ARMCodeEmitter.cpp revision 18f30e6f5e80787808fe1455742452a5210afe07
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMInstrInfo.h"
20#include "ARMRelocations.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/JITCodeEmitter.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45namespace {
46
47  class ARMCodeEmitter : public MachineFunctionPass {
48    ARMJITInfo                *JTI;
49    const ARMInstrInfo        *II;
50    const TargetData          *TD;
51    const ARMSubtarget        *Subtarget;
52    TargetMachine             &TM;
53    JITCodeEmitter            &MCE;
54    MachineModuleInfo *MMI;
55    const std::vector<MachineConstantPoolEntry> *MCPEs;
56    const std::vector<MachineJumpTableEntry> *MJTEs;
57    bool IsPIC;
58
59    void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<MachineModuleInfo>();
61      MachineFunctionPass::getAnalysisUsage(AU);
62    }
63
64    static char ID;
65  public:
66    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
67      : MachineFunctionPass(&ID), JTI(0),
68        II((const ARMInstrInfo *)tm.getInstrInfo()),
69        TD(tm.getTargetData()), TM(tm),
70    MCE(mce), MCPEs(0), MJTEs(0),
71    IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
72
73    /// getBinaryCodeForInstr - This function, generated by the
74    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
75    /// machine instructions.
76    unsigned getBinaryCodeForInstr(const MachineInstr &MI);
77
78    bool runOnMachineFunction(MachineFunction &MF);
79
80    virtual const char *getPassName() const {
81      return "ARM Machine Code Emitter";
82    }
83
84    void emitInstruction(const MachineInstr &MI);
85
86  private:
87
88    void emitWordLE(unsigned Binary);
89    void emitDWordLE(uint64_t Binary);
90    void emitConstPoolInstruction(const MachineInstr &MI);
91    void emitMOVi32immInstruction(const MachineInstr &MI);
92    void emitMOVi2piecesInstruction(const MachineInstr &MI);
93    void emitLEApcrelJTInstruction(const MachineInstr &MI);
94    void emitPseudoMoveInstruction(const MachineInstr &MI);
95    void addPCLabel(unsigned LabelID);
96    void emitPseudoInstruction(const MachineInstr &MI);
97    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
98                                    const TargetInstrDesc &TID,
99                                    const MachineOperand &MO,
100                                    unsigned OpIdx);
101
102    unsigned getMachineSoImmOpValue(unsigned SoImm);
103
104    unsigned getAddrModeSBit(const MachineInstr &MI,
105                             const TargetInstrDesc &TID) const;
106
107    void emitDataProcessingInstruction(const MachineInstr &MI,
108                                       unsigned ImplicitRd = 0,
109                                       unsigned ImplicitRn = 0);
110
111    void emitLoadStoreInstruction(const MachineInstr &MI,
112                                  unsigned ImplicitRd = 0,
113                                  unsigned ImplicitRn = 0);
114
115    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
116                                      unsigned ImplicitRn = 0);
117
118    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
119
120    void emitMulFrmInstruction(const MachineInstr &MI);
121
122    void emitExtendInstruction(const MachineInstr &MI);
123
124    void emitMiscArithInstruction(const MachineInstr &MI);
125
126    void emitBranchInstruction(const MachineInstr &MI);
127
128    void emitInlineJumpTable(unsigned JTIndex);
129
130    void emitMiscBranchInstruction(const MachineInstr &MI);
131
132    void emitVFPArithInstruction(const MachineInstr &MI);
133
134    void emitVFPConversionInstruction(const MachineInstr &MI);
135
136    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
137
138    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
139
140    void emitMiscInstruction(const MachineInstr &MI);
141
142    /// getMachineOpValue - Return binary encoding of operand. If the machine
143    /// operand requires relocation, record the relocation and return zero.
144    unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
145    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
146      return getMachineOpValue(MI, MI.getOperand(OpIdx));
147    }
148
149    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
150    /// machine operand requires relocation, record the relocation and return
151    /// zero.
152    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
153                            unsigned Reloc);
154    unsigned getMovi32Value(const MachineInstr &MI, unsigned OpIdx,
155                            unsigned Reloc) {
156      return getMovi32Value(MI, MI.getOperand(OpIdx), Reloc);
157    }
158
159    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
160    ///
161    unsigned getShiftOp(unsigned Imm) const ;
162
163    /// Routines that handle operands which add machine relocations which are
164    /// fixed up by the relocation stage.
165    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
166                           bool MayNeedFarStub,  bool Indirect,
167                           intptr_t ACPV = 0);
168    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
169    void emitConstPoolAddress(unsigned CPI, unsigned Reloc);
170    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc);
171    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
172                               intptr_t JTBase = 0);
173  };
174}
175
176char ARMCodeEmitter::ID = 0;
177
178/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
179/// code to the specified MCE object.
180FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
181                                                JITCodeEmitter &JCE) {
182  return new ARMCodeEmitter(TM, JCE);
183}
184
185bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
186  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
187          MF.getTarget().getRelocationModel() != Reloc::Static) &&
188         "JIT relocation model must be set to static or default!");
189  JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
190  II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
191  TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
192  Subtarget = &TM.getSubtarget<ARMSubtarget>();
193  MCPEs = &MF.getConstantPool()->getConstants();
194  MJTEs = 0;
195  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
196  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
197  JTI->Initialize(MF, IsPIC);
198  MMI = &getAnalysis<MachineModuleInfo>();
199  MCE.setModuleInfo(MMI);
200
201  do {
202    DEBUG(errs() << "JITTing function '"
203          << MF.getFunction()->getName() << "'\n");
204    MCE.startFunction(MF);
205    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
206         MBB != E; ++MBB) {
207      MCE.StartMachineBasicBlock(MBB);
208      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
209           I != E; ++I)
210        emitInstruction(*I);
211    }
212  } while (MCE.finishFunction(MF));
213
214  return false;
215}
216
217/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
218///
219unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
220  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
221  default: llvm_unreachable("Unknown shift opc!");
222  case ARM_AM::asr: return 2;
223  case ARM_AM::lsl: return 0;
224  case ARM_AM::lsr: return 1;
225  case ARM_AM::ror:
226  case ARM_AM::rrx: return 3;
227  }
228  return 0;
229}
230
231/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
232/// machine operand requires relocation, record the relocation and return zero.
233unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
234                                        const MachineOperand &MO,
235                                        unsigned Reloc) {
236  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
237      && "Relocation to this function should be for movt or movw");
238
239  if (MO.isImm())
240    return static_cast<unsigned>(MO.getImm());
241  else if (MO.isGlobal())
242    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
243  else if (MO.isSymbol())
244    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
245  else if (MO.isMBB())
246    emitMachineBasicBlock(MO.getMBB(), Reloc);
247  else {
248#ifndef NDEBUG
249    errs() << MO;
250#endif
251    llvm_unreachable("Unsupported operand type for movw/movt");
252  }
253  return 0;
254}
255
256/// getMachineOpValue - Return binary encoding of operand. If the machine
257/// operand requires relocation, record the relocation and return zero.
258unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
259                                           const MachineOperand &MO) {
260  if (MO.isReg())
261    return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
262  else if (MO.isImm())
263    return static_cast<unsigned>(MO.getImm());
264  else if (MO.isGlobal())
265    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
266  else if (MO.isSymbol())
267    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
268  else if (MO.isCPI()) {
269    const TargetInstrDesc &TID = MI.getDesc();
270    // For VFP load, the immediate offset is multiplied by 4.
271    unsigned Reloc =  ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
272      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
273    emitConstPoolAddress(MO.getIndex(), Reloc);
274  } else if (MO.isJTI())
275    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
276  else if (MO.isMBB())
277    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
278  else {
279#ifndef NDEBUG
280    errs() << MO;
281#endif
282    llvm_unreachable(0);
283  }
284  return 0;
285}
286
287/// emitGlobalAddress - Emit the specified address to the code stream.
288///
289void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
290                                       bool MayNeedFarStub, bool Indirect,
291                                       intptr_t ACPV) {
292  MachineRelocation MR = Indirect
293    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
294                                           const_cast<GlobalValue *>(GV),
295                                           ACPV, MayNeedFarStub)
296    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
297                               const_cast<GlobalValue *>(GV), ACPV,
298                               MayNeedFarStub);
299  MCE.addRelocation(MR);
300}
301
302/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
303/// be emitted to the current location in the function, and allow it to be PC
304/// relative.
305void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
306  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
307                                                 Reloc, ES));
308}
309
310/// emitConstPoolAddress - Arrange for the address of an constant pool
311/// to be emitted to the current location in the function, and allow it to be PC
312/// relative.
313void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) {
314  // Tell JIT emitter we'll resolve the address.
315  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
316                                                    Reloc, CPI, 0, true));
317}
318
319/// emitJumpTableAddress - Arrange for the address of a jump table to
320/// be emitted to the current location in the function, and allow it to be PC
321/// relative.
322void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) {
323  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
324                                                    Reloc, JTIndex, 0, true));
325}
326
327/// emitMachineBasicBlock - Emit the specified address basic block.
328void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
329                                           unsigned Reloc, intptr_t JTBase) {
330  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
331                                             Reloc, BB, JTBase));
332}
333
334void ARMCodeEmitter::emitWordLE(unsigned Binary) {
335  DEBUG(errs() << "  0x";
336        errs().write_hex(Binary) << "\n");
337  MCE.emitWordLE(Binary);
338}
339
340void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
341  DEBUG(errs() << "  0x";
342        errs().write_hex(Binary) << "\n");
343  MCE.emitDWordLE(Binary);
344}
345
346void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
347  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
348
349  MCE.processDebugLoc(MI.getDebugLoc(), true);
350
351  NumEmitted++;  // Keep track of the # of mi's emitted
352  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
353  default: {
354    llvm_unreachable("Unhandled instruction encoding format!");
355    break;
356  }
357  case ARMII::Pseudo:
358    emitPseudoInstruction(MI);
359    break;
360  case ARMII::DPFrm:
361  case ARMII::DPSoRegFrm:
362    emitDataProcessingInstruction(MI);
363    break;
364  case ARMII::LdFrm:
365  case ARMII::StFrm:
366    emitLoadStoreInstruction(MI);
367    break;
368  case ARMII::LdMiscFrm:
369  case ARMII::StMiscFrm:
370    emitMiscLoadStoreInstruction(MI);
371    break;
372  case ARMII::LdStMulFrm:
373    emitLoadStoreMultipleInstruction(MI);
374    break;
375  case ARMII::MulFrm:
376    emitMulFrmInstruction(MI);
377    break;
378  case ARMII::ExtFrm:
379    emitExtendInstruction(MI);
380    break;
381  case ARMII::ArithMiscFrm:
382    emitMiscArithInstruction(MI);
383    break;
384  case ARMII::BrFrm:
385    emitBranchInstruction(MI);
386    break;
387  case ARMII::BrMiscFrm:
388    emitMiscBranchInstruction(MI);
389    break;
390  // VFP instructions.
391  case ARMII::VFPUnaryFrm:
392  case ARMII::VFPBinaryFrm:
393    emitVFPArithInstruction(MI);
394    break;
395  case ARMII::VFPConv1Frm:
396  case ARMII::VFPConv2Frm:
397  case ARMII::VFPConv3Frm:
398  case ARMII::VFPConv4Frm:
399  case ARMII::VFPConv5Frm:
400    emitVFPConversionInstruction(MI);
401    break;
402  case ARMII::VFPLdStFrm:
403    emitVFPLoadStoreInstruction(MI);
404    break;
405  case ARMII::VFPLdStMulFrm:
406    emitVFPLoadStoreMultipleInstruction(MI);
407    break;
408  case ARMII::VFPMiscFrm:
409    emitMiscInstruction(MI);
410    break;
411  }
412  MCE.processDebugLoc(MI.getDebugLoc(), false);
413}
414
415void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
416  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
417  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
418  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
419
420  // Remember the CONSTPOOL_ENTRY address for later relocation.
421  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
422
423  // Emit constpool island entry. In most cases, the actual values will be
424  // resolved and relocated after code emission.
425  if (MCPE.isMachineConstantPoolEntry()) {
426    ARMConstantPoolValue *ACPV =
427      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
428
429    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
430          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
431
432    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
433    const GlobalValue *GV = ACPV->getGV();
434    if (GV) {
435      Reloc::Model RelocM = TM.getRelocationModel();
436      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
437                        isa<Function>(GV),
438                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
439                        (intptr_t)ACPV);
440     } else  {
441      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
442    }
443    emitWordLE(0);
444  } else {
445    const Constant *CV = MCPE.Val.ConstVal;
446
447    DEBUG({
448        errs() << "  ** Constant pool #" << CPI << " @ "
449               << (void*)MCE.getCurrentPCValue() << " ";
450        if (const Function *F = dyn_cast<Function>(CV))
451          errs() << F->getName();
452        else
453          errs() << *CV;
454        errs() << '\n';
455      });
456
457    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
458      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
459      emitWordLE(0);
460    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
461      uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
462      emitWordLE(Val);
463    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
464      if (CFP->getType()->isFloatTy())
465        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
466      else if (CFP->getType()->isDoubleTy())
467        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
468      else {
469        llvm_unreachable("Unable to handle this constantpool entry!");
470      }
471    } else {
472      llvm_unreachable("Unable to handle this constantpool entry!");
473    }
474  }
475}
476
477void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
478  const MachineOperand &MO0 = MI.getOperand(0);
479  const MachineOperand &MO1 = MI.getOperand(1);
480
481  // Emit the 'movw' instruction.
482  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
483
484  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
485
486  // Set the conditional execution predicate.
487  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
488
489  // Encode Rd.
490  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
491
492  // Encode imm16 as imm4:imm12
493  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
494  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
495  emitWordLE(Binary);
496
497  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
498  // Emit the 'movt' instruction.
499  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
500
501  // Set the conditional execution predicate.
502  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
503
504  // Encode Rd.
505  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
506
507  // Encode imm16 as imm4:imm1, same as movw above.
508  Binary |= Hi16 & 0xFFF;
509  Binary |= ((Hi16 >> 12) & 0xF) << 16;
510  emitWordLE(Binary);
511}
512
513void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
514  const MachineOperand &MO0 = MI.getOperand(0);
515  const MachineOperand &MO1 = MI.getOperand(1);
516  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
517                                                  "Not a valid so_imm value!");
518  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
519  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
520
521  // Emit the 'mov' instruction.
522  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
523
524  // Set the conditional execution predicate.
525  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
526
527  // Encode Rd.
528  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
529
530  // Encode so_imm.
531  // Set bit I(25) to identify this is the immediate form of <shifter_op>
532  Binary |= 1 << ARMII::I_BitShift;
533  Binary |= getMachineSoImmOpValue(V1);
534  emitWordLE(Binary);
535
536  // Now the 'orr' instruction.
537  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
538
539  // Set the conditional execution predicate.
540  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
541
542  // Encode Rd.
543  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
544
545  // Encode Rn.
546  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
547
548  // Encode so_imm.
549  // Set bit I(25) to identify this is the immediate form of <shifter_op>
550  Binary |= 1 << ARMII::I_BitShift;
551  Binary |= getMachineSoImmOpValue(V2);
552  emitWordLE(Binary);
553}
554
555void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
556  // It's basically add r, pc, (LJTI - $+8)
557
558  const TargetInstrDesc &TID = MI.getDesc();
559
560  // Emit the 'add' instruction.
561  unsigned Binary = 0x4 << 21;  // add: Insts{24-31} = 0b0100
562
563  // Set the conditional execution predicate
564  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
565
566  // Encode S bit if MI modifies CPSR.
567  Binary |= getAddrModeSBit(MI, TID);
568
569  // Encode Rd.
570  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
571
572  // Encode Rn which is PC.
573  Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
574
575  // Encode the displacement.
576  Binary |= 1 << ARMII::I_BitShift;
577  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
578
579  emitWordLE(Binary);
580}
581
582void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
583  unsigned Opcode = MI.getDesc().Opcode;
584
585  // Part of binary is determined by TableGn.
586  unsigned Binary = getBinaryCodeForInstr(MI);
587
588  // Set the conditional execution predicate
589  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
590
591  // Encode S bit if MI modifies CPSR.
592  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
593    Binary |= 1 << ARMII::S_BitShift;
594
595  // Encode register def if there is one.
596  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
597
598  // Encode the shift operation.
599  switch (Opcode) {
600  default: break;
601  case ARM::MOVrx:
602    // rrx
603    Binary |= 0x6 << 4;
604    break;
605  case ARM::MOVsrl_flag:
606    // lsr #1
607    Binary |= (0x2 << 4) | (1 << 7);
608    break;
609  case ARM::MOVsra_flag:
610    // asr #1
611    Binary |= (0x4 << 4) | (1 << 7);
612    break;
613  }
614
615  // Encode register Rm.
616  Binary |= getMachineOpValue(MI, 1);
617
618  emitWordLE(Binary);
619}
620
621void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
622  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
623        << (void*)MCE.getCurrentPCValue() << '\n');
624  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
625}
626
627void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
628  unsigned Opcode = MI.getDesc().Opcode;
629  switch (Opcode) {
630  default:
631    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
632  case TargetOpcode::INLINEASM: {
633    // We allow inline assembler nodes with empty bodies - they can
634    // implicitly define registers, which is ok for JIT.
635    if (MI.getOperand(0).getSymbolName()[0]) {
636      report_fatal_error("JIT does not support inline asm!");
637    }
638    break;
639  }
640  case TargetOpcode::DBG_LABEL:
641  case TargetOpcode::EH_LABEL:
642    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
643    break;
644  case TargetOpcode::IMPLICIT_DEF:
645  case TargetOpcode::KILL:
646    // Do nothing.
647    break;
648  case ARM::CONSTPOOL_ENTRY:
649    emitConstPoolInstruction(MI);
650    break;
651  case ARM::PICADD: {
652    // Remember of the address of the PC label for relocation later.
653    addPCLabel(MI.getOperand(2).getImm());
654    // PICADD is just an add instruction that implicitly read pc.
655    emitDataProcessingInstruction(MI, 0, ARM::PC);
656    break;
657  }
658  case ARM::PICLDR:
659  case ARM::PICLDRB:
660  case ARM::PICSTR:
661  case ARM::PICSTRB: {
662    // Remember of the address of the PC label for relocation later.
663    addPCLabel(MI.getOperand(2).getImm());
664    // These are just load / store instructions that implicitly read pc.
665    emitLoadStoreInstruction(MI, 0, ARM::PC);
666    break;
667  }
668  case ARM::PICLDRH:
669  case ARM::PICLDRSH:
670  case ARM::PICLDRSB:
671  case ARM::PICSTRH: {
672    // Remember of the address of the PC label for relocation later.
673    addPCLabel(MI.getOperand(2).getImm());
674    // These are just load / store instructions that implicitly read pc.
675    emitMiscLoadStoreInstruction(MI, ARM::PC);
676    break;
677  }
678
679  case ARM::MOVi32imm:
680    emitMOVi32immInstruction(MI);
681    break;
682
683  case ARM::MOVi2pieces:
684    // Two instructions to materialize a constant.
685    emitMOVi2piecesInstruction(MI);
686    break;
687  case ARM::LEApcrelJT:
688    // Materialize jumptable address.
689    emitLEApcrelJTInstruction(MI);
690    break;
691  case ARM::MOVrx:
692  case ARM::MOVsrl_flag:
693  case ARM::MOVsra_flag:
694    emitPseudoMoveInstruction(MI);
695    break;
696  }
697}
698
699unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
700                                                const TargetInstrDesc &TID,
701                                                const MachineOperand &MO,
702                                                unsigned OpIdx) {
703  unsigned Binary = getMachineOpValue(MI, MO);
704
705  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
706  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
707  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
708
709  // Encode the shift opcode.
710  unsigned SBits = 0;
711  unsigned Rs = MO1.getReg();
712  if (Rs) {
713    // Set shift operand (bit[7:4]).
714    // LSL - 0001
715    // LSR - 0011
716    // ASR - 0101
717    // ROR - 0111
718    // RRX - 0110 and bit[11:8] clear.
719    switch (SOpc) {
720    default: llvm_unreachable("Unknown shift opc!");
721    case ARM_AM::lsl: SBits = 0x1; break;
722    case ARM_AM::lsr: SBits = 0x3; break;
723    case ARM_AM::asr: SBits = 0x5; break;
724    case ARM_AM::ror: SBits = 0x7; break;
725    case ARM_AM::rrx: SBits = 0x6; break;
726    }
727  } else {
728    // Set shift operand (bit[6:4]).
729    // LSL - 000
730    // LSR - 010
731    // ASR - 100
732    // ROR - 110
733    switch (SOpc) {
734    default: llvm_unreachable("Unknown shift opc!");
735    case ARM_AM::lsl: SBits = 0x0; break;
736    case ARM_AM::lsr: SBits = 0x2; break;
737    case ARM_AM::asr: SBits = 0x4; break;
738    case ARM_AM::ror: SBits = 0x6; break;
739    }
740  }
741  Binary |= SBits << 4;
742  if (SOpc == ARM_AM::rrx)
743    return Binary;
744
745  // Encode the shift operation Rs or shift_imm (except rrx).
746  if (Rs) {
747    // Encode Rs bit[11:8].
748    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
749    return Binary |
750      (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
751  }
752
753  // Encode shift_imm bit[11:7].
754  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
755}
756
757unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
758  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
759  assert(SoImmVal != -1 && "Not a valid so_imm value!");
760
761  // Encode rotate_imm.
762  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
763    << ARMII::SoRotImmShift;
764
765  // Encode immed_8.
766  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
767  return Binary;
768}
769
770unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
771                                         const TargetInstrDesc &TID) const {
772  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
773    const MachineOperand &MO = MI.getOperand(i-1);
774    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
775      return 1 << ARMII::S_BitShift;
776  }
777  return 0;
778}
779
780void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
781                                                   unsigned ImplicitRd,
782                                                   unsigned ImplicitRn) {
783  const TargetInstrDesc &TID = MI.getDesc();
784
785  // Part of binary is determined by TableGn.
786  unsigned Binary = getBinaryCodeForInstr(MI);
787
788  // Set the conditional execution predicate
789  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
790
791  // Encode S bit if MI modifies CPSR.
792  Binary |= getAddrModeSBit(MI, TID);
793
794  // Encode register def if there is one.
795  unsigned NumDefs = TID.getNumDefs();
796  unsigned OpIdx = 0;
797  if (NumDefs)
798    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
799  else if (ImplicitRd)
800    // Special handling for implicit use (e.g. PC).
801    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
802               << ARMII::RegRdShift);
803
804  if (TID.Opcode == ARM::MOVi16) {
805      // Get immediate from MI.
806      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
807                      ARM::reloc_arm_movw);
808      // Encode imm which is the same as in emitMOVi32immInstruction().
809      Binary |= Lo16 & 0xFFF;
810      Binary |= ((Lo16 >> 12) & 0xF) << 16;
811      emitWordLE(Binary);
812      return;
813  } else if(TID.Opcode == ARM::MOVTi16) {
814      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
815                       ARM::reloc_arm_movt) >> 16);
816      Binary |= Hi16 & 0xFFF;
817      Binary |= ((Hi16 >> 12) & 0xF) << 16;
818      emitWordLE(Binary);
819      return;
820  } else if ((TID.Opcode == ARM::BFC) || (TID.Opcode == ARM::BFI)) {
821      uint32_t v = ~MI.getOperand(2).getImm();
822      int32_t lsb = CountTrailingZeros_32(v);
823      int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
824      // Instr{20-16} = msb, Instr{11-7} = lsb
825      Binary |= (msb & 0x1F) << 16;
826      Binary |= (lsb & 0x1F) << 7;
827      emitWordLE(Binary);
828      return;
829  } else if ((TID.Opcode == ARM::UBFX) || (TID.Opcode == ARM::SBFX)) {
830      // Encode Rn in Instr{0-3}
831      Binary |= getMachineOpValue(MI, OpIdx++);
832
833      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
834      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
835
836      // Instr{20-16} = widthm1, Instr{11-7} = lsb
837      Binary |= (widthm1 & 0x1F) << 16;
838      Binary |= (lsb & 0x1F) << 7;
839      emitWordLE(Binary);
840      return;
841  }
842
843  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
844  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
845    ++OpIdx;
846
847  // Encode first non-shifter register operand if there is one.
848  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
849  if (!isUnary) {
850    if (ImplicitRn)
851      // Special handling for implicit use (e.g. PC).
852      Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
853                 << ARMII::RegRnShift);
854    else {
855      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
856      ++OpIdx;
857    }
858  }
859
860  // Encode shifter operand.
861  const MachineOperand &MO = MI.getOperand(OpIdx);
862  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
863    // Encode SoReg.
864    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
865    return;
866  }
867
868  if (MO.isReg()) {
869    // Encode register Rm.
870    emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
871    return;
872  }
873
874  // Encode so_imm.
875  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
876
877  emitWordLE(Binary);
878}
879
880void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
881                                              unsigned ImplicitRd,
882                                              unsigned ImplicitRn) {
883  const TargetInstrDesc &TID = MI.getDesc();
884  unsigned Form = TID.TSFlags & ARMII::FormMask;
885  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
886
887  // Part of binary is determined by TableGn.
888  unsigned Binary = getBinaryCodeForInstr(MI);
889
890  // Set the conditional execution predicate
891  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
892
893  unsigned OpIdx = 0;
894
895  // Operand 0 of a pre- and post-indexed store is the address base
896  // writeback. Skip it.
897  bool Skipped = false;
898  if (IsPrePost && Form == ARMII::StFrm) {
899    ++OpIdx;
900    Skipped = true;
901  }
902
903  // Set first operand
904  if (ImplicitRd)
905    // Special handling for implicit use (e.g. PC).
906    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
907               << ARMII::RegRdShift);
908  else
909    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
910
911  // Set second operand
912  if (ImplicitRn)
913    // Special handling for implicit use (e.g. PC).
914    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
915               << ARMII::RegRnShift);
916  else
917    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
918
919  // If this is a two-address operand, skip it. e.g. LDR_PRE.
920  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
921    ++OpIdx;
922
923  const MachineOperand &MO2 = MI.getOperand(OpIdx);
924  unsigned AM2Opc = (ImplicitRn == ARM::PC)
925    ? 0 : MI.getOperand(OpIdx+1).getImm();
926
927  // Set bit U(23) according to sign of immed value (positive or negative).
928  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
929             ARMII::U_BitShift);
930  if (!MO2.getReg()) { // is immediate
931    if (ARM_AM::getAM2Offset(AM2Opc))
932      // Set the value of offset_12 field
933      Binary |= ARM_AM::getAM2Offset(AM2Opc);
934    emitWordLE(Binary);
935    return;
936  }
937
938  // Set bit I(25), because this is not in immediate enconding.
939  Binary |= 1 << ARMII::I_BitShift;
940  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
941  // Set bit[3:0] to the corresponding Rm register
942  Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
943
944  // If this instr is in scaled register offset/index instruction, set
945  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
946  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
947    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
948    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
949  }
950
951  emitWordLE(Binary);
952}
953
954void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
955                                                  unsigned ImplicitRn) {
956  const TargetInstrDesc &TID = MI.getDesc();
957  unsigned Form = TID.TSFlags & ARMII::FormMask;
958  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
959
960  // Part of binary is determined by TableGn.
961  unsigned Binary = getBinaryCodeForInstr(MI);
962
963  // Set the conditional execution predicate
964  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
965
966  unsigned OpIdx = 0;
967
968  // Operand 0 of a pre- and post-indexed store is the address base
969  // writeback. Skip it.
970  bool Skipped = false;
971  if (IsPrePost && Form == ARMII::StMiscFrm) {
972    ++OpIdx;
973    Skipped = true;
974  }
975
976  // Set first operand
977  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
978
979  // Skip LDRD and STRD's second operand.
980  if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
981    ++OpIdx;
982
983  // Set second operand
984  if (ImplicitRn)
985    // Special handling for implicit use (e.g. PC).
986    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
987               << ARMII::RegRnShift);
988  else
989    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
990
991  // If this is a two-address operand, skip it. e.g. LDRH_POST.
992  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
993    ++OpIdx;
994
995  const MachineOperand &MO2 = MI.getOperand(OpIdx);
996  unsigned AM3Opc = (ImplicitRn == ARM::PC)
997    ? 0 : MI.getOperand(OpIdx+1).getImm();
998
999  // Set bit U(23) according to sign of immed value (positive or negative)
1000  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1001             ARMII::U_BitShift);
1002
1003  // If this instr is in register offset/index encoding, set bit[3:0]
1004  // to the corresponding Rm register.
1005  if (MO2.getReg()) {
1006    Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
1007    emitWordLE(Binary);
1008    return;
1009  }
1010
1011  // This instr is in immediate offset/index encoding, set bit 22 to 1.
1012  Binary |= 1 << ARMII::AM3_I_BitShift;
1013  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1014    // Set operands
1015    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1016    Binary |= (ImmOffs & 0xF);                      // immedL
1017  }
1018
1019  emitWordLE(Binary);
1020}
1021
1022static unsigned getAddrModeUPBits(unsigned Mode) {
1023  unsigned Binary = 0;
1024
1025  // Set addressing mode by modifying bits U(23) and P(24)
1026  // IA - Increment after  - bit U = 1 and bit P = 0
1027  // IB - Increment before - bit U = 1 and bit P = 1
1028  // DA - Decrement after  - bit U = 0 and bit P = 0
1029  // DB - Decrement before - bit U = 0 and bit P = 1
1030  switch (Mode) {
1031  default: llvm_unreachable("Unknown addressing sub-mode!");
1032  case ARM_AM::da:                                     break;
1033  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1034  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1035  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1036  }
1037
1038  return Binary;
1039}
1040
1041void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1042  const TargetInstrDesc &TID = MI.getDesc();
1043  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1044
1045  // Part of binary is determined by TableGn.
1046  unsigned Binary = getBinaryCodeForInstr(MI);
1047
1048  // Set the conditional execution predicate
1049  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1050
1051  // Skip operand 0 of an instruction with base register update.
1052  unsigned OpIdx = 0;
1053  if (IsUpdating)
1054    ++OpIdx;
1055
1056  // Set base address operand
1057  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1058
1059  // Set addressing mode by modifying bits U(23) and P(24)
1060  const MachineOperand &MO = MI.getOperand(OpIdx++);
1061  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
1062
1063  // Set bit W(21)
1064  if (IsUpdating)
1065    Binary |= 0x1 << ARMII::W_BitShift;
1066
1067  // Set registers
1068  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1069    const MachineOperand &MO = MI.getOperand(i);
1070    if (!MO.isReg() || MO.isImplicit())
1071      break;
1072    unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
1073    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1074           RegNum < 16);
1075    Binary |= 0x1 << RegNum;
1076  }
1077
1078  emitWordLE(Binary);
1079}
1080
1081void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1082  const TargetInstrDesc &TID = MI.getDesc();
1083
1084  // Part of binary is determined by TableGn.
1085  unsigned Binary = getBinaryCodeForInstr(MI);
1086
1087  // Set the conditional execution predicate
1088  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1089
1090  // Encode S bit if MI modifies CPSR.
1091  Binary |= getAddrModeSBit(MI, TID);
1092
1093  // 32x32->64bit operations have two destination registers. The number
1094  // of register definitions will tell us if that's what we're dealing with.
1095  unsigned OpIdx = 0;
1096  if (TID.getNumDefs() == 2)
1097    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1098
1099  // Encode Rd
1100  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1101
1102  // Encode Rm
1103  Binary |= getMachineOpValue(MI, OpIdx++);
1104
1105  // Encode Rs
1106  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1107
1108  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1109  // it as Rn (for multiply, that's in the same offset as RdLo.
1110  if (TID.getNumOperands() > OpIdx &&
1111      !TID.OpInfo[OpIdx].isPredicate() &&
1112      !TID.OpInfo[OpIdx].isOptionalDef())
1113    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1114
1115  emitWordLE(Binary);
1116}
1117
1118void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1119  const TargetInstrDesc &TID = MI.getDesc();
1120
1121  // Part of binary is determined by TableGn.
1122  unsigned Binary = getBinaryCodeForInstr(MI);
1123
1124  // Set the conditional execution predicate
1125  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1126
1127  unsigned OpIdx = 0;
1128
1129  // Encode Rd
1130  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1131
1132  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1133  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1134  if (MO2.isReg()) {
1135    // Two register operand form.
1136    // Encode Rn.
1137    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1138
1139    // Encode Rm.
1140    Binary |= getMachineOpValue(MI, MO2);
1141    ++OpIdx;
1142  } else {
1143    Binary |= getMachineOpValue(MI, MO1);
1144  }
1145
1146  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1147  if (MI.getOperand(OpIdx).isImm() &&
1148      !TID.OpInfo[OpIdx].isPredicate() &&
1149      !TID.OpInfo[OpIdx].isOptionalDef())
1150    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1151
1152  emitWordLE(Binary);
1153}
1154
1155void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1156  const TargetInstrDesc &TID = MI.getDesc();
1157
1158  // Part of binary is determined by TableGn.
1159  unsigned Binary = getBinaryCodeForInstr(MI);
1160
1161  // Set the conditional execution predicate
1162  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1163
1164  unsigned OpIdx = 0;
1165
1166  // Encode Rd
1167  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1168
1169  const MachineOperand &MO = MI.getOperand(OpIdx++);
1170  if (OpIdx == TID.getNumOperands() ||
1171      TID.OpInfo[OpIdx].isPredicate() ||
1172      TID.OpInfo[OpIdx].isOptionalDef()) {
1173    // Encode Rm and it's done.
1174    Binary |= getMachineOpValue(MI, MO);
1175    emitWordLE(Binary);
1176    return;
1177  }
1178
1179  // Encode Rn.
1180  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1181
1182  // Encode Rm.
1183  Binary |= getMachineOpValue(MI, OpIdx++);
1184
1185  // Encode shift_imm.
1186  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1187  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1188  Binary |= ShiftAmt << ARMII::ShiftShift;
1189
1190  emitWordLE(Binary);
1191}
1192
1193void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1194  const TargetInstrDesc &TID = MI.getDesc();
1195
1196  if (TID.Opcode == ARM::TPsoft) {
1197    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1198  }
1199
1200  // Part of binary is determined by TableGn.
1201  unsigned Binary = getBinaryCodeForInstr(MI);
1202
1203  // Set the conditional execution predicate
1204  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1205
1206  // Set signed_immed_24 field
1207  Binary |= getMachineOpValue(MI, 0);
1208
1209  emitWordLE(Binary);
1210}
1211
1212void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1213  // Remember the base address of the inline jump table.
1214  uintptr_t JTBase = MCE.getCurrentPCValue();
1215  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1216  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1217               << '\n');
1218
1219  // Now emit the jump table entries.
1220  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1221  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1222    if (IsPIC)
1223      // DestBB address - JT base.
1224      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1225    else
1226      // Absolute DestBB address.
1227      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1228    emitWordLE(0);
1229  }
1230}
1231
1232void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1233  const TargetInstrDesc &TID = MI.getDesc();
1234
1235  // Handle jump tables.
1236  if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1237    // First emit a ldr pc, [] instruction.
1238    emitDataProcessingInstruction(MI, ARM::PC);
1239
1240    // Then emit the inline jump table.
1241    unsigned JTIndex =
1242      (TID.Opcode == ARM::BR_JTr)
1243      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1244    emitInlineJumpTable(JTIndex);
1245    return;
1246  } else if (TID.Opcode == ARM::BR_JTm) {
1247    // First emit a ldr pc, [] instruction.
1248    emitLoadStoreInstruction(MI, ARM::PC);
1249
1250    // Then emit the inline jump table.
1251    emitInlineJumpTable(MI.getOperand(3).getIndex());
1252    return;
1253  }
1254
1255  // Part of binary is determined by TableGn.
1256  unsigned Binary = getBinaryCodeForInstr(MI);
1257
1258  // Set the conditional execution predicate
1259  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1260
1261  if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR)
1262    // The return register is LR.
1263    Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
1264  else
1265    // otherwise, set the return register
1266    Binary |= getMachineOpValue(MI, 0);
1267
1268  emitWordLE(Binary);
1269}
1270
1271static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1272  unsigned RegD = MI.getOperand(OpIdx).getReg();
1273  unsigned Binary = 0;
1274  bool isSPVFP = false;
1275  RegD = ARMRegisterInfo::getRegisterNumbering(RegD, &isSPVFP);
1276  if (!isSPVFP)
1277    Binary |=   RegD               << ARMII::RegRdShift;
1278  else {
1279    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1280    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1281  }
1282  return Binary;
1283}
1284
1285static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1286  unsigned RegN = MI.getOperand(OpIdx).getReg();
1287  unsigned Binary = 0;
1288  bool isSPVFP = false;
1289  RegN = ARMRegisterInfo::getRegisterNumbering(RegN, &isSPVFP);
1290  if (!isSPVFP)
1291    Binary |=   RegN               << ARMII::RegRnShift;
1292  else {
1293    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1294    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1295  }
1296  return Binary;
1297}
1298
1299static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1300  unsigned RegM = MI.getOperand(OpIdx).getReg();
1301  unsigned Binary = 0;
1302  bool isSPVFP = false;
1303  RegM = ARMRegisterInfo::getRegisterNumbering(RegM, &isSPVFP);
1304  if (!isSPVFP)
1305    Binary |=   RegM;
1306  else {
1307    Binary |= ((RegM & 0x1E) >> 1);
1308    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1309  }
1310  return Binary;
1311}
1312
1313void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1314  const TargetInstrDesc &TID = MI.getDesc();
1315
1316  // Part of binary is determined by TableGn.
1317  unsigned Binary = getBinaryCodeForInstr(MI);
1318
1319  // Set the conditional execution predicate
1320  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1321
1322  unsigned OpIdx = 0;
1323  assert((Binary & ARMII::D_BitShift) == 0 &&
1324         (Binary & ARMII::N_BitShift) == 0 &&
1325         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1326
1327  // Encode Dd / Sd.
1328  Binary |= encodeVFPRd(MI, OpIdx++);
1329
1330  // If this is a two-address operand, skip it, e.g. FMACD.
1331  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1332    ++OpIdx;
1333
1334  // Encode Dn / Sn.
1335  if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1336    Binary |= encodeVFPRn(MI, OpIdx++);
1337
1338  if (OpIdx == TID.getNumOperands() ||
1339      TID.OpInfo[OpIdx].isPredicate() ||
1340      TID.OpInfo[OpIdx].isOptionalDef()) {
1341    // FCMPEZD etc. has only one operand.
1342    emitWordLE(Binary);
1343    return;
1344  }
1345
1346  // Encode Dm / Sm.
1347  Binary |= encodeVFPRm(MI, OpIdx);
1348
1349  emitWordLE(Binary);
1350}
1351
1352void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1353  const TargetInstrDesc &TID = MI.getDesc();
1354  unsigned Form = TID.TSFlags & ARMII::FormMask;
1355
1356  // Part of binary is determined by TableGn.
1357  unsigned Binary = getBinaryCodeForInstr(MI);
1358
1359  // Set the conditional execution predicate
1360  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1361
1362  switch (Form) {
1363  default: break;
1364  case ARMII::VFPConv1Frm:
1365  case ARMII::VFPConv2Frm:
1366  case ARMII::VFPConv3Frm:
1367    // Encode Dd / Sd.
1368    Binary |= encodeVFPRd(MI, 0);
1369    break;
1370  case ARMII::VFPConv4Frm:
1371    // Encode Dn / Sn.
1372    Binary |= encodeVFPRn(MI, 0);
1373    break;
1374  case ARMII::VFPConv5Frm:
1375    // Encode Dm / Sm.
1376    Binary |= encodeVFPRm(MI, 0);
1377    break;
1378  }
1379
1380  switch (Form) {
1381  default: break;
1382  case ARMII::VFPConv1Frm:
1383    // Encode Dm / Sm.
1384    Binary |= encodeVFPRm(MI, 1);
1385    break;
1386  case ARMII::VFPConv2Frm:
1387  case ARMII::VFPConv3Frm:
1388    // Encode Dn / Sn.
1389    Binary |= encodeVFPRn(MI, 1);
1390    break;
1391  case ARMII::VFPConv4Frm:
1392  case ARMII::VFPConv5Frm:
1393    // Encode Dd / Sd.
1394    Binary |= encodeVFPRd(MI, 1);
1395    break;
1396  }
1397
1398  if (Form == ARMII::VFPConv5Frm)
1399    // Encode Dn / Sn.
1400    Binary |= encodeVFPRn(MI, 2);
1401  else if (Form == ARMII::VFPConv3Frm)
1402    // Encode Dm / Sm.
1403    Binary |= encodeVFPRm(MI, 2);
1404
1405  emitWordLE(Binary);
1406}
1407
1408void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1409  // Part of binary is determined by TableGn.
1410  unsigned Binary = getBinaryCodeForInstr(MI);
1411
1412  // Set the conditional execution predicate
1413  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1414
1415  unsigned OpIdx = 0;
1416
1417  // Encode Dd / Sd.
1418  Binary |= encodeVFPRd(MI, OpIdx++);
1419
1420  // Encode address base.
1421  const MachineOperand &Base = MI.getOperand(OpIdx++);
1422  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1423
1424  // If there is a non-zero immediate offset, encode it.
1425  if (Base.isReg()) {
1426    const MachineOperand &Offset = MI.getOperand(OpIdx);
1427    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1428      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1429        Binary |= 1 << ARMII::U_BitShift;
1430      Binary |= ImmOffs;
1431      emitWordLE(Binary);
1432      return;
1433    }
1434  }
1435
1436  // If immediate offset is omitted, default to +0.
1437  Binary |= 1 << ARMII::U_BitShift;
1438
1439  emitWordLE(Binary);
1440}
1441
1442void
1443ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1444  const TargetInstrDesc &TID = MI.getDesc();
1445  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1446
1447  // Part of binary is determined by TableGn.
1448  unsigned Binary = getBinaryCodeForInstr(MI);
1449
1450  // Set the conditional execution predicate
1451  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1452
1453  // Skip operand 0 of an instruction with base register update.
1454  unsigned OpIdx = 0;
1455  if (IsUpdating)
1456    ++OpIdx;
1457
1458  // Set base address operand
1459  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1460
1461  // Set addressing mode by modifying bits U(23) and P(24)
1462  const MachineOperand &MO = MI.getOperand(OpIdx++);
1463  Binary |= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO.getImm()));
1464
1465  // Set bit W(21)
1466  if (IsUpdating)
1467    Binary |= 0x1 << ARMII::W_BitShift;
1468
1469  // First register is encoded in Dd.
1470  Binary |= encodeVFPRd(MI, OpIdx+2);
1471
1472  // Number of registers are encoded in offset field.
1473  unsigned NumRegs = 1;
1474  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1475    const MachineOperand &MO = MI.getOperand(i);
1476    if (!MO.isReg() || MO.isImplicit())
1477      break;
1478    ++NumRegs;
1479  }
1480  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1481  // Otherwise, it will be 0, in the case of 32-bit registers.
1482  if(Binary & 0x100)
1483    Binary |= NumRegs * 2;
1484  else
1485    Binary |= NumRegs;
1486
1487  emitWordLE(Binary);
1488}
1489
1490void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
1491  unsigned Opcode = MI.getDesc().Opcode;
1492  // Part of binary is determined by TableGn.
1493  unsigned Binary = getBinaryCodeForInstr(MI);
1494
1495  // Set the conditional execution predicate
1496  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1497
1498  switch(Opcode) {
1499  default:
1500    llvm_unreachable("ARMCodeEmitter::emitMiscInstruction");
1501
1502  case ARM::FMSTAT:
1503    // No further encoding needed.
1504    break;
1505
1506  case ARM::VMRS:
1507  case ARM::VMSR: {
1508    const MachineOperand &MO0 = MI.getOperand(0);
1509    // Encode Rt.
1510    Binary |= ARMRegisterInfo::getRegisterNumbering(MO0.getReg())
1511                << ARMII::RegRdShift;
1512    break;
1513  }
1514
1515  case ARM::FCONSTD:
1516  case ARM::FCONSTS: {
1517    // Encode Dd / Sd.
1518    Binary |= encodeVFPRd(MI, 0);
1519
1520    // Encode imm., Table A7-18 VFP modified immediate constants
1521    const MachineOperand &MO1 = MI.getOperand(1);
1522    unsigned Imm = static_cast<unsigned>(MO1.getFPImm()->getValueAPF()
1523                      .bitcastToAPInt().getHiBits(32).getLimitedValue());
1524    unsigned ModifiedImm;
1525
1526    if(Opcode == ARM::FCONSTS)
1527      ModifiedImm = (Imm & 0x80000000) >> 24 | // a
1528                    (Imm & 0x03F80000) >> 19;  // bcdefgh
1529    else // Opcode == ARM::FCONSTD
1530      ModifiedImm = (Imm & 0x80000000) >> 24 | // a
1531                    (Imm & 0x007F0000) >> 16;  // bcdefgh
1532
1533    // Insts{19-16} = abcd, Insts{3-0} = efgh
1534    Binary |= ((ModifiedImm & 0xF0) >> 4) << 16;
1535    Binary |= (ModifiedImm & 0xF);
1536    break;
1537  }
1538  }
1539
1540  emitWordLE(Binary);
1541}
1542
1543#include "ARMGenCodeEmitter.inc"
1544