ARMCodeEmitter.cpp revision 0e1bcdf4f7547bb5f47ed5ff5f2409a8f72f3609
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMInstrInfo.h"
20#include "ARMRelocations.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/JITCodeEmitter.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45namespace {
46
47  class ARMCodeEmitter : public MachineFunctionPass {
48    ARMJITInfo                *JTI;
49    const ARMInstrInfo        *II;
50    const TargetData          *TD;
51    const ARMSubtarget        *Subtarget;
52    TargetMachine             &TM;
53    JITCodeEmitter            &MCE;
54    MachineModuleInfo *MMI;
55    const std::vector<MachineConstantPoolEntry> *MCPEs;
56    const std::vector<MachineJumpTableEntry> *MJTEs;
57    bool IsPIC;
58    bool IsThumb;
59
60    void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.addRequired<MachineModuleInfo>();
62      MachineFunctionPass::getAnalysisUsage(AU);
63    }
64
65    static char ID;
66  public:
67    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68      : MachineFunctionPass(ID), JTI(0),
69        II((const ARMInstrInfo *)tm.getInstrInfo()),
70        TD(tm.getTargetData()), TM(tm),
71        MCE(mce), MCPEs(0), MJTEs(0),
72        IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73
74    /// getBinaryCodeForInstr - This function, generated by the
75    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76    /// machine instructions.
77    unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
78
79    bool runOnMachineFunction(MachineFunction &MF);
80
81    virtual const char *getPassName() const {
82      return "ARM Machine Code Emitter";
83    }
84
85    void emitInstruction(const MachineInstr &MI);
86
87  private:
88
89    void emitWordLE(unsigned Binary);
90    void emitDWordLE(uint64_t Binary);
91    void emitConstPoolInstruction(const MachineInstr &MI);
92    void emitMOVi32immInstruction(const MachineInstr &MI);
93    void emitMOVi2piecesInstruction(const MachineInstr &MI);
94    void emitLEApcrelJTInstruction(const MachineInstr &MI);
95    void emitPseudoMoveInstruction(const MachineInstr &MI);
96    void addPCLabel(unsigned LabelID);
97    void emitPseudoInstruction(const MachineInstr &MI);
98    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
99                                    const TargetInstrDesc &TID,
100                                    const MachineOperand &MO,
101                                    unsigned OpIdx);
102
103    unsigned getMachineSoImmOpValue(unsigned SoImm);
104    unsigned getAddrModeSBit(const MachineInstr &MI,
105                             const TargetInstrDesc &TID) const;
106
107    void emitDataProcessingInstruction(const MachineInstr &MI,
108                                       unsigned ImplicitRd = 0,
109                                       unsigned ImplicitRn = 0);
110
111    void emitLoadStoreInstruction(const MachineInstr &MI,
112                                  unsigned ImplicitRd = 0,
113                                  unsigned ImplicitRn = 0);
114
115    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
116                                      unsigned ImplicitRn = 0);
117
118    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
119
120    void emitMulFrmInstruction(const MachineInstr &MI);
121
122    void emitExtendInstruction(const MachineInstr &MI);
123
124    void emitMiscArithInstruction(const MachineInstr &MI);
125
126    void emitSaturateInstruction(const MachineInstr &MI);
127
128    void emitBranchInstruction(const MachineInstr &MI);
129
130    void emitInlineJumpTable(unsigned JTIndex);
131
132    void emitMiscBranchInstruction(const MachineInstr &MI);
133
134    void emitVFPArithInstruction(const MachineInstr &MI);
135
136    void emitVFPConversionInstruction(const MachineInstr &MI);
137
138    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
139
140    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
141
142    void emitNEONLaneInstruction(const MachineInstr &MI);
143    void emitNEONDupInstruction(const MachineInstr &MI);
144    void emitNEON1RegModImmInstruction(const MachineInstr &MI);
145    void emitNEON2RegInstruction(const MachineInstr &MI);
146    void emitNEON3RegInstruction(const MachineInstr &MI);
147
148    /// getMachineOpValue - Return binary encoding of operand. If the machine
149    /// operand requires relocation, record the relocation and return zero.
150    unsigned getMachineOpValue(const MachineInstr &MI,
151                               const MachineOperand &MO) const;
152    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
153      return getMachineOpValue(MI, MI.getOperand(OpIdx));
154    }
155
156    // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
157    //  TableGen'erated getBinaryCodeForInstr() function to encode any
158    //  operand values, instead querying getMachineOpValue() directly for
159    //  each operand it needs to encode. Thus, any of the new encoder
160    //  helper functions can simply return 0 as the values the return
161    //  are already handled elsewhere. They are placeholders to allow this
162    //  encoder to continue to function until the MC encoder is sufficiently
163    //  far along that this one can be eliminated entirely.
164    unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
165      const { return 0; }
166    unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
167      const { return 0; }
168    unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
169      const { return 0; }
170    unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
171      const { return 0; }
172    unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
173      const { return 0; }
174    unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
175      const { return 0; }
176    unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
177      const { return 0; }
178    unsigned getSORegOpValue(const MachineInstr &MI, unsigned Op)
179      const { return 0; }
180    unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
181      const { return 0; }
182    unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
183      const { return 0; }
184    unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
185      const { return 0; }
186    unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
187      const { return 0; }
188    unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
189      const { return 0; }
190    unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
191      const { return 0; }
192    unsigned getRotImmOpValue(const MachineInstr &MI, unsigned Op)
193      const { return 0; }
194    unsigned getImmMinusOneOpValue(const MachineInstr &MI, unsigned Op)
195      const { return 0; }
196    unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
197      const { return 0; }
198    unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
199      const { return 0; }
200    unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
201      const { return 0; }
202    unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
203                                            unsigned Op) const { return 0; }
204    uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
205      const {return 0; }
206    uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
207      const { return 0; }
208
209    unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
210      const {
211      // {17-13} = reg
212      // {12}    = (U)nsigned (add == '1', sub == '0')
213      // {11-0}  = imm12
214      const MachineOperand &MO  = MI.getOperand(Op);
215      const MachineOperand &MO1 = MI.getOperand(Op + 1);
216      if (!MO.isReg()) {
217        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
218        return 0;
219      }
220      unsigned Reg = getARMRegisterNumbering(MO.getReg());
221      int32_t Imm12 = MO1.getImm();
222      uint32_t Binary;
223      Binary = Imm12 & 0xfff;
224      if (Imm12 >= 0)
225        Binary |= (1 << 12);
226      Binary |= (Reg << 13);
227      return Binary;
228    }
229
230    unsigned getMovtImmOpValue(const MachineInstr &MI, unsigned Op) const {
231      return 0;
232    }
233
234    uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
235      const { return 0;}
236    uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
237      const { return 0;}
238    uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
239      const { return 0;}
240    uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
241      const { return 0; }
242    uint32_t getAddrModeS4OpValue(const MachineInstr &MI, unsigned Op)
243      const { return 0; }
244    uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
245      // {17-13} = reg
246      // {12}    = (U)nsigned (add == '1', sub == '0')
247      // {11-0}  = imm12
248      const MachineOperand &MO  = MI.getOperand(Op);
249      const MachineOperand &MO1 = MI.getOperand(Op + 1);
250      if (!MO.isReg()) {
251        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
252        return 0;
253      }
254      unsigned Reg = getARMRegisterNumbering(MO.getReg());
255      int32_t Imm12 = MO1.getImm();
256
257      // Special value for #-0
258      if (Imm12 == INT32_MIN)
259        Imm12 = 0;
260
261      // Immediate is always encoded as positive. The 'U' bit controls add vs
262      // sub.
263      bool isAdd = true;
264      if (Imm12 < 0) {
265        Imm12 = -Imm12;
266        isAdd = false;
267      }
268
269      uint32_t Binary = Imm12 & 0xfff;
270      if (isAdd)
271        Binary |= (1 << 12);
272      Binary |= (Reg << 13);
273      return Binary;
274    }
275    unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
276      const { return 0; }
277
278    unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
279      const { return 0; }
280
281    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
282    /// machine operand requires relocation, record the relocation and return
283    /// zero.
284    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
285                            unsigned Reloc);
286
287    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
288    ///
289    unsigned getShiftOp(unsigned Imm) const ;
290
291    /// Routines that handle operands which add machine relocations which are
292    /// fixed up by the relocation stage.
293    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
294                           bool MayNeedFarStub,  bool Indirect,
295                           intptr_t ACPV = 0) const;
296    void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
297    void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
298    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
299    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
300                               intptr_t JTBase = 0) const;
301  };
302}
303
304char ARMCodeEmitter::ID = 0;
305
306/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
307/// code to the specified MCE object.
308FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
309                                                JITCodeEmitter &JCE) {
310  return new ARMCodeEmitter(TM, JCE);
311}
312
313bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
314  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
315          MF.getTarget().getRelocationModel() != Reloc::Static) &&
316         "JIT relocation model must be set to static or default!");
317  JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
318  II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
319  TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
320  Subtarget = &TM.getSubtarget<ARMSubtarget>();
321  MCPEs = &MF.getConstantPool()->getConstants();
322  MJTEs = 0;
323  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
324  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
325  IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
326  JTI->Initialize(MF, IsPIC);
327  MMI = &getAnalysis<MachineModuleInfo>();
328  MCE.setModuleInfo(MMI);
329
330  do {
331    DEBUG(errs() << "JITTing function '"
332          << MF.getFunction()->getName() << "'\n");
333    MCE.startFunction(MF);
334    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
335         MBB != E; ++MBB) {
336      MCE.StartMachineBasicBlock(MBB);
337      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
338           I != E; ++I)
339        emitInstruction(*I);
340    }
341  } while (MCE.finishFunction(MF));
342
343  return false;
344}
345
346/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
347///
348unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
349  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
350  default: llvm_unreachable("Unknown shift opc!");
351  case ARM_AM::asr: return 2;
352  case ARM_AM::lsl: return 0;
353  case ARM_AM::lsr: return 1;
354  case ARM_AM::ror:
355  case ARM_AM::rrx: return 3;
356  }
357  return 0;
358}
359
360/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
361/// machine operand requires relocation, record the relocation and return zero.
362unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
363                                        const MachineOperand &MO,
364                                        unsigned Reloc) {
365  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
366      && "Relocation to this function should be for movt or movw");
367
368  if (MO.isImm())
369    return static_cast<unsigned>(MO.getImm());
370  else if (MO.isGlobal())
371    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
372  else if (MO.isSymbol())
373    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
374  else if (MO.isMBB())
375    emitMachineBasicBlock(MO.getMBB(), Reloc);
376  else {
377#ifndef NDEBUG
378    errs() << MO;
379#endif
380    llvm_unreachable("Unsupported operand type for movw/movt");
381  }
382  return 0;
383}
384
385/// getMachineOpValue - Return binary encoding of operand. If the machine
386/// operand requires relocation, record the relocation and return zero.
387unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
388                                           const MachineOperand &MO) const {
389  if (MO.isReg())
390    return getARMRegisterNumbering(MO.getReg());
391  else if (MO.isImm())
392    return static_cast<unsigned>(MO.getImm());
393  else if (MO.isGlobal())
394    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
395  else if (MO.isSymbol())
396    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
397  else if (MO.isCPI()) {
398    const TargetInstrDesc &TID = MI.getDesc();
399    // For VFP load, the immediate offset is multiplied by 4.
400    unsigned Reloc =  ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
401      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
402    emitConstPoolAddress(MO.getIndex(), Reloc);
403  } else if (MO.isJTI())
404    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
405  else if (MO.isMBB())
406    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
407  else
408    llvm_unreachable("Unable to encode MachineOperand!");
409  return 0;
410}
411
412/// emitGlobalAddress - Emit the specified address to the code stream.
413///
414void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
415                                       bool MayNeedFarStub, bool Indirect,
416                                       intptr_t ACPV) const {
417  MachineRelocation MR = Indirect
418    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
419                                           const_cast<GlobalValue *>(GV),
420                                           ACPV, MayNeedFarStub)
421    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
422                               const_cast<GlobalValue *>(GV), ACPV,
423                               MayNeedFarStub);
424  MCE.addRelocation(MR);
425}
426
427/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
428/// be emitted to the current location in the function, and allow it to be PC
429/// relative.
430void ARMCodeEmitter::
431emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
432  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
433                                                 Reloc, ES));
434}
435
436/// emitConstPoolAddress - Arrange for the address of an constant pool
437/// to be emitted to the current location in the function, and allow it to be PC
438/// relative.
439void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
440  // Tell JIT emitter we'll resolve the address.
441  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
442                                                    Reloc, CPI, 0, true));
443}
444
445/// emitJumpTableAddress - Arrange for the address of a jump table to
446/// be emitted to the current location in the function, and allow it to be PC
447/// relative.
448void ARMCodeEmitter::
449emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
450  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
451                                                    Reloc, JTIndex, 0, true));
452}
453
454/// emitMachineBasicBlock - Emit the specified address basic block.
455void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
456                                           unsigned Reloc,
457                                           intptr_t JTBase) const {
458  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
459                                             Reloc, BB, JTBase));
460}
461
462void ARMCodeEmitter::emitWordLE(unsigned Binary) {
463  DEBUG(errs() << "  0x";
464        errs().write_hex(Binary) << "\n");
465  MCE.emitWordLE(Binary);
466}
467
468void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
469  DEBUG(errs() << "  0x";
470        errs().write_hex(Binary) << "\n");
471  MCE.emitDWordLE(Binary);
472}
473
474void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
475  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
476
477  MCE.processDebugLoc(MI.getDebugLoc(), true);
478
479  ++NumEmitted;  // Keep track of the # of mi's emitted
480  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
481  default: {
482    llvm_unreachable("Unhandled instruction encoding format!");
483    break;
484  }
485  case ARMII::MiscFrm:
486    if (MI.getOpcode() == ARM::LEApcrelJT) {
487      // Materialize jumptable address.
488      emitLEApcrelJTInstruction(MI);
489      break;
490    }
491    llvm_unreachable("Unhandled instruction encoding!");
492    break;
493  case ARMII::Pseudo:
494    emitPseudoInstruction(MI);
495    break;
496  case ARMII::DPFrm:
497  case ARMII::DPSoRegFrm:
498    emitDataProcessingInstruction(MI);
499    break;
500  case ARMII::LdFrm:
501  case ARMII::StFrm:
502    emitLoadStoreInstruction(MI);
503    break;
504  case ARMII::LdMiscFrm:
505  case ARMII::StMiscFrm:
506    emitMiscLoadStoreInstruction(MI);
507    break;
508  case ARMII::LdStMulFrm:
509    emitLoadStoreMultipleInstruction(MI);
510    break;
511  case ARMII::MulFrm:
512    emitMulFrmInstruction(MI);
513    break;
514  case ARMII::ExtFrm:
515    emitExtendInstruction(MI);
516    break;
517  case ARMII::ArithMiscFrm:
518    emitMiscArithInstruction(MI);
519    break;
520  case ARMII::SatFrm:
521    emitSaturateInstruction(MI);
522    break;
523  case ARMII::BrFrm:
524    emitBranchInstruction(MI);
525    break;
526  case ARMII::BrMiscFrm:
527    emitMiscBranchInstruction(MI);
528    break;
529  // VFP instructions.
530  case ARMII::VFPUnaryFrm:
531  case ARMII::VFPBinaryFrm:
532    emitVFPArithInstruction(MI);
533    break;
534  case ARMII::VFPConv1Frm:
535  case ARMII::VFPConv2Frm:
536  case ARMII::VFPConv3Frm:
537  case ARMII::VFPConv4Frm:
538  case ARMII::VFPConv5Frm:
539    emitVFPConversionInstruction(MI);
540    break;
541  case ARMII::VFPLdStFrm:
542    emitVFPLoadStoreInstruction(MI);
543    break;
544  case ARMII::VFPLdStMulFrm:
545    emitVFPLoadStoreMultipleInstruction(MI);
546    break;
547
548  // NEON instructions.
549  case ARMII::NGetLnFrm:
550  case ARMII::NSetLnFrm:
551    emitNEONLaneInstruction(MI);
552    break;
553  case ARMII::NDupFrm:
554    emitNEONDupInstruction(MI);
555    break;
556  case ARMII::N1RegModImmFrm:
557    emitNEON1RegModImmInstruction(MI);
558    break;
559  case ARMII::N2RegFrm:
560    emitNEON2RegInstruction(MI);
561    break;
562  case ARMII::N3RegFrm:
563    emitNEON3RegInstruction(MI);
564    break;
565  }
566  MCE.processDebugLoc(MI.getDebugLoc(), false);
567}
568
569void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
570  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
571  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
572  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
573
574  // Remember the CONSTPOOL_ENTRY address for later relocation.
575  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
576
577  // Emit constpool island entry. In most cases, the actual values will be
578  // resolved and relocated after code emission.
579  if (MCPE.isMachineConstantPoolEntry()) {
580    ARMConstantPoolValue *ACPV =
581      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
582
583    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
584          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
585
586    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
587    const GlobalValue *GV = ACPV->getGV();
588    if (GV) {
589      Reloc::Model RelocM = TM.getRelocationModel();
590      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
591                        isa<Function>(GV),
592                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
593                        (intptr_t)ACPV);
594     } else  {
595      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
596    }
597    emitWordLE(0);
598  } else {
599    const Constant *CV = MCPE.Val.ConstVal;
600
601    DEBUG({
602        errs() << "  ** Constant pool #" << CPI << " @ "
603               << (void*)MCE.getCurrentPCValue() << " ";
604        if (const Function *F = dyn_cast<Function>(CV))
605          errs() << F->getName();
606        else
607          errs() << *CV;
608        errs() << '\n';
609      });
610
611    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
612      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
613      emitWordLE(0);
614    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
615      uint32_t Val = uint32_t(*CI->getValue().getRawData());
616      emitWordLE(Val);
617    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
618      if (CFP->getType()->isFloatTy())
619        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
620      else if (CFP->getType()->isDoubleTy())
621        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
622      else {
623        llvm_unreachable("Unable to handle this constantpool entry!");
624      }
625    } else {
626      llvm_unreachable("Unable to handle this constantpool entry!");
627    }
628  }
629}
630
631void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
632  const MachineOperand &MO0 = MI.getOperand(0);
633  const MachineOperand &MO1 = MI.getOperand(1);
634
635  // Emit the 'movw' instruction.
636  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
637
638  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
639
640  // Set the conditional execution predicate.
641  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
642
643  // Encode Rd.
644  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
645
646  // Encode imm16 as imm4:imm12
647  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
648  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
649  emitWordLE(Binary);
650
651  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
652  // Emit the 'movt' instruction.
653  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
654
655  // Set the conditional execution predicate.
656  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
657
658  // Encode Rd.
659  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
660
661  // Encode imm16 as imm4:imm1, same as movw above.
662  Binary |= Hi16 & 0xFFF;
663  Binary |= ((Hi16 >> 12) & 0xF) << 16;
664  emitWordLE(Binary);
665}
666
667void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
668  const MachineOperand &MO0 = MI.getOperand(0);
669  const MachineOperand &MO1 = MI.getOperand(1);
670  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
671                                                  "Not a valid so_imm value!");
672  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
673  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
674
675  // Emit the 'mov' instruction.
676  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
677
678  // Set the conditional execution predicate.
679  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
680
681  // Encode Rd.
682  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
683
684  // Encode so_imm.
685  // Set bit I(25) to identify this is the immediate form of <shifter_op>
686  Binary |= 1 << ARMII::I_BitShift;
687  Binary |= getMachineSoImmOpValue(V1);
688  emitWordLE(Binary);
689
690  // Now the 'orr' instruction.
691  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
692
693  // Set the conditional execution predicate.
694  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
695
696  // Encode Rd.
697  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
698
699  // Encode Rn.
700  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
701
702  // Encode so_imm.
703  // Set bit I(25) to identify this is the immediate form of <shifter_op>
704  Binary |= 1 << ARMII::I_BitShift;
705  Binary |= getMachineSoImmOpValue(V2);
706  emitWordLE(Binary);
707}
708
709void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
710  // It's basically add r, pc, (LJTI - $+8)
711
712  const TargetInstrDesc &TID = MI.getDesc();
713
714  // Emit the 'add' instruction.
715  unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
716
717  // Set the conditional execution predicate
718  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
719
720  // Encode S bit if MI modifies CPSR.
721  Binary |= getAddrModeSBit(MI, TID);
722
723  // Encode Rd.
724  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
725
726  // Encode Rn which is PC.
727  Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
728
729  // Encode the displacement.
730  Binary |= 1 << ARMII::I_BitShift;
731  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
732
733  emitWordLE(Binary);
734}
735
736void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
737  unsigned Opcode = MI.getDesc().Opcode;
738
739  // Part of binary is determined by TableGn.
740  unsigned Binary = getBinaryCodeForInstr(MI);
741
742  // Set the conditional execution predicate
743  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
744
745  // Encode S bit if MI modifies CPSR.
746  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
747    Binary |= 1 << ARMII::S_BitShift;
748
749  // Encode register def if there is one.
750  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
751
752  // Encode the shift operation.
753  switch (Opcode) {
754  default: break;
755  case ARM::RRX:
756    // rrx
757    Binary |= 0x6 << 4;
758    break;
759  case ARM::MOVsrl_flag:
760    // lsr #1
761    Binary |= (0x2 << 4) | (1 << 7);
762    break;
763  case ARM::MOVsra_flag:
764    // asr #1
765    Binary |= (0x4 << 4) | (1 << 7);
766    break;
767  }
768
769  // Encode register Rm.
770  Binary |= getMachineOpValue(MI, 1);
771
772  emitWordLE(Binary);
773}
774
775void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
776  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
777        << (void*)MCE.getCurrentPCValue() << '\n');
778  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
779}
780
781void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
782  unsigned Opcode = MI.getDesc().Opcode;
783  switch (Opcode) {
784  default:
785    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
786  case ARM::BX_CALL:
787  case ARM::BMOVPCRX_CALL:
788  case ARM::BXr9_CALL:
789  case ARM::BMOVPCRXr9_CALL: {
790    // First emit mov lr, pc
791    unsigned Binary = 0x01a0e00f;
792    Binary |= II->getPredicate(&MI) << ARMII::CondShift;
793    emitWordLE(Binary);
794
795    // and then emit the branch.
796    emitMiscBranchInstruction(MI);
797    break;
798  }
799  case TargetOpcode::INLINEASM: {
800    // We allow inline assembler nodes with empty bodies - they can
801    // implicitly define registers, which is ok for JIT.
802    if (MI.getOperand(0).getSymbolName()[0]) {
803      report_fatal_error("JIT does not support inline asm!");
804    }
805    break;
806  }
807  case TargetOpcode::PROLOG_LABEL:
808  case TargetOpcode::EH_LABEL:
809    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
810    break;
811  case TargetOpcode::IMPLICIT_DEF:
812  case TargetOpcode::KILL:
813    // Do nothing.
814    break;
815  case ARM::CONSTPOOL_ENTRY:
816    emitConstPoolInstruction(MI);
817    break;
818  case ARM::PICADD: {
819    // Remember of the address of the PC label for relocation later.
820    addPCLabel(MI.getOperand(2).getImm());
821    // PICADD is just an add instruction that implicitly read pc.
822    emitDataProcessingInstruction(MI, 0, ARM::PC);
823    break;
824  }
825  case ARM::PICLDR:
826  case ARM::PICLDRB:
827  case ARM::PICSTR:
828  case ARM::PICSTRB: {
829    // Remember of the address of the PC label for relocation later.
830    addPCLabel(MI.getOperand(2).getImm());
831    // These are just load / store instructions that implicitly read pc.
832    emitLoadStoreInstruction(MI, 0, ARM::PC);
833    break;
834  }
835  case ARM::PICLDRH:
836  case ARM::PICLDRSH:
837  case ARM::PICLDRSB:
838  case ARM::PICSTRH: {
839    // Remember of the address of the PC label for relocation later.
840    addPCLabel(MI.getOperand(2).getImm());
841    // These are just load / store instructions that implicitly read pc.
842    emitMiscLoadStoreInstruction(MI, ARM::PC);
843    break;
844  }
845
846  case ARM::MOVi32imm:
847    // Two instructions to materialize a constant.
848    if (Subtarget->hasV6T2Ops())
849      emitMOVi32immInstruction(MI);
850    else
851      emitMOVi2piecesInstruction(MI);
852    break;
853
854  case ARM::LEApcrelJT:
855    // Materialize jumptable address.
856    emitLEApcrelJTInstruction(MI);
857    break;
858  case ARM::RRX:
859  case ARM::MOVsrl_flag:
860  case ARM::MOVsra_flag:
861    emitPseudoMoveInstruction(MI);
862    break;
863  }
864}
865
866unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
867                                                const TargetInstrDesc &TID,
868                                                const MachineOperand &MO,
869                                                unsigned OpIdx) {
870  unsigned Binary = getMachineOpValue(MI, MO);
871
872  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
873  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
874  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
875
876  // Encode the shift opcode.
877  unsigned SBits = 0;
878  unsigned Rs = MO1.getReg();
879  if (Rs) {
880    // Set shift operand (bit[7:4]).
881    // LSL - 0001
882    // LSR - 0011
883    // ASR - 0101
884    // ROR - 0111
885    // RRX - 0110 and bit[11:8] clear.
886    switch (SOpc) {
887    default: llvm_unreachable("Unknown shift opc!");
888    case ARM_AM::lsl: SBits = 0x1; break;
889    case ARM_AM::lsr: SBits = 0x3; break;
890    case ARM_AM::asr: SBits = 0x5; break;
891    case ARM_AM::ror: SBits = 0x7; break;
892    case ARM_AM::rrx: SBits = 0x6; break;
893    }
894  } else {
895    // Set shift operand (bit[6:4]).
896    // LSL - 000
897    // LSR - 010
898    // ASR - 100
899    // ROR - 110
900    switch (SOpc) {
901    default: llvm_unreachable("Unknown shift opc!");
902    case ARM_AM::lsl: SBits = 0x0; break;
903    case ARM_AM::lsr: SBits = 0x2; break;
904    case ARM_AM::asr: SBits = 0x4; break;
905    case ARM_AM::ror: SBits = 0x6; break;
906    }
907  }
908  Binary |= SBits << 4;
909  if (SOpc == ARM_AM::rrx)
910    return Binary;
911
912  // Encode the shift operation Rs or shift_imm (except rrx).
913  if (Rs) {
914    // Encode Rs bit[11:8].
915    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
916    return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
917  }
918
919  // Encode shift_imm bit[11:7].
920  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
921}
922
923unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
924  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
925  assert(SoImmVal != -1 && "Not a valid so_imm value!");
926
927  // Encode rotate_imm.
928  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
929    << ARMII::SoRotImmShift;
930
931  // Encode immed_8.
932  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
933  return Binary;
934}
935
936unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
937                                         const TargetInstrDesc &TID) const {
938  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
939    const MachineOperand &MO = MI.getOperand(i-1);
940    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
941      return 1 << ARMII::S_BitShift;
942  }
943  return 0;
944}
945
946void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
947                                                   unsigned ImplicitRd,
948                                                   unsigned ImplicitRn) {
949  const TargetInstrDesc &TID = MI.getDesc();
950
951  // Part of binary is determined by TableGn.
952  unsigned Binary = getBinaryCodeForInstr(MI);
953
954  // Set the conditional execution predicate
955  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
956
957  // Encode S bit if MI modifies CPSR.
958  Binary |= getAddrModeSBit(MI, TID);
959
960  // Encode register def if there is one.
961  unsigned NumDefs = TID.getNumDefs();
962  unsigned OpIdx = 0;
963  if (NumDefs)
964    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
965  else if (ImplicitRd)
966    // Special handling for implicit use (e.g. PC).
967    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
968
969  if (TID.Opcode == ARM::MOVi16) {
970      // Get immediate from MI.
971      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
972                      ARM::reloc_arm_movw);
973      // Encode imm which is the same as in emitMOVi32immInstruction().
974      Binary |= Lo16 & 0xFFF;
975      Binary |= ((Lo16 >> 12) & 0xF) << 16;
976      emitWordLE(Binary);
977      return;
978  } else if(TID.Opcode == ARM::MOVTi16) {
979      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
980                       ARM::reloc_arm_movt) >> 16);
981      Binary |= Hi16 & 0xFFF;
982      Binary |= ((Hi16 >> 12) & 0xF) << 16;
983      emitWordLE(Binary);
984      return;
985  } else if ((TID.Opcode == ARM::BFC) || (TID.Opcode == ARM::BFI)) {
986      uint32_t v = ~MI.getOperand(2).getImm();
987      int32_t lsb = CountTrailingZeros_32(v);
988      int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
989      // Instr{20-16} = msb, Instr{11-7} = lsb
990      Binary |= (msb & 0x1F) << 16;
991      Binary |= (lsb & 0x1F) << 7;
992      emitWordLE(Binary);
993      return;
994  } else if ((TID.Opcode == ARM::UBFX) || (TID.Opcode == ARM::SBFX)) {
995      // Encode Rn in Instr{0-3}
996      Binary |= getMachineOpValue(MI, OpIdx++);
997
998      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
999      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
1000
1001      // Instr{20-16} = widthm1, Instr{11-7} = lsb
1002      Binary |= (widthm1 & 0x1F) << 16;
1003      Binary |= (lsb & 0x1F) << 7;
1004      emitWordLE(Binary);
1005      return;
1006  }
1007
1008  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1009  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1010    ++OpIdx;
1011
1012  // Encode first non-shifter register operand if there is one.
1013  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
1014  if (!isUnary) {
1015    if (ImplicitRn)
1016      // Special handling for implicit use (e.g. PC).
1017      Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1018    else {
1019      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
1020      ++OpIdx;
1021    }
1022  }
1023
1024  // Encode shifter operand.
1025  const MachineOperand &MO = MI.getOperand(OpIdx);
1026  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
1027    // Encode SoReg.
1028    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
1029    return;
1030  }
1031
1032  if (MO.isReg()) {
1033    // Encode register Rm.
1034    emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
1035    return;
1036  }
1037
1038  // Encode so_imm.
1039  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1040
1041  emitWordLE(Binary);
1042}
1043
1044void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1045                                              unsigned ImplicitRd,
1046                                              unsigned ImplicitRn) {
1047  const TargetInstrDesc &TID = MI.getDesc();
1048  unsigned Form = TID.TSFlags & ARMII::FormMask;
1049  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1050
1051  // Part of binary is determined by TableGn.
1052  unsigned Binary = getBinaryCodeForInstr(MI);
1053
1054  // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1055  if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1056      MI.getOpcode() == ARM::STRi12) {
1057    emitWordLE(Binary);
1058    return;
1059  }
1060
1061  // Set the conditional execution predicate
1062  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1063
1064  unsigned OpIdx = 0;
1065
1066  // Operand 0 of a pre- and post-indexed store is the address base
1067  // writeback. Skip it.
1068  bool Skipped = false;
1069  if (IsPrePost && Form == ARMII::StFrm) {
1070    ++OpIdx;
1071    Skipped = true;
1072  }
1073
1074  // Set first operand
1075  if (ImplicitRd)
1076    // Special handling for implicit use (e.g. PC).
1077    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1078  else
1079    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1080
1081  // Set second operand
1082  if (ImplicitRn)
1083    // Special handling for implicit use (e.g. PC).
1084    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1085  else
1086    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1087
1088  // If this is a two-address operand, skip it. e.g. LDR_PRE.
1089  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1090    ++OpIdx;
1091
1092  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1093  unsigned AM2Opc = (ImplicitRn == ARM::PC)
1094    ? 0 : MI.getOperand(OpIdx+1).getImm();
1095
1096  // Set bit U(23) according to sign of immed value (positive or negative).
1097  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1098             ARMII::U_BitShift);
1099  if (!MO2.getReg()) { // is immediate
1100    if (ARM_AM::getAM2Offset(AM2Opc))
1101      // Set the value of offset_12 field
1102      Binary |= ARM_AM::getAM2Offset(AM2Opc);
1103    emitWordLE(Binary);
1104    return;
1105  }
1106
1107  // Set bit I(25), because this is not in immediate encoding.
1108  Binary |= 1 << ARMII::I_BitShift;
1109  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1110  // Set bit[3:0] to the corresponding Rm register
1111  Binary |= getARMRegisterNumbering(MO2.getReg());
1112
1113  // If this instr is in scaled register offset/index instruction, set
1114  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1115  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1116    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
1117    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
1118  }
1119
1120  emitWordLE(Binary);
1121}
1122
1123void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1124                                                  unsigned ImplicitRn) {
1125  const TargetInstrDesc &TID = MI.getDesc();
1126  unsigned Form = TID.TSFlags & ARMII::FormMask;
1127  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1128
1129  // Part of binary is determined by TableGn.
1130  unsigned Binary = getBinaryCodeForInstr(MI);
1131
1132  // Set the conditional execution predicate
1133  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1134
1135  unsigned OpIdx = 0;
1136
1137  // Operand 0 of a pre- and post-indexed store is the address base
1138  // writeback. Skip it.
1139  bool Skipped = false;
1140  if (IsPrePost && Form == ARMII::StMiscFrm) {
1141    ++OpIdx;
1142    Skipped = true;
1143  }
1144
1145  // Set first operand
1146  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1147
1148  // Skip LDRD and STRD's second operand.
1149  if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
1150    ++OpIdx;
1151
1152  // Set second operand
1153  if (ImplicitRn)
1154    // Special handling for implicit use (e.g. PC).
1155    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1156  else
1157    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1158
1159  // If this is a two-address operand, skip it. e.g. LDRH_POST.
1160  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1161    ++OpIdx;
1162
1163  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1164  unsigned AM3Opc = (ImplicitRn == ARM::PC)
1165    ? 0 : MI.getOperand(OpIdx+1).getImm();
1166
1167  // Set bit U(23) according to sign of immed value (positive or negative)
1168  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1169             ARMII::U_BitShift);
1170
1171  // If this instr is in register offset/index encoding, set bit[3:0]
1172  // to the corresponding Rm register.
1173  if (MO2.getReg()) {
1174    Binary |= getARMRegisterNumbering(MO2.getReg());
1175    emitWordLE(Binary);
1176    return;
1177  }
1178
1179  // This instr is in immediate offset/index encoding, set bit 22 to 1.
1180  Binary |= 1 << ARMII::AM3_I_BitShift;
1181  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1182    // Set operands
1183    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1184    Binary |= (ImmOffs & 0xF);                      // immedL
1185  }
1186
1187  emitWordLE(Binary);
1188}
1189
1190static unsigned getAddrModeUPBits(unsigned Mode) {
1191  unsigned Binary = 0;
1192
1193  // Set addressing mode by modifying bits U(23) and P(24)
1194  // IA - Increment after  - bit U = 1 and bit P = 0
1195  // IB - Increment before - bit U = 1 and bit P = 1
1196  // DA - Decrement after  - bit U = 0 and bit P = 0
1197  // DB - Decrement before - bit U = 0 and bit P = 1
1198  switch (Mode) {
1199  default: llvm_unreachable("Unknown addressing sub-mode!");
1200  case ARM_AM::da:                                     break;
1201  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1202  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1203  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1204  }
1205
1206  return Binary;
1207}
1208
1209void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1210  const TargetInstrDesc &TID = MI.getDesc();
1211  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1212
1213  // Part of binary is determined by TableGn.
1214  unsigned Binary = getBinaryCodeForInstr(MI);
1215
1216  // Set the conditional execution predicate
1217  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1218
1219  // Skip operand 0 of an instruction with base register update.
1220  unsigned OpIdx = 0;
1221  if (IsUpdating)
1222    ++OpIdx;
1223
1224  // Set base address operand
1225  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1226
1227  // Set addressing mode by modifying bits U(23) and P(24)
1228  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1229  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1230
1231  // Set bit W(21)
1232  if (IsUpdating)
1233    Binary |= 0x1 << ARMII::W_BitShift;
1234
1235  // Set registers
1236  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1237    const MachineOperand &MO = MI.getOperand(i);
1238    if (!MO.isReg() || MO.isImplicit())
1239      break;
1240    unsigned RegNum = getARMRegisterNumbering(MO.getReg());
1241    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1242           RegNum < 16);
1243    Binary |= 0x1 << RegNum;
1244  }
1245
1246  emitWordLE(Binary);
1247}
1248
1249void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1250  const TargetInstrDesc &TID = MI.getDesc();
1251
1252  // Part of binary is determined by TableGn.
1253  unsigned Binary = getBinaryCodeForInstr(MI);
1254
1255  // Set the conditional execution predicate
1256  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1257
1258  // Encode S bit if MI modifies CPSR.
1259  Binary |= getAddrModeSBit(MI, TID);
1260
1261  // 32x32->64bit operations have two destination registers. The number
1262  // of register definitions will tell us if that's what we're dealing with.
1263  unsigned OpIdx = 0;
1264  if (TID.getNumDefs() == 2)
1265    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1266
1267  // Encode Rd
1268  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1269
1270  // Encode Rm
1271  Binary |= getMachineOpValue(MI, OpIdx++);
1272
1273  // Encode Rs
1274  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1275
1276  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1277  // it as Rn (for multiply, that's in the same offset as RdLo.
1278  if (TID.getNumOperands() > OpIdx &&
1279      !TID.OpInfo[OpIdx].isPredicate() &&
1280      !TID.OpInfo[OpIdx].isOptionalDef())
1281    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1282
1283  emitWordLE(Binary);
1284}
1285
1286void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1287  const TargetInstrDesc &TID = MI.getDesc();
1288
1289  // Part of binary is determined by TableGn.
1290  unsigned Binary = getBinaryCodeForInstr(MI);
1291
1292  // Set the conditional execution predicate
1293  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1294
1295  unsigned OpIdx = 0;
1296
1297  // Encode Rd
1298  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1299
1300  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1301  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1302  if (MO2.isReg()) {
1303    // Two register operand form.
1304    // Encode Rn.
1305    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1306
1307    // Encode Rm.
1308    Binary |= getMachineOpValue(MI, MO2);
1309    ++OpIdx;
1310  } else {
1311    Binary |= getMachineOpValue(MI, MO1);
1312  }
1313
1314  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1315  if (MI.getOperand(OpIdx).isImm() &&
1316      !TID.OpInfo[OpIdx].isPredicate() &&
1317      !TID.OpInfo[OpIdx].isOptionalDef())
1318    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1319
1320  emitWordLE(Binary);
1321}
1322
1323void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1324  const TargetInstrDesc &TID = MI.getDesc();
1325
1326  // Part of binary is determined by TableGn.
1327  unsigned Binary = getBinaryCodeForInstr(MI);
1328
1329  // Set the conditional execution predicate
1330  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1331
1332  unsigned OpIdx = 0;
1333
1334  // Encode Rd
1335  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1336
1337  const MachineOperand &MO = MI.getOperand(OpIdx++);
1338  if (OpIdx == TID.getNumOperands() ||
1339      TID.OpInfo[OpIdx].isPredicate() ||
1340      TID.OpInfo[OpIdx].isOptionalDef()) {
1341    // Encode Rm and it's done.
1342    Binary |= getMachineOpValue(MI, MO);
1343    emitWordLE(Binary);
1344    return;
1345  }
1346
1347  // Encode Rn.
1348  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1349
1350  // Encode Rm.
1351  Binary |= getMachineOpValue(MI, OpIdx++);
1352
1353  // Encode shift_imm.
1354  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1355  if (TID.Opcode == ARM::PKHTB) {
1356    assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1357    if (ShiftAmt == 32)
1358      ShiftAmt = 0;
1359  }
1360  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1361  Binary |= ShiftAmt << ARMII::ShiftShift;
1362
1363  emitWordLE(Binary);
1364}
1365
1366void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1367  const TargetInstrDesc &TID = MI.getDesc();
1368
1369  // Part of binary is determined by TableGen.
1370  unsigned Binary = getBinaryCodeForInstr(MI);
1371
1372  // Set the conditional execution predicate
1373  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1374
1375  // Encode Rd
1376  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1377
1378  // Encode saturate bit position.
1379  unsigned Pos = MI.getOperand(1).getImm();
1380  if (TID.Opcode == ARM::SSAT || TID.Opcode == ARM::SSAT16)
1381    Pos -= 1;
1382  assert((Pos < 16 || (Pos < 32 &&
1383                       TID.Opcode != ARM::SSAT16 &&
1384                       TID.Opcode != ARM::USAT16)) &&
1385         "saturate bit position out of range");
1386  Binary |= Pos << 16;
1387
1388  // Encode Rm
1389  Binary |= getMachineOpValue(MI, 2);
1390
1391  // Encode shift_imm.
1392  if (TID.getNumOperands() == 4) {
1393    unsigned ShiftOp = MI.getOperand(3).getImm();
1394    ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1395    if (Opc == ARM_AM::asr)
1396      Binary |= (1 << 6);
1397    unsigned ShiftAmt = MI.getOperand(3).getImm();
1398    if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1399      ShiftAmt = 0;
1400    assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1401    Binary |= ShiftAmt << ARMII::ShiftShift;
1402  }
1403
1404  emitWordLE(Binary);
1405}
1406
1407void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1408  const TargetInstrDesc &TID = MI.getDesc();
1409
1410  if (TID.Opcode == ARM::TPsoft) {
1411    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1412  }
1413
1414  // Part of binary is determined by TableGn.
1415  unsigned Binary = getBinaryCodeForInstr(MI);
1416
1417  // Set the conditional execution predicate
1418  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1419
1420  // Set signed_immed_24 field
1421  Binary |= getMachineOpValue(MI, 0);
1422
1423  emitWordLE(Binary);
1424}
1425
1426void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1427  // Remember the base address of the inline jump table.
1428  uintptr_t JTBase = MCE.getCurrentPCValue();
1429  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1430  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1431               << '\n');
1432
1433  // Now emit the jump table entries.
1434  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1435  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1436    if (IsPIC)
1437      // DestBB address - JT base.
1438      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1439    else
1440      // Absolute DestBB address.
1441      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1442    emitWordLE(0);
1443  }
1444}
1445
1446void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1447  const TargetInstrDesc &TID = MI.getDesc();
1448
1449  // Handle jump tables.
1450  if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1451    // First emit a ldr pc, [] instruction.
1452    emitDataProcessingInstruction(MI, ARM::PC);
1453
1454    // Then emit the inline jump table.
1455    unsigned JTIndex =
1456      (TID.Opcode == ARM::BR_JTr)
1457      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1458    emitInlineJumpTable(JTIndex);
1459    return;
1460  } else if (TID.Opcode == ARM::BR_JTm) {
1461    // First emit a ldr pc, [] instruction.
1462    emitLoadStoreInstruction(MI, ARM::PC);
1463
1464    // Then emit the inline jump table.
1465    emitInlineJumpTable(MI.getOperand(3).getIndex());
1466    return;
1467  }
1468
1469  // Part of binary is determined by TableGn.
1470  unsigned Binary = getBinaryCodeForInstr(MI);
1471
1472  // Set the conditional execution predicate
1473  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1474
1475  if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR)
1476    // The return register is LR.
1477    Binary |= getARMRegisterNumbering(ARM::LR);
1478  else
1479    // otherwise, set the return register
1480    Binary |= getMachineOpValue(MI, 0);
1481
1482  emitWordLE(Binary);
1483}
1484
1485static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1486  unsigned RegD = MI.getOperand(OpIdx).getReg();
1487  unsigned Binary = 0;
1488  bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
1489  RegD = getARMRegisterNumbering(RegD);
1490  if (!isSPVFP)
1491    Binary |=   RegD               << ARMII::RegRdShift;
1492  else {
1493    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1494    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1495  }
1496  return Binary;
1497}
1498
1499static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1500  unsigned RegN = MI.getOperand(OpIdx).getReg();
1501  unsigned Binary = 0;
1502  bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
1503  RegN = getARMRegisterNumbering(RegN);
1504  if (!isSPVFP)
1505    Binary |=   RegN               << ARMII::RegRnShift;
1506  else {
1507    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1508    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1509  }
1510  return Binary;
1511}
1512
1513static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1514  unsigned RegM = MI.getOperand(OpIdx).getReg();
1515  unsigned Binary = 0;
1516  bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
1517  RegM = getARMRegisterNumbering(RegM);
1518  if (!isSPVFP)
1519    Binary |=   RegM;
1520  else {
1521    Binary |= ((RegM & 0x1E) >> 1);
1522    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1523  }
1524  return Binary;
1525}
1526
1527void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1528  const TargetInstrDesc &TID = MI.getDesc();
1529
1530  // Part of binary is determined by TableGn.
1531  unsigned Binary = getBinaryCodeForInstr(MI);
1532
1533  // Set the conditional execution predicate
1534  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1535
1536  unsigned OpIdx = 0;
1537  assert((Binary & ARMII::D_BitShift) == 0 &&
1538         (Binary & ARMII::N_BitShift) == 0 &&
1539         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1540
1541  // Encode Dd / Sd.
1542  Binary |= encodeVFPRd(MI, OpIdx++);
1543
1544  // If this is a two-address operand, skip it, e.g. FMACD.
1545  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1546    ++OpIdx;
1547
1548  // Encode Dn / Sn.
1549  if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1550    Binary |= encodeVFPRn(MI, OpIdx++);
1551
1552  if (OpIdx == TID.getNumOperands() ||
1553      TID.OpInfo[OpIdx].isPredicate() ||
1554      TID.OpInfo[OpIdx].isOptionalDef()) {
1555    // FCMPEZD etc. has only one operand.
1556    emitWordLE(Binary);
1557    return;
1558  }
1559
1560  // Encode Dm / Sm.
1561  Binary |= encodeVFPRm(MI, OpIdx);
1562
1563  emitWordLE(Binary);
1564}
1565
1566void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1567  const TargetInstrDesc &TID = MI.getDesc();
1568  unsigned Form = TID.TSFlags & ARMII::FormMask;
1569
1570  // Part of binary is determined by TableGn.
1571  unsigned Binary = getBinaryCodeForInstr(MI);
1572
1573  // Set the conditional execution predicate
1574  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1575
1576  switch (Form) {
1577  default: break;
1578  case ARMII::VFPConv1Frm:
1579  case ARMII::VFPConv2Frm:
1580  case ARMII::VFPConv3Frm:
1581    // Encode Dd / Sd.
1582    Binary |= encodeVFPRd(MI, 0);
1583    break;
1584  case ARMII::VFPConv4Frm:
1585    // Encode Dn / Sn.
1586    Binary |= encodeVFPRn(MI, 0);
1587    break;
1588  case ARMII::VFPConv5Frm:
1589    // Encode Dm / Sm.
1590    Binary |= encodeVFPRm(MI, 0);
1591    break;
1592  }
1593
1594  switch (Form) {
1595  default: break;
1596  case ARMII::VFPConv1Frm:
1597    // Encode Dm / Sm.
1598    Binary |= encodeVFPRm(MI, 1);
1599    break;
1600  case ARMII::VFPConv2Frm:
1601  case ARMII::VFPConv3Frm:
1602    // Encode Dn / Sn.
1603    Binary |= encodeVFPRn(MI, 1);
1604    break;
1605  case ARMII::VFPConv4Frm:
1606  case ARMII::VFPConv5Frm:
1607    // Encode Dd / Sd.
1608    Binary |= encodeVFPRd(MI, 1);
1609    break;
1610  }
1611
1612  if (Form == ARMII::VFPConv5Frm)
1613    // Encode Dn / Sn.
1614    Binary |= encodeVFPRn(MI, 2);
1615  else if (Form == ARMII::VFPConv3Frm)
1616    // Encode Dm / Sm.
1617    Binary |= encodeVFPRm(MI, 2);
1618
1619  emitWordLE(Binary);
1620}
1621
1622void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1623  // Part of binary is determined by TableGn.
1624  unsigned Binary = getBinaryCodeForInstr(MI);
1625
1626  // Set the conditional execution predicate
1627  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1628
1629  unsigned OpIdx = 0;
1630
1631  // Encode Dd / Sd.
1632  Binary |= encodeVFPRd(MI, OpIdx++);
1633
1634  // Encode address base.
1635  const MachineOperand &Base = MI.getOperand(OpIdx++);
1636  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1637
1638  // If there is a non-zero immediate offset, encode it.
1639  if (Base.isReg()) {
1640    const MachineOperand &Offset = MI.getOperand(OpIdx);
1641    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1642      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1643        Binary |= 1 << ARMII::U_BitShift;
1644      Binary |= ImmOffs;
1645      emitWordLE(Binary);
1646      return;
1647    }
1648  }
1649
1650  // If immediate offset is omitted, default to +0.
1651  Binary |= 1 << ARMII::U_BitShift;
1652
1653  emitWordLE(Binary);
1654}
1655
1656void
1657ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1658  const TargetInstrDesc &TID = MI.getDesc();
1659  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1660
1661  // Part of binary is determined by TableGn.
1662  unsigned Binary = getBinaryCodeForInstr(MI);
1663
1664  // Set the conditional execution predicate
1665  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1666
1667  // Skip operand 0 of an instruction with base register update.
1668  unsigned OpIdx = 0;
1669  if (IsUpdating)
1670    ++OpIdx;
1671
1672  // Set base address operand
1673  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1674
1675  // Set addressing mode by modifying bits U(23) and P(24)
1676  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1677  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1678
1679  // Set bit W(21)
1680  if (IsUpdating)
1681    Binary |= 0x1 << ARMII::W_BitShift;
1682
1683  // First register is encoded in Dd.
1684  Binary |= encodeVFPRd(MI, OpIdx+2);
1685
1686  // Count the number of registers.
1687  unsigned NumRegs = 1;
1688  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1689    const MachineOperand &MO = MI.getOperand(i);
1690    if (!MO.isReg() || MO.isImplicit())
1691      break;
1692    ++NumRegs;
1693  }
1694  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1695  // Otherwise, it will be 0, in the case of 32-bit registers.
1696  if(Binary & 0x100)
1697    Binary |= NumRegs * 2;
1698  else
1699    Binary |= NumRegs;
1700
1701  emitWordLE(Binary);
1702}
1703
1704static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
1705  unsigned RegD = MI.getOperand(OpIdx).getReg();
1706  unsigned Binary = 0;
1707  RegD = getARMRegisterNumbering(RegD);
1708  Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1709  Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1710  return Binary;
1711}
1712
1713static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
1714  unsigned RegN = MI.getOperand(OpIdx).getReg();
1715  unsigned Binary = 0;
1716  RegN = getARMRegisterNumbering(RegN);
1717  Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1718  Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1719  return Binary;
1720}
1721
1722static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
1723  unsigned RegM = MI.getOperand(OpIdx).getReg();
1724  unsigned Binary = 0;
1725  RegM = getARMRegisterNumbering(RegM);
1726  Binary |= (RegM & 0xf);
1727  Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1728  return Binary;
1729}
1730
1731/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1732/// data-processing instruction to the corresponding Thumb encoding.
1733static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1734  assert((Binary & 0xfe000000) == 0xf2000000 &&
1735         "not an ARM NEON data-processing instruction");
1736  unsigned UBit = (Binary >> 24) & 1;
1737  return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1738}
1739
1740void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1741  unsigned Binary = getBinaryCodeForInstr(MI);
1742
1743  unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1744  const TargetInstrDesc &TID = MI.getDesc();
1745  if ((TID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1746    RegTOpIdx = 0;
1747    RegNOpIdx = 1;
1748    LnOpIdx = 2;
1749  } else { // ARMII::NSetLnFrm
1750    RegTOpIdx = 2;
1751    RegNOpIdx = 0;
1752    LnOpIdx = 3;
1753  }
1754
1755  // Set the conditional execution predicate
1756  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1757
1758  unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1759  RegT = getARMRegisterNumbering(RegT);
1760  Binary |= (RegT << ARMII::RegRdShift);
1761  Binary |= encodeNEONRn(MI, RegNOpIdx);
1762
1763  unsigned LaneShift;
1764  if ((Binary & (1 << 22)) != 0)
1765    LaneShift = 0; // 8-bit elements
1766  else if ((Binary & (1 << 5)) != 0)
1767    LaneShift = 1; // 16-bit elements
1768  else
1769    LaneShift = 2; // 32-bit elements
1770
1771  unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1772  unsigned Opc1 = Lane >> 2;
1773  unsigned Opc2 = Lane & 3;
1774  assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1775  Binary |= (Opc1 << 21);
1776  Binary |= (Opc2 << 5);
1777
1778  emitWordLE(Binary);
1779}
1780
1781void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1782  unsigned Binary = getBinaryCodeForInstr(MI);
1783
1784  // Set the conditional execution predicate
1785  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1786
1787  unsigned RegT = MI.getOperand(1).getReg();
1788  RegT = getARMRegisterNumbering(RegT);
1789  Binary |= (RegT << ARMII::RegRdShift);
1790  Binary |= encodeNEONRn(MI, 0);
1791  emitWordLE(Binary);
1792}
1793
1794void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1795  unsigned Binary = getBinaryCodeForInstr(MI);
1796  // Destination register is encoded in Dd.
1797  Binary |= encodeNEONRd(MI, 0);
1798  // Immediate fields: Op, Cmode, I, Imm3, Imm4
1799  unsigned Imm = MI.getOperand(1).getImm();
1800  unsigned Op = (Imm >> 12) & 1;
1801  unsigned Cmode = (Imm >> 8) & 0xf;
1802  unsigned I = (Imm >> 7) & 1;
1803  unsigned Imm3 = (Imm >> 4) & 0x7;
1804  unsigned Imm4 = Imm & 0xf;
1805  Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1806  if (IsThumb)
1807    Binary = convertNEONDataProcToThumb(Binary);
1808  emitWordLE(Binary);
1809}
1810
1811void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1812  const TargetInstrDesc &TID = MI.getDesc();
1813  unsigned Binary = getBinaryCodeForInstr(MI);
1814  // Destination register is encoded in Dd; source register in Dm.
1815  unsigned OpIdx = 0;
1816  Binary |= encodeNEONRd(MI, OpIdx++);
1817  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1818    ++OpIdx;
1819  Binary |= encodeNEONRm(MI, OpIdx);
1820  if (IsThumb)
1821    Binary = convertNEONDataProcToThumb(Binary);
1822  // FIXME: This does not handle VDUPfdf or VDUPfqf.
1823  emitWordLE(Binary);
1824}
1825
1826void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
1827  const TargetInstrDesc &TID = MI.getDesc();
1828  unsigned Binary = getBinaryCodeForInstr(MI);
1829  // Destination register is encoded in Dd; source registers in Dn and Dm.
1830  unsigned OpIdx = 0;
1831  Binary |= encodeNEONRd(MI, OpIdx++);
1832  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1833    ++OpIdx;
1834  Binary |= encodeNEONRn(MI, OpIdx++);
1835  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1836    ++OpIdx;
1837  Binary |= encodeNEONRm(MI, OpIdx);
1838  if (IsThumb)
1839    Binary = convertNEONDataProcToThumb(Binary);
1840  // FIXME: This does not handle VMOVDneon or VMOVQ.
1841  emitWordLE(Binary);
1842}
1843
1844#include "ARMGenCodeEmitter.inc"
1845