;
3871
3872  unsigned Opcode = Node->getMachineOpcode();
3873  switch (Opcode) {
3874  default:
3875    return ItinData->getStageLatency(get(Opcode).getSchedClass());
3876  case ARM::VLDMQIA:
3877  case ARM::VSTMQIA:
3878    return 2;
3879  }
3880}
3881
3882bool ARMBaseInstrInfo::
3883hasHighOperandLatency(const InstrItineraryData *ItinData,
3884                      const MachineRegisterInfo *MRI,
3885                      const MachineInstr *DefMI, unsigned DefIdx,
3886                      const MachineInstr *UseMI, unsigned UseIdx) const {
3887  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3888  unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
3889  if (Subtarget.isCortexA8() &&
3890      (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
3891    // CortexA8 VFP instructions are not pipelined.
3892    return true;
3893
3894  // Hoist VFP / NEON instructions with 4 or higher latency.
3895  int Latency = computeOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
3896  if (Latency < 0)
3897    Latency = getInstrLatency(ItinData, DefMI);
3898  if (Latency <= 3)
3899    return false;
3900  return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
3901         UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
3902}
3903
3904bool ARMBaseInstrInfo::
3905hasLowDefLatency(const InstrItineraryData *ItinData,
3906                 const MachineInstr *DefMI, unsigned DefIdx) const {
3907  if (!ItinData || ItinData->isEmpty())
3908    return false;
3909
3910  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3911  if (DDomain == ARMII::DomainGeneral) {
3912    unsigned DefClass = DefMI->getDesc().getSchedClass();
3913    int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3914    return (DefCycle != -1 && DefCycle <= 2);
3915  }
3916  return false;
3917}
3918
3919bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
3920                                         StringRef &ErrInfo) const {
3921  if (convertAddSubFlagsOpcode(MI->getOpcode())) {
3922    ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
3923    return false;
3924  }
3925  return true;
3926}
3927
3928bool
3929ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
3930                                     unsigned &AddSubOpc,
3931                                     bool &NegAcc, bool &HasLane) const {
3932  DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
3933  if (I == MLxEntryMap.end())
3934    return false;
3935
3936  const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
3937  MulOpc = Entry.MulOpc;
3938  AddSubOpc = Entry.AddSubOpc;
3939  NegAcc = Entry.NegAcc;
3940  HasLane = Entry.HasLane;
3941  return true;
3942}
3943
3944//===----------------------------------------------------------------------===//
3945// Execution domains.
3946//===----------------------------------------------------------------------===//
3947//
3948// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
3949// and some can go down both.  The vmov instructions go down the VFP pipeline,
3950// but they can be changed to vorr equivalents that are executed by the NEON
3951// pipeline.
3952//
3953// We use the following execution domain numbering:
3954//
3955enum ARMExeDomain {
3956  ExeGeneric = 0,
3957  ExeVFP = 1,
3958  ExeNEON = 2
3959};
3960//
3961// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
3962//
3963std::pair<uint16_t, uint16_t>
3964ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
3965  // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
3966  // if they are not predicated.
3967  if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
3968    return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
3969
3970  // CortexA9 is particularly picky about mixing the two and wants these
3971  // converted.
3972  if (Subtarget.isCortexA9() && !isPredicated(MI) &&
3973      (MI->getOpcode() == ARM::VMOVRS ||
3974       MI->getOpcode() == ARM::VMOVSR ||
3975       MI->getOpcode() == ARM::VMOVS))
3976    return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
3977
3978  // No other instructions can be swizzled, so just determine their domain.
3979  unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
3980
3981  if (Domain & ARMII::DomainNEON)
3982    return std::make_pair(ExeNEON, 0);
3983
3984  // Certain instructions can go either way on Cortex-A8.
3985  // Treat them as NEON instructions.
3986  if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
3987    return std::make_pair(ExeNEON, 0);
3988
3989  if (Domain & ARMII::DomainVFP)
3990    return std::make_pair(ExeVFP, 0);
3991
3992  return std::make_pair(ExeGeneric, 0);
3993}
3994
3995static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
3996                                            unsigned SReg, unsigned &Lane) {
3997  unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
3998  Lane = 0;
3999
4000  if (DReg != ARM::NoRegister)
4001   return DReg;
4002
4003  Lane = 1;
4004  DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4005
4006  assert(DReg && "S-register with no D super-register?");
4007  return DReg;
4008}
4009
4010/// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4011/// set ImplicitSReg to a register number that must be marked as implicit-use or
4012/// zero if no register needs to be defined as implicit-use.
4013///
4014/// If the function cannot determine if an SPR should be marked implicit use or
4015/// not, it returns false.
4016///
4017/// This function handles cases where an instruction is being modified from taking
4018/// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4019/// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4020/// lane of the DPR).
4021///
4022/// If the other SPR is defined, an implicit-use of it should be added. Else,
4023/// (including the case where the DPR itself is defined), it should not.
4024///
4025static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4026                                       MachineInstr *MI,
4027                                       unsigned DReg, unsigned Lane,
4028                                       unsigned &ImplicitSReg) {
4029  // If the DPR is defined or used already, the other SPR lane will be chained
4030  // correctly, so there is nothing to be done.
4031  if (MI->definesRegister(DReg, TRI) || MI->readsRegister(DReg, TRI)) {
4032    ImplicitSReg = 0;
4033    return true;
4034  }
4035
4036  // Otherwise we need to go searching to see if the SPR is set explicitly.
4037  ImplicitSReg = TRI->getSubReg(DReg,
4038                                (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4039  MachineBasicBlock::LivenessQueryResult LQR =
4040    MI->getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4041
4042  if (LQR == MachineBasicBlock::LQR_Live)
4043    return true;
4044  else if (LQR == MachineBasicBlock::LQR_Unknown)
4045    return false;
4046
4047  // If the register is known not to be live, there is no need to add an
4048  // implicit-use.
4049  ImplicitSReg = 0;
4050  return true;
4051}
4052
4053void
4054ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
4055  unsigned DstReg, SrcReg, DReg;
4056  unsigned Lane;
4057  MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
4058  const TargetRegisterInfo *TRI = &getRegisterInfo();
4059  switch (MI->getOpcode()) {
4060    default:
4061      llvm_unreachable("cannot handle opcode!");
4062      break;
4063    case ARM::VMOVD:
4064      if (Domain != ExeNEON)
4065        break;
4066
4067      // Zap the predicate operands.
4068      assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4069
4070      // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4071      DstReg = MI->getOperand(0).getReg();
4072      SrcReg = MI->getOperand(1).getReg();
4073
4074      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4075        MI->RemoveOperand(i-1);
4076
4077      // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4078      MI->setDesc(get(ARM::VORRd));
4079      AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
4080                        .addReg(SrcReg)
4081                        .addReg(SrcReg));
4082      break;
4083    case ARM::VMOVRS:
4084      if (Domain != ExeNEON)
4085        break;
4086      assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4087
4088      // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4089      DstReg = MI->getOperand(0).getReg();
4090      SrcReg = MI->getOperand(1).getReg();
4091
4092      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4093        MI->RemoveOperand(i-1);
4094
4095      DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4096
4097      // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4098      // Note that DSrc has been widened and the other lane may be undef, which
4099      // contaminates the entire register.
4100      MI->setDesc(get(ARM::VGETLNi32));
4101      AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
4102                        .addReg(DReg, RegState::Undef)
4103                        .addImm(Lane));
4104
4105      // The old source should be an implicit use, otherwise we might think it
4106      // was dead before here.
4107      MIB.addReg(SrcReg, RegState::Implicit);
4108      break;
4109    case ARM::VMOVSR: {
4110      if (Domain != ExeNEON)
4111        break;
4112      assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4113
4114      // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4115      DstReg = MI->getOperand(0).getReg();
4116      SrcReg = MI->getOperand(1).getReg();
4117
4118      DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4119
4120      unsigned ImplicitSReg;
4121      if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4122        break;
4123
4124      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4125        MI->RemoveOperand(i-1);
4126
4127      // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4128      // Again DDst may be undefined at the beginning of this instruction.
4129      MI->setDesc(get(ARM::VSETLNi32));
4130      MIB.addReg(DReg, RegState::Define)
4131         .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI)))
4132         .addReg(SrcReg)
4133         .addImm(Lane);
4134      AddDefaultPred(MIB);
4135
4136      // The narrower destination must be marked as set to keep previous chains
4137      // in place.
4138      MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4139      if (ImplicitSReg != 0)
4140        MIB.addReg(ImplicitSReg, RegState::Implicit);
4141      break;
4142    }
4143    case ARM::VMOVS: {
4144      if (Domain != ExeNEON)
4145        break;
4146
4147      // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4148      DstReg = MI->getOperand(0).getReg();
4149      SrcReg = MI->getOperand(1).getReg();
4150
4151      unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
4152      DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
4153      DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
4154
4155      unsigned ImplicitSReg;
4156      if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
4157        break;
4158
4159      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4160        MI->RemoveOperand(i-1);
4161
4162      if (DSrc == DDst) {
4163        // Destination can be:
4164        //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
4165        MI->setDesc(get(ARM::VDUPLN32d));
4166        MIB.addReg(DDst, RegState::Define)
4167           .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI)))
4168           .addImm(SrcLane);
4169        AddDefaultPred(MIB);
4170
4171        // Neither the source or the destination are naturally represented any
4172        // more, so add them in manually.
4173        MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
4174        MIB.addReg(SrcReg, RegState::Implicit);
4175        if (ImplicitSReg != 0)
4176          MIB.addReg(ImplicitSReg, RegState::Implicit);
4177        break;
4178      }
4179
4180      // In general there's no single instruction that can perform an S <-> S
4181      // move in NEON space, but a pair of VEXT instructions *can* do the
4182      // job. It turns out that the VEXTs needed will only use DSrc once, with
4183      // the position based purely on the combination of lane-0 and lane-1
4184      // involved. For example
4185      //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
4186      //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
4187      //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
4188      //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
4189      //
4190      // Pattern of the MachineInstrs is:
4191      //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
4192      MachineInstrBuilder NewMIB;
4193      NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
4194                       get(ARM::VEXTd32), DDst);
4195
4196      // On the first instruction, both DSrc and DDst may be <undef> if present.
4197      // Specifically when the original instruction didn't have them as an
4198      // <imp-use>.
4199      unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
4200      bool CurUndef = !MI->readsRegister(CurReg, TRI);
4201      NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4202
4203      CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
4204      CurUndef = !MI->readsRegister(CurReg, TRI);
4205      NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4206
4207      NewMIB.addImm(1);
4208      AddDefaultPred(NewMIB);
4209
4210      if (SrcLane == DstLane)
4211        NewMIB.addReg(SrcReg, RegState::Implicit);
4212
4213      MI->setDesc(get(ARM::VEXTd32));
4214      MIB.addReg(DDst, RegState::Define);
4215
4216      // On the second instruction, DDst has definitely been defined above, so
4217      // it is not <undef>. DSrc, if present, can be <undef> as above.
4218      CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
4219      CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
4220      MIB.addReg(CurReg, getUndefRegState(CurUndef));
4221
4222      CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
4223      CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
4224      MIB.addReg(CurReg, getUndefRegState(CurUndef));
4225
4226      MIB.addImm(1);
4227      AddDefaultPred(MIB);
4228
4229      if (SrcLane != DstLane)
4230        MIB.addReg(SrcReg, RegState::Implicit);
4231
4232      // As before, the original destination is no longer represented, add it
4233      // implicitly.
4234      MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4235      if (ImplicitSReg != 0)
4236        MIB.addReg(ImplicitSReg, RegState::Implicit);
4237      break;
4238    }
4239  }
4240
4241}
4242
4243//===----------------------------------------------------------------------===//
4244// Partial register updates
4245//===----------------------------------------------------------------------===//
4246//
4247// Swift renames NEON registers with 64-bit granularity.  That means any
4248// instruction writing an S-reg implicitly reads the containing D-reg.  The
4249// problem is mostly avoided by translating f32 operations to v2f32 operations
4250// on D-registers, but f32 loads are still a problem.
4251//
4252// These instructions can load an f32 into a NEON register:
4253//
4254// VLDRS - Only writes S, partial D update.
4255// VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
4256// VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
4257//
4258// FCONSTD can be used as a dependency-breaking instruction.
4259unsigned ARMBaseInstrInfo::
4260getPartialRegUpdateClearance(const MachineInstr *MI,
4261                             unsigned OpNum,
4262                             const TargetRegisterInfo *TRI) const {
4263  if (!SwiftPartialUpdateClearance ||
4264      !(Subtarget.isSwift() || Subtarget.isCortexA15()))
4265    return 0;
4266
4267  assert(TRI && "Need TRI instance");
4268
4269  const MachineOperand &MO = MI->getOperand(OpNum);
4270  if (MO.readsReg())
4271    return 0;
4272  unsigned Reg = MO.getReg();
4273  int UseOp = -1;
4274
4275  switch(MI->getOpcode()) {
4276    // Normal instructions writing only an S-register.
4277  case ARM::VLDRS:
4278  case ARM::FCONSTS:
4279  case ARM::VMOVSR:
4280  case ARM::VMOVv8i8:
4281  case ARM::VMOVv4i16:
4282  case ARM::VMOVv2i32:
4283  case ARM::VMOVv2f32:
4284  case ARM::VMOVv1i64:
4285    UseOp = MI->findRegisterUseOperandIdx(Reg, false, TRI);
4286    break;
4287
4288    // Explicitly reads the dependency.
4289  case ARM::VLD1LNd32:
4290    UseOp = 3;
4291    break;
4292  default:
4293    return 0;
4294  }
4295
4296  // If this instruction actually reads a value from Reg, there is no unwanted
4297  // dependency.
4298  if (UseOp != -1 && MI->getOperand(UseOp).readsReg())
4299    return 0;
4300
4301  // We must be able to clobber the whole D-reg.
4302  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4303    // Virtual register must be a foo:ssub_0<def,undef> operand.
4304    if (!MO.getSubReg() || MI->readsVirtualRegister(Reg))
4305      return 0;
4306  } else if (ARM::SPRRegClass.contains(Reg)) {
4307    // Physical register: MI must define the full D-reg.
4308    unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
4309                                             &ARM::DPRRegClass);
4310    if (!DReg || !MI->definesRegister(DReg, TRI))
4311      return 0;
4312  }
4313
4314  // MI has an unwanted D-register dependency.
4315  // Avoid defs in the previous N instructrions.
4316  return SwiftPartialUpdateClearance;
4317}
4318
4319// Break a partial register dependency after getPartialRegUpdateClearance
4320// returned non-zero.
4321void ARMBaseInstrInfo::
4322breakPartialRegDependency(MachineBasicBlock::iterator MI,
4323                          unsigned OpNum,
4324                          const TargetRegisterInfo *TRI) const {
4325  assert(MI && OpNum < MI->getDesc().getNumDefs() && "OpNum is not a def");
4326  assert(TRI && "Need TRI instance");
4327
4328  const MachineOperand &MO = MI->getOperand(OpNum);
4329  unsigned Reg = MO.getReg();
4330  assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
4331         "Can't break virtual register dependencies.");
4332  unsigned DReg = Reg;
4333
4334  // If MI defines an S-reg, find the corresponding D super-register.
4335  if (ARM::SPRRegClass.contains(Reg)) {
4336    DReg = ARM::D0 + (Reg - ARM::S0) / 2;
4337    assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
4338  }
4339
4340  assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
4341  assert(MI->definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
4342
4343  // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
4344  // the full D-register by loading the same value to both lanes.  The
4345  // instruction is micro-coded with 2 uops, so don't do this until we can
4346  // properly schedule micro-coded instructions.  The dispatcher stalls cause
4347  // too big regressions.
4348
4349  // Insert the dependency-breaking FCONSTD before MI.
4350  // 96 is the encoding of 0.5, but the actual value doesn't matter here.
4351  AddDefaultPred(BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
4352                         get(ARM::FCONSTD), DReg).addImm(96));
4353  MI->addRegisterKilled(DReg, TRI, true);
4354}
4355
4356bool ARMBaseInstrInfo::hasNOP() const {
4357  return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
4358}
4359
4360bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
4361  if (MI->getNumOperands() < 4)
4362    return true;
4363  unsigned ShOpVal = MI->getOperand(3).getImm();
4364  unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
4365  // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
4366  if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
4367      ((ShImm == 1 || ShImm == 2) &&
4368       ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
4369    return true;
4370
4371  return false;
4372}
4373