ARMBaseInstrInfo.cpp revision 5a96b3dad2f634c9081c8b2b6c2575441dc5a2bd
1//===- ARMBaseInstrInfo.cpp - ARM Instruction Information -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Base ARM implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARMBaseInstrInfo.h"
15#include "ARM.h"
16#include "ARMConstantPoolValue.h"
17#include "ARMHazardRecognizer.h"
18#include "ARMMachineFunctionInfo.h"
19#include "ARMRegisterInfo.h"
20#include "MCTargetDesc/ARMAddressingModes.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineJumpTableInfo.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGNodes.h"
32#include "llvm/MC/MCAsmInfo.h"
33#include "llvm/Support/BranchProbability.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/ADT/STLExtras.h"
38
39#define GET_INSTRINFO_CTOR
40#include "ARMGenInstrInfo.inc"
41
42using namespace llvm;
43
44static cl::opt<bool>
45EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
46               cl::desc("Enable ARM 2-addr to 3-addr conv"));
47
48static cl::opt<bool>
49WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
50           cl::desc("Widen ARM vmovs to vmovd when possible"));
51
52/// ARM_MLxEntry - Record information about MLA / MLS instructions.
53struct ARM_MLxEntry {
54  unsigned MLxOpc;     // MLA / MLS opcode
55  unsigned MulOpc;     // Expanded multiplication opcode
56  unsigned AddSubOpc;  // Expanded add / sub opcode
57  bool NegAcc;         // True if the acc is negated before the add / sub.
58  bool HasLane;        // True if instruction has an extra "lane" operand.
59};
60
61static const ARM_MLxEntry ARM_MLxTable[] = {
62  // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
63  // fp scalar ops
64  { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
65  { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
66  { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
67  { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
68  { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
69  { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
70  { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
71  { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
72
73  // fp SIMD ops
74  { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
75  { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
76  { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
77  { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
78  { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
79  { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
80  { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
81  { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
82};
83
84ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
85  : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
86    Subtarget(STI) {
87  for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
88    if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
89      assert(false && "Duplicated entries?");
90    MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
91    MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
92  }
93}
94
95// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
96// currently defaults to no prepass hazard recognizer.
97ScheduleHazardRecognizer *ARMBaseInstrInfo::
98CreateTargetHazardRecognizer(const TargetMachine *TM,
99                             const ScheduleDAG *DAG) const {
100  if (usePreRAHazardRecognizer()) {
101    const InstrItineraryData *II = TM->getInstrItineraryData();
102    return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
103  }
104  return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
105}
106
107ScheduleHazardRecognizer *ARMBaseInstrInfo::
108CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
109                                   const ScheduleDAG *DAG) const {
110  if (Subtarget.isThumb2() || Subtarget.hasVFP2())
111    return (ScheduleHazardRecognizer *)
112      new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
113  return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
114}
115
116MachineInstr *
117ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
118                                        MachineBasicBlock::iterator &MBBI,
119                                        LiveVariables *LV) const {
120  // FIXME: Thumb2 support.
121
122  if (!EnableARM3Addr)
123    return NULL;
124
125  MachineInstr *MI = MBBI;
126  MachineFunction &MF = *MI->getParent()->getParent();
127  uint64_t TSFlags = MI->getDesc().TSFlags;
128  bool isPre = false;
129  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
130  default: return NULL;
131  case ARMII::IndexModePre:
132    isPre = true;
133    break;
134  case ARMII::IndexModePost:
135    break;
136  }
137
138  // Try splitting an indexed load/store to an un-indexed one plus an add/sub
139  // operation.
140  unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
141  if (MemOpc == 0)
142    return NULL;
143
144  MachineInstr *UpdateMI = NULL;
145  MachineInstr *MemMI = NULL;
146  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
147  const MCInstrDesc &MCID = MI->getDesc();
148  unsigned NumOps = MCID.getNumOperands();
149  bool isLoad = !MI->mayStore();
150  const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
151  const MachineOperand &Base = MI->getOperand(2);
152  const MachineOperand &Offset = MI->getOperand(NumOps-3);
153  unsigned WBReg = WB.getReg();
154  unsigned BaseReg = Base.getReg();
155  unsigned OffReg = Offset.getReg();
156  unsigned OffImm = MI->getOperand(NumOps-2).getImm();
157  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
158  switch (AddrMode) {
159  default:
160    assert(false && "Unknown indexed op!");
161    return NULL;
162  case ARMII::AddrMode2: {
163    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
164    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
165    if (OffReg == 0) {
166      if (ARM_AM::getSOImmVal(Amt) == -1)
167        // Can't encode it in a so_imm operand. This transformation will
168        // add more than 1 instruction. Abandon!
169        return NULL;
170      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
171                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
172        .addReg(BaseReg).addImm(Amt)
173        .addImm(Pred).addReg(0).addReg(0);
174    } else if (Amt != 0) {
175      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
176      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
177      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
178                         get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
179        .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
180        .addImm(Pred).addReg(0).addReg(0);
181    } else
182      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
183                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
184        .addReg(BaseReg).addReg(OffReg)
185        .addImm(Pred).addReg(0).addReg(0);
186    break;
187  }
188  case ARMII::AddrMode3 : {
189    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
190    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
191    if (OffReg == 0)
192      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
193      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
194                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
195        .addReg(BaseReg).addImm(Amt)
196        .addImm(Pred).addReg(0).addReg(0);
197    else
198      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
199                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
200        .addReg(BaseReg).addReg(OffReg)
201        .addImm(Pred).addReg(0).addReg(0);
202    break;
203  }
204  }
205
206  std::vector<MachineInstr*> NewMIs;
207  if (isPre) {
208    if (isLoad)
209      MemMI = BuildMI(MF, MI->getDebugLoc(),
210                      get(MemOpc), MI->getOperand(0).getReg())
211        .addReg(WBReg).addImm(0).addImm(Pred);
212    else
213      MemMI = BuildMI(MF, MI->getDebugLoc(),
214                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
215        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
216    NewMIs.push_back(MemMI);
217    NewMIs.push_back(UpdateMI);
218  } else {
219    if (isLoad)
220      MemMI = BuildMI(MF, MI->getDebugLoc(),
221                      get(MemOpc), MI->getOperand(0).getReg())
222        .addReg(BaseReg).addImm(0).addImm(Pred);
223    else
224      MemMI = BuildMI(MF, MI->getDebugLoc(),
225                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
226        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
227    if (WB.isDead())
228      UpdateMI->getOperand(0).setIsDead();
229    NewMIs.push_back(UpdateMI);
230    NewMIs.push_back(MemMI);
231  }
232
233  // Transfer LiveVariables states, kill / dead info.
234  if (LV) {
235    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
236      MachineOperand &MO = MI->getOperand(i);
237      if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
238        unsigned Reg = MO.getReg();
239
240        LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
241        if (MO.isDef()) {
242          MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
243          if (MO.isDead())
244            LV->addVirtualRegisterDead(Reg, NewMI);
245        }
246        if (MO.isUse() && MO.isKill()) {
247          for (unsigned j = 0; j < 2; ++j) {
248            // Look at the two new MI's in reverse order.
249            MachineInstr *NewMI = NewMIs[j];
250            if (!NewMI->readsRegister(Reg))
251              continue;
252            LV->addVirtualRegisterKilled(Reg, NewMI);
253            if (VI.removeKill(MI))
254              VI.Kills.push_back(NewMI);
255            break;
256          }
257        }
258      }
259    }
260  }
261
262  MFI->insert(MBBI, NewMIs[1]);
263  MFI->insert(MBBI, NewMIs[0]);
264  return NewMIs[0];
265}
266
267// Branch analysis.
268bool
269ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
270                                MachineBasicBlock *&FBB,
271                                SmallVectorImpl<MachineOperand> &Cond,
272                                bool AllowModify) const {
273  // If the block has no terminators, it just falls into the block after it.
274  MachineBasicBlock::iterator I = MBB.end();
275  if (I == MBB.begin())
276    return false;
277  --I;
278  while (I->isDebugValue()) {
279    if (I == MBB.begin())
280      return false;
281    --I;
282  }
283  if (!isUnpredicatedTerminator(I))
284    return false;
285
286  // Get the last instruction in the block.
287  MachineInstr *LastInst = I;
288
289  // If there is only one terminator instruction, process it.
290  unsigned LastOpc = LastInst->getOpcode();
291  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
292    if (isUncondBranchOpcode(LastOpc)) {
293      TBB = LastInst->getOperand(0).getMBB();
294      return false;
295    }
296    if (isCondBranchOpcode(LastOpc)) {
297      // Block ends with fall-through condbranch.
298      TBB = LastInst->getOperand(0).getMBB();
299      Cond.push_back(LastInst->getOperand(1));
300      Cond.push_back(LastInst->getOperand(2));
301      return false;
302    }
303    return true;  // Can't handle indirect branch.
304  }
305
306  // Get the instruction before it if it is a terminator.
307  MachineInstr *SecondLastInst = I;
308  unsigned SecondLastOpc = SecondLastInst->getOpcode();
309
310  // If AllowModify is true and the block ends with two or more unconditional
311  // branches, delete all but the first unconditional branch.
312  if (AllowModify && isUncondBranchOpcode(LastOpc)) {
313    while (isUncondBranchOpcode(SecondLastOpc)) {
314      LastInst->eraseFromParent();
315      LastInst = SecondLastInst;
316      LastOpc = LastInst->getOpcode();
317      if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
318        // Return now the only terminator is an unconditional branch.
319        TBB = LastInst->getOperand(0).getMBB();
320        return false;
321      } else {
322        SecondLastInst = I;
323        SecondLastOpc = SecondLastInst->getOpcode();
324      }
325    }
326  }
327
328  // If there are three terminators, we don't know what sort of block this is.
329  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
330    return true;
331
332  // If the block ends with a B and a Bcc, handle it.
333  if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
334    TBB =  SecondLastInst->getOperand(0).getMBB();
335    Cond.push_back(SecondLastInst->getOperand(1));
336    Cond.push_back(SecondLastInst->getOperand(2));
337    FBB = LastInst->getOperand(0).getMBB();
338    return false;
339  }
340
341  // If the block ends with two unconditional branches, handle it.  The second
342  // one is not executed, so remove it.
343  if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
344    TBB = SecondLastInst->getOperand(0).getMBB();
345    I = LastInst;
346    if (AllowModify)
347      I->eraseFromParent();
348    return false;
349  }
350
351  // ...likewise if it ends with a branch table followed by an unconditional
352  // branch. The branch folder can create these, and we must get rid of them for
353  // correctness of Thumb constant islands.
354  if ((isJumpTableBranchOpcode(SecondLastOpc) ||
355       isIndirectBranchOpcode(SecondLastOpc)) &&
356      isUncondBranchOpcode(LastOpc)) {
357    I = LastInst;
358    if (AllowModify)
359      I->eraseFromParent();
360    return true;
361  }
362
363  // Otherwise, can't handle this.
364  return true;
365}
366
367
368unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
369  MachineBasicBlock::iterator I = MBB.end();
370  if (I == MBB.begin()) return 0;
371  --I;
372  while (I->isDebugValue()) {
373    if (I == MBB.begin())
374      return 0;
375    --I;
376  }
377  if (!isUncondBranchOpcode(I->getOpcode()) &&
378      !isCondBranchOpcode(I->getOpcode()))
379    return 0;
380
381  // Remove the branch.
382  I->eraseFromParent();
383
384  I = MBB.end();
385
386  if (I == MBB.begin()) return 1;
387  --I;
388  if (!isCondBranchOpcode(I->getOpcode()))
389    return 1;
390
391  // Remove the branch.
392  I->eraseFromParent();
393  return 2;
394}
395
396unsigned
397ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
398                               MachineBasicBlock *FBB,
399                               const SmallVectorImpl<MachineOperand> &Cond,
400                               DebugLoc DL) const {
401  ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
402  int BOpc   = !AFI->isThumbFunction()
403    ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
404  int BccOpc = !AFI->isThumbFunction()
405    ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
406  bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
407
408  // Shouldn't be a fall through.
409  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
410  assert((Cond.size() == 2 || Cond.size() == 0) &&
411         "ARM branch conditions have two components!");
412
413  if (FBB == 0) {
414    if (Cond.empty()) { // Unconditional branch?
415      if (isThumb)
416        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
417      else
418        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
419    } else
420      BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
421        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
422    return 1;
423  }
424
425  // Two-way conditional branch.
426  BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
427    .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
428  if (isThumb)
429    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
430  else
431    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
432  return 2;
433}
434
435bool ARMBaseInstrInfo::
436ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
437  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
438  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
439  return false;
440}
441
442bool ARMBaseInstrInfo::
443PredicateInstruction(MachineInstr *MI,
444                     const SmallVectorImpl<MachineOperand> &Pred) const {
445  unsigned Opc = MI->getOpcode();
446  if (isUncondBranchOpcode(Opc)) {
447    MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
448    MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
449    MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
450    return true;
451  }
452
453  int PIdx = MI->findFirstPredOperandIdx();
454  if (PIdx != -1) {
455    MachineOperand &PMO = MI->getOperand(PIdx);
456    PMO.setImm(Pred[0].getImm());
457    MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
458    return true;
459  }
460  return false;
461}
462
463bool ARMBaseInstrInfo::
464SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
465                  const SmallVectorImpl<MachineOperand> &Pred2) const {
466  if (Pred1.size() > 2 || Pred2.size() > 2)
467    return false;
468
469  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
470  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
471  if (CC1 == CC2)
472    return true;
473
474  switch (CC1) {
475  default:
476    return false;
477  case ARMCC::AL:
478    return true;
479  case ARMCC::HS:
480    return CC2 == ARMCC::HI;
481  case ARMCC::LS:
482    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
483  case ARMCC::GE:
484    return CC2 == ARMCC::GT;
485  case ARMCC::LE:
486    return CC2 == ARMCC::LT;
487  }
488}
489
490bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
491                                    std::vector<MachineOperand> &Pred) const {
492  // FIXME: This confuses implicit_def with optional CPSR def.
493  const MCInstrDesc &MCID = MI->getDesc();
494  if (!MCID.getImplicitDefs() && !MI->hasOptionalDef())
495    return false;
496
497  bool Found = false;
498  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
499    const MachineOperand &MO = MI->getOperand(i);
500    if (MO.isReg() && MO.getReg() == ARM::CPSR) {
501      Pred.push_back(MO);
502      Found = true;
503    }
504  }
505
506  return Found;
507}
508
509/// isPredicable - Return true if the specified instruction can be predicated.
510/// By default, this returns true for every instruction with a
511/// PredicateOperand.
512bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
513  if (!MI->isPredicable())
514    return false;
515
516  if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
517    ARMFunctionInfo *AFI =
518      MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
519    return AFI->isThumb2Function();
520  }
521  return true;
522}
523
524/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
525LLVM_ATTRIBUTE_NOINLINE
526static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
527                                unsigned JTI);
528static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
529                                unsigned JTI) {
530  assert(JTI < JT.size());
531  return JT[JTI].MBBs.size();
532}
533
534/// GetInstSize - Return the size of the specified MachineInstr.
535///
536unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
537  const MachineBasicBlock &MBB = *MI->getParent();
538  const MachineFunction *MF = MBB.getParent();
539  const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
540
541  const MCInstrDesc &MCID = MI->getDesc();
542  if (MCID.getSize())
543    return MCID.getSize();
544
545    // If this machine instr is an inline asm, measure it.
546    if (MI->getOpcode() == ARM::INLINEASM)
547      return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
548    if (MI->isLabel())
549      return 0;
550  unsigned Opc = MI->getOpcode();
551    switch (Opc) {
552    case TargetOpcode::IMPLICIT_DEF:
553    case TargetOpcode::KILL:
554    case TargetOpcode::PROLOG_LABEL:
555    case TargetOpcode::EH_LABEL:
556    case TargetOpcode::DBG_VALUE:
557      return 0;
558    case ARM::MOVi16_ga_pcrel:
559    case ARM::MOVTi16_ga_pcrel:
560    case ARM::t2MOVi16_ga_pcrel:
561    case ARM::t2MOVTi16_ga_pcrel:
562      return 4;
563    case ARM::MOVi32imm:
564    case ARM::t2MOVi32imm:
565      return 8;
566    case ARM::CONSTPOOL_ENTRY:
567      // If this machine instr is a constant pool entry, its size is recorded as
568      // operand #2.
569      return MI->getOperand(2).getImm();
570    case ARM::Int_eh_sjlj_longjmp:
571      return 16;
572    case ARM::tInt_eh_sjlj_longjmp:
573      return 10;
574    case ARM::Int_eh_sjlj_setjmp:
575    case ARM::Int_eh_sjlj_setjmp_nofp:
576      return 20;
577    case ARM::tInt_eh_sjlj_setjmp:
578    case ARM::t2Int_eh_sjlj_setjmp:
579    case ARM::t2Int_eh_sjlj_setjmp_nofp:
580      return 12;
581    case ARM::BR_JTr:
582    case ARM::BR_JTm:
583    case ARM::BR_JTadd:
584    case ARM::tBR_JTr:
585    case ARM::t2BR_JT:
586    case ARM::t2TBB_JT:
587    case ARM::t2TBH_JT: {
588      // These are jumptable branches, i.e. a branch followed by an inlined
589      // jumptable. The size is 4 + 4 * number of entries. For TBB, each
590      // entry is one byte; TBH two byte each.
591      unsigned EntrySize = (Opc == ARM::t2TBB_JT)
592        ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
593      unsigned NumOps = MCID.getNumOperands();
594      MachineOperand JTOP =
595        MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
596      unsigned JTI = JTOP.getIndex();
597      const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
598      assert(MJTI != 0);
599      const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
600      assert(JTI < JT.size());
601      // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
602      // 4 aligned. The assembler / linker may add 2 byte padding just before
603      // the JT entries.  The size does not include this padding; the
604      // constant islands pass does separate bookkeeping for it.
605      // FIXME: If we know the size of the function is less than (1 << 16) *2
606      // bytes, we can use 16-bit entries instead. Then there won't be an
607      // alignment issue.
608      unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
609      unsigned NumEntries = getNumJTEntries(JT, JTI);
610      if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
611        // Make sure the instruction that follows TBB is 2-byte aligned.
612        // FIXME: Constant island pass should insert an "ALIGN" instruction
613        // instead.
614        ++NumEntries;
615      return NumEntries * EntrySize + InstSize;
616    }
617    default:
618      // Otherwise, pseudo-instruction sizes are zero.
619      return 0;
620    }
621  return 0; // Not reached
622}
623
624void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
625                                   MachineBasicBlock::iterator I, DebugLoc DL,
626                                   unsigned DestReg, unsigned SrcReg,
627                                   bool KillSrc) const {
628  bool GPRDest = ARM::GPRRegClass.contains(DestReg);
629  bool GPRSrc  = ARM::GPRRegClass.contains(SrcReg);
630
631  if (GPRDest && GPRSrc) {
632    AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
633                                  .addReg(SrcReg, getKillRegState(KillSrc))));
634    return;
635  }
636
637  bool SPRDest = ARM::SPRRegClass.contains(DestReg);
638  bool SPRSrc  = ARM::SPRRegClass.contains(SrcReg);
639
640  unsigned Opc = 0;
641  if (SPRDest && SPRSrc)
642    Opc = ARM::VMOVS;
643  else if (GPRDest && SPRSrc)
644    Opc = ARM::VMOVRS;
645  else if (SPRDest && GPRSrc)
646    Opc = ARM::VMOVSR;
647  else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
648    Opc = ARM::VMOVD;
649  else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
650    Opc = ARM::VORRq;
651
652  if (Opc) {
653    MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
654    MIB.addReg(SrcReg, getKillRegState(KillSrc));
655    if (Opc == ARM::VORRq)
656      MIB.addReg(SrcReg, getKillRegState(KillSrc));
657    AddDefaultPred(MIB);
658    return;
659  }
660
661  // Generate instructions for VMOVQQ and VMOVQQQQ pseudos in place.
662  if (ARM::QQPRRegClass.contains(DestReg, SrcReg) ||
663      ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
664    const TargetRegisterInfo *TRI = &getRegisterInfo();
665    assert(ARM::qsub_0 + 3 == ARM::qsub_3 && "Expected contiguous enum.");
666    unsigned EndSubReg = ARM::QQPRRegClass.contains(DestReg, SrcReg) ?
667      ARM::qsub_1 : ARM::qsub_3;
668    for (unsigned i = ARM::qsub_0, e = EndSubReg + 1; i != e; ++i) {
669      unsigned Dst = TRI->getSubReg(DestReg, i);
670      unsigned Src = TRI->getSubReg(SrcReg, i);
671      MachineInstrBuilder Mov =
672        AddDefaultPred(BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VORRq))
673                       .addReg(Dst, RegState::Define)
674                       .addReg(Src, getKillRegState(KillSrc))
675                       .addReg(Src, getKillRegState(KillSrc)));
676      if (i == EndSubReg) {
677        Mov->addRegisterDefined(DestReg, TRI);
678        if (KillSrc)
679          Mov->addRegisterKilled(SrcReg, TRI);
680      }
681    }
682    return;
683  }
684  llvm_unreachable("Impossible reg-to-reg copy");
685}
686
687static const
688MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
689                             unsigned Reg, unsigned SubIdx, unsigned State,
690                             const TargetRegisterInfo *TRI) {
691  if (!SubIdx)
692    return MIB.addReg(Reg, State);
693
694  if (TargetRegisterInfo::isPhysicalRegister(Reg))
695    return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
696  return MIB.addReg(Reg, State, SubIdx);
697}
698
699void ARMBaseInstrInfo::
700storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
701                    unsigned SrcReg, bool isKill, int FI,
702                    const TargetRegisterClass *RC,
703                    const TargetRegisterInfo *TRI) const {
704  DebugLoc DL;
705  if (I != MBB.end()) DL = I->getDebugLoc();
706  MachineFunction &MF = *MBB.getParent();
707  MachineFrameInfo &MFI = *MF.getFrameInfo();
708  unsigned Align = MFI.getObjectAlignment(FI);
709
710  MachineMemOperand *MMO =
711    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
712                            MachineMemOperand::MOStore,
713                            MFI.getObjectSize(FI),
714                            Align);
715
716  switch (RC->getSize()) {
717    case 4:
718      if (ARM::GPRRegClass.hasSubClassEq(RC)) {
719        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
720                   .addReg(SrcReg, getKillRegState(isKill))
721                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
722      } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
723        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
724                   .addReg(SrcReg, getKillRegState(isKill))
725                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
726      } else
727        llvm_unreachable("Unknown reg class!");
728      break;
729    case 8:
730      if (ARM::DPRRegClass.hasSubClassEq(RC)) {
731        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
732                   .addReg(SrcReg, getKillRegState(isKill))
733                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
734      } else
735        llvm_unreachable("Unknown reg class!");
736      break;
737    case 16:
738      if (ARM::QPRRegClass.hasSubClassEq(RC)) {
739        if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) {
740          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64Pseudo))
741                     .addFrameIndex(FI).addImm(16)
742                     .addReg(SrcReg, getKillRegState(isKill))
743                     .addMemOperand(MMO));
744        } else {
745          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
746                     .addReg(SrcReg, getKillRegState(isKill))
747                     .addFrameIndex(FI)
748                     .addMemOperand(MMO));
749        }
750      } else
751        llvm_unreachable("Unknown reg class!");
752      break;
753    case 32:
754      if (ARM::QQPRRegClass.hasSubClassEq(RC)) {
755        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
756          // FIXME: It's possible to only store part of the QQ register if the
757          // spilled def has a sub-register index.
758          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
759                     .addFrameIndex(FI).addImm(16)
760                     .addReg(SrcReg, getKillRegState(isKill))
761                     .addMemOperand(MMO));
762        } else {
763          MachineInstrBuilder MIB =
764          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
765                       .addFrameIndex(FI))
766                       .addMemOperand(MMO);
767          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
768          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
769          MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
770                AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
771        }
772      } else
773        llvm_unreachable("Unknown reg class!");
774      break;
775    case 64:
776      if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
777        MachineInstrBuilder MIB =
778          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
779                         .addFrameIndex(FI))
780                         .addMemOperand(MMO);
781        MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
782        MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
783        MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
784        MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
785        MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
786        MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
787        MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
788              AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
789      } else
790        llvm_unreachable("Unknown reg class!");
791      break;
792    default:
793      llvm_unreachable("Unknown reg class!");
794  }
795}
796
797unsigned
798ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
799                                     int &FrameIndex) const {
800  switch (MI->getOpcode()) {
801  default: break;
802  case ARM::STRrs:
803  case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
804    if (MI->getOperand(1).isFI() &&
805        MI->getOperand(2).isReg() &&
806        MI->getOperand(3).isImm() &&
807        MI->getOperand(2).getReg() == 0 &&
808        MI->getOperand(3).getImm() == 0) {
809      FrameIndex = MI->getOperand(1).getIndex();
810      return MI->getOperand(0).getReg();
811    }
812    break;
813  case ARM::STRi12:
814  case ARM::t2STRi12:
815  case ARM::tSTRspi:
816  case ARM::VSTRD:
817  case ARM::VSTRS:
818    if (MI->getOperand(1).isFI() &&
819        MI->getOperand(2).isImm() &&
820        MI->getOperand(2).getImm() == 0) {
821      FrameIndex = MI->getOperand(1).getIndex();
822      return MI->getOperand(0).getReg();
823    }
824    break;
825  case ARM::VST1q64Pseudo:
826    if (MI->getOperand(0).isFI() &&
827        MI->getOperand(2).getSubReg() == 0) {
828      FrameIndex = MI->getOperand(0).getIndex();
829      return MI->getOperand(2).getReg();
830    }
831    break;
832  case ARM::VSTMQIA:
833    if (MI->getOperand(1).isFI() &&
834        MI->getOperand(0).getSubReg() == 0) {
835      FrameIndex = MI->getOperand(1).getIndex();
836      return MI->getOperand(0).getReg();
837    }
838    break;
839  }
840
841  return 0;
842}
843
844unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
845                                                    int &FrameIndex) const {
846  const MachineMemOperand *Dummy;
847  return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
848}
849
850void ARMBaseInstrInfo::
851loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
852                     unsigned DestReg, int FI,
853                     const TargetRegisterClass *RC,
854                     const TargetRegisterInfo *TRI) const {
855  DebugLoc DL;
856  if (I != MBB.end()) DL = I->getDebugLoc();
857  MachineFunction &MF = *MBB.getParent();
858  MachineFrameInfo &MFI = *MF.getFrameInfo();
859  unsigned Align = MFI.getObjectAlignment(FI);
860  MachineMemOperand *MMO =
861    MF.getMachineMemOperand(
862                    MachinePointerInfo::getFixedStack(FI),
863                            MachineMemOperand::MOLoad,
864                            MFI.getObjectSize(FI),
865                            Align);
866
867  switch (RC->getSize()) {
868  case 4:
869    if (ARM::GPRRegClass.hasSubClassEq(RC)) {
870      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
871                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
872
873    } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
874      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
875                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
876    } else
877      llvm_unreachable("Unknown reg class!");
878    break;
879  case 8:
880    if (ARM::DPRRegClass.hasSubClassEq(RC)) {
881      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
882                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
883    } else
884      llvm_unreachable("Unknown reg class!");
885    break;
886  case 16:
887    if (ARM::QPRRegClass.hasSubClassEq(RC)) {
888      if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) {
889        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64Pseudo), DestReg)
890                     .addFrameIndex(FI).addImm(16)
891                     .addMemOperand(MMO));
892      } else {
893        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
894                       .addFrameIndex(FI)
895                       .addMemOperand(MMO));
896      }
897    } else
898      llvm_unreachable("Unknown reg class!");
899    break;
900  case 32:
901    if (ARM::QQPRRegClass.hasSubClassEq(RC)) {
902      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
903        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
904                     .addFrameIndex(FI).addImm(16)
905                     .addMemOperand(MMO));
906      } else {
907        MachineInstrBuilder MIB =
908        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
909                       .addFrameIndex(FI))
910                       .addMemOperand(MMO);
911        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
912        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
913        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
914        MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
915        MIB.addReg(DestReg, RegState::Define | RegState::Implicit);
916      }
917    } else
918      llvm_unreachable("Unknown reg class!");
919    break;
920  case 64:
921    if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
922      MachineInstrBuilder MIB =
923      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
924                     .addFrameIndex(FI))
925                     .addMemOperand(MMO);
926      MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
927      MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
928      MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
929      MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
930      MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::Define, TRI);
931      MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::Define, TRI);
932      MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::Define, TRI);
933      MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::Define, TRI);
934      MIB.addReg(DestReg, RegState::Define | RegState::Implicit);
935    } else
936      llvm_unreachable("Unknown reg class!");
937    break;
938  default:
939    llvm_unreachable("Unknown regclass!");
940  }
941}
942
943unsigned
944ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
945                                      int &FrameIndex) const {
946  switch (MI->getOpcode()) {
947  default: break;
948  case ARM::LDRrs:
949  case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
950    if (MI->getOperand(1).isFI() &&
951        MI->getOperand(2).isReg() &&
952        MI->getOperand(3).isImm() &&
953        MI->getOperand(2).getReg() == 0 &&
954        MI->getOperand(3).getImm() == 0) {
955      FrameIndex = MI->getOperand(1).getIndex();
956      return MI->getOperand(0).getReg();
957    }
958    break;
959  case ARM::LDRi12:
960  case ARM::t2LDRi12:
961  case ARM::tLDRspi:
962  case ARM::VLDRD:
963  case ARM::VLDRS:
964    if (MI->getOperand(1).isFI() &&
965        MI->getOperand(2).isImm() &&
966        MI->getOperand(2).getImm() == 0) {
967      FrameIndex = MI->getOperand(1).getIndex();
968      return MI->getOperand(0).getReg();
969    }
970    break;
971  case ARM::VLD1q64Pseudo:
972    if (MI->getOperand(1).isFI() &&
973        MI->getOperand(0).getSubReg() == 0) {
974      FrameIndex = MI->getOperand(1).getIndex();
975      return MI->getOperand(0).getReg();
976    }
977    break;
978  case ARM::VLDMQIA:
979    if (MI->getOperand(1).isFI() &&
980        MI->getOperand(0).getSubReg() == 0) {
981      FrameIndex = MI->getOperand(1).getIndex();
982      return MI->getOperand(0).getReg();
983    }
984    break;
985  }
986
987  return 0;
988}
989
990unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
991                                             int &FrameIndex) const {
992  const MachineMemOperand *Dummy;
993  return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
994}
995
996bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
997  // This hook gets to expand COPY instructions before they become
998  // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
999  // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1000  // changed into a VORR that can go down the NEON pipeline.
1001  if (!WidenVMOVS || !MI->isCopy())
1002    return false;
1003
1004  // Look for a copy between even S-registers.  That is where we keep floats
1005  // when using NEON v2f32 instructions for f32 arithmetic.
1006  unsigned DstRegS = MI->getOperand(0).getReg();
1007  unsigned SrcRegS = MI->getOperand(1).getReg();
1008  if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1009    return false;
1010
1011  const TargetRegisterInfo *TRI = &getRegisterInfo();
1012  unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1013                                              &ARM::DPRRegClass);
1014  unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1015                                              &ARM::DPRRegClass);
1016  if (!DstRegD || !SrcRegD)
1017    return false;
1018
1019  // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1020  // legal if the COPY already defines the full DstRegD, and it isn't a
1021  // sub-register insertion.
1022  if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
1023    return false;
1024
1025  // A dead copy shouldn't show up here, but reject it just in case.
1026  if (MI->getOperand(0).isDead())
1027    return false;
1028
1029  // All clear, widen the COPY.
1030  DEBUG(dbgs() << "widening:    " << *MI);
1031
1032  // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
1033  // or some other super-register.
1034  int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
1035  if (ImpDefIdx != -1)
1036    MI->RemoveOperand(ImpDefIdx);
1037
1038  // Change the opcode and operands.
1039  MI->setDesc(get(ARM::VMOVD));
1040  MI->getOperand(0).setReg(DstRegD);
1041  MI->getOperand(1).setReg(SrcRegD);
1042  AddDefaultPred(MachineInstrBuilder(MI));
1043
1044  // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1045  // register scavenger and machine verifier, so we need to indicate that we
1046  // are reading an undefined value from SrcRegD, but a proper value from
1047  // SrcRegS.
1048  MI->getOperand(1).setIsUndef();
1049  MachineInstrBuilder(MI).addReg(SrcRegS, RegState::Implicit);
1050
1051  // SrcRegD may actually contain an unrelated value in the ssub_1
1052  // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1053  if (MI->getOperand(1).isKill()) {
1054    MI->getOperand(1).setIsKill(false);
1055    MI->addRegisterKilled(SrcRegS, TRI, true);
1056  }
1057
1058  DEBUG(dbgs() << "replaced by: " << *MI);
1059  return true;
1060}
1061
1062MachineInstr*
1063ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
1064                                           int FrameIx, uint64_t Offset,
1065                                           const MDNode *MDPtr,
1066                                           DebugLoc DL) const {
1067  MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
1068    .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
1069  return &*MIB;
1070}
1071
1072/// Create a copy of a const pool value. Update CPI to the new index and return
1073/// the label UID.
1074static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1075  MachineConstantPool *MCP = MF.getConstantPool();
1076  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1077
1078  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1079  assert(MCPE.isMachineConstantPoolEntry() &&
1080         "Expecting a machine constantpool entry!");
1081  ARMConstantPoolValue *ACPV =
1082    static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1083
1084  unsigned PCLabelId = AFI->createPICLabelUId();
1085  ARMConstantPoolValue *NewCPV = 0;
1086  // FIXME: The below assumes PIC relocation model and that the function
1087  // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1088  // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1089  // instructions, so that's probably OK, but is PIC always correct when
1090  // we get here?
1091  if (ACPV->isGlobalValue())
1092    NewCPV = ARMConstantPoolConstant::
1093      Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
1094             ARMCP::CPValue, 4);
1095  else if (ACPV->isExtSymbol())
1096    NewCPV = ARMConstantPoolSymbol::
1097      Create(MF.getFunction()->getContext(),
1098             cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1099  else if (ACPV->isBlockAddress())
1100    NewCPV = ARMConstantPoolConstant::
1101      Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1102             ARMCP::CPBlockAddress, 4);
1103  else if (ACPV->isLSDA())
1104    NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1105                                             ARMCP::CPLSDA, 4);
1106  else if (ACPV->isMachineBasicBlock())
1107    NewCPV = ARMConstantPoolMBB::
1108      Create(MF.getFunction()->getContext(),
1109             cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1110  else
1111    llvm_unreachable("Unexpected ARM constantpool value type!!");
1112  CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1113  return PCLabelId;
1114}
1115
1116void ARMBaseInstrInfo::
1117reMaterialize(MachineBasicBlock &MBB,
1118              MachineBasicBlock::iterator I,
1119              unsigned DestReg, unsigned SubIdx,
1120              const MachineInstr *Orig,
1121              const TargetRegisterInfo &TRI) const {
1122  unsigned Opcode = Orig->getOpcode();
1123  switch (Opcode) {
1124  default: {
1125    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1126    MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1127    MBB.insert(I, MI);
1128    break;
1129  }
1130  case ARM::tLDRpci_pic:
1131  case ARM::t2LDRpci_pic: {
1132    MachineFunction &MF = *MBB.getParent();
1133    unsigned CPI = Orig->getOperand(1).getIndex();
1134    unsigned PCLabelId = duplicateCPV(MF, CPI);
1135    MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1136                                      DestReg)
1137      .addConstantPoolIndex(CPI).addImm(PCLabelId);
1138    MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1139    break;
1140  }
1141  }
1142}
1143
1144MachineInstr *
1145ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1146  MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
1147  switch(Orig->getOpcode()) {
1148  case ARM::tLDRpci_pic:
1149  case ARM::t2LDRpci_pic: {
1150    unsigned CPI = Orig->getOperand(1).getIndex();
1151    unsigned PCLabelId = duplicateCPV(MF, CPI);
1152    Orig->getOperand(1).setIndex(CPI);
1153    Orig->getOperand(2).setImm(PCLabelId);
1154    break;
1155  }
1156  }
1157  return MI;
1158}
1159
1160bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1161                                        const MachineInstr *MI1,
1162                                        const MachineRegisterInfo *MRI) const {
1163  int Opcode = MI0->getOpcode();
1164  if (Opcode == ARM::t2LDRpci ||
1165      Opcode == ARM::t2LDRpci_pic ||
1166      Opcode == ARM::tLDRpci ||
1167      Opcode == ARM::tLDRpci_pic ||
1168      Opcode == ARM::MOV_ga_dyn ||
1169      Opcode == ARM::MOV_ga_pcrel ||
1170      Opcode == ARM::MOV_ga_pcrel_ldr ||
1171      Opcode == ARM::t2MOV_ga_dyn ||
1172      Opcode == ARM::t2MOV_ga_pcrel) {
1173    if (MI1->getOpcode() != Opcode)
1174      return false;
1175    if (MI0->getNumOperands() != MI1->getNumOperands())
1176      return false;
1177
1178    const MachineOperand &MO0 = MI0->getOperand(1);
1179    const MachineOperand &MO1 = MI1->getOperand(1);
1180    if (MO0.getOffset() != MO1.getOffset())
1181      return false;
1182
1183    if (Opcode == ARM::MOV_ga_dyn ||
1184        Opcode == ARM::MOV_ga_pcrel ||
1185        Opcode == ARM::MOV_ga_pcrel_ldr ||
1186        Opcode == ARM::t2MOV_ga_dyn ||
1187        Opcode == ARM::t2MOV_ga_pcrel)
1188      // Ignore the PC labels.
1189      return MO0.getGlobal() == MO1.getGlobal();
1190
1191    const MachineFunction *MF = MI0->getParent()->getParent();
1192    const MachineConstantPool *MCP = MF->getConstantPool();
1193    int CPI0 = MO0.getIndex();
1194    int CPI1 = MO1.getIndex();
1195    const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1196    const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1197    bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1198    bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1199    if (isARMCP0 && isARMCP1) {
1200      ARMConstantPoolValue *ACPV0 =
1201        static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1202      ARMConstantPoolValue *ACPV1 =
1203        static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1204      return ACPV0->hasSameValue(ACPV1);
1205    } else if (!isARMCP0 && !isARMCP1) {
1206      return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1207    }
1208    return false;
1209  } else if (Opcode == ARM::PICLDR) {
1210    if (MI1->getOpcode() != Opcode)
1211      return false;
1212    if (MI0->getNumOperands() != MI1->getNumOperands())
1213      return false;
1214
1215    unsigned Addr0 = MI0->getOperand(1).getReg();
1216    unsigned Addr1 = MI1->getOperand(1).getReg();
1217    if (Addr0 != Addr1) {
1218      if (!MRI ||
1219          !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1220          !TargetRegisterInfo::isVirtualRegister(Addr1))
1221        return false;
1222
1223      // This assumes SSA form.
1224      MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1225      MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1226      // Check if the loaded value, e.g. a constantpool of a global address, are
1227      // the same.
1228      if (!produceSameValue(Def0, Def1, MRI))
1229        return false;
1230    }
1231
1232    for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
1233      // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1234      const MachineOperand &MO0 = MI0->getOperand(i);
1235      const MachineOperand &MO1 = MI1->getOperand(i);
1236      if (!MO0.isIdenticalTo(MO1))
1237        return false;
1238    }
1239    return true;
1240  }
1241
1242  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1243}
1244
1245/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1246/// determine if two loads are loading from the same base address. It should
1247/// only return true if the base pointers are the same and the only differences
1248/// between the two addresses is the offset. It also returns the offsets by
1249/// reference.
1250bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1251                                               int64_t &Offset1,
1252                                               int64_t &Offset2) const {
1253  // Don't worry about Thumb: just ARM and Thumb2.
1254  if (Subtarget.isThumb1Only()) return false;
1255
1256  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1257    return false;
1258
1259  switch (Load1->getMachineOpcode()) {
1260  default:
1261    return false;
1262  case ARM::LDRi12:
1263  case ARM::LDRBi12:
1264  case ARM::LDRD:
1265  case ARM::LDRH:
1266  case ARM::LDRSB:
1267  case ARM::LDRSH:
1268  case ARM::VLDRD:
1269  case ARM::VLDRS:
1270  case ARM::t2LDRi8:
1271  case ARM::t2LDRDi8:
1272  case ARM::t2LDRSHi8:
1273  case ARM::t2LDRi12:
1274  case ARM::t2LDRSHi12:
1275    break;
1276  }
1277
1278  switch (Load2->getMachineOpcode()) {
1279  default:
1280    return false;
1281  case ARM::LDRi12:
1282  case ARM::LDRBi12:
1283  case ARM::LDRD:
1284  case ARM::LDRH:
1285  case ARM::LDRSB:
1286  case ARM::LDRSH:
1287  case ARM::VLDRD:
1288  case ARM::VLDRS:
1289  case ARM::t2LDRi8:
1290  case ARM::t2LDRDi8:
1291  case ARM::t2LDRSHi8:
1292  case ARM::t2LDRi12:
1293  case ARM::t2LDRSHi12:
1294    break;
1295  }
1296
1297  // Check if base addresses and chain operands match.
1298  if (Load1->getOperand(0) != Load2->getOperand(0) ||
1299      Load1->getOperand(4) != Load2->getOperand(4))
1300    return false;
1301
1302  // Index should be Reg0.
1303  if (Load1->getOperand(3) != Load2->getOperand(3))
1304    return false;
1305
1306  // Determine the offsets.
1307  if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1308      isa<ConstantSDNode>(Load2->getOperand(1))) {
1309    Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1310    Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1311    return true;
1312  }
1313
1314  return false;
1315}
1316
1317/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1318/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1319/// be scheduled togther. On some targets if two loads are loading from
1320/// addresses in the same cache line, it's better if they are scheduled
1321/// together. This function takes two integers that represent the load offsets
1322/// from the common base address. It returns true if it decides it's desirable
1323/// to schedule the two loads together. "NumLoads" is the number of loads that
1324/// have already been scheduled after Load1.
1325bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1326                                               int64_t Offset1, int64_t Offset2,
1327                                               unsigned NumLoads) const {
1328  // Don't worry about Thumb: just ARM and Thumb2.
1329  if (Subtarget.isThumb1Only()) return false;
1330
1331  assert(Offset2 > Offset1);
1332
1333  if ((Offset2 - Offset1) / 8 > 64)
1334    return false;
1335
1336  if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
1337    return false;  // FIXME: overly conservative?
1338
1339  // Four loads in a row should be sufficient.
1340  if (NumLoads >= 3)
1341    return false;
1342
1343  return true;
1344}
1345
1346bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1347                                            const MachineBasicBlock *MBB,
1348                                            const MachineFunction &MF) const {
1349  // Debug info is never a scheduling boundary. It's necessary to be explicit
1350  // due to the special treatment of IT instructions below, otherwise a
1351  // dbg_value followed by an IT will result in the IT instruction being
1352  // considered a scheduling hazard, which is wrong. It should be the actual
1353  // instruction preceding the dbg_value instruction(s), just like it is
1354  // when debug info is not present.
1355  if (MI->isDebugValue())
1356    return false;
1357
1358  // Terminators and labels can't be scheduled around.
1359  if (MI->isTerminator() || MI->isLabel())
1360    return true;
1361
1362  // Treat the start of the IT block as a scheduling boundary, but schedule
1363  // t2IT along with all instructions following it.
1364  // FIXME: This is a big hammer. But the alternative is to add all potential
1365  // true and anti dependencies to IT block instructions as implicit operands
1366  // to the t2IT instruction. The added compile time and complexity does not
1367  // seem worth it.
1368  MachineBasicBlock::const_iterator I = MI;
1369  // Make sure to skip any dbg_value instructions
1370  while (++I != MBB->end() && I->isDebugValue())
1371    ;
1372  if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1373    return true;
1374
1375  // Don't attempt to schedule around any instruction that defines
1376  // a stack-oriented pointer, as it's unlikely to be profitable. This
1377  // saves compile time, because it doesn't require every single
1378  // stack slot reference to depend on the instruction that does the
1379  // modification.
1380  if (MI->definesRegister(ARM::SP))
1381    return true;
1382
1383  return false;
1384}
1385
1386bool ARMBaseInstrInfo::
1387isProfitableToIfCvt(MachineBasicBlock &MBB,
1388                    unsigned NumCycles, unsigned ExtraPredCycles,
1389                    const BranchProbability &Probability) const {
1390  if (!NumCycles)
1391    return false;
1392
1393  // Attempt to estimate the relative costs of predication versus branching.
1394  unsigned UnpredCost = Probability.getNumerator() * NumCycles;
1395  UnpredCost /= Probability.getDenominator();
1396  UnpredCost += 1; // The branch itself
1397  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1398
1399  return (NumCycles + ExtraPredCycles) <= UnpredCost;
1400}
1401
1402bool ARMBaseInstrInfo::
1403isProfitableToIfCvt(MachineBasicBlock &TMBB,
1404                    unsigned TCycles, unsigned TExtra,
1405                    MachineBasicBlock &FMBB,
1406                    unsigned FCycles, unsigned FExtra,
1407                    const BranchProbability &Probability) const {
1408  if (!TCycles || !FCycles)
1409    return false;
1410
1411  // Attempt to estimate the relative costs of predication versus branching.
1412  unsigned TUnpredCost = Probability.getNumerator() * TCycles;
1413  TUnpredCost /= Probability.getDenominator();
1414
1415  uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
1416  unsigned FUnpredCost = Comp * FCycles;
1417  FUnpredCost /= Probability.getDenominator();
1418
1419  unsigned UnpredCost = TUnpredCost + FUnpredCost;
1420  UnpredCost += 1; // The branch itself
1421  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1422
1423  return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
1424}
1425
1426/// getInstrPredicate - If instruction is predicated, returns its predicate
1427/// condition, otherwise returns AL. It also returns the condition code
1428/// register by reference.
1429ARMCC::CondCodes
1430llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1431  int PIdx = MI->findFirstPredOperandIdx();
1432  if (PIdx == -1) {
1433    PredReg = 0;
1434    return ARMCC::AL;
1435  }
1436
1437  PredReg = MI->getOperand(PIdx+1).getReg();
1438  return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1439}
1440
1441
1442int llvm::getMatchingCondBranchOpcode(int Opc) {
1443  if (Opc == ARM::B)
1444    return ARM::Bcc;
1445  else if (Opc == ARM::tB)
1446    return ARM::tBcc;
1447  else if (Opc == ARM::t2B)
1448      return ARM::t2Bcc;
1449
1450  llvm_unreachable("Unknown unconditional branch opcode!");
1451  return 0;
1452}
1453
1454
1455/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1456/// instruction is encoded with an 'S' bit is determined by the optional CPSR
1457/// def operand.
1458///
1459/// This will go away once we can teach tblgen how to set the optional CPSR def
1460/// operand itself.
1461struct AddSubFlagsOpcodePair {
1462  unsigned PseudoOpc;
1463  unsigned MachineOpc;
1464};
1465
1466static AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1467  {ARM::ADDSri, ARM::ADDri},
1468  {ARM::ADDSrr, ARM::ADDrr},
1469  {ARM::ADDSrsi, ARM::ADDrsi},
1470  {ARM::ADDSrsr, ARM::ADDrsr},
1471
1472  {ARM::SUBSri, ARM::SUBri},
1473  {ARM::SUBSrr, ARM::SUBrr},
1474  {ARM::SUBSrsi, ARM::SUBrsi},
1475  {ARM::SUBSrsr, ARM::SUBrsr},
1476
1477  {ARM::RSBSri, ARM::RSBri},
1478  {ARM::RSBSrsi, ARM::RSBrsi},
1479  {ARM::RSBSrsr, ARM::RSBrsr},
1480
1481  {ARM::t2ADDSri, ARM::t2ADDri},
1482  {ARM::t2ADDSrr, ARM::t2ADDrr},
1483  {ARM::t2ADDSrs, ARM::t2ADDrs},
1484
1485  {ARM::t2SUBSri, ARM::t2SUBri},
1486  {ARM::t2SUBSrr, ARM::t2SUBrr},
1487  {ARM::t2SUBSrs, ARM::t2SUBrs},
1488
1489  {ARM::t2RSBSri, ARM::t2RSBri},
1490  {ARM::t2RSBSrs, ARM::t2RSBrs},
1491};
1492
1493unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1494  static const int NPairs =
1495    sizeof(AddSubFlagsOpcodeMap) / sizeof(AddSubFlagsOpcodePair);
1496  for (AddSubFlagsOpcodePair *OpcPair = &AddSubFlagsOpcodeMap[0],
1497         *End = &AddSubFlagsOpcodeMap[NPairs]; OpcPair != End; ++OpcPair) {
1498    if (OldOpc == OpcPair->PseudoOpc) {
1499      return OpcPair->MachineOpc;
1500    }
1501  }
1502  return 0;
1503}
1504
1505void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1506                               MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1507                               unsigned DestReg, unsigned BaseReg, int NumBytes,
1508                               ARMCC::CondCodes Pred, unsigned PredReg,
1509                               const ARMBaseInstrInfo &TII, unsigned MIFlags) {
1510  bool isSub = NumBytes < 0;
1511  if (isSub) NumBytes = -NumBytes;
1512
1513  while (NumBytes) {
1514    unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1515    unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1516    assert(ThisVal && "Didn't extract field correctly");
1517
1518    // We will handle these bits from offset, clear them.
1519    NumBytes &= ~ThisVal;
1520
1521    assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1522
1523    // Build the new ADD / SUB.
1524    unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1525    BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1526      .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1527      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1528      .setMIFlags(MIFlags);
1529    BaseReg = DestReg;
1530  }
1531}
1532
1533bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
1534                                unsigned FrameReg, int &Offset,
1535                                const ARMBaseInstrInfo &TII) {
1536  unsigned Opcode = MI.getOpcode();
1537  const MCInstrDesc &Desc = MI.getDesc();
1538  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
1539  bool isSub = false;
1540
1541  // Memory operands in inline assembly always use AddrMode2.
1542  if (Opcode == ARM::INLINEASM)
1543    AddrMode = ARMII::AddrMode2;
1544
1545  if (Opcode == ARM::ADDri) {
1546    Offset += MI.getOperand(FrameRegIdx+1).getImm();
1547    if (Offset == 0) {
1548      // Turn it into a move.
1549      MI.setDesc(TII.get(ARM::MOVr));
1550      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1551      MI.RemoveOperand(FrameRegIdx+1);
1552      Offset = 0;
1553      return true;
1554    } else if (Offset < 0) {
1555      Offset = -Offset;
1556      isSub = true;
1557      MI.setDesc(TII.get(ARM::SUBri));
1558    }
1559
1560    // Common case: small offset, fits into instruction.
1561    if (ARM_AM::getSOImmVal(Offset) != -1) {
1562      // Replace the FrameIndex with sp / fp
1563      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1564      MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
1565      Offset = 0;
1566      return true;
1567    }
1568
1569    // Otherwise, pull as much of the immedidate into this ADDri/SUBri
1570    // as possible.
1571    unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
1572    unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
1573
1574    // We will handle these bits from offset, clear them.
1575    Offset &= ~ThisImmVal;
1576
1577    // Get the properly encoded SOImmVal field.
1578    assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
1579           "Bit extraction didn't work?");
1580    MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
1581 } else {
1582    unsigned ImmIdx = 0;
1583    int InstrOffs = 0;
1584    unsigned NumBits = 0;
1585    unsigned Scale = 1;
1586    switch (AddrMode) {
1587    case ARMII::AddrMode_i12: {
1588      ImmIdx = FrameRegIdx + 1;
1589      InstrOffs = MI.getOperand(ImmIdx).getImm();
1590      NumBits = 12;
1591      break;
1592    }
1593    case ARMII::AddrMode2: {
1594      ImmIdx = FrameRegIdx+2;
1595      InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
1596      if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1597        InstrOffs *= -1;
1598      NumBits = 12;
1599      break;
1600    }
1601    case ARMII::AddrMode3: {
1602      ImmIdx = FrameRegIdx+2;
1603      InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
1604      if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1605        InstrOffs *= -1;
1606      NumBits = 8;
1607      break;
1608    }
1609    case ARMII::AddrMode4:
1610    case ARMII::AddrMode6:
1611      // Can't fold any offset even if it's zero.
1612      return false;
1613    case ARMII::AddrMode5: {
1614      ImmIdx = FrameRegIdx+1;
1615      InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
1616      if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1617        InstrOffs *= -1;
1618      NumBits = 8;
1619      Scale = 4;
1620      break;
1621    }
1622    default:
1623      llvm_unreachable("Unsupported addressing mode!");
1624      break;
1625    }
1626
1627    Offset += InstrOffs * Scale;
1628    assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
1629    if (Offset < 0) {
1630      Offset = -Offset;
1631      isSub = true;
1632    }
1633
1634    // Attempt to fold address comp. if opcode has offset bits
1635    if (NumBits > 0) {
1636      // Common case: small offset, fits into instruction.
1637      MachineOperand &ImmOp = MI.getOperand(ImmIdx);
1638      int ImmedOffset = Offset / Scale;
1639      unsigned Mask = (1 << NumBits) - 1;
1640      if ((unsigned)Offset <= Mask * Scale) {
1641        // Replace the FrameIndex with sp
1642        MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1643        // FIXME: When addrmode2 goes away, this will simplify (like the
1644        // T2 version), as the LDR.i12 versions don't need the encoding
1645        // tricks for the offset value.
1646        if (isSub) {
1647          if (AddrMode == ARMII::AddrMode_i12)
1648            ImmedOffset = -ImmedOffset;
1649          else
1650            ImmedOffset |= 1 << NumBits;
1651        }
1652        ImmOp.ChangeToImmediate(ImmedOffset);
1653        Offset = 0;
1654        return true;
1655      }
1656
1657      // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
1658      ImmedOffset = ImmedOffset & Mask;
1659      if (isSub) {
1660        if (AddrMode == ARMII::AddrMode_i12)
1661          ImmedOffset = -ImmedOffset;
1662        else
1663          ImmedOffset |= 1 << NumBits;
1664      }
1665      ImmOp.ChangeToImmediate(ImmedOffset);
1666      Offset &= ~(Mask*Scale);
1667    }
1668  }
1669
1670  Offset = (isSub) ? -Offset : Offset;
1671  return Offset == 0;
1672}
1673
1674bool ARMBaseInstrInfo::
1675AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &CmpMask,
1676               int &CmpValue) const {
1677  switch (MI->getOpcode()) {
1678  default: break;
1679  case ARM::CMPri:
1680  case ARM::t2CMPri:
1681    SrcReg = MI->getOperand(0).getReg();
1682    CmpMask = ~0;
1683    CmpValue = MI->getOperand(1).getImm();
1684    return true;
1685  case ARM::TSTri:
1686  case ARM::t2TSTri:
1687    SrcReg = MI->getOperand(0).getReg();
1688    CmpMask = MI->getOperand(1).getImm();
1689    CmpValue = 0;
1690    return true;
1691  }
1692
1693  return false;
1694}
1695
1696/// isSuitableForMask - Identify a suitable 'and' instruction that
1697/// operates on the given source register and applies the same mask
1698/// as a 'tst' instruction. Provide a limited look-through for copies.
1699/// When successful, MI will hold the found instruction.
1700static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
1701                              int CmpMask, bool CommonUse) {
1702  switch (MI->getOpcode()) {
1703    case ARM::ANDri:
1704    case ARM::t2ANDri:
1705      if (CmpMask != MI->getOperand(2).getImm())
1706        return false;
1707      if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
1708        return true;
1709      break;
1710    case ARM::COPY: {
1711      // Walk down one instruction which is potentially an 'and'.
1712      const MachineInstr &Copy = *MI;
1713      MachineBasicBlock::iterator AND(
1714        llvm::next(MachineBasicBlock::iterator(MI)));
1715      if (AND == MI->getParent()->end()) return false;
1716      MI = AND;
1717      return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
1718                               CmpMask, true);
1719    }
1720  }
1721
1722  return false;
1723}
1724
1725/// OptimizeCompareInstr - Convert the instruction supplying the argument to the
1726/// comparison into one that sets the zero bit in the flags register.
1727bool ARMBaseInstrInfo::
1728OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int CmpMask,
1729                     int CmpValue, const MachineRegisterInfo *MRI) const {
1730  if (CmpValue != 0)
1731    return false;
1732
1733  MachineRegisterInfo::def_iterator DI = MRI->def_begin(SrcReg);
1734  if (llvm::next(DI) != MRI->def_end())
1735    // Only support one definition.
1736    return false;
1737
1738  MachineInstr *MI = &*DI;
1739
1740  // Masked compares sometimes use the same register as the corresponding 'and'.
1741  if (CmpMask != ~0) {
1742    if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) {
1743      MI = 0;
1744      for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
1745           UE = MRI->use_end(); UI != UE; ++UI) {
1746        if (UI->getParent() != CmpInstr->getParent()) continue;
1747        MachineInstr *PotentialAND = &*UI;
1748        if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true))
1749          continue;
1750        MI = PotentialAND;
1751        break;
1752      }
1753      if (!MI) return false;
1754    }
1755  }
1756
1757  // Conservatively refuse to convert an instruction which isn't in the same BB
1758  // as the comparison.
1759  if (MI->getParent() != CmpInstr->getParent())
1760    return false;
1761
1762  // Check that CPSR isn't set between the comparison instruction and the one we
1763  // want to change.
1764  MachineBasicBlock::iterator I = CmpInstr,E = MI, B = MI->getParent()->begin();
1765
1766  // Early exit if CmpInstr is at the beginning of the BB.
1767  if (I == B) return false;
1768
1769  --I;
1770  for (; I != E; --I) {
1771    const MachineInstr &Instr = *I;
1772
1773    for (unsigned IO = 0, EO = Instr.getNumOperands(); IO != EO; ++IO) {
1774      const MachineOperand &MO = Instr.getOperand(IO);
1775      if (!MO.isReg()) continue;
1776
1777      // This instruction modifies or uses CPSR after the one we want to
1778      // change. We can't do this transformation.
1779      if (MO.getReg() == ARM::CPSR)
1780        return false;
1781    }
1782
1783    if (I == B)
1784      // The 'and' is below the comparison instruction.
1785      return false;
1786  }
1787
1788  // Set the "zero" bit in CPSR.
1789  switch (MI->getOpcode()) {
1790  default: break;
1791  case ARM::RSBrr:
1792  case ARM::RSBri:
1793  case ARM::RSCrr:
1794  case ARM::RSCri:
1795  case ARM::ADDrr:
1796  case ARM::ADDri:
1797  case ARM::ADCrr:
1798  case ARM::ADCri:
1799  case ARM::SUBrr:
1800  case ARM::SUBri:
1801  case ARM::SBCrr:
1802  case ARM::SBCri:
1803  case ARM::t2RSBri:
1804  case ARM::t2ADDrr:
1805  case ARM::t2ADDri:
1806  case ARM::t2ADCrr:
1807  case ARM::t2ADCri:
1808  case ARM::t2SUBrr:
1809  case ARM::t2SUBri:
1810  case ARM::t2SBCrr:
1811  case ARM::t2SBCri:
1812  case ARM::ANDrr:
1813  case ARM::ANDri:
1814  case ARM::t2ANDrr:
1815  case ARM::t2ANDri:
1816  case ARM::ORRrr:
1817  case ARM::ORRri:
1818  case ARM::t2ORRrr:
1819  case ARM::t2ORRri:
1820  case ARM::EORrr:
1821  case ARM::EORri:
1822  case ARM::t2EORrr:
1823  case ARM::t2EORri: {
1824    // Scan forward for the use of CPSR, if it's a conditional code requires
1825    // checking of V bit, then this is not safe to do. If we can't find the
1826    // CPSR use (i.e. used in another block), then it's not safe to perform
1827    // the optimization.
1828    bool isSafe = false;
1829    I = CmpInstr;
1830    E = MI->getParent()->end();
1831    while (!isSafe && ++I != E) {
1832      const MachineInstr &Instr = *I;
1833      for (unsigned IO = 0, EO = Instr.getNumOperands();
1834           !isSafe && IO != EO; ++IO) {
1835        const MachineOperand &MO = Instr.getOperand(IO);
1836        if (!MO.isReg() || MO.getReg() != ARM::CPSR)
1837          continue;
1838        if (MO.isDef()) {
1839          isSafe = true;
1840          break;
1841        }
1842        // Condition code is after the operand before CPSR.
1843        ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
1844        switch (CC) {
1845        default:
1846          isSafe = true;
1847          break;
1848        case ARMCC::VS:
1849        case ARMCC::VC:
1850        case ARMCC::GE:
1851        case ARMCC::LT:
1852        case ARMCC::GT:
1853        case ARMCC::LE:
1854          return false;
1855        }
1856      }
1857    }
1858
1859    if (!isSafe)
1860      return false;
1861
1862    // Toggle the optional operand to CPSR.
1863    MI->getOperand(5).setReg(ARM::CPSR);
1864    MI->getOperand(5).setIsDef(true);
1865    CmpInstr->eraseFromParent();
1866    return true;
1867  }
1868  }
1869
1870  return false;
1871}
1872
1873bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
1874                                     MachineInstr *DefMI, unsigned Reg,
1875                                     MachineRegisterInfo *MRI) const {
1876  // Fold large immediates into add, sub, or, xor.
1877  unsigned DefOpc = DefMI->getOpcode();
1878  if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
1879    return false;
1880  if (!DefMI->getOperand(1).isImm())
1881    // Could be t2MOVi32imm <ga:xx>
1882    return false;
1883
1884  if (!MRI->hasOneNonDBGUse(Reg))
1885    return false;
1886
1887  unsigned UseOpc = UseMI->getOpcode();
1888  unsigned NewUseOpc = 0;
1889  uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
1890  uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
1891  bool Commute = false;
1892  switch (UseOpc) {
1893  default: return false;
1894  case ARM::SUBrr:
1895  case ARM::ADDrr:
1896  case ARM::ORRrr:
1897  case ARM::EORrr:
1898  case ARM::t2SUBrr:
1899  case ARM::t2ADDrr:
1900  case ARM::t2ORRrr:
1901  case ARM::t2EORrr: {
1902    Commute = UseMI->getOperand(2).getReg() != Reg;
1903    switch (UseOpc) {
1904    default: break;
1905    case ARM::SUBrr: {
1906      if (Commute)
1907        return false;
1908      ImmVal = -ImmVal;
1909      NewUseOpc = ARM::SUBri;
1910      // Fallthrough
1911    }
1912    case ARM::ADDrr:
1913    case ARM::ORRrr:
1914    case ARM::EORrr: {
1915      if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
1916        return false;
1917      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
1918      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
1919      switch (UseOpc) {
1920      default: break;
1921      case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
1922      case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
1923      case ARM::EORrr: NewUseOpc = ARM::EORri; break;
1924      }
1925      break;
1926    }
1927    case ARM::t2SUBrr: {
1928      if (Commute)
1929        return false;
1930      ImmVal = -ImmVal;
1931      NewUseOpc = ARM::t2SUBri;
1932      // Fallthrough
1933    }
1934    case ARM::t2ADDrr:
1935    case ARM::t2ORRrr:
1936    case ARM::t2EORrr: {
1937      if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
1938        return false;
1939      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
1940      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
1941      switch (UseOpc) {
1942      default: break;
1943      case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
1944      case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
1945      case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
1946      }
1947      break;
1948    }
1949    }
1950  }
1951  }
1952
1953  unsigned OpIdx = Commute ? 2 : 1;
1954  unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
1955  bool isKill = UseMI->getOperand(OpIdx).isKill();
1956  unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
1957  AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
1958                                      *UseMI, UseMI->getDebugLoc(),
1959                                      get(NewUseOpc), NewReg)
1960                              .addReg(Reg1, getKillRegState(isKill))
1961                              .addImm(SOImmValV1)));
1962  UseMI->setDesc(get(NewUseOpc));
1963  UseMI->getOperand(1).setReg(NewReg);
1964  UseMI->getOperand(1).setIsKill();
1965  UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
1966  DefMI->eraseFromParent();
1967  return true;
1968}
1969
1970unsigned
1971ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1972                                 const MachineInstr *MI) const {
1973  if (!ItinData || ItinData->isEmpty())
1974    return 1;
1975
1976  const MCInstrDesc &Desc = MI->getDesc();
1977  unsigned Class = Desc.getSchedClass();
1978  unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
1979  if (UOps)
1980    return UOps;
1981
1982  unsigned Opc = MI->getOpcode();
1983  switch (Opc) {
1984  default:
1985    llvm_unreachable("Unexpected multi-uops instruction!");
1986    break;
1987  case ARM::VLDMQIA:
1988  case ARM::VSTMQIA:
1989    return 2;
1990
1991  // The number of uOps for load / store multiple are determined by the number
1992  // registers.
1993  //
1994  // On Cortex-A8, each pair of register loads / stores can be scheduled on the
1995  // same cycle. The scheduling for the first load / store must be done
1996  // separately by assuming the the address is not 64-bit aligned.
1997  //
1998  // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
1999  // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
2000  // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
2001  case ARM::VLDMDIA:
2002  case ARM::VLDMDIA_UPD:
2003  case ARM::VLDMDDB_UPD:
2004  case ARM::VLDMSIA:
2005  case ARM::VLDMSIA_UPD:
2006  case ARM::VLDMSDB_UPD:
2007  case ARM::VSTMDIA:
2008  case ARM::VSTMDIA_UPD:
2009  case ARM::VSTMDDB_UPD:
2010  case ARM::VSTMSIA:
2011  case ARM::VSTMSIA_UPD:
2012  case ARM::VSTMSDB_UPD: {
2013    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
2014    return (NumRegs / 2) + (NumRegs % 2) + 1;
2015  }
2016
2017  case ARM::LDMIA_RET:
2018  case ARM::LDMIA:
2019  case ARM::LDMDA:
2020  case ARM::LDMDB:
2021  case ARM::LDMIB:
2022  case ARM::LDMIA_UPD:
2023  case ARM::LDMDA_UPD:
2024  case ARM::LDMDB_UPD:
2025  case ARM::LDMIB_UPD:
2026  case ARM::STMIA:
2027  case ARM::STMDA:
2028  case ARM::STMDB:
2029  case ARM::STMIB:
2030  case ARM::STMIA_UPD:
2031  case ARM::STMDA_UPD:
2032  case ARM::STMDB_UPD:
2033  case ARM::STMIB_UPD:
2034  case ARM::tLDMIA:
2035  case ARM::tLDMIA_UPD:
2036  case ARM::tSTMIA_UPD:
2037  case ARM::tPOP_RET:
2038  case ARM::tPOP:
2039  case ARM::tPUSH:
2040  case ARM::t2LDMIA_RET:
2041  case ARM::t2LDMIA:
2042  case ARM::t2LDMDB:
2043  case ARM::t2LDMIA_UPD:
2044  case ARM::t2LDMDB_UPD:
2045  case ARM::t2STMIA:
2046  case ARM::t2STMDB:
2047  case ARM::t2STMIA_UPD:
2048  case ARM::t2STMDB_UPD: {
2049    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
2050    if (Subtarget.isCortexA8()) {
2051      if (NumRegs < 4)
2052        return 2;
2053      // 4 registers would be issued: 2, 2.
2054      // 5 registers would be issued: 2, 2, 1.
2055      UOps = (NumRegs / 2);
2056      if (NumRegs % 2)
2057        ++UOps;
2058      return UOps;
2059    } else if (Subtarget.isCortexA9()) {
2060      UOps = (NumRegs / 2);
2061      // If there are odd number of registers or if it's not 64-bit aligned,
2062      // then it takes an extra AGU (Address Generation Unit) cycle.
2063      if ((NumRegs % 2) ||
2064          !MI->hasOneMemOperand() ||
2065          (*MI->memoperands_begin())->getAlignment() < 8)
2066        ++UOps;
2067      return UOps;
2068    } else {
2069      // Assume the worst.
2070      return NumRegs;
2071    }
2072  }
2073  }
2074}
2075
2076int
2077ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
2078                                  const MCInstrDesc &DefMCID,
2079                                  unsigned DefClass,
2080                                  unsigned DefIdx, unsigned DefAlign) const {
2081  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2082  if (RegNo <= 0)
2083    // Def is the address writeback.
2084    return ItinData->getOperandCycle(DefClass, DefIdx);
2085
2086  int DefCycle;
2087  if (Subtarget.isCortexA8()) {
2088    // (regno / 2) + (regno % 2) + 1
2089    DefCycle = RegNo / 2 + 1;
2090    if (RegNo % 2)
2091      ++DefCycle;
2092  } else if (Subtarget.isCortexA9()) {
2093    DefCycle = RegNo;
2094    bool isSLoad = false;
2095
2096    switch (DefMCID.getOpcode()) {
2097    default: break;
2098    case ARM::VLDMSIA:
2099    case ARM::VLDMSIA_UPD:
2100    case ARM::VLDMSDB_UPD:
2101      isSLoad = true;
2102      break;
2103    }
2104
2105    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2106    // then it takes an extra cycle.
2107    if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
2108      ++DefCycle;
2109  } else {
2110    // Assume the worst.
2111    DefCycle = RegNo + 2;
2112  }
2113
2114  return DefCycle;
2115}
2116
2117int
2118ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
2119                                 const MCInstrDesc &DefMCID,
2120                                 unsigned DefClass,
2121                                 unsigned DefIdx, unsigned DefAlign) const {
2122  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2123  if (RegNo <= 0)
2124    // Def is the address writeback.
2125    return ItinData->getOperandCycle(DefClass, DefIdx);
2126
2127  int DefCycle;
2128  if (Subtarget.isCortexA8()) {
2129    // 4 registers would be issued: 1, 2, 1.
2130    // 5 registers would be issued: 1, 2, 2.
2131    DefCycle = RegNo / 2;
2132    if (DefCycle < 1)
2133      DefCycle = 1;
2134    // Result latency is issue cycle + 2: E2.
2135    DefCycle += 2;
2136  } else if (Subtarget.isCortexA9()) {
2137    DefCycle = (RegNo / 2);
2138    // If there are odd number of registers or if it's not 64-bit aligned,
2139    // then it takes an extra AGU (Address Generation Unit) cycle.
2140    if ((RegNo % 2) || DefAlign < 8)
2141      ++DefCycle;
2142    // Result latency is AGU cycles + 2.
2143    DefCycle += 2;
2144  } else {
2145    // Assume the worst.
2146    DefCycle = RegNo + 2;
2147  }
2148
2149  return DefCycle;
2150}
2151
2152int
2153ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
2154                                  const MCInstrDesc &UseMCID,
2155                                  unsigned UseClass,
2156                                  unsigned UseIdx, unsigned UseAlign) const {
2157  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2158  if (RegNo <= 0)
2159    return ItinData->getOperandCycle(UseClass, UseIdx);
2160
2161  int UseCycle;
2162  if (Subtarget.isCortexA8()) {
2163    // (regno / 2) + (regno % 2) + 1
2164    UseCycle = RegNo / 2 + 1;
2165    if (RegNo % 2)
2166      ++UseCycle;
2167  } else if (Subtarget.isCortexA9()) {
2168    UseCycle = RegNo;
2169    bool isSStore = false;
2170
2171    switch (UseMCID.getOpcode()) {
2172    default: break;
2173    case ARM::VSTMSIA:
2174    case ARM::VSTMSIA_UPD:
2175    case ARM::VSTMSDB_UPD:
2176      isSStore = true;
2177      break;
2178    }
2179
2180    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2181    // then it takes an extra cycle.
2182    if ((isSStore && (RegNo % 2)) || UseAlign < 8)
2183      ++UseCycle;
2184  } else {
2185    // Assume the worst.
2186    UseCycle = RegNo + 2;
2187  }
2188
2189  return UseCycle;
2190}
2191
2192int
2193ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
2194                                 const MCInstrDesc &UseMCID,
2195                                 unsigned UseClass,
2196                                 unsigned UseIdx, unsigned UseAlign) const {
2197  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2198  if (RegNo <= 0)
2199    return ItinData->getOperandCycle(UseClass, UseIdx);
2200
2201  int UseCycle;
2202  if (Subtarget.isCortexA8()) {
2203    UseCycle = RegNo / 2;
2204    if (UseCycle < 2)
2205      UseCycle = 2;
2206    // Read in E3.
2207    UseCycle += 2;
2208  } else if (Subtarget.isCortexA9()) {
2209    UseCycle = (RegNo / 2);
2210    // If there are odd number of registers or if it's not 64-bit aligned,
2211    // then it takes an extra AGU (Address Generation Unit) cycle.
2212    if ((RegNo % 2) || UseAlign < 8)
2213      ++UseCycle;
2214  } else {
2215    // Assume the worst.
2216    UseCycle = 1;
2217  }
2218  return UseCycle;
2219}
2220
2221int
2222ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2223                                    const MCInstrDesc &DefMCID,
2224                                    unsigned DefIdx, unsigned DefAlign,
2225                                    const MCInstrDesc &UseMCID,
2226                                    unsigned UseIdx, unsigned UseAlign) const {
2227  unsigned DefClass = DefMCID.getSchedClass();
2228  unsigned UseClass = UseMCID.getSchedClass();
2229
2230  if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
2231    return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
2232
2233  // This may be a def / use of a variable_ops instruction, the operand
2234  // latency might be determinable dynamically. Let the target try to
2235  // figure it out.
2236  int DefCycle = -1;
2237  bool LdmBypass = false;
2238  switch (DefMCID.getOpcode()) {
2239  default:
2240    DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2241    break;
2242
2243  case ARM::VLDMDIA:
2244  case ARM::VLDMDIA_UPD:
2245  case ARM::VLDMDDB_UPD:
2246  case ARM::VLDMSIA:
2247  case ARM::VLDMSIA_UPD:
2248  case ARM::VLDMSDB_UPD:
2249    DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2250    break;
2251
2252  case ARM::LDMIA_RET:
2253  case ARM::LDMIA:
2254  case ARM::LDMDA:
2255  case ARM::LDMDB:
2256  case ARM::LDMIB:
2257  case ARM::LDMIA_UPD:
2258  case ARM::LDMDA_UPD:
2259  case ARM::LDMDB_UPD:
2260  case ARM::LDMIB_UPD:
2261  case ARM::tLDMIA:
2262  case ARM::tLDMIA_UPD:
2263  case ARM::tPUSH:
2264  case ARM::t2LDMIA_RET:
2265  case ARM::t2LDMIA:
2266  case ARM::t2LDMDB:
2267  case ARM::t2LDMIA_UPD:
2268  case ARM::t2LDMDB_UPD:
2269    LdmBypass = 1;
2270    DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2271    break;
2272  }
2273
2274  if (DefCycle == -1)
2275    // We can't seem to determine the result latency of the def, assume it's 2.
2276    DefCycle = 2;
2277
2278  int UseCycle = -1;
2279  switch (UseMCID.getOpcode()) {
2280  default:
2281    UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
2282    break;
2283
2284  case ARM::VSTMDIA:
2285  case ARM::VSTMDIA_UPD:
2286  case ARM::VSTMDDB_UPD:
2287  case ARM::VSTMSIA:
2288  case ARM::VSTMSIA_UPD:
2289  case ARM::VSTMSDB_UPD:
2290    UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2291    break;
2292
2293  case ARM::STMIA:
2294  case ARM::STMDA:
2295  case ARM::STMDB:
2296  case ARM::STMIB:
2297  case ARM::STMIA_UPD:
2298  case ARM::STMDA_UPD:
2299  case ARM::STMDB_UPD:
2300  case ARM::STMIB_UPD:
2301  case ARM::tSTMIA_UPD:
2302  case ARM::tPOP_RET:
2303  case ARM::tPOP:
2304  case ARM::t2STMIA:
2305  case ARM::t2STMDB:
2306  case ARM::t2STMIA_UPD:
2307  case ARM::t2STMDB_UPD:
2308    UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2309    break;
2310  }
2311
2312  if (UseCycle == -1)
2313    // Assume it's read in the first stage.
2314    UseCycle = 1;
2315
2316  UseCycle = DefCycle - UseCycle + 1;
2317  if (UseCycle > 0) {
2318    if (LdmBypass) {
2319      // It's a variable_ops instruction so we can't use DefIdx here. Just use
2320      // first def operand.
2321      if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
2322                                          UseClass, UseIdx))
2323        --UseCycle;
2324    } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
2325                                               UseClass, UseIdx)) {
2326      --UseCycle;
2327    }
2328  }
2329
2330  return UseCycle;
2331}
2332
2333int
2334ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2335                             const MachineInstr *DefMI, unsigned DefIdx,
2336                             const MachineInstr *UseMI, unsigned UseIdx) const {
2337  if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
2338      DefMI->isRegSequence() || DefMI->isImplicitDef())
2339    return 1;
2340
2341  if (!ItinData || ItinData->isEmpty())
2342    return DefMI->mayLoad() ? 3 : 1;
2343
2344  const MCInstrDesc &DefMCID = DefMI->getDesc();
2345  const MCInstrDesc &UseMCID = UseMI->getDesc();
2346  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
2347  if (DefMO.getReg() == ARM::CPSR) {
2348    if (DefMI->getOpcode() == ARM::FMSTAT) {
2349      // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
2350      return Subtarget.isCortexA9() ? 1 : 20;
2351    }
2352
2353    // CPSR set and branch can be paired in the same cycle.
2354    if (UseMI->isBranch())
2355      return 0;
2356  }
2357
2358  unsigned DefAlign = DefMI->hasOneMemOperand()
2359    ? (*DefMI->memoperands_begin())->getAlignment() : 0;
2360  unsigned UseAlign = UseMI->hasOneMemOperand()
2361    ? (*UseMI->memoperands_begin())->getAlignment() : 0;
2362  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
2363                                  UseMCID, UseIdx, UseAlign);
2364
2365  if (Latency > 1 &&
2366      (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
2367    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2368    // variants are one cycle cheaper.
2369    switch (DefMCID.getOpcode()) {
2370    default: break;
2371    case ARM::LDRrs:
2372    case ARM::LDRBrs: {
2373      unsigned ShOpVal = DefMI->getOperand(3).getImm();
2374      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2375      if (ShImm == 0 ||
2376          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2377        --Latency;
2378      break;
2379    }
2380    case ARM::t2LDRs:
2381    case ARM::t2LDRBs:
2382    case ARM::t2LDRHs:
2383    case ARM::t2LDRSHs: {
2384      // Thumb2 mode: lsl only.
2385      unsigned ShAmt = DefMI->getOperand(3).getImm();
2386      if (ShAmt == 0 || ShAmt == 2)
2387        --Latency;
2388      break;
2389    }
2390    }
2391  }
2392
2393  if (DefAlign < 8 && Subtarget.isCortexA9())
2394    switch (DefMCID.getOpcode()) {
2395    default: break;
2396    case ARM::VLD1q8:
2397    case ARM::VLD1q16:
2398    case ARM::VLD1q32:
2399    case ARM::VLD1q64:
2400    case ARM::VLD1q8wb_fixed:
2401    case ARM::VLD1q16wb_fixed:
2402    case ARM::VLD1q32wb_fixed:
2403    case ARM::VLD1q64wb_fixed:
2404    case ARM::VLD1q8wb_register:
2405    case ARM::VLD1q16wb_register:
2406    case ARM::VLD1q32wb_register:
2407    case ARM::VLD1q64wb_register:
2408    case ARM::VLD2d8:
2409    case ARM::VLD2d16:
2410    case ARM::VLD2d32:
2411    case ARM::VLD2q8:
2412    case ARM::VLD2q16:
2413    case ARM::VLD2q32:
2414    case ARM::VLD2d8_UPD:
2415    case ARM::VLD2d16_UPD:
2416    case ARM::VLD2d32_UPD:
2417    case ARM::VLD2q8_UPD:
2418    case ARM::VLD2q16_UPD:
2419    case ARM::VLD2q32_UPD:
2420    case ARM::VLD3d8:
2421    case ARM::VLD3d16:
2422    case ARM::VLD3d32:
2423    case ARM::VLD1d64T:
2424    case ARM::VLD3d8_UPD:
2425    case ARM::VLD3d16_UPD:
2426    case ARM::VLD3d32_UPD:
2427    case ARM::VLD1d64Twb_fixed:
2428    case ARM::VLD1d64Twb_register:
2429    case ARM::VLD3q8_UPD:
2430    case ARM::VLD3q16_UPD:
2431    case ARM::VLD3q32_UPD:
2432    case ARM::VLD4d8:
2433    case ARM::VLD4d16:
2434    case ARM::VLD4d32:
2435    case ARM::VLD1d64Q:
2436    case ARM::VLD4d8_UPD:
2437    case ARM::VLD4d16_UPD:
2438    case ARM::VLD4d32_UPD:
2439    case ARM::VLD1d64Qwb_fixed:
2440    case ARM::VLD1d64Qwb_register:
2441    case ARM::VLD4q8_UPD:
2442    case ARM::VLD4q16_UPD:
2443    case ARM::VLD4q32_UPD:
2444    case ARM::VLD1DUPq8:
2445    case ARM::VLD1DUPq16:
2446    case ARM::VLD1DUPq32:
2447    case ARM::VLD1DUPq8wb_fixed:
2448    case ARM::VLD1DUPq16wb_fixed:
2449    case ARM::VLD1DUPq32wb_fixed:
2450    case ARM::VLD1DUPq8wb_register:
2451    case ARM::VLD1DUPq16wb_register:
2452    case ARM::VLD1DUPq32wb_register:
2453    case ARM::VLD2DUPd8:
2454    case ARM::VLD2DUPd16:
2455    case ARM::VLD2DUPd32:
2456    case ARM::VLD2DUPd8_UPD:
2457    case ARM::VLD2DUPd16_UPD:
2458    case ARM::VLD2DUPd32_UPD:
2459    case ARM::VLD4DUPd8:
2460    case ARM::VLD4DUPd16:
2461    case ARM::VLD4DUPd32:
2462    case ARM::VLD4DUPd8_UPD:
2463    case ARM::VLD4DUPd16_UPD:
2464    case ARM::VLD4DUPd32_UPD:
2465    case ARM::VLD1LNd8:
2466    case ARM::VLD1LNd16:
2467    case ARM::VLD1LNd32:
2468    case ARM::VLD1LNd8_UPD:
2469    case ARM::VLD1LNd16_UPD:
2470    case ARM::VLD1LNd32_UPD:
2471    case ARM::VLD2LNd8:
2472    case ARM::VLD2LNd16:
2473    case ARM::VLD2LNd32:
2474    case ARM::VLD2LNq16:
2475    case ARM::VLD2LNq32:
2476    case ARM::VLD2LNd8_UPD:
2477    case ARM::VLD2LNd16_UPD:
2478    case ARM::VLD2LNd32_UPD:
2479    case ARM::VLD2LNq16_UPD:
2480    case ARM::VLD2LNq32_UPD:
2481    case ARM::VLD4LNd8:
2482    case ARM::VLD4LNd16:
2483    case ARM::VLD4LNd32:
2484    case ARM::VLD4LNq16:
2485    case ARM::VLD4LNq32:
2486    case ARM::VLD4LNd8_UPD:
2487    case ARM::VLD4LNd16_UPD:
2488    case ARM::VLD4LNd32_UPD:
2489    case ARM::VLD4LNq16_UPD:
2490    case ARM::VLD4LNq32_UPD:
2491      // If the address is not 64-bit aligned, the latencies of these
2492      // instructions increases by one.
2493      ++Latency;
2494      break;
2495    }
2496
2497  return Latency;
2498}
2499
2500int
2501ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2502                                    SDNode *DefNode, unsigned DefIdx,
2503                                    SDNode *UseNode, unsigned UseIdx) const {
2504  if (!DefNode->isMachineOpcode())
2505    return 1;
2506
2507  const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
2508
2509  if (isZeroCost(DefMCID.Opcode))
2510    return 0;
2511
2512  if (!ItinData || ItinData->isEmpty())
2513    return DefMCID.mayLoad() ? 3 : 1;
2514
2515  if (!UseNode->isMachineOpcode()) {
2516    int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
2517    if (Subtarget.isCortexA9())
2518      return Latency <= 2 ? 1 : Latency - 1;
2519    else
2520      return Latency <= 3 ? 1 : Latency - 2;
2521  }
2522
2523  const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
2524  const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
2525  unsigned DefAlign = !DefMN->memoperands_empty()
2526    ? (*DefMN->memoperands_begin())->getAlignment() : 0;
2527  const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
2528  unsigned UseAlign = !UseMN->memoperands_empty()
2529    ? (*UseMN->memoperands_begin())->getAlignment() : 0;
2530  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
2531                                  UseMCID, UseIdx, UseAlign);
2532
2533  if (Latency > 1 &&
2534      (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
2535    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2536    // variants are one cycle cheaper.
2537    switch (DefMCID.getOpcode()) {
2538    default: break;
2539    case ARM::LDRrs:
2540    case ARM::LDRBrs: {
2541      unsigned ShOpVal =
2542        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
2543      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2544      if (ShImm == 0 ||
2545          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2546        --Latency;
2547      break;
2548    }
2549    case ARM::t2LDRs:
2550    case ARM::t2LDRBs:
2551    case ARM::t2LDRHs:
2552    case ARM::t2LDRSHs: {
2553      // Thumb2 mode: lsl only.
2554      unsigned ShAmt =
2555        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
2556      if (ShAmt == 0 || ShAmt == 2)
2557        --Latency;
2558      break;
2559    }
2560    }
2561  }
2562
2563  if (DefAlign < 8 && Subtarget.isCortexA9())
2564    switch (DefMCID.getOpcode()) {
2565    default: break;
2566    case ARM::VLD1q8Pseudo:
2567    case ARM::VLD1q16Pseudo:
2568    case ARM::VLD1q32Pseudo:
2569    case ARM::VLD1q64Pseudo:
2570    case ARM::VLD1q8PseudoWB_register:
2571    case ARM::VLD1q16PseudoWB_register:
2572    case ARM::VLD1q32PseudoWB_register:
2573    case ARM::VLD1q64PseudoWB_register:
2574    case ARM::VLD1q8PseudoWB_fixed:
2575    case ARM::VLD1q16PseudoWB_fixed:
2576    case ARM::VLD1q32PseudoWB_fixed:
2577    case ARM::VLD1q64PseudoWB_fixed:
2578    case ARM::VLD2d8Pseudo:
2579    case ARM::VLD2d16Pseudo:
2580    case ARM::VLD2d32Pseudo:
2581    case ARM::VLD2q8Pseudo:
2582    case ARM::VLD2q16Pseudo:
2583    case ARM::VLD2q32Pseudo:
2584    case ARM::VLD2d8Pseudo_UPD:
2585    case ARM::VLD2d16Pseudo_UPD:
2586    case ARM::VLD2d32Pseudo_UPD:
2587    case ARM::VLD2q8Pseudo_UPD:
2588    case ARM::VLD2q16Pseudo_UPD:
2589    case ARM::VLD2q32Pseudo_UPD:
2590    case ARM::VLD3d8Pseudo:
2591    case ARM::VLD3d16Pseudo:
2592    case ARM::VLD3d32Pseudo:
2593    case ARM::VLD1d64TPseudo:
2594    case ARM::VLD3d8Pseudo_UPD:
2595    case ARM::VLD3d16Pseudo_UPD:
2596    case ARM::VLD3d32Pseudo_UPD:
2597    case ARM::VLD3q8Pseudo_UPD:
2598    case ARM::VLD3q16Pseudo_UPD:
2599    case ARM::VLD3q32Pseudo_UPD:
2600    case ARM::VLD3q8oddPseudo:
2601    case ARM::VLD3q16oddPseudo:
2602    case ARM::VLD3q32oddPseudo:
2603    case ARM::VLD3q8oddPseudo_UPD:
2604    case ARM::VLD3q16oddPseudo_UPD:
2605    case ARM::VLD3q32oddPseudo_UPD:
2606    case ARM::VLD4d8Pseudo:
2607    case ARM::VLD4d16Pseudo:
2608    case ARM::VLD4d32Pseudo:
2609    case ARM::VLD1d64QPseudo:
2610    case ARM::VLD4d8Pseudo_UPD:
2611    case ARM::VLD4d16Pseudo_UPD:
2612    case ARM::VLD4d32Pseudo_UPD:
2613    case ARM::VLD4q8Pseudo_UPD:
2614    case ARM::VLD4q16Pseudo_UPD:
2615    case ARM::VLD4q32Pseudo_UPD:
2616    case ARM::VLD4q8oddPseudo:
2617    case ARM::VLD4q16oddPseudo:
2618    case ARM::VLD4q32oddPseudo:
2619    case ARM::VLD4q8oddPseudo_UPD:
2620    case ARM::VLD4q16oddPseudo_UPD:
2621    case ARM::VLD4q32oddPseudo_UPD:
2622    case ARM::VLD1DUPq8Pseudo:
2623    case ARM::VLD1DUPq16Pseudo:
2624    case ARM::VLD1DUPq32Pseudo:
2625    case ARM::VLD1DUPq8PseudoWB_fixed:
2626    case ARM::VLD1DUPq16PseudoWB_fixed:
2627    case ARM::VLD1DUPq32PseudoWB_fixed:
2628    case ARM::VLD1DUPq8PseudoWB_register:
2629    case ARM::VLD1DUPq16PseudoWB_register:
2630    case ARM::VLD1DUPq32PseudoWB_register:
2631    case ARM::VLD2DUPd8Pseudo:
2632    case ARM::VLD2DUPd16Pseudo:
2633    case ARM::VLD2DUPd32Pseudo:
2634    case ARM::VLD2DUPd8Pseudo_UPD:
2635    case ARM::VLD2DUPd16Pseudo_UPD:
2636    case ARM::VLD2DUPd32Pseudo_UPD:
2637    case ARM::VLD4DUPd8Pseudo:
2638    case ARM::VLD4DUPd16Pseudo:
2639    case ARM::VLD4DUPd32Pseudo:
2640    case ARM::VLD4DUPd8Pseudo_UPD:
2641    case ARM::VLD4DUPd16Pseudo_UPD:
2642    case ARM::VLD4DUPd32Pseudo_UPD:
2643    case ARM::VLD1LNq8Pseudo:
2644    case ARM::VLD1LNq16Pseudo:
2645    case ARM::VLD1LNq32Pseudo:
2646    case ARM::VLD1LNq8Pseudo_UPD:
2647    case ARM::VLD1LNq16Pseudo_UPD:
2648    case ARM::VLD1LNq32Pseudo_UPD:
2649    case ARM::VLD2LNd8Pseudo:
2650    case ARM::VLD2LNd16Pseudo:
2651    case ARM::VLD2LNd32Pseudo:
2652    case ARM::VLD2LNq16Pseudo:
2653    case ARM::VLD2LNq32Pseudo:
2654    case ARM::VLD2LNd8Pseudo_UPD:
2655    case ARM::VLD2LNd16Pseudo_UPD:
2656    case ARM::VLD2LNd32Pseudo_UPD:
2657    case ARM::VLD2LNq16Pseudo_UPD:
2658    case ARM::VLD2LNq32Pseudo_UPD:
2659    case ARM::VLD4LNd8Pseudo:
2660    case ARM::VLD4LNd16Pseudo:
2661    case ARM::VLD4LNd32Pseudo:
2662    case ARM::VLD4LNq16Pseudo:
2663    case ARM::VLD4LNq32Pseudo:
2664    case ARM::VLD4LNd8Pseudo_UPD:
2665    case ARM::VLD4LNd16Pseudo_UPD:
2666    case ARM::VLD4LNd32Pseudo_UPD:
2667    case ARM::VLD4LNq16Pseudo_UPD:
2668    case ARM::VLD4LNq32Pseudo_UPD:
2669      // If the address is not 64-bit aligned, the latencies of these
2670      // instructions increases by one.
2671      ++Latency;
2672      break;
2673    }
2674
2675  return Latency;
2676}
2677
2678int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
2679                                      const MachineInstr *MI,
2680                                      unsigned *PredCost) const {
2681  if (MI->isCopyLike() || MI->isInsertSubreg() ||
2682      MI->isRegSequence() || MI->isImplicitDef())
2683    return 1;
2684
2685  if (!ItinData || ItinData->isEmpty())
2686    return 1;
2687
2688  const MCInstrDesc &MCID = MI->getDesc();
2689  unsigned Class = MCID.getSchedClass();
2690  unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
2691  if (PredCost && MCID.hasImplicitDefOfPhysReg(ARM::CPSR))
2692    // When predicated, CPSR is an additional source operand for CPSR updating
2693    // instructions, this apparently increases their latencies.
2694    *PredCost = 1;
2695  if (UOps)
2696    return ItinData->getStageLatency(Class);
2697  return getNumMicroOps(ItinData, MI);
2698}
2699
2700int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
2701                                      SDNode *Node) const {
2702  if (!Node->isMachineOpcode())
2703    return 1;
2704
2705  if (!ItinData || ItinData->isEmpty())
2706    return 1;
2707
2708  unsigned Opcode = Node->getMachineOpcode();
2709  switch (Opcode) {
2710  default:
2711    return ItinData->getStageLatency(get(Opcode).getSchedClass());
2712  case ARM::VLDMQIA:
2713  case ARM::VSTMQIA:
2714    return 2;
2715  }
2716}
2717
2718bool ARMBaseInstrInfo::
2719hasHighOperandLatency(const InstrItineraryData *ItinData,
2720                      const MachineRegisterInfo *MRI,
2721                      const MachineInstr *DefMI, unsigned DefIdx,
2722                      const MachineInstr *UseMI, unsigned UseIdx) const {
2723  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
2724  unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
2725  if (Subtarget.isCortexA8() &&
2726      (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
2727    // CortexA8 VFP instructions are not pipelined.
2728    return true;
2729
2730  // Hoist VFP / NEON instructions with 4 or higher latency.
2731  int Latency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
2732  if (Latency <= 3)
2733    return false;
2734  return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
2735         UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
2736}
2737
2738bool ARMBaseInstrInfo::
2739hasLowDefLatency(const InstrItineraryData *ItinData,
2740                 const MachineInstr *DefMI, unsigned DefIdx) const {
2741  if (!ItinData || ItinData->isEmpty())
2742    return false;
2743
2744  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
2745  if (DDomain == ARMII::DomainGeneral) {
2746    unsigned DefClass = DefMI->getDesc().getSchedClass();
2747    int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2748    return (DefCycle != -1 && DefCycle <= 2);
2749  }
2750  return false;
2751}
2752
2753bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
2754                                         StringRef &ErrInfo) const {
2755  if (convertAddSubFlagsOpcode(MI->getOpcode())) {
2756    ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
2757    return false;
2758  }
2759  return true;
2760}
2761
2762bool
2763ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
2764                                     unsigned &AddSubOpc,
2765                                     bool &NegAcc, bool &HasLane) const {
2766  DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
2767  if (I == MLxEntryMap.end())
2768    return false;
2769
2770  const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
2771  MulOpc = Entry.MulOpc;
2772  AddSubOpc = Entry.AddSubOpc;
2773  NegAcc = Entry.NegAcc;
2774  HasLane = Entry.HasLane;
2775  return true;
2776}
2777
2778//===----------------------------------------------------------------------===//
2779// Execution domains.
2780//===----------------------------------------------------------------------===//
2781//
2782// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
2783// and some can go down both.  The vmov instructions go down the VFP pipeline,
2784// but they can be changed to vorr equivalents that are executed by the NEON
2785// pipeline.
2786//
2787// We use the following execution domain numbering:
2788//
2789enum ARMExeDomain {
2790  ExeGeneric = 0,
2791  ExeVFP = 1,
2792  ExeNEON = 2
2793};
2794//
2795// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
2796//
2797std::pair<uint16_t, uint16_t>
2798ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
2799  // VMOVD is a VFP instruction, but can be changed to NEON if it isn't
2800  // predicated.
2801  if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
2802    return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
2803
2804  // No other instructions can be swizzled, so just determine their domain.
2805  unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
2806
2807  if (Domain & ARMII::DomainNEON)
2808    return std::make_pair(ExeNEON, 0);
2809
2810  // Certain instructions can go either way on Cortex-A8.
2811  // Treat them as NEON instructions.
2812  if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
2813    return std::make_pair(ExeNEON, 0);
2814
2815  if (Domain & ARMII::DomainVFP)
2816    return std::make_pair(ExeVFP, 0);
2817
2818  return std::make_pair(ExeGeneric, 0);
2819}
2820
2821void
2822ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
2823  // We only know how to change VMOVD into VORR.
2824  assert(MI->getOpcode() == ARM::VMOVD && "Can only swizzle VMOVD");
2825  if (Domain != ExeNEON)
2826    return;
2827
2828  // Zap the predicate operands.
2829  assert(!isPredicated(MI) && "Cannot predicate a VORRd");
2830  MI->RemoveOperand(3);
2831  MI->RemoveOperand(2);
2832
2833  // Change to a VORRd which requires two identical use operands.
2834  MI->setDesc(get(ARM::VORRd));
2835
2836  // Add the extra source operand and new predicates.
2837  // This will go before any implicit ops.
2838  AddDefaultPred(MachineInstrBuilder(MI).addOperand(MI->getOperand(1)));
2839}
2840