ARMCodeEmitter.cpp revision 081ce940e7351e90fff829320b7dc6738a6b3815
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-emitter"
16#include "ARMInstrInfo.h"
17#include "ARMSubtarget.h"
18#include "ARMTargetMachine.h"
19#include "ARMRelocations.h"
20#include "ARMAddressingModes.h"
21#include "ARM.h"
22#include "llvm/PassManager.h"
23#include "llvm/CodeGen/MachineCodeEmitter.h"
24#include "llvm/CodeGen/MachineFunctionPass.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/Function.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/Support/Compiler.h"
30using namespace llvm;
31
32STATISTIC(NumEmitted, "Number of machine instructions emitted");
33
34namespace {
35  class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass {
36    const ARMInstrInfo  *II;
37    const TargetData    *TD;
38    TargetMachine       &TM;
39    MachineCodeEmitter  &MCE;
40  public:
41    static char ID;
42    explicit Emitter(TargetMachine &tm, MachineCodeEmitter &mce)
43      : MachineFunctionPass((intptr_t)&ID), II(0), TD(0), TM(tm),
44      MCE(mce) {}
45    Emitter(TargetMachine &tm, MachineCodeEmitter &mce,
46            const ARMInstrInfo &ii, const TargetData &td)
47      : MachineFunctionPass((intptr_t)&ID), II(&ii), TD(&td), TM(tm),
48      MCE(mce) {}
49
50    bool runOnMachineFunction(MachineFunction &MF);
51
52    virtual const char *getPassName() const {
53      return "ARM Machine Code Emitter";
54    }
55
56    void emitInstruction(const MachineInstr &MI);
57    int getMachineOpValue(const MachineInstr &MI, unsigned OpIndex);
58    unsigned getBaseOpcodeFor(const TargetInstrDescriptor *TID);
59    unsigned getBinaryCodeForInstr(const MachineInstr &MI);
60
61    void emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub);
62    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
63    void emitConstPoolAddress(unsigned CPI, unsigned Reloc,
64                              int Disp = 0, unsigned PCAdj = 0 );
65    void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
66                              unsigned PCAdj = 0);
67    void emitGlobalConstant(const Constant *CV);
68    void emitMachineBasicBlock(MachineBasicBlock *BB);
69
70  private:
71    int getShiftOp(const MachineOperand &MO);
72
73  };
74  char Emitter::ID = 0;
75}
76
77/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
78/// to the specified MCE object.
79FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM,
80                                             MachineCodeEmitter &MCE) {
81  return new Emitter(TM, MCE);
82}
83
84bool Emitter::runOnMachineFunction(MachineFunction &MF) {
85  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
86          MF.getTarget().getRelocationModel() != Reloc::Static) &&
87         "JIT relocation model must be set to static or default!");
88  II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
89  TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
90
91  do {
92    MCE.startFunction(MF);
93    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
94         MBB != E; ++MBB) {
95      MCE.StartMachineBasicBlock(MBB);
96      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
97           I != E; ++I)
98        emitInstruction(*I);
99    }
100  } while (MCE.finishFunction(MF));
101
102  return false;
103}
104
105/// getBaseOpcodeFor - Return the opcode value
106unsigned Emitter::getBaseOpcodeFor(const TargetInstrDescriptor *TID) {
107  return (TID->TSFlags & ARMII::OpcodeMask) >> ARMII::OpcodeShift;
108}
109
110/// getShiftOp - Verify which is the shift opcode (bit[6:5]) of the
111/// machine operand.
112int Emitter::getShiftOp(const MachineOperand &MO) {
113  unsigned ShiftOp = 0x0;
114  switch(ARM_AM::getAM2ShiftOpc(MO.getImmedValue())) {
115  default: assert(0 && "Unknown shift opc!");
116  case ARM_AM::asr:
117    ShiftOp = 0X2;
118    break;
119  case ARM_AM::lsl:
120    ShiftOp = 0X0;
121    break;
122  case ARM_AM::lsr:
123    ShiftOp = 0X1;
124    break;
125  case ARM_AM::ror:
126  case ARM_AM::rrx:
127    ShiftOp = 0X3;
128    break;
129  }
130  return ShiftOp;
131}
132
133int Emitter::getMachineOpValue(const MachineInstr &MI, unsigned OpIndex) {
134  intptr_t rv = 0;
135  const MachineOperand &MO = MI.getOperand(OpIndex);
136  if (MO.isRegister()) {
137    assert(MRegisterInfo::isPhysicalRegister(MO.getReg()));
138    rv = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
139  } else if (MO.isImmediate()) {
140    rv = MO.getImmedValue();
141  } else if (MO.isGlobalAddress()) {
142    emitGlobalAddressForCall(MO.getGlobal(), false);
143  } else if (MO.isExternalSymbol()) {
144    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative);
145  } else if (MO.isConstantPoolIndex()) {
146    emitConstPoolAddress(MO.getConstantPoolIndex(), ARM::reloc_arm_relative);
147  } else if (MO.isJumpTableIndex()) {
148    emitJumpTableAddress(MO.getJumpTableIndex(), ARM::reloc_arm_relative);
149  } else if (MO.isMachineBasicBlock()) {
150    emitMachineBasicBlock(MO.getMachineBasicBlock());
151  }
152
153  return rv;
154}
155
156/// emitGlobalAddressForCall - Emit the specified address to the code stream
157/// assuming this is part of a function call, which is PC relative.
158///
159void Emitter::emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub) {
160  MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
161                                      ARM::reloc_arm_branch, GV, 0,
162                                      DoesntNeedStub));
163}
164
165/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
166/// be emitted to the current location in the function, and allow it to be PC
167/// relative.
168void Emitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
169  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
170                                                 Reloc, ES));
171}
172
173/// emitConstPoolAddress - Arrange for the address of an constant pool
174/// to be emitted to the current location in the function, and allow it to be PC
175/// relative.
176void Emitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
177                                   int Disp /* = 0 */,
178                                   unsigned PCAdj /* = 0 */) {
179  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
180                                                    Reloc, CPI, PCAdj));
181}
182
183/// emitJumpTableAddress - Arrange for the address of a jump table to
184/// be emitted to the current location in the function, and allow it to be PC
185/// relative.
186void Emitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
187                                   unsigned PCAdj /* = 0 */) {
188  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
189                                                    Reloc, JTI, PCAdj));
190}
191
192/// emitMachineBasicBlock - Emit the specified address basic block.
193void Emitter::emitMachineBasicBlock(MachineBasicBlock *BB) {
194  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
195                                      ARM::reloc_arm_branch, BB));
196}
197
198void Emitter::emitInstruction(const MachineInstr &MI) {
199  NumEmitted++;  // Keep track of the # of mi's emitted
200  MCE.emitWordLE(getBinaryCodeForInstr(MI));
201}
202
203unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
204  const TargetInstrDescriptor *Desc = MI.getInstrDescriptor();
205  const unsigned opcode = MI.getOpcode();
206  // initial instruction mask
207  unsigned Value = 0xE0000000;
208  unsigned op;
209
210  switch (Desc->TSFlags & ARMII::AddrModeMask) {
211  case ARMII::AddrModeNone: {
212    switch(Desc->TSFlags & ARMII::FormMask) {
213    default: {
214      assert(0 && "Unknown instruction subtype!");
215      // treat special instruction CLZ
216      if(opcode == ARM::CLZ) {
217        // set first operand
218        op = getMachineOpValue(MI,0);
219        Value |= op << ARMII::RegRdShift;
220
221        // set second operand
222        op = getMachineOpValue(MI,1);
223        Value |= op;
224      }
225      break;
226    }
227    case ARMII::MulSMLAW:
228    case ARMII::MulSMULW:
229      // set bit W(21)
230      Value |= 1 << 21;
231    case ARMII::MulSMLA:
232    case ARMII::MulSMUL: {
233      // set bit W(21)
234      Value |= 1 << 24;
235
236      // set opcode (bit[7:4]). For more information, see ARM-ARM page A3-31
237      // SMLA<x><y>  - 1yx0
238      // SMLAW<y>    - 1y00
239      // SMULW<y>    - 1y10
240      // SMUL<x><y>  - 1yx0
241      unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
242      Value |= BaseOpcode << 4;
243
244      unsigned Format = (Desc->TSFlags & ARMII::FormMask);
245      if (Format == ARMII::MulSMUL)
246        Value |= 1 << 22;
247
248      // set first operand
249      op = getMachineOpValue(MI,0);
250      Value |= op << ARMII::RegRnShift;
251
252      // set second operand
253      op = getMachineOpValue(MI,1);
254      Value |= op;
255
256      // set third operand
257      op = getMachineOpValue(MI,2);
258      Value |= op << ARMII::RegRsShift;
259
260      // instructions SMLA and SMLAW have a fourth operand
261      if (Format != ARMII::MulSMULW && Format != ARMII::MulSMUL) {
262        op = getMachineOpValue(MI,3);
263        Value |= op << ARMII::RegRdShift;
264      }
265
266      break;
267    }
268    case ARMII::MulFrm: {
269      // bit[7:4] is always 9
270      Value |= 9 << 4;
271      // set opcode (bit[23:20])
272      unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
273      Value |= BaseOpcode << 20;
274
275      bool isMUL = opcode == ARM::MUL;
276      bool isMLA = opcode == ARM::MLA;
277
278      // set first operand
279      op = getMachineOpValue(MI,0);
280      Value |= op << (isMUL || isMLA ? ARMII::RegRnShift : ARMII::RegRdShift);
281
282      // set second operand
283      op = getMachineOpValue(MI,1);
284      Value |= op << (isMUL || isMLA ? 0 : ARMII::RegRnShift);
285
286      // set third operand
287      op = getMachineOpValue(MI,2);
288      Value |= op << (isMUL || isMLA ? ARMII::RegRsShift : 0);
289
290      // multiply instructions (except MUL), have a fourth operand
291      if (!isMUL) {
292        op = getMachineOpValue(MI,3);
293        Value |= op << (isMLA ? ARMII::RegRdShift : ARMII::RegRsShift);
294      }
295
296      break;
297    }
298    case ARMII::Branch: {
299      // set opcode (bit[27:24])
300      unsigned BaseOpcode = getBaseOpcodeFor(Desc);
301      Value |= BaseOpcode << 24;
302
303      // set signed_immed_24 field
304      op = getMachineOpValue(MI,0);
305      Value |= op;
306
307      // if it is a conditional branch, set cond field
308      if (opcode == ARM::Bcc) {
309        op = getMachineOpValue(MI,1);
310        Value &= 0x0FFFFFFF; // clear conditional field
311        Value |= op << 28;   // set conditional field
312      }
313
314      break;
315    }
316    case ARMII::BranchMisc: {
317      // set opcode (bit[7:4])
318      unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
319      Value |= BaseOpcode << 4;
320      // set bit[27:24] to 1, set bit[23:20] to 2 and set bit[19:8] to 0xFFF
321      Value |= 0x12fff << 8;
322
323      if (opcode == ARM::BX_RET)
324        op = 0xe; // the return register is LR
325      else
326        // otherwise, set the return register
327        op = getMachineOpValue(MI,0);
328      Value |= op;
329
330      break;
331    }
332    case ARMII::Pseudo:
333      break;
334    }
335
336    break;
337  }
338  case ARMII::AddrMode1: {
339    // set opcode (bit[24:21]) of data-processing instructions
340    unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
341    Value |= BaseOpcode << 21;
342
343    // treat 3 special instructions: MOVsra_flag, MOVsrl_flag and
344    // MOVrx.
345    unsigned Format = (Desc->TSFlags & ARMII::FormMask);
346    if (Format == ARMII::DPRdMisc) {
347      Value |= getMachineOpValue(MI,0) << ARMII::RegRdShift;
348      Value |= getMachineOpValue(MI,1);
349      switch(opcode) {
350      case ARM::MOVsra_flag: {
351        Value |= 0x1 << 6;
352        Value |= 0x1 << 7;
353        break;
354      }
355      case ARM::MOVsrl_flag: {
356        Value |= 0x1 << 5;
357        Value |= 0x1 << 7;
358        break;
359      }
360      case ARM::MOVrx: {
361        Value |= 0x3 << 5;
362        break;
363      }
364      }
365      break;
366    }
367
368    // Data processing operand instructions has 3 possible encodings (for more
369    // information, see ARM-ARM page A3-10):
370    // 1. <instr> <Rd>,<shifter_operand>
371    // 2. <instr> <Rn>,<shifter_operand>
372    // 3. <instr> <Rd>,<Rn>,<shifter_operand>
373    bool IsDataProcessing1 = Format == ARMII::DPRdIm    ||
374                             Format == ARMII::DPRdReg   ||
375                             Format == ARMII::DPRdSoReg;
376    bool IsDataProcessing2 = Format == ARMII::DPRnIm    ||
377                             Format == ARMII::DPRnReg   ||
378                             Format == ARMII::DPRnSoReg;
379    bool IsDataProcessing3 = false;
380
381    // set bit S(20)
382    if (Format == ARMII::DPRImS || Format == ARMII::DPRRegS ||
383        Format == ARMII::DPRSoRegS || IsDataProcessing2) {
384      Value |= 1 << ARMII::S_BitShift;
385      IsDataProcessing3 = !IsDataProcessing2;
386    }
387
388    IsDataProcessing3 = Format == ARMII::DPRIm     ||
389                        Format == ARMII::DPRReg    ||
390                        Format == ARMII::DPRSoReg  ||
391                        IsDataProcessing3;
392
393    // set first operand
394    op = getMachineOpValue(MI,0);
395    if (IsDataProcessing1 || IsDataProcessing3) {
396      Value |= op << ARMII::RegRdShift;
397    } else if (IsDataProcessing2) {
398      Value |= op << ARMII::RegRnShift;
399    }
400
401    // set second operand of data processing #3 instructions
402    if (IsDataProcessing3) {
403      op = getMachineOpValue(MI,1);
404      Value |= op << ARMII::RegRnShift;
405    }
406
407    unsigned OperandIndex = IsDataProcessing3 ? 2 : 1;
408    switch (Format) {
409    case ARMII::DPRdIm: case ARMII::DPRnIm:
410    case ARMII::DPRIm:  case ARMII::DPRImS: {
411      // set bit I(25) to identify this is the immediate form of <shifter_op>
412      Value |= 1 << ARMII::I_BitShift;
413      // set immed_8 field
414      const MachineOperand &MO = MI.getOperand(OperandIndex);
415      op = ARM_AM::getSOImmVal(MO.getImmedValue());
416      Value |= op;
417
418      break;
419    }
420    case ARMII::DPRdReg: case ARMII::DPRnReg:
421    case ARMII::DPRReg:  case ARMII::DPRRegS: {
422      // set last operand (register Rm)
423      op = getMachineOpValue(MI,OperandIndex);
424      Value |= op;
425
426      break;
427    }
428    case ARMII::DPRdSoReg: case ARMII::DPRnSoReg:
429    case ARMII::DPRSoReg:  case ARMII::DPRSoRegS: {
430      // set last operand (register Rm)
431      op = getMachineOpValue(MI,OperandIndex);
432      Value |= op;
433
434      const MachineOperand &MO1 = MI.getOperand(OperandIndex + 1);
435      const MachineOperand &MO2 = MI.getOperand(OperandIndex + 2);
436      // identify it the instr is in immed or register shifts encoding
437      bool IsShiftByRegister = MO1.getReg() > 0;
438      // set shift operand (bit[6:4]).
439      // ASR - 101 if it is in register shifts encoding; 100, otherwise.
440      // LSL - 001 if it is in register shifts encoding; 000, otherwise.
441      // LSR - 011 if it is in register shifts encoding; 010, otherwise.
442      // ROR - 111 if it is in register shifts encoding; 110, otherwise.
443      // RRX - 110 and bit[11:7] clear.
444      switch(ARM_AM::getSORegShOp(MO2.getImmedValue())) {
445        default: assert(0 && "Unknown shift opc!");
446        case ARM_AM::asr: {
447          if(IsShiftByRegister)
448            Value |= 0x5 << 4;
449          else
450            Value |= 0x1 << 6;
451          break;
452        }
453        case ARM_AM::lsl: {
454          if(IsShiftByRegister)
455            Value |= 0x1 << 4;
456          break;
457        }
458        case ARM_AM::lsr: {
459          if(IsShiftByRegister)
460            Value |= 0x3 << 4;
461          else
462            Value |= 0x1 << 5;
463          break;
464        }
465        case ARM_AM::ror: {
466          if(IsShiftByRegister)
467            Value |= 0x7 << 4;
468          else
469            Value |= 0x3 << 5;
470          break;
471        }
472        case ARM_AM::rrx: {
473          Value |= 0x3 << 5;
474          break;
475        }
476      }
477      // set the field related to shift operations (except rrx).
478      if(ARM_AM::getSORegShOp(MO2.getImmedValue()) != ARM_AM::rrx)
479        if(IsShiftByRegister) {
480          // set the value of bit[11:8] (register Rs).
481          assert(MRegisterInfo::isPhysicalRegister(MO1.getReg()));
482          op = ARMRegisterInfo::getRegisterNumbering(MO1.getReg());
483          assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
484          Value |= op << ARMII::RegRsShift;
485        } else {
486          // set the value of bit [11:7] (shift_immed field).
487          op = ARM_AM::getSORegOffset(MO2.getImm());
488          Value |= op << 7;
489        }
490      break;
491    }
492    default: assert(false && "Unknown operand type!");
493      break;
494    }
495
496    break;
497  }
498  case ARMII::AddrMode2: {
499    // bit 26 is always 1
500    Value |= 1 << 26;
501
502    unsigned Index = (Desc->TSFlags & ARMII::IndexModeMask);
503    // if the instruction uses offset addressing or pre-indexed addressing,
504    // set bit P(24) to 1
505    if (Index == ARMII::IndexModePre || Index == 0)
506      Value |= 1 << ARMII::IndexShift;
507    // if the instruction uses post-indexed addressing, set bit W(21) to 1
508    if (Index == ARMII::IndexModePre)
509      Value |= 1 << 21;
510
511    unsigned Format = (Desc->TSFlags & ARMII::FormMask);
512    // If it is a load instruction (except LDRD), set bit L(20) to 1
513    if (Format == ARMII::LdFrm)
514      Value |= 1 << ARMII::L_BitShift;
515
516    // set bit B(22)
517    unsigned BitByte = getBaseOpcodeFor(Desc);
518    Value |= BitByte << 22;
519
520    // set first operand
521    op = getMachineOpValue(MI,0);
522    Value |= op << ARMII::RegRdShift;
523
524    // set second operand
525    op = getMachineOpValue(MI,1);
526    Value |= op << ARMII::RegRnShift;
527
528    const MachineOperand &MO2 = MI.getOperand(2);
529    const MachineOperand &MO3 = MI.getOperand(3);
530
531    // set bit U(23) according to signal of immed value (positive or negative)
532    Value |= (ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
533                                                ARMII::U_BitShift;
534    if (!MO2.getReg()) { // is immediate
535      if (ARM_AM::getAM2Offset(MO3.getImm()))
536        // set the value of offset_12 field
537        Value |= ARM_AM::getAM2Offset(MO3.getImm());
538      break;
539    }
540
541    // set bit I(25), because this is not in immediate enconding.
542    Value |= 1 << ARMII::I_BitShift;
543    assert(MRegisterInfo::isPhysicalRegister(MO2.getReg()));
544    // set bit[3:0] to the corresponding Rm register
545    Value |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
546
547    // if this instr is in scaled register offset/index instruction, set
548    // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
549    if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm())) {
550      unsigned ShiftOp = getShiftOp(MO3);
551      Value |= ShiftOp << 5; // shift
552      Value |= ShImm << 7;   // shift_immed
553    }
554
555    break;
556  }
557  case ARMII::AddrMode3: {
558
559    unsigned Index = (Desc->TSFlags & ARMII::IndexModeMask);
560    // if the instruction uses offset addressing or pre-indexed addressing,
561    // set bit P(24) to 1
562    if (Index == ARMII::IndexModePre || Index == 0)
563      Value |= 1 << ARMII::IndexShift;
564
565    unsigned Format = (Desc->TSFlags & ARMII::FormMask);
566    // If it is a load instruction (except LDRD), set bit L(20) to 1
567    if (Format == ARMII::LdFrm && opcode != ARM::LDRD)
568      Value |= 1 << ARMII::L_BitShift;
569
570    // bit[7:4] is the opcode of this instruction class (bits S and H).
571    unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
572    Value |= BaseOpcode << 4;
573
574    // set first operand
575    op = getMachineOpValue(MI,0);
576    Value |= op << ARMII::RegRdShift;
577
578    // set second operand
579    op = getMachineOpValue(MI,1);
580    Value |= op << ARMII::RegRnShift;
581
582    const MachineOperand &MO2 = MI.getOperand(2);
583    const MachineOperand &MO3 = MI.getOperand(3);
584
585    // set bit U(23) according to signal of immed value (positive or negative)
586    Value |= (ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
587                                                ARMII::U_BitShift;
588
589    // if this instr is in register offset/index encoding, set bit[3:0]
590    // to the corresponding Rm register.
591    if (MO2.getReg()) {
592      Value |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
593      break;
594    }
595
596    // if this instr is in immediate offset/index encoding, set bit 22 to 1
597    if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm())) {
598      Value |= 1 << 22;
599      // set operands
600      Value |= (ImmOffs >> 4) << 8; // immedH
601      Value |= (ImmOffs & ~0xF); // immedL
602    }
603
604    break;
605  }
606  case ARMII::AddrMode4: {
607    // bit 27 is always 1
608    Value |= 1 << 27;
609
610    unsigned Format = (Desc->TSFlags & ARMII::FormMask);
611    // if it is a load instr, set bit L(20) to 1
612    if (Format == ARMII::LdFrm)
613      Value |= 1 << ARMII::L_BitShift;
614
615    unsigned OpIndex = 0;
616
617    // set first operand
618    op = getMachineOpValue(MI,OpIndex);
619    Value |= op << ARMII::RegRnShift;
620
621    // set addressing mode by modifying bits U(23) and P(24)
622    // IA - Increment after  - bit U = 1 and bit P = 0
623    // IB - Increment before - bit U = 1 and bit P = 1
624    // DA - Decrement after  - bit U = 0 and bit P = 0
625    // DB - Decrement before - bit U = 0 and bit P = 1
626    const MachineOperand &MO = MI.getOperand(OpIndex + 1);
627    ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO.getImm());
628    switch(Mode) {
629    default: assert(0 && "Unknown addressing sub-mode!");
630    case ARM_AM::ia: Value |= 0x1 << 23; break;
631    case ARM_AM::ib: Value |= 0x3 << 23; break;
632    case ARM_AM::da: break;
633    case ARM_AM::db: Value |= 0x1 << 24; break;
634    }
635
636    // set bit W(21)
637    if (ARM_AM::getAM4WBFlag(MO.getImm()))
638      Value |= 0x1 << 21;
639
640    // set registers
641    for (unsigned i = OpIndex + 4, e = MI.getNumOperands(); i != e; ++i) {
642      const MachineOperand &MOR = MI.getOperand(i);
643      unsigned RegNumber = ARMRegisterInfo::getRegisterNumbering(MOR.getReg());
644      assert(MRegisterInfo::isPhysicalRegister(MOR.getReg()) && RegNumber < 16);
645      Value |= 0x1 << RegNumber;
646    }
647
648    break;
649  }
650  }
651
652  return Value;
653}
654