ARMBaseInstrInfo.cpp revision b21ab43cfc3fa0dacf5c95f04e58b6d804b59a16
1//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Base ARM implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARM.h"
15#include "ARMBaseInstrInfo.h"
16#include "ARMBaseRegisterInfo.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMFeatures.h"
19#include "ARMHazardRecognizer.h"
20#include "ARMMachineFunctionInfo.h"
21#include "MCTargetDesc/ARMAddressingModes.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineJumpTableInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/SelectionDAGNodes.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/GlobalValue.h"
34#include "llvm/MC/MCAsmInfo.h"
35#include "llvm/Support/BranchProbability.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39
40#define GET_INSTRINFO_CTOR
41#include "ARMGenInstrInfo.inc"
42
43using namespace llvm;
44
45static cl::opt<bool>
46EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
47               cl::desc("Enable ARM 2-addr to 3-addr conv"));
48
49static cl::opt<bool>
50WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
51           cl::desc("Widen ARM vmovs to vmovd when possible"));
52
53static cl::opt<unsigned>
54SwiftPartialUpdateClearance("swift-partial-update-clearance",
55     cl::Hidden, cl::init(12),
56     cl::desc("Clearance before partial register updates"));
57
58/// ARM_MLxEntry - Record information about MLA / MLS instructions.
59struct ARM_MLxEntry {
60  uint16_t MLxOpc;     // MLA / MLS opcode
61  uint16_t MulOpc;     // Expanded multiplication opcode
62  uint16_t AddSubOpc;  // Expanded add / sub opcode
63  bool NegAcc;         // True if the acc is negated before the add / sub.
64  bool HasLane;        // True if instruction has an extra "lane" operand.
65};
66
67static const ARM_MLxEntry ARM_MLxTable[] = {
68  // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
69  // fp scalar ops
70  { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
71  { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
72  { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
73  { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
74  { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
75  { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
76  { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
77  { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
78
79  // fp SIMD ops
80  { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
81  { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
82  { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
83  { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
84  { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
85  { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
86  { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
87  { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
88};
89
90ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
91  : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
92    Subtarget(STI) {
93  for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
94    if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
95      assert(false && "Duplicated entries?");
96    MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
97    MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
98  }
99}
100
101// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
102// currently defaults to no prepass hazard recognizer.
103ScheduleHazardRecognizer *ARMBaseInstrInfo::
104CreateTargetHazardRecognizer(const TargetMachine *TM,
105                             const ScheduleDAG *DAG) const {
106  if (usePreRAHazardRecognizer()) {
107    const InstrItineraryData *II = TM->getInstrItineraryData();
108    return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
109  }
110  return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG);
111}
112
113ScheduleHazardRecognizer *ARMBaseInstrInfo::
114CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
115                                   const ScheduleDAG *DAG) const {
116  if (Subtarget.isThumb2() || Subtarget.hasVFP2())
117    return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
118  return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
119}
120
121MachineInstr *
122ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
123                                        MachineBasicBlock::iterator &MBBI,
124                                        LiveVariables *LV) const {
125  // FIXME: Thumb2 support.
126
127  if (!EnableARM3Addr)
128    return NULL;
129
130  MachineInstr *MI = MBBI;
131  MachineFunction &MF = *MI->getParent()->getParent();
132  uint64_t TSFlags = MI->getDesc().TSFlags;
133  bool isPre = false;
134  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
135  default: return NULL;
136  case ARMII::IndexModePre:
137    isPre = true;
138    break;
139  case ARMII::IndexModePost:
140    break;
141  }
142
143  // Try splitting an indexed load/store to an un-indexed one plus an add/sub
144  // operation.
145  unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
146  if (MemOpc == 0)
147    return NULL;
148
149  MachineInstr *UpdateMI = NULL;
150  MachineInstr *MemMI = NULL;
151  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
152  const MCInstrDesc &MCID = MI->getDesc();
153  unsigned NumOps = MCID.getNumOperands();
154  bool isLoad = !MI->mayStore();
155  const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
156  const MachineOperand &Base = MI->getOperand(2);
157  const MachineOperand &Offset = MI->getOperand(NumOps-3);
158  unsigned WBReg = WB.getReg();
159  unsigned BaseReg = Base.getReg();
160  unsigned OffReg = Offset.getReg();
161  unsigned OffImm = MI->getOperand(NumOps-2).getImm();
162  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
163  switch (AddrMode) {
164  default: llvm_unreachable("Unknown indexed op!");
165  case ARMII::AddrMode2: {
166    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
167    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
168    if (OffReg == 0) {
169      if (ARM_AM::getSOImmVal(Amt) == -1)
170        // Can't encode it in a so_imm operand. This transformation will
171        // add more than 1 instruction. Abandon!
172        return NULL;
173      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
174                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
175        .addReg(BaseReg).addImm(Amt)
176        .addImm(Pred).addReg(0).addReg(0);
177    } else if (Amt != 0) {
178      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
179      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
180      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
181                         get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
182        .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
183        .addImm(Pred).addReg(0).addReg(0);
184    } else
185      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
186                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
187        .addReg(BaseReg).addReg(OffReg)
188        .addImm(Pred).addReg(0).addReg(0);
189    break;
190  }
191  case ARMII::AddrMode3 : {
192    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
193    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
194    if (OffReg == 0)
195      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
196      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
197                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
198        .addReg(BaseReg).addImm(Amt)
199        .addImm(Pred).addReg(0).addReg(0);
200    else
201      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
202                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
203        .addReg(BaseReg).addReg(OffReg)
204        .addImm(Pred).addReg(0).addReg(0);
205    break;
206  }
207  }
208
209  std::vector<MachineInstr*> NewMIs;
210  if (isPre) {
211    if (isLoad)
212      MemMI = BuildMI(MF, MI->getDebugLoc(),
213                      get(MemOpc), MI->getOperand(0).getReg())
214        .addReg(WBReg).addImm(0).addImm(Pred);
215    else
216      MemMI = BuildMI(MF, MI->getDebugLoc(),
217                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
218        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
219    NewMIs.push_back(MemMI);
220    NewMIs.push_back(UpdateMI);
221  } else {
222    if (isLoad)
223      MemMI = BuildMI(MF, MI->getDebugLoc(),
224                      get(MemOpc), MI->getOperand(0).getReg())
225        .addReg(BaseReg).addImm(0).addImm(Pred);
226    else
227      MemMI = BuildMI(MF, MI->getDebugLoc(),
228                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
229        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
230    if (WB.isDead())
231      UpdateMI->getOperand(0).setIsDead();
232    NewMIs.push_back(UpdateMI);
233    NewMIs.push_back(MemMI);
234  }
235
236  // Transfer LiveVariables states, kill / dead info.
237  if (LV) {
238    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
239      MachineOperand &MO = MI->getOperand(i);
240      if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
241        unsigned Reg = MO.getReg();
242
243        LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
244        if (MO.isDef()) {
245          MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
246          if (MO.isDead())
247            LV->addVirtualRegisterDead(Reg, NewMI);
248        }
249        if (MO.isUse() && MO.isKill()) {
250          for (unsigned j = 0; j < 2; ++j) {
251            // Look at the two new MI's in reverse order.
252            MachineInstr *NewMI = NewMIs[j];
253            if (!NewMI->readsRegister(Reg))
254              continue;
255            LV->addVirtualRegisterKilled(Reg, NewMI);
256            if (VI.removeKill(MI))
257              VI.Kills.push_back(NewMI);
258            break;
259          }
260        }
261      }
262    }
263  }
264
265  MFI->insert(MBBI, NewMIs[1]);
266  MFI->insert(MBBI, NewMIs[0]);
267  return NewMIs[0];
268}
269
270// Branch analysis.
271bool
272ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
273                                MachineBasicBlock *&FBB,
274                                SmallVectorImpl<MachineOperand> &Cond,
275                                bool AllowModify) const {
276  TBB = 0;
277  FBB = 0;
278
279  MachineBasicBlock::iterator I = MBB.end();
280  if (I == MBB.begin())
281    return false; // Empty blocks are easy.
282  --I;
283
284  // Walk backwards from the end of the basic block until the branch is
285  // analyzed or we give up.
286  while (isPredicated(I) || I->isTerminator()) {
287
288    // Flag to be raised on unanalyzeable instructions. This is useful in cases
289    // where we want to clean up on the end of the basic block before we bail
290    // out.
291    bool CantAnalyze = false;
292
293    // Skip over DEBUG values and predicated nonterminators.
294    while (I->isDebugValue() || !I->isTerminator()) {
295      if (I == MBB.begin())
296        return false;
297      --I;
298    }
299
300    if (isIndirectBranchOpcode(I->getOpcode()) ||
301        isJumpTableBranchOpcode(I->getOpcode())) {
302      // Indirect branches and jump tables can't be analyzed, but we still want
303      // to clean up any instructions at the tail of the basic block.
304      CantAnalyze = true;
305    } else if (isUncondBranchOpcode(I->getOpcode())) {
306      TBB = I->getOperand(0).getMBB();
307    } else if (isCondBranchOpcode(I->getOpcode())) {
308      // Bail out if we encounter multiple conditional branches.
309      if (!Cond.empty())
310        return true;
311
312      assert(!FBB && "FBB should have been null.");
313      FBB = TBB;
314      TBB = I->getOperand(0).getMBB();
315      Cond.push_back(I->getOperand(1));
316      Cond.push_back(I->getOperand(2));
317    } else if (I->isReturn()) {
318      // Returns can't be analyzed, but we should run cleanup.
319      CantAnalyze = !isPredicated(I);
320    } else {
321      // We encountered other unrecognized terminator. Bail out immediately.
322      return true;
323    }
324
325    // Cleanup code - to be run for unpredicated unconditional branches and
326    //                returns.
327    if (!isPredicated(I) &&
328          (isUncondBranchOpcode(I->getOpcode()) ||
329           isIndirectBranchOpcode(I->getOpcode()) ||
330           isJumpTableBranchOpcode(I->getOpcode()) ||
331           I->isReturn())) {
332      // Forget any previous condition branch information - it no longer applies.
333      Cond.clear();
334      FBB = 0;
335
336      // If we can modify the function, delete everything below this
337      // unconditional branch.
338      if (AllowModify) {
339        MachineBasicBlock::iterator DI = llvm::next(I);
340        while (DI != MBB.end()) {
341          MachineInstr *InstToDelete = DI;
342          ++DI;
343          InstToDelete->eraseFromParent();
344        }
345      }
346    }
347
348    if (CantAnalyze)
349      return true;
350
351    if (I == MBB.begin())
352      return false;
353
354    --I;
355  }
356
357  // We made it past the terminators without bailing out - we must have
358  // analyzed this branch successfully.
359  return false;
360}
361
362
363unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
364  MachineBasicBlock::iterator I = MBB.end();
365  if (I == MBB.begin()) return 0;
366  --I;
367  while (I->isDebugValue()) {
368    if (I == MBB.begin())
369      return 0;
370    --I;
371  }
372  if (!isUncondBranchOpcode(I->getOpcode()) &&
373      !isCondBranchOpcode(I->getOpcode()))
374    return 0;
375
376  // Remove the branch.
377  I->eraseFromParent();
378
379  I = MBB.end();
380
381  if (I == MBB.begin()) return 1;
382  --I;
383  if (!isCondBranchOpcode(I->getOpcode()))
384    return 1;
385
386  // Remove the branch.
387  I->eraseFromParent();
388  return 2;
389}
390
391unsigned
392ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
393                               MachineBasicBlock *FBB,
394                               const SmallVectorImpl<MachineOperand> &Cond,
395                               DebugLoc DL) const {
396  ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
397  int BOpc   = !AFI->isThumbFunction()
398    ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
399  int BccOpc = !AFI->isThumbFunction()
400    ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
401  bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
402
403  // Shouldn't be a fall through.
404  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
405  assert((Cond.size() == 2 || Cond.size() == 0) &&
406         "ARM branch conditions have two components!");
407
408  if (FBB == 0) {
409    if (Cond.empty()) { // Unconditional branch?
410      if (isThumb)
411        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
412      else
413        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
414    } else
415      BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
416        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
417    return 1;
418  }
419
420  // Two-way conditional branch.
421  BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
422    .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
423  if (isThumb)
424    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
425  else
426    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
427  return 2;
428}
429
430bool ARMBaseInstrInfo::
431ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
432  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
433  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
434  return false;
435}
436
437bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
438  if (MI->isBundle()) {
439    MachineBasicBlock::const_instr_iterator I = MI;
440    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
441    while (++I != E && I->isInsideBundle()) {
442      int PIdx = I->findFirstPredOperandIdx();
443      if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
444        return true;
445    }
446    return false;
447  }
448
449  int PIdx = MI->findFirstPredOperandIdx();
450  return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
451}
452
453bool ARMBaseInstrInfo::
454PredicateInstruction(MachineInstr *MI,
455                     const SmallVectorImpl<MachineOperand> &Pred) const {
456  unsigned Opc = MI->getOpcode();
457  if (isUncondBranchOpcode(Opc)) {
458    MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
459    MachineInstrBuilder(*MI->getParent()->getParent(), MI)
460      .addImm(Pred[0].getImm())
461      .addReg(Pred[1].getReg());
462    return true;
463  }
464
465  int PIdx = MI->findFirstPredOperandIdx();
466  if (PIdx != -1) {
467    MachineOperand &PMO = MI->getOperand(PIdx);
468    PMO.setImm(Pred[0].getImm());
469    MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
470    return true;
471  }
472  return false;
473}
474
475bool ARMBaseInstrInfo::
476SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
477                  const SmallVectorImpl<MachineOperand> &Pred2) const {
478  if (Pred1.size() > 2 || Pred2.size() > 2)
479    return false;
480
481  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
482  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
483  if (CC1 == CC2)
484    return true;
485
486  switch (CC1) {
487  default:
488    return false;
489  case ARMCC::AL:
490    return true;
491  case ARMCC::HS:
492    return CC2 == ARMCC::HI;
493  case ARMCC::LS:
494    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
495  case ARMCC::GE:
496    return CC2 == ARMCC::GT;
497  case ARMCC::LE:
498    return CC2 == ARMCC::LT;
499  }
500}
501
502bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
503                                    std::vector<MachineOperand> &Pred) const {
504  bool Found = false;
505  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
506    const MachineOperand &MO = MI->getOperand(i);
507    if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
508        (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
509      Pred.push_back(MO);
510      Found = true;
511    }
512  }
513
514  return Found;
515}
516
517/// isPredicable - Return true if the specified instruction can be predicated.
518/// By default, this returns true for every instruction with a
519/// PredicateOperand.
520bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
521  if (!MI->isPredicable())
522    return false;
523
524  ARMFunctionInfo *AFI =
525    MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
526
527  if (AFI->isThumb2Function()) {
528    if (getSubtarget().restrictIT())
529      return isV8EligibleForIT(MI);
530  } else { // non-Thumb
531    if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
532      return false;
533  }
534
535  return true;
536}
537
538/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
539LLVM_ATTRIBUTE_NOINLINE
540static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
541                                unsigned JTI);
542static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
543                                unsigned JTI) {
544  assert(JTI < JT.size());
545  return JT[JTI].MBBs.size();
546}
547
548/// GetInstSize - Return the size of the specified MachineInstr.
549///
550unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
551  const MachineBasicBlock &MBB = *MI->getParent();
552  const MachineFunction *MF = MBB.getParent();
553  const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
554
555  const MCInstrDesc &MCID = MI->getDesc();
556  if (MCID.getSize())
557    return MCID.getSize();
558
559  // If this machine instr is an inline asm, measure it.
560  if (MI->getOpcode() == ARM::INLINEASM)
561    return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
562  if (MI->isLabel())
563    return 0;
564  unsigned Opc = MI->getOpcode();
565  switch (Opc) {
566  case TargetOpcode::IMPLICIT_DEF:
567  case TargetOpcode::KILL:
568  case TargetOpcode::PROLOG_LABEL:
569  case TargetOpcode::EH_LABEL:
570  case TargetOpcode::DBG_VALUE:
571    return 0;
572  case TargetOpcode::BUNDLE:
573    return getInstBundleLength(MI);
574  case ARM::MOVi16_ga_pcrel:
575  case ARM::MOVTi16_ga_pcrel:
576  case ARM::t2MOVi16_ga_pcrel:
577  case ARM::t2MOVTi16_ga_pcrel:
578    return 4;
579  case ARM::MOVi32imm:
580  case ARM::t2MOVi32imm:
581    return 8;
582  case ARM::CONSTPOOL_ENTRY:
583    // If this machine instr is a constant pool entry, its size is recorded as
584    // operand #2.
585    return MI->getOperand(2).getImm();
586  case ARM::Int_eh_sjlj_longjmp:
587    return 16;
588  case ARM::tInt_eh_sjlj_longjmp:
589    return 10;
590  case ARM::Int_eh_sjlj_setjmp:
591  case ARM::Int_eh_sjlj_setjmp_nofp:
592    return 20;
593  case ARM::tInt_eh_sjlj_setjmp:
594  case ARM::t2Int_eh_sjlj_setjmp:
595  case ARM::t2Int_eh_sjlj_setjmp_nofp:
596    return 12;
597  case ARM::BR_JTr:
598  case ARM::BR_JTm:
599  case ARM::BR_JTadd:
600  case ARM::tBR_JTr:
601  case ARM::t2BR_JT:
602  case ARM::t2TBB_JT:
603  case ARM::t2TBH_JT: {
604    // These are jumptable branches, i.e. a branch followed by an inlined
605    // jumptable. The size is 4 + 4 * number of entries. For TBB, each
606    // entry is one byte; TBH two byte each.
607    unsigned EntrySize = (Opc == ARM::t2TBB_JT)
608      ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
609    unsigned NumOps = MCID.getNumOperands();
610    MachineOperand JTOP =
611      MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
612    unsigned JTI = JTOP.getIndex();
613    const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
614    assert(MJTI != 0);
615    const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
616    assert(JTI < JT.size());
617    // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
618    // 4 aligned. The assembler / linker may add 2 byte padding just before
619    // the JT entries.  The size does not include this padding; the
620    // constant islands pass does separate bookkeeping for it.
621    // FIXME: If we know the size of the function is less than (1 << 16) *2
622    // bytes, we can use 16-bit entries instead. Then there won't be an
623    // alignment issue.
624    unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
625    unsigned NumEntries = getNumJTEntries(JT, JTI);
626    if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
627      // Make sure the instruction that follows TBB is 2-byte aligned.
628      // FIXME: Constant island pass should insert an "ALIGN" instruction
629      // instead.
630      ++NumEntries;
631    return NumEntries * EntrySize + InstSize;
632  }
633  default:
634    // Otherwise, pseudo-instruction sizes are zero.
635    return 0;
636  }
637}
638
639unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
640  unsigned Size = 0;
641  MachineBasicBlock::const_instr_iterator I = MI;
642  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
643  while (++I != E && I->isInsideBundle()) {
644    assert(!I->isBundle() && "No nested bundle!");
645    Size += GetInstSizeInBytes(&*I);
646  }
647  return Size;
648}
649
650void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
651                                   MachineBasicBlock::iterator I, DebugLoc DL,
652                                   unsigned DestReg, unsigned SrcReg,
653                                   bool KillSrc) const {
654  bool GPRDest = ARM::GPRRegClass.contains(DestReg);
655  bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
656
657  if (GPRDest && GPRSrc) {
658    AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
659                                    .addReg(SrcReg, getKillRegState(KillSrc))));
660    return;
661  }
662
663  bool SPRDest = ARM::SPRRegClass.contains(DestReg);
664  bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
665
666  unsigned Opc = 0;
667  if (SPRDest && SPRSrc)
668    Opc = ARM::VMOVS;
669  else if (GPRDest && SPRSrc)
670    Opc = ARM::VMOVRS;
671  else if (SPRDest && GPRSrc)
672    Opc = ARM::VMOVSR;
673  else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
674    Opc = ARM::VMOVD;
675  else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
676    Opc = ARM::VORRq;
677
678  if (Opc) {
679    MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
680    MIB.addReg(SrcReg, getKillRegState(KillSrc));
681    if (Opc == ARM::VORRq)
682      MIB.addReg(SrcReg, getKillRegState(KillSrc));
683    AddDefaultPred(MIB);
684    return;
685  }
686
687  // Handle register classes that require multiple instructions.
688  unsigned BeginIdx = 0;
689  unsigned SubRegs = 0;
690  int Spacing = 1;
691
692  // Use VORRq when possible.
693  if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
694    Opc = ARM::VORRq;
695    BeginIdx = ARM::qsub_0;
696    SubRegs = 2;
697  } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
698    Opc = ARM::VORRq;
699    BeginIdx = ARM::qsub_0;
700    SubRegs = 4;
701  // Fall back to VMOVD.
702  } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
703    Opc = ARM::VMOVD;
704    BeginIdx = ARM::dsub_0;
705    SubRegs = 2;
706  } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
707    Opc = ARM::VMOVD;
708    BeginIdx = ARM::dsub_0;
709    SubRegs = 3;
710  } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
711    Opc = ARM::VMOVD;
712    BeginIdx = ARM::dsub_0;
713    SubRegs = 4;
714  } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
715    Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
716    BeginIdx = ARM::gsub_0;
717    SubRegs = 2;
718  } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
719    Opc = ARM::VMOVD;
720    BeginIdx = ARM::dsub_0;
721    SubRegs = 2;
722    Spacing = 2;
723  } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
724    Opc = ARM::VMOVD;
725    BeginIdx = ARM::dsub_0;
726    SubRegs = 3;
727    Spacing = 2;
728  } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
729    Opc = ARM::VMOVD;
730    BeginIdx = ARM::dsub_0;
731    SubRegs = 4;
732    Spacing = 2;
733  }
734
735  assert(Opc && "Impossible reg-to-reg copy");
736
737  const TargetRegisterInfo *TRI = &getRegisterInfo();
738  MachineInstrBuilder Mov;
739
740  // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
741  if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
742    BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
743    Spacing = -Spacing;
744  }
745#ifndef NDEBUG
746  SmallSet<unsigned, 4> DstRegs;
747#endif
748  for (unsigned i = 0; i != SubRegs; ++i) {
749    unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
750    unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
751    assert(Dst && Src && "Bad sub-register");
752#ifndef NDEBUG
753    assert(!DstRegs.count(Src) && "destructive vector copy");
754    DstRegs.insert(Dst);
755#endif
756    Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
757    // VORR takes two source operands.
758    if (Opc == ARM::VORRq)
759      Mov.addReg(Src);
760    Mov = AddDefaultPred(Mov);
761    // MOVr can set CC.
762    if (Opc == ARM::MOVr)
763      Mov = AddDefaultCC(Mov);
764  }
765  // Add implicit super-register defs and kills to the last instruction.
766  Mov->addRegisterDefined(DestReg, TRI);
767  if (KillSrc)
768    Mov->addRegisterKilled(SrcReg, TRI);
769}
770
771const MachineInstrBuilder &
772ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
773                          unsigned SubIdx, unsigned State,
774                          const TargetRegisterInfo *TRI) const {
775  if (!SubIdx)
776    return MIB.addReg(Reg, State);
777
778  if (TargetRegisterInfo::isPhysicalRegister(Reg))
779    return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
780  return MIB.addReg(Reg, State, SubIdx);
781}
782
783void ARMBaseInstrInfo::
784storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
785                    unsigned SrcReg, bool isKill, int FI,
786                    const TargetRegisterClass *RC,
787                    const TargetRegisterInfo *TRI) const {
788  DebugLoc DL;
789  if (I != MBB.end()) DL = I->getDebugLoc();
790  MachineFunction &MF = *MBB.getParent();
791  MachineFrameInfo &MFI = *MF.getFrameInfo();
792  unsigned Align = MFI.getObjectAlignment(FI);
793
794  MachineMemOperand *MMO =
795    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
796                            MachineMemOperand::MOStore,
797                            MFI.getObjectSize(FI),
798                            Align);
799
800  switch (RC->getSize()) {
801    case 4:
802      if (ARM::GPRRegClass.hasSubClassEq(RC)) {
803        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
804                   .addReg(SrcReg, getKillRegState(isKill))
805                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
806      } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
807        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
808                   .addReg(SrcReg, getKillRegState(isKill))
809                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
810      } else
811        llvm_unreachable("Unknown reg class!");
812      break;
813    case 8:
814      if (ARM::DPRRegClass.hasSubClassEq(RC)) {
815        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
816                   .addReg(SrcReg, getKillRegState(isKill))
817                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
818      } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
819        if (Subtarget.hasV5TEOps()) {
820          MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
821          AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
822          AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
823          MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
824
825          AddDefaultPred(MIB);
826        } else {
827          // Fallback to STM instruction, which has existed since the dawn of
828          // time.
829          MachineInstrBuilder MIB =
830            AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA))
831                             .addFrameIndex(FI).addMemOperand(MMO));
832          AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
833          AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
834        }
835      } else
836        llvm_unreachable("Unknown reg class!");
837      break;
838    case 16:
839      if (ARM::DPairRegClass.hasSubClassEq(RC)) {
840        // Use aligned spills if the stack can be realigned.
841        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
842          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
843                     .addFrameIndex(FI).addImm(16)
844                     .addReg(SrcReg, getKillRegState(isKill))
845                     .addMemOperand(MMO));
846        } else {
847          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
848                     .addReg(SrcReg, getKillRegState(isKill))
849                     .addFrameIndex(FI)
850                     .addMemOperand(MMO));
851        }
852      } else
853        llvm_unreachable("Unknown reg class!");
854      break;
855    case 24:
856      if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
857        // Use aligned spills if the stack can be realigned.
858        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
859          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
860                     .addFrameIndex(FI).addImm(16)
861                     .addReg(SrcReg, getKillRegState(isKill))
862                     .addMemOperand(MMO));
863        } else {
864          MachineInstrBuilder MIB =
865          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
866                       .addFrameIndex(FI))
867                       .addMemOperand(MMO);
868          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
869          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
870          AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
871        }
872      } else
873        llvm_unreachable("Unknown reg class!");
874      break;
875    case 32:
876      if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
877        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
878          // FIXME: It's possible to only store part of the QQ register if the
879          // spilled def has a sub-register index.
880          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
881                     .addFrameIndex(FI).addImm(16)
882                     .addReg(SrcReg, getKillRegState(isKill))
883                     .addMemOperand(MMO));
884        } else {
885          MachineInstrBuilder MIB =
886          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
887                       .addFrameIndex(FI))
888                       .addMemOperand(MMO);
889          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
890          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
891          MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
892                AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
893        }
894      } else
895        llvm_unreachable("Unknown reg class!");
896      break;
897    case 64:
898      if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
899        MachineInstrBuilder MIB =
900          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
901                         .addFrameIndex(FI))
902                         .addMemOperand(MMO);
903        MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
904        MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
905        MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
906        MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
907        MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
908        MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
909        MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
910              AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
911      } else
912        llvm_unreachable("Unknown reg class!");
913      break;
914    default:
915      llvm_unreachable("Unknown reg class!");
916  }
917}
918
919unsigned
920ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
921                                     int &FrameIndex) const {
922  switch (MI->getOpcode()) {
923  default: break;
924  case ARM::STRrs:
925  case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
926    if (MI->getOperand(1).isFI() &&
927        MI->getOperand(2).isReg() &&
928        MI->getOperand(3).isImm() &&
929        MI->getOperand(2).getReg() == 0 &&
930        MI->getOperand(3).getImm() == 0) {
931      FrameIndex = MI->getOperand(1).getIndex();
932      return MI->getOperand(0).getReg();
933    }
934    break;
935  case ARM::STRi12:
936  case ARM::t2STRi12:
937  case ARM::tSTRspi:
938  case ARM::VSTRD:
939  case ARM::VSTRS:
940    if (MI->getOperand(1).isFI() &&
941        MI->getOperand(2).isImm() &&
942        MI->getOperand(2).getImm() == 0) {
943      FrameIndex = MI->getOperand(1).getIndex();
944      return MI->getOperand(0).getReg();
945    }
946    break;
947  case ARM::VST1q64:
948  case ARM::VST1d64TPseudo:
949  case ARM::VST1d64QPseudo:
950    if (MI->getOperand(0).isFI() &&
951        MI->getOperand(2).getSubReg() == 0) {
952      FrameIndex = MI->getOperand(0).getIndex();
953      return MI->getOperand(2).getReg();
954    }
955    break;
956  case ARM::VSTMQIA:
957    if (MI->getOperand(1).isFI() &&
958        MI->getOperand(0).getSubReg() == 0) {
959      FrameIndex = MI->getOperand(1).getIndex();
960      return MI->getOperand(0).getReg();
961    }
962    break;
963  }
964
965  return 0;
966}
967
968unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
969                                                    int &FrameIndex) const {
970  const MachineMemOperand *Dummy;
971  return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
972}
973
974void ARMBaseInstrInfo::
975loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
976                     unsigned DestReg, int FI,
977                     const TargetRegisterClass *RC,
978                     const TargetRegisterInfo *TRI) const {
979  DebugLoc DL;
980  if (I != MBB.end()) DL = I->getDebugLoc();
981  MachineFunction &MF = *MBB.getParent();
982  MachineFrameInfo &MFI = *MF.getFrameInfo();
983  unsigned Align = MFI.getObjectAlignment(FI);
984  MachineMemOperand *MMO =
985    MF.getMachineMemOperand(
986                    MachinePointerInfo::getFixedStack(FI),
987                            MachineMemOperand::MOLoad,
988                            MFI.getObjectSize(FI),
989                            Align);
990
991  switch (RC->getSize()) {
992  case 4:
993    if (ARM::GPRRegClass.hasSubClassEq(RC)) {
994      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
995                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
996
997    } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
998      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
999                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1000    } else
1001      llvm_unreachable("Unknown reg class!");
1002    break;
1003  case 8:
1004    if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1005      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1006                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1007    } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1008      MachineInstrBuilder MIB;
1009
1010      if (Subtarget.hasV5TEOps()) {
1011        MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1012        AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1013        AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1014        MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
1015
1016        AddDefaultPred(MIB);
1017      } else {
1018        // Fallback to LDM instruction, which has existed since the dawn of
1019        // time.
1020        MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA))
1021                                 .addFrameIndex(FI).addMemOperand(MMO));
1022        MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1023        MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1024      }
1025
1026      if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1027        MIB.addReg(DestReg, RegState::ImplicitDefine);
1028    } else
1029      llvm_unreachable("Unknown reg class!");
1030    break;
1031  case 16:
1032    if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1033      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1034        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1035                     .addFrameIndex(FI).addImm(16)
1036                     .addMemOperand(MMO));
1037      } else {
1038        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1039                       .addFrameIndex(FI)
1040                       .addMemOperand(MMO));
1041      }
1042    } else
1043      llvm_unreachable("Unknown reg class!");
1044    break;
1045  case 24:
1046    if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1047      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1048        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1049                     .addFrameIndex(FI).addImm(16)
1050                     .addMemOperand(MMO));
1051      } else {
1052        MachineInstrBuilder MIB =
1053          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1054                         .addFrameIndex(FI)
1055                         .addMemOperand(MMO));
1056        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1057        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1058        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1059        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1060          MIB.addReg(DestReg, RegState::ImplicitDefine);
1061      }
1062    } else
1063      llvm_unreachable("Unknown reg class!");
1064    break;
1065   case 32:
1066    if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1067      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1068        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1069                     .addFrameIndex(FI).addImm(16)
1070                     .addMemOperand(MMO));
1071      } else {
1072        MachineInstrBuilder MIB =
1073        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1074                       .addFrameIndex(FI))
1075                       .addMemOperand(MMO);
1076        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1077        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1078        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1079        MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1080        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1081          MIB.addReg(DestReg, RegState::ImplicitDefine);
1082      }
1083    } else
1084      llvm_unreachable("Unknown reg class!");
1085    break;
1086  case 64:
1087    if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1088      MachineInstrBuilder MIB =
1089      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1090                     .addFrameIndex(FI))
1091                     .addMemOperand(MMO);
1092      MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1093      MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1094      MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1095      MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1096      MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1097      MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1098      MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1099      MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1100      if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1101        MIB.addReg(DestReg, RegState::ImplicitDefine);
1102    } else
1103      llvm_unreachable("Unknown reg class!");
1104    break;
1105  default:
1106    llvm_unreachable("Unknown regclass!");
1107  }
1108}
1109
1110unsigned
1111ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1112                                      int &FrameIndex) const {
1113  switch (MI->getOpcode()) {
1114  default: break;
1115  case ARM::LDRrs:
1116  case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1117    if (MI->getOperand(1).isFI() &&
1118        MI->getOperand(2).isReg() &&
1119        MI->getOperand(3).isImm() &&
1120        MI->getOperand(2).getReg() == 0 &&
1121        MI->getOperand(3).getImm() == 0) {
1122      FrameIndex = MI->getOperand(1).getIndex();
1123      return MI->getOperand(0).getReg();
1124    }
1125    break;
1126  case ARM::LDRi12:
1127  case ARM::t2LDRi12:
1128  case ARM::tLDRspi:
1129  case ARM::VLDRD:
1130  case ARM::VLDRS:
1131    if (MI->getOperand(1).isFI() &&
1132        MI->getOperand(2).isImm() &&
1133        MI->getOperand(2).getImm() == 0) {
1134      FrameIndex = MI->getOperand(1).getIndex();
1135      return MI->getOperand(0).getReg();
1136    }
1137    break;
1138  case ARM::VLD1q64:
1139  case ARM::VLD1d64TPseudo:
1140  case ARM::VLD1d64QPseudo:
1141    if (MI->getOperand(1).isFI() &&
1142        MI->getOperand(0).getSubReg() == 0) {
1143      FrameIndex = MI->getOperand(1).getIndex();
1144      return MI->getOperand(0).getReg();
1145    }
1146    break;
1147  case ARM::VLDMQIA:
1148    if (MI->getOperand(1).isFI() &&
1149        MI->getOperand(0).getSubReg() == 0) {
1150      FrameIndex = MI->getOperand(1).getIndex();
1151      return MI->getOperand(0).getReg();
1152    }
1153    break;
1154  }
1155
1156  return 0;
1157}
1158
1159unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1160                                             int &FrameIndex) const {
1161  const MachineMemOperand *Dummy;
1162  return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1163}
1164
1165bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
1166  // This hook gets to expand COPY instructions before they become
1167  // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1168  // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1169  // changed into a VORR that can go down the NEON pipeline.
1170  if (!WidenVMOVS || !MI->isCopy() || Subtarget.isCortexA15())
1171    return false;
1172
1173  // Look for a copy between even S-registers.  That is where we keep floats
1174  // when using NEON v2f32 instructions for f32 arithmetic.
1175  unsigned DstRegS = MI->getOperand(0).getReg();
1176  unsigned SrcRegS = MI->getOperand(1).getReg();
1177  if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1178    return false;
1179
1180  const TargetRegisterInfo *TRI = &getRegisterInfo();
1181  unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1182                                              &ARM::DPRRegClass);
1183  unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1184                                              &ARM::DPRRegClass);
1185  if (!DstRegD || !SrcRegD)
1186    return false;
1187
1188  // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1189  // legal if the COPY already defines the full DstRegD, and it isn't a
1190  // sub-register insertion.
1191  if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
1192    return false;
1193
1194  // A dead copy shouldn't show up here, but reject it just in case.
1195  if (MI->getOperand(0).isDead())
1196    return false;
1197
1198  // All clear, widen the COPY.
1199  DEBUG(dbgs() << "widening:    " << *MI);
1200  MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
1201
1202  // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
1203  // or some other super-register.
1204  int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
1205  if (ImpDefIdx != -1)
1206    MI->RemoveOperand(ImpDefIdx);
1207
1208  // Change the opcode and operands.
1209  MI->setDesc(get(ARM::VMOVD));
1210  MI->getOperand(0).setReg(DstRegD);
1211  MI->getOperand(1).setReg(SrcRegD);
1212  AddDefaultPred(MIB);
1213
1214  // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1215  // register scavenger and machine verifier, so we need to indicate that we
1216  // are reading an undefined value from SrcRegD, but a proper value from
1217  // SrcRegS.
1218  MI->getOperand(1).setIsUndef();
1219  MIB.addReg(SrcRegS, RegState::Implicit);
1220
1221  // SrcRegD may actually contain an unrelated value in the ssub_1
1222  // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1223  if (MI->getOperand(1).isKill()) {
1224    MI->getOperand(1).setIsKill(false);
1225    MI->addRegisterKilled(SrcRegS, TRI, true);
1226  }
1227
1228  DEBUG(dbgs() << "replaced by: " << *MI);
1229  return true;
1230}
1231
1232/// Create a copy of a const pool value. Update CPI to the new index and return
1233/// the label UID.
1234static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1235  MachineConstantPool *MCP = MF.getConstantPool();
1236  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1237
1238  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1239  assert(MCPE.isMachineConstantPoolEntry() &&
1240         "Expecting a machine constantpool entry!");
1241  ARMConstantPoolValue *ACPV =
1242    static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1243
1244  unsigned PCLabelId = AFI->createPICLabelUId();
1245  ARMConstantPoolValue *NewCPV = 0;
1246  // FIXME: The below assumes PIC relocation model and that the function
1247  // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1248  // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1249  // instructions, so that's probably OK, but is PIC always correct when
1250  // we get here?
1251  if (ACPV->isGlobalValue())
1252    NewCPV = ARMConstantPoolConstant::
1253      Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
1254             ARMCP::CPValue, 4);
1255  else if (ACPV->isExtSymbol())
1256    NewCPV = ARMConstantPoolSymbol::
1257      Create(MF.getFunction()->getContext(),
1258             cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1259  else if (ACPV->isBlockAddress())
1260    NewCPV = ARMConstantPoolConstant::
1261      Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1262             ARMCP::CPBlockAddress, 4);
1263  else if (ACPV->isLSDA())
1264    NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1265                                             ARMCP::CPLSDA, 4);
1266  else if (ACPV->isMachineBasicBlock())
1267    NewCPV = ARMConstantPoolMBB::
1268      Create(MF.getFunction()->getContext(),
1269             cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1270  else
1271    llvm_unreachable("Unexpected ARM constantpool value type!!");
1272  CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1273  return PCLabelId;
1274}
1275
1276void ARMBaseInstrInfo::
1277reMaterialize(MachineBasicBlock &MBB,
1278              MachineBasicBlock::iterator I,
1279              unsigned DestReg, unsigned SubIdx,
1280              const MachineInstr *Orig,
1281              const TargetRegisterInfo &TRI) const {
1282  unsigned Opcode = Orig->getOpcode();
1283  switch (Opcode) {
1284  default: {
1285    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1286    MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1287    MBB.insert(I, MI);
1288    break;
1289  }
1290  case ARM::tLDRpci_pic:
1291  case ARM::t2LDRpci_pic: {
1292    MachineFunction &MF = *MBB.getParent();
1293    unsigned CPI = Orig->getOperand(1).getIndex();
1294    unsigned PCLabelId = duplicateCPV(MF, CPI);
1295    MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1296                                      DestReg)
1297      .addConstantPoolIndex(CPI).addImm(PCLabelId);
1298    MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1299    break;
1300  }
1301  }
1302}
1303
1304MachineInstr *
1305ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1306  MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF);
1307  switch(Orig->getOpcode()) {
1308  case ARM::tLDRpci_pic:
1309  case ARM::t2LDRpci_pic: {
1310    unsigned CPI = Orig->getOperand(1).getIndex();
1311    unsigned PCLabelId = duplicateCPV(MF, CPI);
1312    Orig->getOperand(1).setIndex(CPI);
1313    Orig->getOperand(2).setImm(PCLabelId);
1314    break;
1315  }
1316  }
1317  return MI;
1318}
1319
1320bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1321                                        const MachineInstr *MI1,
1322                                        const MachineRegisterInfo *MRI) const {
1323  int Opcode = MI0->getOpcode();
1324  if (Opcode == ARM::t2LDRpci ||
1325      Opcode == ARM::t2LDRpci_pic ||
1326      Opcode == ARM::tLDRpci ||
1327      Opcode == ARM::tLDRpci_pic ||
1328      Opcode == ARM::MOV_ga_dyn ||
1329      Opcode == ARM::MOV_ga_pcrel ||
1330      Opcode == ARM::MOV_ga_pcrel_ldr ||
1331      Opcode == ARM::t2MOV_ga_dyn ||
1332      Opcode == ARM::t2MOV_ga_pcrel) {
1333    if (MI1->getOpcode() != Opcode)
1334      return false;
1335    if (MI0->getNumOperands() != MI1->getNumOperands())
1336      return false;
1337
1338    const MachineOperand &MO0 = MI0->getOperand(1);
1339    const MachineOperand &MO1 = MI1->getOperand(1);
1340    if (MO0.getOffset() != MO1.getOffset())
1341      return false;
1342
1343    if (Opcode == ARM::MOV_ga_dyn ||
1344        Opcode == ARM::MOV_ga_pcrel ||
1345        Opcode == ARM::MOV_ga_pcrel_ldr ||
1346        Opcode == ARM::t2MOV_ga_dyn ||
1347        Opcode == ARM::t2MOV_ga_pcrel)
1348      // Ignore the PC labels.
1349      return MO0.getGlobal() == MO1.getGlobal();
1350
1351    const MachineFunction *MF = MI0->getParent()->getParent();
1352    const MachineConstantPool *MCP = MF->getConstantPool();
1353    int CPI0 = MO0.getIndex();
1354    int CPI1 = MO1.getIndex();
1355    const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1356    const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1357    bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1358    bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1359    if (isARMCP0 && isARMCP1) {
1360      ARMConstantPoolValue *ACPV0 =
1361        static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1362      ARMConstantPoolValue *ACPV1 =
1363        static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1364      return ACPV0->hasSameValue(ACPV1);
1365    } else if (!isARMCP0 && !isARMCP1) {
1366      return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1367    }
1368    return false;
1369  } else if (Opcode == ARM::PICLDR) {
1370    if (MI1->getOpcode() != Opcode)
1371      return false;
1372    if (MI0->getNumOperands() != MI1->getNumOperands())
1373      return false;
1374
1375    unsigned Addr0 = MI0->getOperand(1).getReg();
1376    unsigned Addr1 = MI1->getOperand(1).getReg();
1377    if (Addr0 != Addr1) {
1378      if (!MRI ||
1379          !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1380          !TargetRegisterInfo::isVirtualRegister(Addr1))
1381        return false;
1382
1383      // This assumes SSA form.
1384      MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1385      MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1386      // Check if the loaded value, e.g. a constantpool of a global address, are
1387      // the same.
1388      if (!produceSameValue(Def0, Def1, MRI))
1389        return false;
1390    }
1391
1392    for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
1393      // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1394      const MachineOperand &MO0 = MI0->getOperand(i);
1395      const MachineOperand &MO1 = MI1->getOperand(i);
1396      if (!MO0.isIdenticalTo(MO1))
1397        return false;
1398    }
1399    return true;
1400  }
1401
1402  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1403}
1404
1405/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1406/// determine if two loads are loading from the same base address. It should
1407/// only return true if the base pointers are the same and the only differences
1408/// between the two addresses is the offset. It also returns the offsets by
1409/// reference.
1410///
1411/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1412/// is permanently disabled.
1413bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1414                                               int64_t &Offset1,
1415                                               int64_t &Offset2) const {
1416  // Don't worry about Thumb: just ARM and Thumb2.
1417  if (Subtarget.isThumb1Only()) return false;
1418
1419  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1420    return false;
1421
1422  switch (Load1->getMachineOpcode()) {
1423  default:
1424    return false;
1425  case ARM::LDRi12:
1426  case ARM::LDRBi12:
1427  case ARM::LDRD:
1428  case ARM::LDRH:
1429  case ARM::LDRSB:
1430  case ARM::LDRSH:
1431  case ARM::VLDRD:
1432  case ARM::VLDRS:
1433  case ARM::t2LDRi8:
1434  case ARM::t2LDRBi8:
1435  case ARM::t2LDRDi8:
1436  case ARM::t2LDRSHi8:
1437  case ARM::t2LDRi12:
1438  case ARM::t2LDRBi12:
1439  case ARM::t2LDRSHi12:
1440    break;
1441  }
1442
1443  switch (Load2->getMachineOpcode()) {
1444  default:
1445    return false;
1446  case ARM::LDRi12:
1447  case ARM::LDRBi12:
1448  case ARM::LDRD:
1449  case ARM::LDRH:
1450  case ARM::LDRSB:
1451  case ARM::LDRSH:
1452  case ARM::VLDRD:
1453  case ARM::VLDRS:
1454  case ARM::t2LDRi8:
1455  case ARM::t2LDRBi8:
1456  case ARM::t2LDRSHi8:
1457  case ARM::t2LDRi12:
1458  case ARM::t2LDRBi12:
1459  case ARM::t2LDRSHi12:
1460    break;
1461  }
1462
1463  // Check if base addresses and chain operands match.
1464  if (Load1->getOperand(0) != Load2->getOperand(0) ||
1465      Load1->getOperand(4) != Load2->getOperand(4))
1466    return false;
1467
1468  // Index should be Reg0.
1469  if (Load1->getOperand(3) != Load2->getOperand(3))
1470    return false;
1471
1472  // Determine the offsets.
1473  if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1474      isa<ConstantSDNode>(Load2->getOperand(1))) {
1475    Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1476    Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1477    return true;
1478  }
1479
1480  return false;
1481}
1482
1483/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1484/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1485/// be scheduled togther. On some targets if two loads are loading from
1486/// addresses in the same cache line, it's better if they are scheduled
1487/// together. This function takes two integers that represent the load offsets
1488/// from the common base address. It returns true if it decides it's desirable
1489/// to schedule the two loads together. "NumLoads" is the number of loads that
1490/// have already been scheduled after Load1.
1491///
1492/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1493/// is permanently disabled.
1494bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1495                                               int64_t Offset1, int64_t Offset2,
1496                                               unsigned NumLoads) const {
1497  // Don't worry about Thumb: just ARM and Thumb2.
1498  if (Subtarget.isThumb1Only()) return false;
1499
1500  assert(Offset2 > Offset1);
1501
1502  if ((Offset2 - Offset1) / 8 > 64)
1503    return false;
1504
1505  // Check if the machine opcodes are different. If they are different
1506  // then we consider them to not be of the same base address,
1507  // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1508  // In this case, they are considered to be the same because they are different
1509  // encoding forms of the same basic instruction.
1510  if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1511      !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1512         Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1513        (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1514         Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1515    return false;  // FIXME: overly conservative?
1516
1517  // Four loads in a row should be sufficient.
1518  if (NumLoads >= 3)
1519    return false;
1520
1521  return true;
1522}
1523
1524bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1525                                            const MachineBasicBlock *MBB,
1526                                            const MachineFunction &MF) const {
1527  // Debug info is never a scheduling boundary. It's necessary to be explicit
1528  // due to the special treatment of IT instructions below, otherwise a
1529  // dbg_value followed by an IT will result in the IT instruction being
1530  // considered a scheduling hazard, which is wrong. It should be the actual
1531  // instruction preceding the dbg_value instruction(s), just like it is
1532  // when debug info is not present.
1533  if (MI->isDebugValue())
1534    return false;
1535
1536  // Terminators and labels can't be scheduled around.
1537  if (MI->isTerminator() || MI->isLabel())
1538    return true;
1539
1540  // Treat the start of the IT block as a scheduling boundary, but schedule
1541  // t2IT along with all instructions following it.
1542  // FIXME: This is a big hammer. But the alternative is to add all potential
1543  // true and anti dependencies to IT block instructions as implicit operands
1544  // to the t2IT instruction. The added compile time and complexity does not
1545  // seem worth it.
1546  MachineBasicBlock::const_iterator I = MI;
1547  // Make sure to skip any dbg_value instructions
1548  while (++I != MBB->end() && I->isDebugValue())
1549    ;
1550  if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1551    return true;
1552
1553  // Don't attempt to schedule around any instruction that defines
1554  // a stack-oriented pointer, as it's unlikely to be profitable. This
1555  // saves compile time, because it doesn't require every single
1556  // stack slot reference to depend on the instruction that does the
1557  // modification.
1558  // Calls don't actually change the stack pointer, even if they have imp-defs.
1559  // No ARM calling conventions change the stack pointer. (X86 calling
1560  // conventions sometimes do).
1561  if (!MI->isCall() && MI->definesRegister(ARM::SP))
1562    return true;
1563
1564  return false;
1565}
1566
1567bool ARMBaseInstrInfo::
1568isProfitableToIfCvt(MachineBasicBlock &MBB,
1569                    unsigned NumCycles, unsigned ExtraPredCycles,
1570                    const BranchProbability &Probability) const {
1571  if (!NumCycles)
1572    return false;
1573
1574  // Attempt to estimate the relative costs of predication versus branching.
1575  unsigned UnpredCost = Probability.getNumerator() * NumCycles;
1576  UnpredCost /= Probability.getDenominator();
1577  UnpredCost += 1; // The branch itself
1578  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1579
1580  return (NumCycles + ExtraPredCycles) <= UnpredCost;
1581}
1582
1583bool ARMBaseInstrInfo::
1584isProfitableToIfCvt(MachineBasicBlock &TMBB,
1585                    unsigned TCycles, unsigned TExtra,
1586                    MachineBasicBlock &FMBB,
1587                    unsigned FCycles, unsigned FExtra,
1588                    const BranchProbability &Probability) const {
1589  if (!TCycles || !FCycles)
1590    return false;
1591
1592  // Attempt to estimate the relative costs of predication versus branching.
1593  unsigned TUnpredCost = Probability.getNumerator() * TCycles;
1594  TUnpredCost /= Probability.getDenominator();
1595
1596  uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
1597  unsigned FUnpredCost = Comp * FCycles;
1598  FUnpredCost /= Probability.getDenominator();
1599
1600  unsigned UnpredCost = TUnpredCost + FUnpredCost;
1601  UnpredCost += 1; // The branch itself
1602  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1603
1604  return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
1605}
1606
1607bool
1608ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
1609                                            MachineBasicBlock &FMBB) const {
1610  // Reduce false anti-dependencies to let Swift's out-of-order execution
1611  // engine do its thing.
1612  return Subtarget.isSwift();
1613}
1614
1615/// getInstrPredicate - If instruction is predicated, returns its predicate
1616/// condition, otherwise returns AL. It also returns the condition code
1617/// register by reference.
1618ARMCC::CondCodes
1619llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1620  int PIdx = MI->findFirstPredOperandIdx();
1621  if (PIdx == -1) {
1622    PredReg = 0;
1623    return ARMCC::AL;
1624  }
1625
1626  PredReg = MI->getOperand(PIdx+1).getReg();
1627  return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1628}
1629
1630
1631int llvm::getMatchingCondBranchOpcode(int Opc) {
1632  if (Opc == ARM::B)
1633    return ARM::Bcc;
1634  if (Opc == ARM::tB)
1635    return ARM::tBcc;
1636  if (Opc == ARM::t2B)
1637    return ARM::t2Bcc;
1638
1639  llvm_unreachable("Unknown unconditional branch opcode!");
1640}
1641
1642/// commuteInstruction - Handle commutable instructions.
1643MachineInstr *
1644ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1645  switch (MI->getOpcode()) {
1646  case ARM::MOVCCr:
1647  case ARM::t2MOVCCr: {
1648    // MOVCC can be commuted by inverting the condition.
1649    unsigned PredReg = 0;
1650    ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
1651    // MOVCC AL can't be inverted. Shouldn't happen.
1652    if (CC == ARMCC::AL || PredReg != ARM::CPSR)
1653      return NULL;
1654    MI = TargetInstrInfo::commuteInstruction(MI, NewMI);
1655    if (!MI)
1656      return NULL;
1657    // After swapping the MOVCC operands, also invert the condition.
1658    MI->getOperand(MI->findFirstPredOperandIdx())
1659      .setImm(ARMCC::getOppositeCondition(CC));
1660    return MI;
1661  }
1662  }
1663  return TargetInstrInfo::commuteInstruction(MI, NewMI);
1664}
1665
1666/// Identify instructions that can be folded into a MOVCC instruction, and
1667/// return the defining instruction.
1668static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
1669                                      const MachineRegisterInfo &MRI,
1670                                      const TargetInstrInfo *TII) {
1671  if (!TargetRegisterInfo::isVirtualRegister(Reg))
1672    return 0;
1673  if (!MRI.hasOneNonDBGUse(Reg))
1674    return 0;
1675  MachineInstr *MI = MRI.getVRegDef(Reg);
1676  if (!MI)
1677    return 0;
1678  // MI is folded into the MOVCC by predicating it.
1679  if (!MI->isPredicable())
1680    return 0;
1681  // Check if MI has any non-dead defs or physreg uses. This also detects
1682  // predicated instructions which will be reading CPSR.
1683  for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
1684    const MachineOperand &MO = MI->getOperand(i);
1685    // Reject frame index operands, PEI can't handle the predicated pseudos.
1686    if (MO.isFI() || MO.isCPI() || MO.isJTI())
1687      return 0;
1688    if (!MO.isReg())
1689      continue;
1690    // MI can't have any tied operands, that would conflict with predication.
1691    if (MO.isTied())
1692      return 0;
1693    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1694      return 0;
1695    if (MO.isDef() && !MO.isDead())
1696      return 0;
1697  }
1698  bool DontMoveAcrossStores = true;
1699  if (!MI->isSafeToMove(TII, /* AliasAnalysis = */ 0, DontMoveAcrossStores))
1700    return 0;
1701  return MI;
1702}
1703
1704bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
1705                                     SmallVectorImpl<MachineOperand> &Cond,
1706                                     unsigned &TrueOp, unsigned &FalseOp,
1707                                     bool &Optimizable) const {
1708  assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1709         "Unknown select instruction");
1710  // MOVCC operands:
1711  // 0: Def.
1712  // 1: True use.
1713  // 2: False use.
1714  // 3: Condition code.
1715  // 4: CPSR use.
1716  TrueOp = 1;
1717  FalseOp = 2;
1718  Cond.push_back(MI->getOperand(3));
1719  Cond.push_back(MI->getOperand(4));
1720  // We can always fold a def.
1721  Optimizable = true;
1722  return false;
1723}
1724
1725MachineInstr *ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
1726                                               bool PreferFalse) const {
1727  assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1728         "Unknown select instruction");
1729  MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1730  MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this);
1731  bool Invert = !DefMI;
1732  if (!DefMI)
1733    DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this);
1734  if (!DefMI)
1735    return 0;
1736
1737  // Find new register class to use.
1738  MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1);
1739  unsigned       DestReg  = MI->getOperand(0).getReg();
1740  const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
1741  if (!MRI.constrainRegClass(DestReg, PreviousClass))
1742    return 0;
1743
1744  // Create a new predicated version of DefMI.
1745  // Rfalse is the first use.
1746  MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1747                                      DefMI->getDesc(), DestReg);
1748
1749  // Copy all the DefMI operands, excluding its (null) predicate.
1750  const MCInstrDesc &DefDesc = DefMI->getDesc();
1751  for (unsigned i = 1, e = DefDesc.getNumOperands();
1752       i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
1753    NewMI.addOperand(DefMI->getOperand(i));
1754
1755  unsigned CondCode = MI->getOperand(3).getImm();
1756  if (Invert)
1757    NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
1758  else
1759    NewMI.addImm(CondCode);
1760  NewMI.addOperand(MI->getOperand(4));
1761
1762  // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
1763  if (NewMI->hasOptionalDef())
1764    AddDefaultCC(NewMI);
1765
1766  // The output register value when the predicate is false is an implicit
1767  // register operand tied to the first def.
1768  // The tie makes the register allocator ensure the FalseReg is allocated the
1769  // same register as operand 0.
1770  FalseReg.setImplicit();
1771  NewMI.addOperand(FalseReg);
1772  NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
1773
1774  // The caller will erase MI, but not DefMI.
1775  DefMI->eraseFromParent();
1776  return NewMI;
1777}
1778
1779/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1780/// instruction is encoded with an 'S' bit is determined by the optional CPSR
1781/// def operand.
1782///
1783/// This will go away once we can teach tblgen how to set the optional CPSR def
1784/// operand itself.
1785struct AddSubFlagsOpcodePair {
1786  uint16_t PseudoOpc;
1787  uint16_t MachineOpc;
1788};
1789
1790static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1791  {ARM::ADDSri, ARM::ADDri},
1792  {ARM::ADDSrr, ARM::ADDrr},
1793  {ARM::ADDSrsi, ARM::ADDrsi},
1794  {ARM::ADDSrsr, ARM::ADDrsr},
1795
1796  {ARM::SUBSri, ARM::SUBri},
1797  {ARM::SUBSrr, ARM::SUBrr},
1798  {ARM::SUBSrsi, ARM::SUBrsi},
1799  {ARM::SUBSrsr, ARM::SUBrsr},
1800
1801  {ARM::RSBSri, ARM::RSBri},
1802  {ARM::RSBSrsi, ARM::RSBrsi},
1803  {ARM::RSBSrsr, ARM::RSBrsr},
1804
1805  {ARM::t2ADDSri, ARM::t2ADDri},
1806  {ARM::t2ADDSrr, ARM::t2ADDrr},
1807  {ARM::t2ADDSrs, ARM::t2ADDrs},
1808
1809  {ARM::t2SUBSri, ARM::t2SUBri},
1810  {ARM::t2SUBSrr, ARM::t2SUBrr},
1811  {ARM::t2SUBSrs, ARM::t2SUBrs},
1812
1813  {ARM::t2RSBSri, ARM::t2RSBri},
1814  {ARM::t2RSBSrs, ARM::t2RSBrs},
1815};
1816
1817unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1818  for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
1819    if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
1820      return AddSubFlagsOpcodeMap[i].MachineOpc;
1821  return 0;
1822}
1823
1824void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1825                               MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1826                               unsigned DestReg, unsigned BaseReg, int NumBytes,
1827                               ARMCC::CondCodes Pred, unsigned PredReg,
1828                               const ARMBaseInstrInfo &TII, unsigned MIFlags) {
1829  if (NumBytes == 0 && DestReg != BaseReg) {
1830    BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
1831      .addReg(BaseReg, RegState::Kill)
1832      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1833      .setMIFlags(MIFlags);
1834    return;
1835  }
1836
1837  bool isSub = NumBytes < 0;
1838  if (isSub) NumBytes = -NumBytes;
1839
1840  while (NumBytes) {
1841    unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1842    unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1843    assert(ThisVal && "Didn't extract field correctly");
1844
1845    // We will handle these bits from offset, clear them.
1846    NumBytes &= ~ThisVal;
1847
1848    assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1849
1850    // Build the new ADD / SUB.
1851    unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1852    BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1853      .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1854      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1855      .setMIFlags(MIFlags);
1856    BaseReg = DestReg;
1857  }
1858}
1859
1860bool llvm::tryFoldSPUpdateIntoPushPop(MachineFunction &MF,
1861                                      MachineInstr *MI,
1862                                      unsigned NumBytes) {
1863  // This optimisation potentially adds lots of load and store
1864  // micro-operations, it's only really a great benefit to code-size.
1865  if (!MF.getFunction()->hasFnAttribute(Attribute::MinSize))
1866    return false;
1867
1868  // If only one register is pushed/popped, LLVM can use an LDR/STR
1869  // instead. We can't modify those so make sure we're dealing with an
1870  // instruction we understand.
1871  bool IsPop = isPopOpcode(MI->getOpcode());
1872  bool IsPush = isPushOpcode(MI->getOpcode());
1873  if (!IsPush && !IsPop)
1874    return false;
1875
1876  bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
1877                      MI->getOpcode() == ARM::VLDMDIA_UPD;
1878  bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
1879                     MI->getOpcode() == ARM::tPOP ||
1880                     MI->getOpcode() == ARM::tPOP_RET;
1881
1882  assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
1883                          MI->getOperand(1).getReg() == ARM::SP)) &&
1884         "trying to fold sp update into non-sp-updating push/pop");
1885
1886  // The VFP push & pop act on D-registers, so we can only fold an adjustment
1887  // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
1888  // if this is violated.
1889  if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
1890    return false;
1891
1892  // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
1893  // pred) so the list starts at 4. Thumb1 starts after the predicate.
1894  int RegListIdx = IsT1PushPop ? 2 : 4;
1895
1896  // Calculate the space we'll need in terms of registers.
1897  unsigned FirstReg = MI->getOperand(RegListIdx).getReg();
1898  unsigned RD0Reg, RegsNeeded;
1899  if (IsVFPPushPop) {
1900    RD0Reg = ARM::D0;
1901    RegsNeeded = NumBytes / 8;
1902  } else {
1903    RD0Reg = ARM::R0;
1904    RegsNeeded = NumBytes / 4;
1905  }
1906
1907  // We're going to have to strip all list operands off before
1908  // re-adding them since the order matters, so save the existing ones
1909  // for later.
1910  SmallVector<MachineOperand, 4> RegList;
1911  for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
1912    RegList.push_back(MI->getOperand(i));
1913
1914  MachineBasicBlock *MBB = MI->getParent();
1915  const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
1916
1917  // Now try to find enough space in the reglist to allocate NumBytes.
1918  for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded;
1919       --CurReg, --RegsNeeded) {
1920    if (!IsPop) {
1921      // Pushing any register is completely harmless, mark the
1922      // register involved as undef since we don't care about it in
1923      // the slightest.
1924      RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
1925                                                  false, false, true));
1926      continue;
1927    }
1928
1929    // However, we can only pop an extra register if it's not live. Otherwise we
1930    // might clobber a return value register. We assume that once we find a live
1931    // return register all lower ones will be too so there's no use proceeding.
1932    if (MBB->computeRegisterLiveness(TRI, CurReg, MI) !=
1933        MachineBasicBlock::LQR_Dead)
1934      return false;
1935
1936    // Mark the unimportant registers as <def,dead> in the POP.
1937    RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, true));
1938  }
1939
1940  if (RegsNeeded > 0)
1941    return false;
1942
1943  // Finally we know we can profitably perform the optimisation so go
1944  // ahead: strip all existing registers off and add them back again
1945  // in the right order.
1946  for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
1947    MI->RemoveOperand(i);
1948
1949  // Add the complete list back in.
1950  MachineInstrBuilder MIB(MF, &*MI);
1951  for (int i = RegList.size() - 1; i >= 0; --i)
1952    MIB.addOperand(RegList[i]);
1953
1954  return true;
1955}
1956
1957bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
1958                                unsigned FrameReg, int &Offset,
1959                                const ARMBaseInstrInfo &TII) {
1960  unsigned Opcode = MI.getOpcode();
1961  const MCInstrDesc &Desc = MI.getDesc();
1962  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
1963  bool isSub = false;
1964
1965  // Memory operands in inline assembly always use AddrMode2.
1966  if (Opcode == ARM::INLINEASM)
1967    AddrMode = ARMII::AddrMode2;
1968
1969  if (Opcode == ARM::ADDri) {
1970    Offset += MI.getOperand(FrameRegIdx+1).getImm();
1971    if (Offset == 0) {
1972      // Turn it into a move.
1973      MI.setDesc(TII.get(ARM::MOVr));
1974      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1975      MI.RemoveOperand(FrameRegIdx+1);
1976      Offset = 0;
1977      return true;
1978    } else if (Offset < 0) {
1979      Offset = -Offset;
1980      isSub = true;
1981      MI.setDesc(TII.get(ARM::SUBri));
1982    }
1983
1984    // Common case: small offset, fits into instruction.
1985    if (ARM_AM::getSOImmVal(Offset) != -1) {
1986      // Replace the FrameIndex with sp / fp
1987      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1988      MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
1989      Offset = 0;
1990      return true;
1991    }
1992
1993    // Otherwise, pull as much of the immedidate into this ADDri/SUBri
1994    // as possible.
1995    unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
1996    unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
1997
1998    // We will handle these bits from offset, clear them.
1999    Offset &= ~ThisImmVal;
2000
2001    // Get the properly encoded SOImmVal field.
2002    assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2003           "Bit extraction didn't work?");
2004    MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2005 } else {
2006    unsigned ImmIdx = 0;
2007    int InstrOffs = 0;
2008    unsigned NumBits = 0;
2009    unsigned Scale = 1;
2010    switch (AddrMode) {
2011    case ARMII::AddrMode_i12: {
2012      ImmIdx = FrameRegIdx + 1;
2013      InstrOffs = MI.getOperand(ImmIdx).getImm();
2014      NumBits = 12;
2015      break;
2016    }
2017    case ARMII::AddrMode2: {
2018      ImmIdx = FrameRegIdx+2;
2019      InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2020      if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2021        InstrOffs *= -1;
2022      NumBits = 12;
2023      break;
2024    }
2025    case ARMII::AddrMode3: {
2026      ImmIdx = FrameRegIdx+2;
2027      InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2028      if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2029        InstrOffs *= -1;
2030      NumBits = 8;
2031      break;
2032    }
2033    case ARMII::AddrMode4:
2034    case ARMII::AddrMode6:
2035      // Can't fold any offset even if it's zero.
2036      return false;
2037    case ARMII::AddrMode5: {
2038      ImmIdx = FrameRegIdx+1;
2039      InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2040      if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2041        InstrOffs *= -1;
2042      NumBits = 8;
2043      Scale = 4;
2044      break;
2045    }
2046    default:
2047      llvm_unreachable("Unsupported addressing mode!");
2048    }
2049
2050    Offset += InstrOffs * Scale;
2051    assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2052    if (Offset < 0) {
2053      Offset = -Offset;
2054      isSub = true;
2055    }
2056
2057    // Attempt to fold address comp. if opcode has offset bits
2058    if (NumBits > 0) {
2059      // Common case: small offset, fits into instruction.
2060      MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2061      int ImmedOffset = Offset / Scale;
2062      unsigned Mask = (1 << NumBits) - 1;
2063      if ((unsigned)Offset <= Mask * Scale) {
2064        // Replace the FrameIndex with sp
2065        MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2066        // FIXME: When addrmode2 goes away, this will simplify (like the
2067        // T2 version), as the LDR.i12 versions don't need the encoding
2068        // tricks for the offset value.
2069        if (isSub) {
2070          if (AddrMode == ARMII::AddrMode_i12)
2071            ImmedOffset = -ImmedOffset;
2072          else
2073            ImmedOffset |= 1 << NumBits;
2074        }
2075        ImmOp.ChangeToImmediate(ImmedOffset);
2076        Offset = 0;
2077        return true;
2078      }
2079
2080      // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2081      ImmedOffset = ImmedOffset & Mask;
2082      if (isSub) {
2083        if (AddrMode == ARMII::AddrMode_i12)
2084          ImmedOffset = -ImmedOffset;
2085        else
2086          ImmedOffset |= 1 << NumBits;
2087      }
2088      ImmOp.ChangeToImmediate(ImmedOffset);
2089      Offset &= ~(Mask*Scale);
2090    }
2091  }
2092
2093  Offset = (isSub) ? -Offset : Offset;
2094  return Offset == 0;
2095}
2096
2097/// analyzeCompare - For a comparison instruction, return the source registers
2098/// in SrcReg and SrcReg2 if having two register operands, and the value it
2099/// compares against in CmpValue. Return true if the comparison instruction
2100/// can be analyzed.
2101bool ARMBaseInstrInfo::
2102analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
2103               int &CmpMask, int &CmpValue) const {
2104  switch (MI->getOpcode()) {
2105  default: break;
2106  case ARM::CMPri:
2107  case ARM::t2CMPri:
2108    SrcReg = MI->getOperand(0).getReg();
2109    SrcReg2 = 0;
2110    CmpMask = ~0;
2111    CmpValue = MI->getOperand(1).getImm();
2112    return true;
2113  case ARM::CMPrr:
2114  case ARM::t2CMPrr:
2115    SrcReg = MI->getOperand(0).getReg();
2116    SrcReg2 = MI->getOperand(1).getReg();
2117    CmpMask = ~0;
2118    CmpValue = 0;
2119    return true;
2120  case ARM::TSTri:
2121  case ARM::t2TSTri:
2122    SrcReg = MI->getOperand(0).getReg();
2123    SrcReg2 = 0;
2124    CmpMask = MI->getOperand(1).getImm();
2125    CmpValue = 0;
2126    return true;
2127  }
2128
2129  return false;
2130}
2131
2132/// isSuitableForMask - Identify a suitable 'and' instruction that
2133/// operates on the given source register and applies the same mask
2134/// as a 'tst' instruction. Provide a limited look-through for copies.
2135/// When successful, MI will hold the found instruction.
2136static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2137                              int CmpMask, bool CommonUse) {
2138  switch (MI->getOpcode()) {
2139    case ARM::ANDri:
2140    case ARM::t2ANDri:
2141      if (CmpMask != MI->getOperand(2).getImm())
2142        return false;
2143      if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2144        return true;
2145      break;
2146    case ARM::COPY: {
2147      // Walk down one instruction which is potentially an 'and'.
2148      const MachineInstr &Copy = *MI;
2149      MachineBasicBlock::iterator AND(
2150        llvm::next(MachineBasicBlock::iterator(MI)));
2151      if (AND == MI->getParent()->end()) return false;
2152      MI = AND;
2153      return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
2154                               CmpMask, true);
2155    }
2156  }
2157
2158  return false;
2159}
2160
2161/// getSwappedCondition - assume the flags are set by MI(a,b), return
2162/// the condition code if we modify the instructions such that flags are
2163/// set by MI(b,a).
2164inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2165  switch (CC) {
2166  default: return ARMCC::AL;
2167  case ARMCC::EQ: return ARMCC::EQ;
2168  case ARMCC::NE: return ARMCC::NE;
2169  case ARMCC::HS: return ARMCC::LS;
2170  case ARMCC::LO: return ARMCC::HI;
2171  case ARMCC::HI: return ARMCC::LO;
2172  case ARMCC::LS: return ARMCC::HS;
2173  case ARMCC::GE: return ARMCC::LE;
2174  case ARMCC::LT: return ARMCC::GT;
2175  case ARMCC::GT: return ARMCC::LT;
2176  case ARMCC::LE: return ARMCC::GE;
2177  }
2178}
2179
2180/// isRedundantFlagInstr - check whether the first instruction, whose only
2181/// purpose is to update flags, can be made redundant.
2182/// CMPrr can be made redundant by SUBrr if the operands are the same.
2183/// CMPri can be made redundant by SUBri if the operands are the same.
2184/// This function can be extended later on.
2185inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
2186                                        unsigned SrcReg2, int ImmValue,
2187                                        MachineInstr *OI) {
2188  if ((CmpI->getOpcode() == ARM::CMPrr ||
2189       CmpI->getOpcode() == ARM::t2CMPrr) &&
2190      (OI->getOpcode() == ARM::SUBrr ||
2191       OI->getOpcode() == ARM::t2SUBrr) &&
2192      ((OI->getOperand(1).getReg() == SrcReg &&
2193        OI->getOperand(2).getReg() == SrcReg2) ||
2194       (OI->getOperand(1).getReg() == SrcReg2 &&
2195        OI->getOperand(2).getReg() == SrcReg)))
2196    return true;
2197
2198  if ((CmpI->getOpcode() == ARM::CMPri ||
2199       CmpI->getOpcode() == ARM::t2CMPri) &&
2200      (OI->getOpcode() == ARM::SUBri ||
2201       OI->getOpcode() == ARM::t2SUBri) &&
2202      OI->getOperand(1).getReg() == SrcReg &&
2203      OI->getOperand(2).getImm() == ImmValue)
2204    return true;
2205  return false;
2206}
2207
2208/// optimizeCompareInstr - Convert the instruction supplying the argument to the
2209/// comparison into one that sets the zero bit in the flags register;
2210/// Remove a redundant Compare instruction if an earlier instruction can set the
2211/// flags in the same way as Compare.
2212/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2213/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2214/// condition code of instructions which use the flags.
2215bool ARMBaseInstrInfo::
2216optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
2217                     int CmpMask, int CmpValue,
2218                     const MachineRegisterInfo *MRI) const {
2219  // Get the unique definition of SrcReg.
2220  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2221  if (!MI) return false;
2222
2223  // Masked compares sometimes use the same register as the corresponding 'and'.
2224  if (CmpMask != ~0) {
2225    if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) {
2226      MI = 0;
2227      for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
2228           UE = MRI->use_end(); UI != UE; ++UI) {
2229        if (UI->getParent() != CmpInstr->getParent()) continue;
2230        MachineInstr *PotentialAND = &*UI;
2231        if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2232            isPredicated(PotentialAND))
2233          continue;
2234        MI = PotentialAND;
2235        break;
2236      }
2237      if (!MI) return false;
2238    }
2239  }
2240
2241  // Get ready to iterate backward from CmpInstr.
2242  MachineBasicBlock::iterator I = CmpInstr, E = MI,
2243                              B = CmpInstr->getParent()->begin();
2244
2245  // Early exit if CmpInstr is at the beginning of the BB.
2246  if (I == B) return false;
2247
2248  // There are two possible candidates which can be changed to set CPSR:
2249  // One is MI, the other is a SUB instruction.
2250  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2251  // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2252  MachineInstr *Sub = NULL;
2253  if (SrcReg2 != 0)
2254    // MI is not a candidate for CMPrr.
2255    MI = NULL;
2256  else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
2257    // Conservatively refuse to convert an instruction which isn't in the same
2258    // BB as the comparison.
2259    // For CMPri, we need to check Sub, thus we can't return here.
2260    if (CmpInstr->getOpcode() == ARM::CMPri ||
2261       CmpInstr->getOpcode() == ARM::t2CMPri)
2262      MI = NULL;
2263    else
2264      return false;
2265  }
2266
2267  // Check that CPSR isn't set between the comparison instruction and the one we
2268  // want to change. At the same time, search for Sub.
2269  const TargetRegisterInfo *TRI = &getRegisterInfo();
2270  --I;
2271  for (; I != E; --I) {
2272    const MachineInstr &Instr = *I;
2273
2274    if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2275        Instr.readsRegister(ARM::CPSR, TRI))
2276      // This instruction modifies or uses CPSR after the one we want to
2277      // change. We can't do this transformation.
2278      return false;
2279
2280    // Check whether CmpInstr can be made redundant by the current instruction.
2281    if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
2282      Sub = &*I;
2283      break;
2284    }
2285
2286    if (I == B)
2287      // The 'and' is below the comparison instruction.
2288      return false;
2289  }
2290
2291  // Return false if no candidates exist.
2292  if (!MI && !Sub)
2293    return false;
2294
2295  // The single candidate is called MI.
2296  if (!MI) MI = Sub;
2297
2298  // We can't use a predicated instruction - it doesn't always write the flags.
2299  if (isPredicated(MI))
2300    return false;
2301
2302  switch (MI->getOpcode()) {
2303  default: break;
2304  case ARM::RSBrr:
2305  case ARM::RSBri:
2306  case ARM::RSCrr:
2307  case ARM::RSCri:
2308  case ARM::ADDrr:
2309  case ARM::ADDri:
2310  case ARM::ADCrr:
2311  case ARM::ADCri:
2312  case ARM::SUBrr:
2313  case ARM::SUBri:
2314  case ARM::SBCrr:
2315  case ARM::SBCri:
2316  case ARM::t2RSBri:
2317  case ARM::t2ADDrr:
2318  case ARM::t2ADDri:
2319  case ARM::t2ADCrr:
2320  case ARM::t2ADCri:
2321  case ARM::t2SUBrr:
2322  case ARM::t2SUBri:
2323  case ARM::t2SBCrr:
2324  case ARM::t2SBCri:
2325  case ARM::ANDrr:
2326  case ARM::ANDri:
2327  case ARM::t2ANDrr:
2328  case ARM::t2ANDri:
2329  case ARM::ORRrr:
2330  case ARM::ORRri:
2331  case ARM::t2ORRrr:
2332  case ARM::t2ORRri:
2333  case ARM::EORrr:
2334  case ARM::EORri:
2335  case ARM::t2EORrr:
2336  case ARM::t2EORri: {
2337    // Scan forward for the use of CPSR
2338    // When checking against MI: if it's a conditional code requires
2339    // checking of V bit, then this is not safe to do.
2340    // It is safe to remove CmpInstr if CPSR is redefined or killed.
2341    // If we are done with the basic block, we need to check whether CPSR is
2342    // live-out.
2343    SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2344        OperandsToUpdate;
2345    bool isSafe = false;
2346    I = CmpInstr;
2347    E = CmpInstr->getParent()->end();
2348    while (!isSafe && ++I != E) {
2349      const MachineInstr &Instr = *I;
2350      for (unsigned IO = 0, EO = Instr.getNumOperands();
2351           !isSafe && IO != EO; ++IO) {
2352        const MachineOperand &MO = Instr.getOperand(IO);
2353        if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2354          isSafe = true;
2355          break;
2356        }
2357        if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2358          continue;
2359        if (MO.isDef()) {
2360          isSafe = true;
2361          break;
2362        }
2363        // Condition code is after the operand before CPSR.
2364        ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
2365        if (Sub) {
2366          ARMCC::CondCodes NewCC = getSwappedCondition(CC);
2367          if (NewCC == ARMCC::AL)
2368            return false;
2369          // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2370          // on CMP needs to be updated to be based on SUB.
2371          // Push the condition code operands to OperandsToUpdate.
2372          // If it is safe to remove CmpInstr, the condition code of these
2373          // operands will be modified.
2374          if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2375              Sub->getOperand(2).getReg() == SrcReg)
2376            OperandsToUpdate.push_back(std::make_pair(&((*I).getOperand(IO-1)),
2377                                                      NewCC));
2378        }
2379        else
2380          switch (CC) {
2381          default:
2382            // CPSR can be used multiple times, we should continue.
2383            break;
2384          case ARMCC::VS:
2385          case ARMCC::VC:
2386          case ARMCC::GE:
2387          case ARMCC::LT:
2388          case ARMCC::GT:
2389          case ARMCC::LE:
2390            return false;
2391          }
2392      }
2393    }
2394
2395    // If CPSR is not killed nor re-defined, we should check whether it is
2396    // live-out. If it is live-out, do not optimize.
2397    if (!isSafe) {
2398      MachineBasicBlock *MBB = CmpInstr->getParent();
2399      for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2400               SE = MBB->succ_end(); SI != SE; ++SI)
2401        if ((*SI)->isLiveIn(ARM::CPSR))
2402          return false;
2403    }
2404
2405    // Toggle the optional operand to CPSR.
2406    MI->getOperand(5).setReg(ARM::CPSR);
2407    MI->getOperand(5).setIsDef(true);
2408    assert(!isPredicated(MI) && "Can't use flags from predicated instruction");
2409    CmpInstr->eraseFromParent();
2410
2411    // Modify the condition code of operands in OperandsToUpdate.
2412    // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2413    // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2414    for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2415      OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2416    return true;
2417  }
2418  }
2419
2420  return false;
2421}
2422
2423bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
2424                                     MachineInstr *DefMI, unsigned Reg,
2425                                     MachineRegisterInfo *MRI) const {
2426  // Fold large immediates into add, sub, or, xor.
2427  unsigned DefOpc = DefMI->getOpcode();
2428  if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2429    return false;
2430  if (!DefMI->getOperand(1).isImm())
2431    // Could be t2MOVi32imm <ga:xx>
2432    return false;
2433
2434  if (!MRI->hasOneNonDBGUse(Reg))
2435    return false;
2436
2437  const MCInstrDesc &DefMCID = DefMI->getDesc();
2438  if (DefMCID.hasOptionalDef()) {
2439    unsigned NumOps = DefMCID.getNumOperands();
2440    const MachineOperand &MO = DefMI->getOperand(NumOps-1);
2441    if (MO.getReg() == ARM::CPSR && !MO.isDead())
2442      // If DefMI defines CPSR and it is not dead, it's obviously not safe
2443      // to delete DefMI.
2444      return false;
2445  }
2446
2447  const MCInstrDesc &UseMCID = UseMI->getDesc();
2448  if (UseMCID.hasOptionalDef()) {
2449    unsigned NumOps = UseMCID.getNumOperands();
2450    if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
2451      // If the instruction sets the flag, do not attempt this optimization
2452      // since it may change the semantics of the code.
2453      return false;
2454  }
2455
2456  unsigned UseOpc = UseMI->getOpcode();
2457  unsigned NewUseOpc = 0;
2458  uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
2459  uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
2460  bool Commute = false;
2461  switch (UseOpc) {
2462  default: return false;
2463  case ARM::SUBrr:
2464  case ARM::ADDrr:
2465  case ARM::ORRrr:
2466  case ARM::EORrr:
2467  case ARM::t2SUBrr:
2468  case ARM::t2ADDrr:
2469  case ARM::t2ORRrr:
2470  case ARM::t2EORrr: {
2471    Commute = UseMI->getOperand(2).getReg() != Reg;
2472    switch (UseOpc) {
2473    default: break;
2474    case ARM::SUBrr: {
2475      if (Commute)
2476        return false;
2477      ImmVal = -ImmVal;
2478      NewUseOpc = ARM::SUBri;
2479      // Fallthrough
2480    }
2481    case ARM::ADDrr:
2482    case ARM::ORRrr:
2483    case ARM::EORrr: {
2484      if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
2485        return false;
2486      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
2487      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
2488      switch (UseOpc) {
2489      default: break;
2490      case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
2491      case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
2492      case ARM::EORrr: NewUseOpc = ARM::EORri; break;
2493      }
2494      break;
2495    }
2496    case ARM::t2SUBrr: {
2497      if (Commute)
2498        return false;
2499      ImmVal = -ImmVal;
2500      NewUseOpc = ARM::t2SUBri;
2501      // Fallthrough
2502    }
2503    case ARM::t2ADDrr:
2504    case ARM::t2ORRrr:
2505    case ARM::t2EORrr: {
2506      if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
2507        return false;
2508      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
2509      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
2510      switch (UseOpc) {
2511      default: break;
2512      case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
2513      case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
2514      case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
2515      }
2516      break;
2517    }
2518    }
2519  }
2520  }
2521
2522  unsigned OpIdx = Commute ? 2 : 1;
2523  unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
2524  bool isKill = UseMI->getOperand(OpIdx).isKill();
2525  unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
2526  AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
2527                                      UseMI, UseMI->getDebugLoc(),
2528                                      get(NewUseOpc), NewReg)
2529                              .addReg(Reg1, getKillRegState(isKill))
2530                              .addImm(SOImmValV1)));
2531  UseMI->setDesc(get(NewUseOpc));
2532  UseMI->getOperand(1).setReg(NewReg);
2533  UseMI->getOperand(1).setIsKill();
2534  UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
2535  DefMI->eraseFromParent();
2536  return true;
2537}
2538
2539static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
2540                                        const MachineInstr *MI) {
2541  switch (MI->getOpcode()) {
2542  default: {
2543    const MCInstrDesc &Desc = MI->getDesc();
2544    int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
2545    assert(UOps >= 0 && "bad # UOps");
2546    return UOps;
2547  }
2548
2549  case ARM::LDRrs:
2550  case ARM::LDRBrs:
2551  case ARM::STRrs:
2552  case ARM::STRBrs: {
2553    unsigned ShOpVal = MI->getOperand(3).getImm();
2554    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2555    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2556    if (!isSub &&
2557        (ShImm == 0 ||
2558         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2559          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2560      return 1;
2561    return 2;
2562  }
2563
2564  case ARM::LDRH:
2565  case ARM::STRH: {
2566    if (!MI->getOperand(2).getReg())
2567      return 1;
2568
2569    unsigned ShOpVal = MI->getOperand(3).getImm();
2570    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2571    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2572    if (!isSub &&
2573        (ShImm == 0 ||
2574         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2575          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2576      return 1;
2577    return 2;
2578  }
2579
2580  case ARM::LDRSB:
2581  case ARM::LDRSH:
2582    return (ARM_AM::getAM3Op(MI->getOperand(3).getImm()) == ARM_AM::sub) ? 3:2;
2583
2584  case ARM::LDRSB_POST:
2585  case ARM::LDRSH_POST: {
2586    unsigned Rt = MI->getOperand(0).getReg();
2587    unsigned Rm = MI->getOperand(3).getReg();
2588    return (Rt == Rm) ? 4 : 3;
2589  }
2590
2591  case ARM::LDR_PRE_REG:
2592  case ARM::LDRB_PRE_REG: {
2593    unsigned Rt = MI->getOperand(0).getReg();
2594    unsigned Rm = MI->getOperand(3).getReg();
2595    if (Rt == Rm)
2596      return 3;
2597    unsigned ShOpVal = MI->getOperand(4).getImm();
2598    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2599    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2600    if (!isSub &&
2601        (ShImm == 0 ||
2602         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2603          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2604      return 2;
2605    return 3;
2606  }
2607
2608  case ARM::STR_PRE_REG:
2609  case ARM::STRB_PRE_REG: {
2610    unsigned ShOpVal = MI->getOperand(4).getImm();
2611    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2612    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2613    if (!isSub &&
2614        (ShImm == 0 ||
2615         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2616          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2617      return 2;
2618    return 3;
2619  }
2620
2621  case ARM::LDRH_PRE:
2622  case ARM::STRH_PRE: {
2623    unsigned Rt = MI->getOperand(0).getReg();
2624    unsigned Rm = MI->getOperand(3).getReg();
2625    if (!Rm)
2626      return 2;
2627    if (Rt == Rm)
2628      return 3;
2629    return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub)
2630      ? 3 : 2;
2631  }
2632
2633  case ARM::LDR_POST_REG:
2634  case ARM::LDRB_POST_REG:
2635  case ARM::LDRH_POST: {
2636    unsigned Rt = MI->getOperand(0).getReg();
2637    unsigned Rm = MI->getOperand(3).getReg();
2638    return (Rt == Rm) ? 3 : 2;
2639  }
2640
2641  case ARM::LDR_PRE_IMM:
2642  case ARM::LDRB_PRE_IMM:
2643  case ARM::LDR_POST_IMM:
2644  case ARM::LDRB_POST_IMM:
2645  case ARM::STRB_POST_IMM:
2646  case ARM::STRB_POST_REG:
2647  case ARM::STRB_PRE_IMM:
2648  case ARM::STRH_POST:
2649  case ARM::STR_POST_IMM:
2650  case ARM::STR_POST_REG:
2651  case ARM::STR_PRE_IMM:
2652    return 2;
2653
2654  case ARM::LDRSB_PRE:
2655  case ARM::LDRSH_PRE: {
2656    unsigned Rm = MI->getOperand(3).getReg();
2657    if (Rm == 0)
2658      return 3;
2659    unsigned Rt = MI->getOperand(0).getReg();
2660    if (Rt == Rm)
2661      return 4;
2662    unsigned ShOpVal = MI->getOperand(4).getImm();
2663    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2664    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2665    if (!isSub &&
2666        (ShImm == 0 ||
2667         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2668          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2669      return 3;
2670    return 4;
2671  }
2672
2673  case ARM::LDRD: {
2674    unsigned Rt = MI->getOperand(0).getReg();
2675    unsigned Rn = MI->getOperand(2).getReg();
2676    unsigned Rm = MI->getOperand(3).getReg();
2677    if (Rm)
2678      return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
2679    return (Rt == Rn) ? 3 : 2;
2680  }
2681
2682  case ARM::STRD: {
2683    unsigned Rm = MI->getOperand(3).getReg();
2684    if (Rm)
2685      return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
2686    return 2;
2687  }
2688
2689  case ARM::LDRD_POST:
2690  case ARM::t2LDRD_POST:
2691    return 3;
2692
2693  case ARM::STRD_POST:
2694  case ARM::t2STRD_POST:
2695    return 4;
2696
2697  case ARM::LDRD_PRE: {
2698    unsigned Rt = MI->getOperand(0).getReg();
2699    unsigned Rn = MI->getOperand(3).getReg();
2700    unsigned Rm = MI->getOperand(4).getReg();
2701    if (Rm)
2702      return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
2703    return (Rt == Rn) ? 4 : 3;
2704  }
2705
2706  case ARM::t2LDRD_PRE: {
2707    unsigned Rt = MI->getOperand(0).getReg();
2708    unsigned Rn = MI->getOperand(3).getReg();
2709    return (Rt == Rn) ? 4 : 3;
2710  }
2711
2712  case ARM::STRD_PRE: {
2713    unsigned Rm = MI->getOperand(4).getReg();
2714    if (Rm)
2715      return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
2716    return 3;
2717  }
2718
2719  case ARM::t2STRD_PRE:
2720    return 3;
2721
2722  case ARM::t2LDR_POST:
2723  case ARM::t2LDRB_POST:
2724  case ARM::t2LDRB_PRE:
2725  case ARM::t2LDRSBi12:
2726  case ARM::t2LDRSBi8:
2727  case ARM::t2LDRSBpci:
2728  case ARM::t2LDRSBs:
2729  case ARM::t2LDRH_POST:
2730  case ARM::t2LDRH_PRE:
2731  case ARM::t2LDRSBT:
2732  case ARM::t2LDRSB_POST:
2733  case ARM::t2LDRSB_PRE:
2734  case ARM::t2LDRSH_POST:
2735  case ARM::t2LDRSH_PRE:
2736  case ARM::t2LDRSHi12:
2737  case ARM::t2LDRSHi8:
2738  case ARM::t2LDRSHpci:
2739  case ARM::t2LDRSHs:
2740    return 2;
2741
2742  case ARM::t2LDRDi8: {
2743    unsigned Rt = MI->getOperand(0).getReg();
2744    unsigned Rn = MI->getOperand(2).getReg();
2745    return (Rt == Rn) ? 3 : 2;
2746  }
2747
2748  case ARM::t2STRB_POST:
2749  case ARM::t2STRB_PRE:
2750  case ARM::t2STRBs:
2751  case ARM::t2STRDi8:
2752  case ARM::t2STRH_POST:
2753  case ARM::t2STRH_PRE:
2754  case ARM::t2STRHs:
2755  case ARM::t2STR_POST:
2756  case ARM::t2STR_PRE:
2757  case ARM::t2STRs:
2758    return 2;
2759  }
2760}
2761
2762// Return the number of 32-bit words loaded by LDM or stored by STM. If this
2763// can't be easily determined return 0 (missing MachineMemOperand).
2764//
2765// FIXME: The current MachineInstr design does not support relying on machine
2766// mem operands to determine the width of a memory access. Instead, we expect
2767// the target to provide this information based on the instruction opcode and
2768// operands. However, using MachineMemOperand is a the best solution now for
2769// two reasons:
2770//
2771// 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
2772// operands. This is much more dangerous than using the MachineMemOperand
2773// sizes because CodeGen passes can insert/remove optional machine operands. In
2774// fact, it's totally incorrect for preRA passes and appears to be wrong for
2775// postRA passes as well.
2776//
2777// 2) getNumLDMAddresses is only used by the scheduling machine model and any
2778// machine model that calls this should handle the unknown (zero size) case.
2779//
2780// Long term, we should require a target hook that verifies MachineMemOperand
2781// sizes during MC lowering. That target hook should be local to MC lowering
2782// because we can't ensure that it is aware of other MI forms. Doing this will
2783// ensure that MachineMemOperands are correctly propagated through all passes.
2784unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr *MI) const {
2785  unsigned Size = 0;
2786  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
2787         E = MI->memoperands_end(); I != E; ++I) {
2788    Size += (*I)->getSize();
2789  }
2790  return Size / 4;
2791}
2792
2793unsigned
2794ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
2795                                 const MachineInstr *MI) const {
2796  if (!ItinData || ItinData->isEmpty())
2797    return 1;
2798
2799  const MCInstrDesc &Desc = MI->getDesc();
2800  unsigned Class = Desc.getSchedClass();
2801  int ItinUOps = ItinData->getNumMicroOps(Class);
2802  if (ItinUOps >= 0) {
2803    if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
2804      return getNumMicroOpsSwiftLdSt(ItinData, MI);
2805
2806    return ItinUOps;
2807  }
2808
2809  unsigned Opc = MI->getOpcode();
2810  switch (Opc) {
2811  default:
2812    llvm_unreachable("Unexpected multi-uops instruction!");
2813  case ARM::VLDMQIA:
2814  case ARM::VSTMQIA:
2815    return 2;
2816
2817  // The number of uOps for load / store multiple are determined by the number
2818  // registers.
2819  //
2820  // On Cortex-A8, each pair of register loads / stores can be scheduled on the
2821  // same cycle. The scheduling for the first load / store must be done
2822  // separately by assuming the address is not 64-bit aligned.
2823  //
2824  // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
2825  // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
2826  // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
2827  case ARM::VLDMDIA:
2828  case ARM::VLDMDIA_UPD:
2829  case ARM::VLDMDDB_UPD:
2830  case ARM::VLDMSIA:
2831  case ARM::VLDMSIA_UPD:
2832  case ARM::VLDMSDB_UPD:
2833  case ARM::VSTMDIA:
2834  case ARM::VSTMDIA_UPD:
2835  case ARM::VSTMDDB_UPD:
2836  case ARM::VSTMSIA:
2837  case ARM::VSTMSIA_UPD:
2838  case ARM::VSTMSDB_UPD: {
2839    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
2840    return (NumRegs / 2) + (NumRegs % 2) + 1;
2841  }
2842
2843  case ARM::LDMIA_RET:
2844  case ARM::LDMIA:
2845  case ARM::LDMDA:
2846  case ARM::LDMDB:
2847  case ARM::LDMIB:
2848  case ARM::LDMIA_UPD:
2849  case ARM::LDMDA_UPD:
2850  case ARM::LDMDB_UPD:
2851  case ARM::LDMIB_UPD:
2852  case ARM::STMIA:
2853  case ARM::STMDA:
2854  case ARM::STMDB:
2855  case ARM::STMIB:
2856  case ARM::STMIA_UPD:
2857  case ARM::STMDA_UPD:
2858  case ARM::STMDB_UPD:
2859  case ARM::STMIB_UPD:
2860  case ARM::tLDMIA:
2861  case ARM::tLDMIA_UPD:
2862  case ARM::tSTMIA_UPD:
2863  case ARM::tPOP_RET:
2864  case ARM::tPOP:
2865  case ARM::tPUSH:
2866  case ARM::t2LDMIA_RET:
2867  case ARM::t2LDMIA:
2868  case ARM::t2LDMDB:
2869  case ARM::t2LDMIA_UPD:
2870  case ARM::t2LDMDB_UPD:
2871  case ARM::t2STMIA:
2872  case ARM::t2STMDB:
2873  case ARM::t2STMIA_UPD:
2874  case ARM::t2STMDB_UPD: {
2875    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
2876    if (Subtarget.isSwift()) {
2877      int UOps = 1 + NumRegs;  // One for address computation, one for each ld / st.
2878      switch (Opc) {
2879      default: break;
2880      case ARM::VLDMDIA_UPD:
2881      case ARM::VLDMDDB_UPD:
2882      case ARM::VLDMSIA_UPD:
2883      case ARM::VLDMSDB_UPD:
2884      case ARM::VSTMDIA_UPD:
2885      case ARM::VSTMDDB_UPD:
2886      case ARM::VSTMSIA_UPD:
2887      case ARM::VSTMSDB_UPD:
2888      case ARM::LDMIA_UPD:
2889      case ARM::LDMDA_UPD:
2890      case ARM::LDMDB_UPD:
2891      case ARM::LDMIB_UPD:
2892      case ARM::STMIA_UPD:
2893      case ARM::STMDA_UPD:
2894      case ARM::STMDB_UPD:
2895      case ARM::STMIB_UPD:
2896      case ARM::tLDMIA_UPD:
2897      case ARM::tSTMIA_UPD:
2898      case ARM::t2LDMIA_UPD:
2899      case ARM::t2LDMDB_UPD:
2900      case ARM::t2STMIA_UPD:
2901      case ARM::t2STMDB_UPD:
2902        ++UOps; // One for base register writeback.
2903        break;
2904      case ARM::LDMIA_RET:
2905      case ARM::tPOP_RET:
2906      case ARM::t2LDMIA_RET:
2907        UOps += 2; // One for base reg wb, one for write to pc.
2908        break;
2909      }
2910      return UOps;
2911    } else if (Subtarget.isCortexA8()) {
2912      if (NumRegs < 4)
2913        return 2;
2914      // 4 registers would be issued: 2, 2.
2915      // 5 registers would be issued: 2, 2, 1.
2916      int A8UOps = (NumRegs / 2);
2917      if (NumRegs % 2)
2918        ++A8UOps;
2919      return A8UOps;
2920    } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
2921      int A9UOps = (NumRegs / 2);
2922      // If there are odd number of registers or if it's not 64-bit aligned,
2923      // then it takes an extra AGU (Address Generation Unit) cycle.
2924      if ((NumRegs % 2) ||
2925          !MI->hasOneMemOperand() ||
2926          (*MI->memoperands_begin())->getAlignment() < 8)
2927        ++A9UOps;
2928      return A9UOps;
2929    } else {
2930      // Assume the worst.
2931      return NumRegs;
2932    }
2933  }
2934  }
2935}
2936
2937int
2938ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
2939                                  const MCInstrDesc &DefMCID,
2940                                  unsigned DefClass,
2941                                  unsigned DefIdx, unsigned DefAlign) const {
2942  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2943  if (RegNo <= 0)
2944    // Def is the address writeback.
2945    return ItinData->getOperandCycle(DefClass, DefIdx);
2946
2947  int DefCycle;
2948  if (Subtarget.isCortexA8()) {
2949    // (regno / 2) + (regno % 2) + 1
2950    DefCycle = RegNo / 2 + 1;
2951    if (RegNo % 2)
2952      ++DefCycle;
2953  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
2954    DefCycle = RegNo;
2955    bool isSLoad = false;
2956
2957    switch (DefMCID.getOpcode()) {
2958    default: break;
2959    case ARM::VLDMSIA:
2960    case ARM::VLDMSIA_UPD:
2961    case ARM::VLDMSDB_UPD:
2962      isSLoad = true;
2963      break;
2964    }
2965
2966    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2967    // then it takes an extra cycle.
2968    if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
2969      ++DefCycle;
2970  } else {
2971    // Assume the worst.
2972    DefCycle = RegNo + 2;
2973  }
2974
2975  return DefCycle;
2976}
2977
2978int
2979ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
2980                                 const MCInstrDesc &DefMCID,
2981                                 unsigned DefClass,
2982                                 unsigned DefIdx, unsigned DefAlign) const {
2983  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2984  if (RegNo <= 0)
2985    // Def is the address writeback.
2986    return ItinData->getOperandCycle(DefClass, DefIdx);
2987
2988  int DefCycle;
2989  if (Subtarget.isCortexA8()) {
2990    // 4 registers would be issued: 1, 2, 1.
2991    // 5 registers would be issued: 1, 2, 2.
2992    DefCycle = RegNo / 2;
2993    if (DefCycle < 1)
2994      DefCycle = 1;
2995    // Result latency is issue cycle + 2: E2.
2996    DefCycle += 2;
2997  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
2998    DefCycle = (RegNo / 2);
2999    // If there are odd number of registers or if it's not 64-bit aligned,
3000    // then it takes an extra AGU (Address Generation Unit) cycle.
3001    if ((RegNo % 2) || DefAlign < 8)
3002      ++DefCycle;
3003    // Result latency is AGU cycles + 2.
3004    DefCycle += 2;
3005  } else {
3006    // Assume the worst.
3007    DefCycle = RegNo + 2;
3008  }
3009
3010  return DefCycle;
3011}
3012
3013int
3014ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3015                                  const MCInstrDesc &UseMCID,
3016                                  unsigned UseClass,
3017                                  unsigned UseIdx, unsigned UseAlign) const {
3018  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3019  if (RegNo <= 0)
3020    return ItinData->getOperandCycle(UseClass, UseIdx);
3021
3022  int UseCycle;
3023  if (Subtarget.isCortexA8()) {
3024    // (regno / 2) + (regno % 2) + 1
3025    UseCycle = RegNo / 2 + 1;
3026    if (RegNo % 2)
3027      ++UseCycle;
3028  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3029    UseCycle = RegNo;
3030    bool isSStore = false;
3031
3032    switch (UseMCID.getOpcode()) {
3033    default: break;
3034    case ARM::VSTMSIA:
3035    case ARM::VSTMSIA_UPD:
3036    case ARM::VSTMSDB_UPD:
3037      isSStore = true;
3038      break;
3039    }
3040
3041    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3042    // then it takes an extra cycle.
3043    if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3044      ++UseCycle;
3045  } else {
3046    // Assume the worst.
3047    UseCycle = RegNo + 2;
3048  }
3049
3050  return UseCycle;
3051}
3052
3053int
3054ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3055                                 const MCInstrDesc &UseMCID,
3056                                 unsigned UseClass,
3057                                 unsigned UseIdx, unsigned UseAlign) const {
3058  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3059  if (RegNo <= 0)
3060    return ItinData->getOperandCycle(UseClass, UseIdx);
3061
3062  int UseCycle;
3063  if (Subtarget.isCortexA8()) {
3064    UseCycle = RegNo / 2;
3065    if (UseCycle < 2)
3066      UseCycle = 2;
3067    // Read in E3.
3068    UseCycle += 2;
3069  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3070    UseCycle = (RegNo / 2);
3071    // If there are odd number of registers or if it's not 64-bit aligned,
3072    // then it takes an extra AGU (Address Generation Unit) cycle.
3073    if ((RegNo % 2) || UseAlign < 8)
3074      ++UseCycle;
3075  } else {
3076    // Assume the worst.
3077    UseCycle = 1;
3078  }
3079  return UseCycle;
3080}
3081
3082int
3083ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3084                                    const MCInstrDesc &DefMCID,
3085                                    unsigned DefIdx, unsigned DefAlign,
3086                                    const MCInstrDesc &UseMCID,
3087                                    unsigned UseIdx, unsigned UseAlign) const {
3088  unsigned DefClass = DefMCID.getSchedClass();
3089  unsigned UseClass = UseMCID.getSchedClass();
3090
3091  if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3092    return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3093
3094  // This may be a def / use of a variable_ops instruction, the operand
3095  // latency might be determinable dynamically. Let the target try to
3096  // figure it out.
3097  int DefCycle = -1;
3098  bool LdmBypass = false;
3099  switch (DefMCID.getOpcode()) {
3100  default:
3101    DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3102    break;
3103
3104  case ARM::VLDMDIA:
3105  case ARM::VLDMDIA_UPD:
3106  case ARM::VLDMDDB_UPD:
3107  case ARM::VLDMSIA:
3108  case ARM::VLDMSIA_UPD:
3109  case ARM::VLDMSDB_UPD:
3110    DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3111    break;
3112
3113  case ARM::LDMIA_RET:
3114  case ARM::LDMIA:
3115  case ARM::LDMDA:
3116  case ARM::LDMDB:
3117  case ARM::LDMIB:
3118  case ARM::LDMIA_UPD:
3119  case ARM::LDMDA_UPD:
3120  case ARM::LDMDB_UPD:
3121  case ARM::LDMIB_UPD:
3122  case ARM::tLDMIA:
3123  case ARM::tLDMIA_UPD:
3124  case ARM::tPUSH:
3125  case ARM::t2LDMIA_RET:
3126  case ARM::t2LDMIA:
3127  case ARM::t2LDMDB:
3128  case ARM::t2LDMIA_UPD:
3129  case ARM::t2LDMDB_UPD:
3130    LdmBypass = 1;
3131    DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3132    break;
3133  }
3134
3135  if (DefCycle == -1)
3136    // We can't seem to determine the result latency of the def, assume it's 2.
3137    DefCycle = 2;
3138
3139  int UseCycle = -1;
3140  switch (UseMCID.getOpcode()) {
3141  default:
3142    UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3143    break;
3144
3145  case ARM::VSTMDIA:
3146  case ARM::VSTMDIA_UPD:
3147  case ARM::VSTMDDB_UPD:
3148  case ARM::VSTMSIA:
3149  case ARM::VSTMSIA_UPD:
3150  case ARM::VSTMSDB_UPD:
3151    UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3152    break;
3153
3154  case ARM::STMIA:
3155  case ARM::STMDA:
3156  case ARM::STMDB:
3157  case ARM::STMIB:
3158  case ARM::STMIA_UPD:
3159  case ARM::STMDA_UPD:
3160  case ARM::STMDB_UPD:
3161  case ARM::STMIB_UPD:
3162  case ARM::tSTMIA_UPD:
3163  case ARM::tPOP_RET:
3164  case ARM::tPOP:
3165  case ARM::t2STMIA:
3166  case ARM::t2STMDB:
3167  case ARM::t2STMIA_UPD:
3168  case ARM::t2STMDB_UPD:
3169    UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3170    break;
3171  }
3172
3173  if (UseCycle == -1)
3174    // Assume it's read in the first stage.
3175    UseCycle = 1;
3176
3177  UseCycle = DefCycle - UseCycle + 1;
3178  if (UseCycle > 0) {
3179    if (LdmBypass) {
3180      // It's a variable_ops instruction so we can't use DefIdx here. Just use
3181      // first def operand.
3182      if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3183                                          UseClass, UseIdx))
3184        --UseCycle;
3185    } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3186                                               UseClass, UseIdx)) {
3187      --UseCycle;
3188    }
3189  }
3190
3191  return UseCycle;
3192}
3193
3194static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3195                                           const MachineInstr *MI, unsigned Reg,
3196                                           unsigned &DefIdx, unsigned &Dist) {
3197  Dist = 0;
3198
3199  MachineBasicBlock::const_iterator I = MI; ++I;
3200  MachineBasicBlock::const_instr_iterator II =
3201    llvm::prior(I.getInstrIterator());
3202  assert(II->isInsideBundle() && "Empty bundle?");
3203
3204  int Idx = -1;
3205  while (II->isInsideBundle()) {
3206    Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
3207    if (Idx != -1)
3208      break;
3209    --II;
3210    ++Dist;
3211  }
3212
3213  assert(Idx != -1 && "Cannot find bundled definition!");
3214  DefIdx = Idx;
3215  return II;
3216}
3217
3218static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
3219                                           const MachineInstr *MI, unsigned Reg,
3220                                           unsigned &UseIdx, unsigned &Dist) {
3221  Dist = 0;
3222
3223  MachineBasicBlock::const_instr_iterator II = MI; ++II;
3224  assert(II->isInsideBundle() && "Empty bundle?");
3225  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
3226
3227  // FIXME: This doesn't properly handle multiple uses.
3228  int Idx = -1;
3229  while (II != E && II->isInsideBundle()) {
3230    Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
3231    if (Idx != -1)
3232      break;
3233    if (II->getOpcode() != ARM::t2IT)
3234      ++Dist;
3235    ++II;
3236  }
3237
3238  if (Idx == -1) {
3239    Dist = 0;
3240    return 0;
3241  }
3242
3243  UseIdx = Idx;
3244  return II;
3245}
3246
3247/// Return the number of cycles to add to (or subtract from) the static
3248/// itinerary based on the def opcode and alignment. The caller will ensure that
3249/// adjusted latency is at least one cycle.
3250static int adjustDefLatency(const ARMSubtarget &Subtarget,
3251                            const MachineInstr *DefMI,
3252                            const MCInstrDesc *DefMCID, unsigned DefAlign) {
3253  int Adjust = 0;
3254  if (Subtarget.isCortexA8() || Subtarget.isLikeA9()) {
3255    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3256    // variants are one cycle cheaper.
3257    switch (DefMCID->getOpcode()) {
3258    default: break;
3259    case ARM::LDRrs:
3260    case ARM::LDRBrs: {
3261      unsigned ShOpVal = DefMI->getOperand(3).getImm();
3262      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3263      if (ShImm == 0 ||
3264          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3265        --Adjust;
3266      break;
3267    }
3268    case ARM::t2LDRs:
3269    case ARM::t2LDRBs:
3270    case ARM::t2LDRHs:
3271    case ARM::t2LDRSHs: {
3272      // Thumb2 mode: lsl only.
3273      unsigned ShAmt = DefMI->getOperand(3).getImm();
3274      if (ShAmt == 0 || ShAmt == 2)
3275        --Adjust;
3276      break;
3277    }
3278    }
3279  } else if (Subtarget.isSwift()) {
3280    // FIXME: Properly handle all of the latency adjustments for address
3281    // writeback.
3282    switch (DefMCID->getOpcode()) {
3283    default: break;
3284    case ARM::LDRrs:
3285    case ARM::LDRBrs: {
3286      unsigned ShOpVal = DefMI->getOperand(3).getImm();
3287      bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3288      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3289      if (!isSub &&
3290          (ShImm == 0 ||
3291           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3292            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3293        Adjust -= 2;
3294      else if (!isSub &&
3295               ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3296        --Adjust;
3297      break;
3298    }
3299    case ARM::t2LDRs:
3300    case ARM::t2LDRBs:
3301    case ARM::t2LDRHs:
3302    case ARM::t2LDRSHs: {
3303      // Thumb2 mode: lsl only.
3304      unsigned ShAmt = DefMI->getOperand(3).getImm();
3305      if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
3306        Adjust -= 2;
3307      break;
3308    }
3309    }
3310  }
3311
3312  if (DefAlign < 8 && Subtarget.isLikeA9()) {
3313    switch (DefMCID->getOpcode()) {
3314    default: break;
3315    case ARM::VLD1q8:
3316    case ARM::VLD1q16:
3317    case ARM::VLD1q32:
3318    case ARM::VLD1q64:
3319    case ARM::VLD1q8wb_fixed:
3320    case ARM::VLD1q16wb_fixed:
3321    case ARM::VLD1q32wb_fixed:
3322    case ARM::VLD1q64wb_fixed:
3323    case ARM::VLD1q8wb_register:
3324    case ARM::VLD1q16wb_register:
3325    case ARM::VLD1q32wb_register:
3326    case ARM::VLD1q64wb_register:
3327    case ARM::VLD2d8:
3328    case ARM::VLD2d16:
3329    case ARM::VLD2d32:
3330    case ARM::VLD2q8:
3331    case ARM::VLD2q16:
3332    case ARM::VLD2q32:
3333    case ARM::VLD2d8wb_fixed:
3334    case ARM::VLD2d16wb_fixed:
3335    case ARM::VLD2d32wb_fixed:
3336    case ARM::VLD2q8wb_fixed:
3337    case ARM::VLD2q16wb_fixed:
3338    case ARM::VLD2q32wb_fixed:
3339    case ARM::VLD2d8wb_register:
3340    case ARM::VLD2d16wb_register:
3341    case ARM::VLD2d32wb_register:
3342    case ARM::VLD2q8wb_register:
3343    case ARM::VLD2q16wb_register:
3344    case ARM::VLD2q32wb_register:
3345    case ARM::VLD3d8:
3346    case ARM::VLD3d16:
3347    case ARM::VLD3d32:
3348    case ARM::VLD1d64T:
3349    case ARM::VLD3d8_UPD:
3350    case ARM::VLD3d16_UPD:
3351    case ARM::VLD3d32_UPD:
3352    case ARM::VLD1d64Twb_fixed:
3353    case ARM::VLD1d64Twb_register:
3354    case ARM::VLD3q8_UPD:
3355    case ARM::VLD3q16_UPD:
3356    case ARM::VLD3q32_UPD:
3357    case ARM::VLD4d8:
3358    case ARM::VLD4d16:
3359    case ARM::VLD4d32:
3360    case ARM::VLD1d64Q:
3361    case ARM::VLD4d8_UPD:
3362    case ARM::VLD4d16_UPD:
3363    case ARM::VLD4d32_UPD:
3364    case ARM::VLD1d64Qwb_fixed:
3365    case ARM::VLD1d64Qwb_register:
3366    case ARM::VLD4q8_UPD:
3367    case ARM::VLD4q16_UPD:
3368    case ARM::VLD4q32_UPD:
3369    case ARM::VLD1DUPq8:
3370    case ARM::VLD1DUPq16:
3371    case ARM::VLD1DUPq32:
3372    case ARM::VLD1DUPq8wb_fixed:
3373    case ARM::VLD1DUPq16wb_fixed:
3374    case ARM::VLD1DUPq32wb_fixed:
3375    case ARM::VLD1DUPq8wb_register:
3376    case ARM::VLD1DUPq16wb_register:
3377    case ARM::VLD1DUPq32wb_register:
3378    case ARM::VLD2DUPd8:
3379    case ARM::VLD2DUPd16:
3380    case ARM::VLD2DUPd32:
3381    case ARM::VLD2DUPd8wb_fixed:
3382    case ARM::VLD2DUPd16wb_fixed:
3383    case ARM::VLD2DUPd32wb_fixed:
3384    case ARM::VLD2DUPd8wb_register:
3385    case ARM::VLD2DUPd16wb_register:
3386    case ARM::VLD2DUPd32wb_register:
3387    case ARM::VLD4DUPd8:
3388    case ARM::VLD4DUPd16:
3389    case ARM::VLD4DUPd32:
3390    case ARM::VLD4DUPd8_UPD:
3391    case ARM::VLD4DUPd16_UPD:
3392    case ARM::VLD4DUPd32_UPD:
3393    case ARM::VLD1LNd8:
3394    case ARM::VLD1LNd16:
3395    case ARM::VLD1LNd32:
3396    case ARM::VLD1LNd8_UPD:
3397    case ARM::VLD1LNd16_UPD:
3398    case ARM::VLD1LNd32_UPD:
3399    case ARM::VLD2LNd8:
3400    case ARM::VLD2LNd16:
3401    case ARM::VLD2LNd32:
3402    case ARM::VLD2LNq16:
3403    case ARM::VLD2LNq32:
3404    case ARM::VLD2LNd8_UPD:
3405    case ARM::VLD2LNd16_UPD:
3406    case ARM::VLD2LNd32_UPD:
3407    case ARM::VLD2LNq16_UPD:
3408    case ARM::VLD2LNq32_UPD:
3409    case ARM::VLD4LNd8:
3410    case ARM::VLD4LNd16:
3411    case ARM::VLD4LNd32:
3412    case ARM::VLD4LNq16:
3413    case ARM::VLD4LNq32:
3414    case ARM::VLD4LNd8_UPD:
3415    case ARM::VLD4LNd16_UPD:
3416    case ARM::VLD4LNd32_UPD:
3417    case ARM::VLD4LNq16_UPD:
3418    case ARM::VLD4LNq32_UPD:
3419      // If the address is not 64-bit aligned, the latencies of these
3420      // instructions increases by one.
3421      ++Adjust;
3422      break;
3423    }
3424  }
3425  return Adjust;
3426}
3427
3428
3429
3430int
3431ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3432                                    const MachineInstr *DefMI, unsigned DefIdx,
3433                                    const MachineInstr *UseMI,
3434                                    unsigned UseIdx) const {
3435  // No operand latency. The caller may fall back to getInstrLatency.
3436  if (!ItinData || ItinData->isEmpty())
3437    return -1;
3438
3439  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
3440  unsigned Reg = DefMO.getReg();
3441  const MCInstrDesc *DefMCID = &DefMI->getDesc();
3442  const MCInstrDesc *UseMCID = &UseMI->getDesc();
3443
3444  unsigned DefAdj = 0;
3445  if (DefMI->isBundle()) {
3446    DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
3447    DefMCID = &DefMI->getDesc();
3448  }
3449  if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
3450      DefMI->isRegSequence() || DefMI->isImplicitDef()) {
3451    return 1;
3452  }
3453
3454  unsigned UseAdj = 0;
3455  if (UseMI->isBundle()) {
3456    unsigned NewUseIdx;
3457    const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
3458                                                   Reg, NewUseIdx, UseAdj);
3459    if (!NewUseMI)
3460      return -1;
3461
3462    UseMI = NewUseMI;
3463    UseIdx = NewUseIdx;
3464    UseMCID = &UseMI->getDesc();
3465  }
3466
3467  if (Reg == ARM::CPSR) {
3468    if (DefMI->getOpcode() == ARM::FMSTAT) {
3469      // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
3470      return Subtarget.isLikeA9() ? 1 : 20;
3471    }
3472
3473    // CPSR set and branch can be paired in the same cycle.
3474    if (UseMI->isBranch())
3475      return 0;
3476
3477    // Otherwise it takes the instruction latency (generally one).
3478    unsigned Latency = getInstrLatency(ItinData, DefMI);
3479
3480    // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
3481    // its uses. Instructions which are otherwise scheduled between them may
3482    // incur a code size penalty (not able to use the CPSR setting 16-bit
3483    // instructions).
3484    if (Latency > 0 && Subtarget.isThumb2()) {
3485      const MachineFunction *MF = DefMI->getParent()->getParent();
3486      if (MF->getFunction()->getAttributes().
3487            hasAttribute(AttributeSet::FunctionIndex,
3488                         Attribute::OptimizeForSize))
3489        --Latency;
3490    }
3491    return Latency;
3492  }
3493
3494  if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
3495    return -1;
3496
3497  unsigned DefAlign = DefMI->hasOneMemOperand()
3498    ? (*DefMI->memoperands_begin())->getAlignment() : 0;
3499  unsigned UseAlign = UseMI->hasOneMemOperand()
3500    ? (*UseMI->memoperands_begin())->getAlignment() : 0;
3501
3502  // Get the itinerary's latency if possible, and handle variable_ops.
3503  int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
3504                                  *UseMCID, UseIdx, UseAlign);
3505  // Unable to find operand latency. The caller may resort to getInstrLatency.
3506  if (Latency < 0)
3507    return Latency;
3508
3509  // Adjust for IT block position.
3510  int Adj = DefAdj + UseAdj;
3511
3512  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3513  Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
3514  if (Adj >= 0 || (int)Latency > -Adj) {
3515    return Latency + Adj;
3516  }
3517  // Return the itinerary latency, which may be zero but not less than zero.
3518  return Latency;
3519}
3520
3521int
3522ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3523                                    SDNode *DefNode, unsigned DefIdx,
3524                                    SDNode *UseNode, unsigned UseIdx) const {
3525  if (!DefNode->isMachineOpcode())
3526    return 1;
3527
3528  const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
3529
3530  if (isZeroCost(DefMCID.Opcode))
3531    return 0;
3532
3533  if (!ItinData || ItinData->isEmpty())
3534    return DefMCID.mayLoad() ? 3 : 1;
3535
3536  if (!UseNode->isMachineOpcode()) {
3537    int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
3538    if (Subtarget.isLikeA9() || Subtarget.isSwift())
3539      return Latency <= 2 ? 1 : Latency - 1;
3540    else
3541      return Latency <= 3 ? 1 : Latency - 2;
3542  }
3543
3544  const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
3545  const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
3546  unsigned DefAlign = !DefMN->memoperands_empty()
3547    ? (*DefMN->memoperands_begin())->getAlignment() : 0;
3548  const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
3549  unsigned UseAlign = !UseMN->memoperands_empty()
3550    ? (*UseMN->memoperands_begin())->getAlignment() : 0;
3551  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
3552                                  UseMCID, UseIdx, UseAlign);
3553
3554  if (Latency > 1 &&
3555      (Subtarget.isCortexA8() || Subtarget.isLikeA9())) {
3556    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3557    // variants are one cycle cheaper.
3558    switch (DefMCID.getOpcode()) {
3559    default: break;
3560    case ARM::LDRrs:
3561    case ARM::LDRBrs: {
3562      unsigned ShOpVal =
3563        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3564      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3565      if (ShImm == 0 ||
3566          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3567        --Latency;
3568      break;
3569    }
3570    case ARM::t2LDRs:
3571    case ARM::t2LDRBs:
3572    case ARM::t2LDRHs:
3573    case ARM::t2LDRSHs: {
3574      // Thumb2 mode: lsl only.
3575      unsigned ShAmt =
3576        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3577      if (ShAmt == 0 || ShAmt == 2)
3578        --Latency;
3579      break;
3580    }
3581    }
3582  } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
3583    // FIXME: Properly handle all of the latency adjustments for address
3584    // writeback.
3585    switch (DefMCID.getOpcode()) {
3586    default: break;
3587    case ARM::LDRrs:
3588    case ARM::LDRBrs: {
3589      unsigned ShOpVal =
3590        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3591      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3592      if (ShImm == 0 ||
3593          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3594           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3595        Latency -= 2;
3596      else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3597        --Latency;
3598      break;
3599    }
3600    case ARM::t2LDRs:
3601    case ARM::t2LDRBs:
3602    case ARM::t2LDRHs:
3603    case ARM::t2LDRSHs: {
3604      // Thumb2 mode: lsl 0-3 only.
3605      Latency -= 2;
3606      break;
3607    }
3608    }
3609  }
3610
3611  if (DefAlign < 8 && Subtarget.isLikeA9())
3612    switch (DefMCID.getOpcode()) {
3613    default: break;
3614    case ARM::VLD1q8:
3615    case ARM::VLD1q16:
3616    case ARM::VLD1q32:
3617    case ARM::VLD1q64:
3618    case ARM::VLD1q8wb_register:
3619    case ARM::VLD1q16wb_register:
3620    case ARM::VLD1q32wb_register:
3621    case ARM::VLD1q64wb_register:
3622    case ARM::VLD1q8wb_fixed:
3623    case ARM::VLD1q16wb_fixed:
3624    case ARM::VLD1q32wb_fixed:
3625    case ARM::VLD1q64wb_fixed:
3626    case ARM::VLD2d8:
3627    case ARM::VLD2d16:
3628    case ARM::VLD2d32:
3629    case ARM::VLD2q8Pseudo:
3630    case ARM::VLD2q16Pseudo:
3631    case ARM::VLD2q32Pseudo:
3632    case ARM::VLD2d8wb_fixed:
3633    case ARM::VLD2d16wb_fixed:
3634    case ARM::VLD2d32wb_fixed:
3635    case ARM::VLD2q8PseudoWB_fixed:
3636    case ARM::VLD2q16PseudoWB_fixed:
3637    case ARM::VLD2q32PseudoWB_fixed:
3638    case ARM::VLD2d8wb_register:
3639    case ARM::VLD2d16wb_register:
3640    case ARM::VLD2d32wb_register:
3641    case ARM::VLD2q8PseudoWB_register:
3642    case ARM::VLD2q16PseudoWB_register:
3643    case ARM::VLD2q32PseudoWB_register:
3644    case ARM::VLD3d8Pseudo:
3645    case ARM::VLD3d16Pseudo:
3646    case ARM::VLD3d32Pseudo:
3647    case ARM::VLD1d64TPseudo:
3648    case ARM::VLD3d8Pseudo_UPD:
3649    case ARM::VLD3d16Pseudo_UPD:
3650    case ARM::VLD3d32Pseudo_UPD:
3651    case ARM::VLD3q8Pseudo_UPD:
3652    case ARM::VLD3q16Pseudo_UPD:
3653    case ARM::VLD3q32Pseudo_UPD:
3654    case ARM::VLD3q8oddPseudo:
3655    case ARM::VLD3q16oddPseudo:
3656    case ARM::VLD3q32oddPseudo:
3657    case ARM::VLD3q8oddPseudo_UPD:
3658    case ARM::VLD3q16oddPseudo_UPD:
3659    case ARM::VLD3q32oddPseudo_UPD:
3660    case ARM::VLD4d8Pseudo:
3661    case ARM::VLD4d16Pseudo:
3662    case ARM::VLD4d32Pseudo:
3663    case ARM::VLD1d64QPseudo:
3664    case ARM::VLD4d8Pseudo_UPD:
3665    case ARM::VLD4d16Pseudo_UPD:
3666    case ARM::VLD4d32Pseudo_UPD:
3667    case ARM::VLD4q8Pseudo_UPD:
3668    case ARM::VLD4q16Pseudo_UPD:
3669    case ARM::VLD4q32Pseudo_UPD:
3670    case ARM::VLD4q8oddPseudo:
3671    case ARM::VLD4q16oddPseudo:
3672    case ARM::VLD4q32oddPseudo:
3673    case ARM::VLD4q8oddPseudo_UPD:
3674    case ARM::VLD4q16oddPseudo_UPD:
3675    case ARM::VLD4q32oddPseudo_UPD:
3676    case ARM::VLD1DUPq8:
3677    case ARM::VLD1DUPq16:
3678    case ARM::VLD1DUPq32:
3679    case ARM::VLD1DUPq8wb_fixed:
3680    case ARM::VLD1DUPq16wb_fixed:
3681    case ARM::VLD1DUPq32wb_fixed:
3682    case ARM::VLD1DUPq8wb_register:
3683    case ARM::VLD1DUPq16wb_register:
3684    case ARM::VLD1DUPq32wb_register:
3685    case ARM::VLD2DUPd8:
3686    case ARM::VLD2DUPd16:
3687    case ARM::VLD2DUPd32:
3688    case ARM::VLD2DUPd8wb_fixed:
3689    case ARM::VLD2DUPd16wb_fixed:
3690    case ARM::VLD2DUPd32wb_fixed:
3691    case ARM::VLD2DUPd8wb_register:
3692    case ARM::VLD2DUPd16wb_register:
3693    case ARM::VLD2DUPd32wb_register:
3694    case ARM::VLD4DUPd8Pseudo:
3695    case ARM::VLD4DUPd16Pseudo:
3696    case ARM::VLD4DUPd32Pseudo:
3697    case ARM::VLD4DUPd8Pseudo_UPD:
3698    case ARM::VLD4DUPd16Pseudo_UPD:
3699    case ARM::VLD4DUPd32Pseudo_UPD:
3700    case ARM::VLD1LNq8Pseudo:
3701    case ARM::VLD1LNq16Pseudo:
3702    case ARM::VLD1LNq32Pseudo:
3703    case ARM::VLD1LNq8Pseudo_UPD:
3704    case ARM::VLD1LNq16Pseudo_UPD:
3705    case ARM::VLD1LNq32Pseudo_UPD:
3706    case ARM::VLD2LNd8Pseudo:
3707    case ARM::VLD2LNd16Pseudo:
3708    case ARM::VLD2LNd32Pseudo:
3709    case ARM::VLD2LNq16Pseudo:
3710    case ARM::VLD2LNq32Pseudo:
3711    case ARM::VLD2LNd8Pseudo_UPD:
3712    case ARM::VLD2LNd16Pseudo_UPD:
3713    case ARM::VLD2LNd32Pseudo_UPD:
3714    case ARM::VLD2LNq16Pseudo_UPD:
3715    case ARM::VLD2LNq32Pseudo_UPD:
3716    case ARM::VLD4LNd8Pseudo:
3717    case ARM::VLD4LNd16Pseudo:
3718    case ARM::VLD4LNd32Pseudo:
3719    case ARM::VLD4LNq16Pseudo:
3720    case ARM::VLD4LNq32Pseudo:
3721    case ARM::VLD4LNd8Pseudo_UPD:
3722    case ARM::VLD4LNd16Pseudo_UPD:
3723    case ARM::VLD4LNd32Pseudo_UPD:
3724    case ARM::VLD4LNq16Pseudo_UPD:
3725    case ARM::VLD4LNq32Pseudo_UPD:
3726      // If the address is not 64-bit aligned, the latencies of these
3727      // instructions increases by one.
3728      ++Latency;
3729      break;
3730    }
3731
3732  return Latency;
3733}
3734
3735unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr *MI) const {
3736   if (MI->isCopyLike() || MI->isInsertSubreg() ||
3737      MI->isRegSequence() || MI->isImplicitDef())
3738    return 0;
3739
3740  if (MI->isBundle())
3741    return 0;
3742
3743  const MCInstrDesc &MCID = MI->getDesc();
3744
3745  if (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) {
3746    // When predicated, CPSR is an additional source operand for CPSR updating
3747    // instructions, this apparently increases their latencies.
3748    return 1;
3749  }
3750  return 0;
3751}
3752
3753unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3754                                           const MachineInstr *MI,
3755                                           unsigned *PredCost) const {
3756  if (MI->isCopyLike() || MI->isInsertSubreg() ||
3757      MI->isRegSequence() || MI->isImplicitDef())
3758    return 1;
3759
3760  // An instruction scheduler typically runs on unbundled instructions, however
3761  // other passes may query the latency of a bundled instruction.
3762  if (MI->isBundle()) {
3763    unsigned Latency = 0;
3764    MachineBasicBlock::const_instr_iterator I = MI;
3765    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
3766    while (++I != E && I->isInsideBundle()) {
3767      if (I->getOpcode() != ARM::t2IT)
3768        Latency += getInstrLatency(ItinData, I, PredCost);
3769    }
3770    return Latency;
3771  }
3772
3773  const MCInstrDesc &MCID = MI->getDesc();
3774  if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
3775    // When predicated, CPSR is an additional source operand for CPSR updating
3776    // instructions, this apparently increases their latencies.
3777    *PredCost = 1;
3778  }
3779  // Be sure to call getStageLatency for an empty itinerary in case it has a
3780  // valid MinLatency property.
3781  if (!ItinData)
3782    return MI->mayLoad() ? 3 : 1;
3783
3784  unsigned Class = MCID.getSchedClass();
3785
3786  // For instructions with variable uops, use uops as latency.
3787  if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
3788    return getNumMicroOps(ItinData, MI);
3789
3790  // For the common case, fall back on the itinerary's latency.
3791  unsigned Latency = ItinData->getStageLatency(Class);
3792
3793  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3794  unsigned DefAlign = MI->hasOneMemOperand()
3795    ? (*MI->memoperands_begin())->getAlignment() : 0;
3796  int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
3797  if (Adj >= 0 || (int)Latency > -Adj) {
3798    return Latency + Adj;
3799  }
3800  return Latency;
3801}
3802
3803int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3804                                      SDNode *Node) const {
3805  if (!Node->isMachineOpcode())
3806    return 1;
3807
3808  if (!ItinData || ItinData->isEmpty())
3809    return 1;
3810
3811  unsigned Opcode = Node->getMachineOpcode();
3812  switch (Opcode) {
3813  default:
3814    return ItinData->getStageLatency(get(Opcode).getSchedClass());
3815  case ARM::VLDMQIA:
3816  case ARM::VSTMQIA:
3817    return 2;
3818  }
3819}
3820
3821bool ARMBaseInstrInfo::
3822hasHighOperandLatency(const InstrItineraryData *ItinData,
3823                      const MachineRegisterInfo *MRI,
3824                      const MachineInstr *DefMI, unsigned DefIdx,
3825                      const MachineInstr *UseMI, unsigned UseIdx) const {
3826  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3827  unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
3828  if (Subtarget.isCortexA8() &&
3829      (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
3830    // CortexA8 VFP instructions are not pipelined.
3831    return true;
3832
3833  // Hoist VFP / NEON instructions with 4 or higher latency.
3834  int Latency = computeOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
3835  if (Latency < 0)
3836    Latency = getInstrLatency(ItinData, DefMI);
3837  if (Latency <= 3)
3838    return false;
3839  return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
3840         UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
3841}
3842
3843bool ARMBaseInstrInfo::
3844hasLowDefLatency(const InstrItineraryData *ItinData,
3845                 const MachineInstr *DefMI, unsigned DefIdx) const {
3846  if (!ItinData || ItinData->isEmpty())
3847    return false;
3848
3849  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3850  if (DDomain == ARMII::DomainGeneral) {
3851    unsigned DefClass = DefMI->getDesc().getSchedClass();
3852    int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3853    return (DefCycle != -1 && DefCycle <= 2);
3854  }
3855  return false;
3856}
3857
3858bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
3859                                         StringRef &ErrInfo) const {
3860  if (convertAddSubFlagsOpcode(MI->getOpcode())) {
3861    ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
3862    return false;
3863  }
3864  return true;
3865}
3866
3867bool
3868ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
3869                                     unsigned &AddSubOpc,
3870                                     bool &NegAcc, bool &HasLane) const {
3871  DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
3872  if (I == MLxEntryMap.end())
3873    return false;
3874
3875  const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
3876  MulOpc = Entry.MulOpc;
3877  AddSubOpc = Entry.AddSubOpc;
3878  NegAcc = Entry.NegAcc;
3879  HasLane = Entry.HasLane;
3880  return true;
3881}
3882
3883//===----------------------------------------------------------------------===//
3884// Execution domains.
3885//===----------------------------------------------------------------------===//
3886//
3887// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
3888// and some can go down both.  The vmov instructions go down the VFP pipeline,
3889// but they can be changed to vorr equivalents that are executed by the NEON
3890// pipeline.
3891//
3892// We use the following execution domain numbering:
3893//
3894enum ARMExeDomain {
3895  ExeGeneric = 0,
3896  ExeVFP = 1,
3897  ExeNEON = 2
3898};
3899//
3900// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
3901//
3902std::pair<uint16_t, uint16_t>
3903ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
3904  // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
3905  // if they are not predicated.
3906  if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
3907    return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
3908
3909  // CortexA9 is particularly picky about mixing the two and wants these
3910  // converted.
3911  if (Subtarget.isCortexA9() && !isPredicated(MI) &&
3912      (MI->getOpcode() == ARM::VMOVRS ||
3913       MI->getOpcode() == ARM::VMOVSR ||
3914       MI->getOpcode() == ARM::VMOVS))
3915    return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
3916
3917  // No other instructions can be swizzled, so just determine their domain.
3918  unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
3919
3920  if (Domain & ARMII::DomainNEON)
3921    return std::make_pair(ExeNEON, 0);
3922
3923  // Certain instructions can go either way on Cortex-A8.
3924  // Treat them as NEON instructions.
3925  if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
3926    return std::make_pair(ExeNEON, 0);
3927
3928  if (Domain & ARMII::DomainVFP)
3929    return std::make_pair(ExeVFP, 0);
3930
3931  return std::make_pair(ExeGeneric, 0);
3932}
3933
3934static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
3935                                            unsigned SReg, unsigned &Lane) {
3936  unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
3937  Lane = 0;
3938
3939  if (DReg != ARM::NoRegister)
3940   return DReg;
3941
3942  Lane = 1;
3943  DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
3944
3945  assert(DReg && "S-register with no D super-register?");
3946  return DReg;
3947}
3948
3949/// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
3950/// set ImplicitSReg to a register number that must be marked as implicit-use or
3951/// zero if no register needs to be defined as implicit-use.
3952///
3953/// If the function cannot determine if an SPR should be marked implicit use or
3954/// not, it returns false.
3955///
3956/// This function handles cases where an instruction is being modified from taking
3957/// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
3958/// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
3959/// lane of the DPR).
3960///
3961/// If the other SPR is defined, an implicit-use of it should be added. Else,
3962/// (including the case where the DPR itself is defined), it should not.
3963///
3964static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
3965                                       MachineInstr *MI,
3966                                       unsigned DReg, unsigned Lane,
3967                                       unsigned &ImplicitSReg) {
3968  // If the DPR is defined or used already, the other SPR lane will be chained
3969  // correctly, so there is nothing to be done.
3970  if (MI->definesRegister(DReg, TRI) || MI->readsRegister(DReg, TRI)) {
3971    ImplicitSReg = 0;
3972    return true;
3973  }
3974
3975  // Otherwise we need to go searching to see if the SPR is set explicitly.
3976  ImplicitSReg = TRI->getSubReg(DReg,
3977                                (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
3978  MachineBasicBlock::LivenessQueryResult LQR =
3979    MI->getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
3980
3981  if (LQR == MachineBasicBlock::LQR_Live)
3982    return true;
3983  else if (LQR == MachineBasicBlock::LQR_Unknown)
3984    return false;
3985
3986  // If the register is known not to be live, there is no need to add an
3987  // implicit-use.
3988  ImplicitSReg = 0;
3989  return true;
3990}
3991
3992void
3993ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
3994  unsigned DstReg, SrcReg, DReg;
3995  unsigned Lane;
3996  MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
3997  const TargetRegisterInfo *TRI = &getRegisterInfo();
3998  switch (MI->getOpcode()) {
3999    default:
4000      llvm_unreachable("cannot handle opcode!");
4001      break;
4002    case ARM::VMOVD:
4003      if (Domain != ExeNEON)
4004        break;
4005
4006      // Zap the predicate operands.
4007      assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4008
4009      // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4010      DstReg = MI->getOperand(0).getReg();
4011      SrcReg = MI->getOperand(1).getReg();
4012
4013      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4014        MI->RemoveOperand(i-1);
4015
4016      // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4017      MI->setDesc(get(ARM::VORRd));
4018      AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
4019                        .addReg(SrcReg)
4020                        .addReg(SrcReg));
4021      break;
4022    case ARM::VMOVRS:
4023      if (Domain != ExeNEON)
4024        break;
4025      assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4026
4027      // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4028      DstReg = MI->getOperand(0).getReg();
4029      SrcReg = MI->getOperand(1).getReg();
4030
4031      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4032        MI->RemoveOperand(i-1);
4033
4034      DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4035
4036      // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4037      // Note that DSrc has been widened and the other lane may be undef, which
4038      // contaminates the entire register.
4039      MI->setDesc(get(ARM::VGETLNi32));
4040      AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
4041                        .addReg(DReg, RegState::Undef)
4042                        .addImm(Lane));
4043
4044      // The old source should be an implicit use, otherwise we might think it
4045      // was dead before here.
4046      MIB.addReg(SrcReg, RegState::Implicit);
4047      break;
4048    case ARM::VMOVSR: {
4049      if (Domain != ExeNEON)
4050        break;
4051      assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4052
4053      // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4054      DstReg = MI->getOperand(0).getReg();
4055      SrcReg = MI->getOperand(1).getReg();
4056
4057      DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4058
4059      unsigned ImplicitSReg;
4060      if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4061        break;
4062
4063      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4064        MI->RemoveOperand(i-1);
4065
4066      // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4067      // Again DDst may be undefined at the beginning of this instruction.
4068      MI->setDesc(get(ARM::VSETLNi32));
4069      MIB.addReg(DReg, RegState::Define)
4070         .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI)))
4071         .addReg(SrcReg)
4072         .addImm(Lane);
4073      AddDefaultPred(MIB);
4074
4075      // The narrower destination must be marked as set to keep previous chains
4076      // in place.
4077      MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4078      if (ImplicitSReg != 0)
4079        MIB.addReg(ImplicitSReg, RegState::Implicit);
4080      break;
4081    }
4082    case ARM::VMOVS: {
4083      if (Domain != ExeNEON)
4084        break;
4085
4086      // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4087      DstReg = MI->getOperand(0).getReg();
4088      SrcReg = MI->getOperand(1).getReg();
4089
4090      unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
4091      DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
4092      DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
4093
4094      unsigned ImplicitSReg;
4095      if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
4096        break;
4097
4098      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4099        MI->RemoveOperand(i-1);
4100
4101      if (DSrc == DDst) {
4102        // Destination can be:
4103        //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
4104        MI->setDesc(get(ARM::VDUPLN32d));
4105        MIB.addReg(DDst, RegState::Define)
4106           .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI)))
4107           .addImm(SrcLane);
4108        AddDefaultPred(MIB);
4109
4110        // Neither the source or the destination are naturally represented any
4111        // more, so add them in manually.
4112        MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
4113        MIB.addReg(SrcReg, RegState::Implicit);
4114        if (ImplicitSReg != 0)
4115          MIB.addReg(ImplicitSReg, RegState::Implicit);
4116        break;
4117      }
4118
4119      // In general there's no single instruction that can perform an S <-> S
4120      // move in NEON space, but a pair of VEXT instructions *can* do the
4121      // job. It turns out that the VEXTs needed will only use DSrc once, with
4122      // the position based purely on the combination of lane-0 and lane-1
4123      // involved. For example
4124      //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
4125      //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
4126      //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
4127      //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
4128      //
4129      // Pattern of the MachineInstrs is:
4130      //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
4131      MachineInstrBuilder NewMIB;
4132      NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
4133                       get(ARM::VEXTd32), DDst);
4134
4135      // On the first instruction, both DSrc and DDst may be <undef> if present.
4136      // Specifically when the original instruction didn't have them as an
4137      // <imp-use>.
4138      unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
4139      bool CurUndef = !MI->readsRegister(CurReg, TRI);
4140      NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4141
4142      CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
4143      CurUndef = !MI->readsRegister(CurReg, TRI);
4144      NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4145
4146      NewMIB.addImm(1);
4147      AddDefaultPred(NewMIB);
4148
4149      if (SrcLane == DstLane)
4150        NewMIB.addReg(SrcReg, RegState::Implicit);
4151
4152      MI->setDesc(get(ARM::VEXTd32));
4153      MIB.addReg(DDst, RegState::Define);
4154
4155      // On the second instruction, DDst has definitely been defined above, so
4156      // it is not <undef>. DSrc, if present, can be <undef> as above.
4157      CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
4158      CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
4159      MIB.addReg(CurReg, getUndefRegState(CurUndef));
4160
4161      CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
4162      CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
4163      MIB.addReg(CurReg, getUndefRegState(CurUndef));
4164
4165      MIB.addImm(1);
4166      AddDefaultPred(MIB);
4167
4168      if (SrcLane != DstLane)
4169        MIB.addReg(SrcReg, RegState::Implicit);
4170
4171      // As before, the original destination is no longer represented, add it
4172      // implicitly.
4173      MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4174      if (ImplicitSReg != 0)
4175        MIB.addReg(ImplicitSReg, RegState::Implicit);
4176      break;
4177    }
4178  }
4179
4180}
4181
4182//===----------------------------------------------------------------------===//
4183// Partial register updates
4184//===----------------------------------------------------------------------===//
4185//
4186// Swift renames NEON registers with 64-bit granularity.  That means any
4187// instruction writing an S-reg implicitly reads the containing D-reg.  The
4188// problem is mostly avoided by translating f32 operations to v2f32 operations
4189// on D-registers, but f32 loads are still a problem.
4190//
4191// These instructions can load an f32 into a NEON register:
4192//
4193// VLDRS - Only writes S, partial D update.
4194// VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
4195// VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
4196//
4197// FCONSTD can be used as a dependency-breaking instruction.
4198unsigned ARMBaseInstrInfo::
4199getPartialRegUpdateClearance(const MachineInstr *MI,
4200                             unsigned OpNum,
4201                             const TargetRegisterInfo *TRI) const {
4202  if (!SwiftPartialUpdateClearance ||
4203      !(Subtarget.isSwift() || Subtarget.isCortexA15()))
4204    return 0;
4205
4206  assert(TRI && "Need TRI instance");
4207
4208  const MachineOperand &MO = MI->getOperand(OpNum);
4209  if (MO.readsReg())
4210    return 0;
4211  unsigned Reg = MO.getReg();
4212  int UseOp = -1;
4213
4214  switch(MI->getOpcode()) {
4215    // Normal instructions writing only an S-register.
4216  case ARM::VLDRS:
4217  case ARM::FCONSTS:
4218  case ARM::VMOVSR:
4219  case ARM::VMOVv8i8:
4220  case ARM::VMOVv4i16:
4221  case ARM::VMOVv2i32:
4222  case ARM::VMOVv2f32:
4223  case ARM::VMOVv1i64:
4224    UseOp = MI->findRegisterUseOperandIdx(Reg, false, TRI);
4225    break;
4226
4227    // Explicitly reads the dependency.
4228  case ARM::VLD1LNd32:
4229    UseOp = 3;
4230    break;
4231  default:
4232    return 0;
4233  }
4234
4235  // If this instruction actually reads a value from Reg, there is no unwanted
4236  // dependency.
4237  if (UseOp != -1 && MI->getOperand(UseOp).readsReg())
4238    return 0;
4239
4240  // We must be able to clobber the whole D-reg.
4241  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4242    // Virtual register must be a foo:ssub_0<def,undef> operand.
4243    if (!MO.getSubReg() || MI->readsVirtualRegister(Reg))
4244      return 0;
4245  } else if (ARM::SPRRegClass.contains(Reg)) {
4246    // Physical register: MI must define the full D-reg.
4247    unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
4248                                             &ARM::DPRRegClass);
4249    if (!DReg || !MI->definesRegister(DReg, TRI))
4250      return 0;
4251  }
4252
4253  // MI has an unwanted D-register dependency.
4254  // Avoid defs in the previous N instructrions.
4255  return SwiftPartialUpdateClearance;
4256}
4257
4258// Break a partial register dependency after getPartialRegUpdateClearance
4259// returned non-zero.
4260void ARMBaseInstrInfo::
4261breakPartialRegDependency(MachineBasicBlock::iterator MI,
4262                          unsigned OpNum,
4263                          const TargetRegisterInfo *TRI) const {
4264  assert(MI && OpNum < MI->getDesc().getNumDefs() && "OpNum is not a def");
4265  assert(TRI && "Need TRI instance");
4266
4267  const MachineOperand &MO = MI->getOperand(OpNum);
4268  unsigned Reg = MO.getReg();
4269  assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
4270         "Can't break virtual register dependencies.");
4271  unsigned DReg = Reg;
4272
4273  // If MI defines an S-reg, find the corresponding D super-register.
4274  if (ARM::SPRRegClass.contains(Reg)) {
4275    DReg = ARM::D0 + (Reg - ARM::S0) / 2;
4276    assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
4277  }
4278
4279  assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
4280  assert(MI->definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
4281
4282  // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
4283  // the full D-register by loading the same value to both lanes.  The
4284  // instruction is micro-coded with 2 uops, so don't do this until we can
4285  // properly schedule micro-coded instructions.  The dispatcher stalls cause
4286  // too big regressions.
4287
4288  // Insert the dependency-breaking FCONSTD before MI.
4289  // 96 is the encoding of 0.5, but the actual value doesn't matter here.
4290  AddDefaultPred(BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
4291                         get(ARM::FCONSTD), DReg).addImm(96));
4292  MI->addRegisterKilled(DReg, TRI, true);
4293}
4294
4295bool ARMBaseInstrInfo::hasNOP() const {
4296  return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
4297}
4298
4299bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
4300  if (MI->getNumOperands() < 4)
4301    return true;
4302  unsigned ShOpVal = MI->getOperand(3).getImm();
4303  unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
4304  // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
4305  if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
4306      ((ShImm == 1 || ShImm == 2) &&
4307       ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
4308    return true;
4309
4310  return false;
4311}
4312