ARMCodeEmitter.cpp revision 2929cc0f51dd998bc00547377f00386758dc962f
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMInstrInfo.h"
20#include "ARMRelocations.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/MachineCodeEmitter.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/Debug.h"
36#ifndef NDEBUG
37#include <iomanip>
38#endif
39using namespace llvm;
40
41STATISTIC(NumEmitted, "Number of machine instructions emitted");
42
43namespace {
44  class VISIBILITY_HIDDEN ARMCodeEmitter : public MachineFunctionPass {
45    ARMJITInfo                *JTI;
46    const ARMInstrInfo        *II;
47    const TargetData          *TD;
48    TargetMachine             &TM;
49    MachineCodeEmitter        &MCE;
50    const std::vector<MachineConstantPoolEntry> *MCPEs;
51    const std::vector<MachineJumpTableEntry> *MJTEs;
52    bool IsPIC;
53
54  public:
55    static char ID;
56    explicit ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce)
57      : MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm),
58      MCE(mce), MCPEs(0), MJTEs(0),
59      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
60    ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce,
61            const ARMInstrInfo &ii, const TargetData &td)
62      : MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm),
63      MCE(mce), MCPEs(0), MJTEs(0),
64      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
65
66    bool runOnMachineFunction(MachineFunction &MF);
67
68    virtual const char *getPassName() const {
69      return "ARM Machine Code Emitter";
70    }
71
72    void emitInstruction(const MachineInstr &MI);
73
74  private:
75
76    void emitWordLE(unsigned Binary);
77
78    void emitConstPoolInstruction(const MachineInstr &MI);
79
80    void emitMOVi2piecesInstruction(const MachineInstr &MI);
81
82    void emitLEApcrelJTInstruction(const MachineInstr &MI);
83
84    void addPCLabel(unsigned LabelID);
85
86    void emitPseudoInstruction(const MachineInstr &MI);
87
88    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
89                                    const TargetInstrDesc &TID,
90                                    const MachineOperand &MO,
91                                    unsigned OpIdx);
92
93    unsigned getMachineSoImmOpValue(unsigned SoImm);
94
95    unsigned getAddrModeSBit(const MachineInstr &MI,
96                             const TargetInstrDesc &TID) const;
97
98    void emitDataProcessingInstruction(const MachineInstr &MI,
99                                       unsigned ImplicitRd = 0,
100                                       unsigned ImplicitRn = 0);
101
102    void emitLoadStoreInstruction(const MachineInstr &MI,
103                                  unsigned ImplicitRd = 0,
104                                  unsigned ImplicitRn = 0);
105
106    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
107                                      unsigned ImplicitRn = 0);
108
109    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
110
111    void emitMulFrmInstruction(const MachineInstr &MI);
112
113    void emitExtendInstruction(const MachineInstr &MI);
114
115    void emitMiscArithInstruction(const MachineInstr &MI);
116
117    void emitBranchInstruction(const MachineInstr &MI);
118
119    void emitInlineJumpTable(unsigned JTIndex);
120
121    void emitMiscBranchInstruction(const MachineInstr &MI);
122
123    /// getBinaryCodeForInstr - This function, generated by the
124    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
125    /// machine instructions.
126    ///
127    unsigned getBinaryCodeForInstr(const MachineInstr &MI);
128
129    /// getMachineOpValue - Return binary encoding of operand. If the machine
130    /// operand requires relocation, record the relocation and return zero.
131    unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
132    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
133      return getMachineOpValue(MI, MI.getOperand(OpIdx));
134    }
135
136    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
137    ///
138    unsigned getShiftOp(unsigned Imm) const ;
139
140    /// Routines that handle operands which add machine relocations which are
141    /// fixed up by the relocation stage.
142    void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
143                           bool NeedStub, intptr_t ACPV = 0);
144    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
145    void emitConstPoolAddress(unsigned CPI, unsigned Reloc);
146    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc);
147    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
148                               intptr_t JTBase = 0);
149  };
150  char ARMCodeEmitter::ID = 0;
151}
152
153/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
154/// to the specified MCE object.
155FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM,
156                                             MachineCodeEmitter &MCE) {
157  return new ARMCodeEmitter(TM, MCE);
158}
159
160bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
161  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
162          MF.getTarget().getRelocationModel() != Reloc::Static) &&
163         "JIT relocation model must be set to static or default!");
164  II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
165  TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
166  JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
167  MCPEs = &MF.getConstantPool()->getConstants();
168  MJTEs = &MF.getJumpTableInfo()->getJumpTables();
169  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
170  JTI->Initialize(MF);
171
172  do {
173    DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n";
174    MCE.startFunction(MF);
175    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
176         MBB != E; ++MBB) {
177      MCE.StartMachineBasicBlock(MBB);
178      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
179           I != E; ++I)
180        emitInstruction(*I);
181    }
182  } while (MCE.finishFunction(MF));
183
184  return false;
185}
186
187/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
188///
189unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
190  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
191  default: assert(0 && "Unknown shift opc!");
192  case ARM_AM::asr: return 2;
193  case ARM_AM::lsl: return 0;
194  case ARM_AM::lsr: return 1;
195  case ARM_AM::ror:
196  case ARM_AM::rrx: return 3;
197  }
198  return 0;
199}
200
201/// getMachineOpValue - Return binary encoding of operand. If the machine
202/// operand requires relocation, record the relocation and return zero.
203unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
204                                           const MachineOperand &MO) {
205  if (MO.isReg())
206    return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
207  else if (MO.isImm())
208    return static_cast<unsigned>(MO.getImm());
209  else if (MO.isGlobal())
210    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true);
211  else if (MO.isSymbol())
212    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative);
213  else if (MO.isCPI())
214    emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
215  else if (MO.isJTI())
216    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
217  else if (MO.isMBB())
218    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
219  else {
220    cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
221    abort();
222  }
223  return 0;
224}
225
226/// emitGlobalAddress - Emit the specified address to the code stream.
227///
228void ARMCodeEmitter::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
229                                       bool NeedStub, intptr_t ACPV) {
230  MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
231                                             Reloc, GV, ACPV, NeedStub));
232}
233
234/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
235/// be emitted to the current location in the function, and allow it to be PC
236/// relative.
237void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
238  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
239                                                 Reloc, ES));
240}
241
242/// emitConstPoolAddress - Arrange for the address of an constant pool
243/// to be emitted to the current location in the function, and allow it to be PC
244/// relative.
245void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) {
246  // Tell JIT emitter we'll resolve the address.
247  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
248                                                    Reloc, CPI, 0, true));
249}
250
251/// emitJumpTableAddress - Arrange for the address of a jump table to
252/// be emitted to the current location in the function, and allow it to be PC
253/// relative.
254void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) {
255  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
256                                                    Reloc, JTIndex, 0, true));
257}
258
259/// emitMachineBasicBlock - Emit the specified address basic block.
260void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
261                                           unsigned Reloc, intptr_t JTBase) {
262  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
263                                             Reloc, BB, JTBase));
264}
265
266void ARMCodeEmitter::emitWordLE(unsigned Binary) {
267#ifndef NDEBUG
268  DOUT << "  0x" << std::hex << std::setw(8) << std::setfill('0')
269       << Binary << std::dec << "\n";
270#endif
271  MCE.emitWordLE(Binary);
272}
273
274void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
275  DOUT << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI;
276
277  NumEmitted++;  // Keep track of the # of mi's emitted
278  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
279  default:
280    assert(0 && "Unhandled instruction encoding format!");
281    break;
282  case ARMII::Pseudo:
283    emitPseudoInstruction(MI);
284    break;
285  case ARMII::DPFrm:
286  case ARMII::DPSoRegFrm:
287    emitDataProcessingInstruction(MI);
288    break;
289  case ARMII::LdFrm:
290  case ARMII::StFrm:
291    emitLoadStoreInstruction(MI);
292    break;
293  case ARMII::LdMiscFrm:
294  case ARMII::StMiscFrm:
295    emitMiscLoadStoreInstruction(MI);
296    break;
297  case ARMII::LdMulFrm:
298  case ARMII::StMulFrm:
299    emitLoadStoreMultipleInstruction(MI);
300    break;
301  case ARMII::MulFrm:
302    emitMulFrmInstruction(MI);
303    break;
304  case ARMII::ExtFrm:
305    emitExtendInstruction(MI);
306    break;
307  case ARMII::ArithMiscFrm:
308    emitMiscArithInstruction(MI);
309    break;
310  case ARMII::BrFrm:
311    emitBranchInstruction(MI);
312    break;
313  case ARMII::BrMiscFrm:
314    emitMiscBranchInstruction(MI);
315    break;
316  }
317}
318
319void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
320  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
321  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
322  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
323
324  // Remember the CONSTPOOL_ENTRY address for later relocation.
325  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
326
327  // Emit constpool island entry. In most cases, the actual values will be
328  // resolved and relocated after code emission.
329  if (MCPE.isMachineConstantPoolEntry()) {
330    ARMConstantPoolValue *ACPV =
331      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
332
333    DOUT << "  ** ARM constant pool #" << CPI << " @ "
334         << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n';
335
336    GlobalValue *GV = ACPV->getGV();
337    if (GV) {
338      assert(!ACPV->isStub() && "Don't know how to deal this yet!");
339      if (ACPV->isNonLazyPointer())
340        MCE.addRelocation(MachineRelocation::getGVNonLazyPtr(
341                  MCE.getCurrentPCOffset(), ARM::reloc_arm_machine_cp_entry, GV,
342                  (intptr_t)ACPV, false));
343      else
344        emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
345                          ACPV->isStub(), (intptr_t)ACPV);
346     } else  {
347      assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!");
348      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
349    }
350    emitWordLE(0);
351  } else {
352    Constant *CV = MCPE.Val.ConstVal;
353
354    DOUT << "  ** Constant pool #" << CPI << " @ "
355         << (void*)MCE.getCurrentPCValue() << " " << *CV << '\n';
356
357    if (GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
358      emitGlobalAddress(GV, ARM::reloc_arm_absolute, false);
359      emitWordLE(0);
360    } else {
361      assert(CV->getType()->isInteger() &&
362             "Not expecting non-integer constpool entries yet!");
363      const ConstantInt *CI = dyn_cast<ConstantInt>(CV);
364      uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
365      emitWordLE(Val);
366    }
367  }
368}
369
370void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
371  const MachineOperand &MO0 = MI.getOperand(0);
372  const MachineOperand &MO1 = MI.getOperand(1);
373  assert(MO1.isImm() && "Not a valid so_imm value!");
374  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
375  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
376
377  // Emit the 'mov' instruction.
378  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
379
380  // Set the conditional execution predicate.
381  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
382
383  // Encode Rd.
384  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
385
386  // Encode so_imm.
387  // Set bit I(25) to identify this is the immediate form of <shifter_op>
388  Binary |= 1 << ARMII::I_BitShift;
389  Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V1));
390  emitWordLE(Binary);
391
392  // Now the 'orr' instruction.
393  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
394
395  // Set the conditional execution predicate.
396  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
397
398  // Encode Rd.
399  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
400
401  // Encode Rn.
402  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
403
404  // Encode so_imm.
405  // Set bit I(25) to identify this is the immediate form of <shifter_op>
406  Binary |= 1 << ARMII::I_BitShift;
407  Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V2));
408  emitWordLE(Binary);
409}
410
411void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
412  // It's basically add r, pc, (LJTI - $+8)
413
414  const TargetInstrDesc &TID = MI.getDesc();
415
416  // Emit the 'add' instruction.
417  unsigned Binary = 0x4 << 21;  // add: Insts{24-31} = 0b0100
418
419  // Set the conditional execution predicate
420  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
421
422  // Encode S bit if MI modifies CPSR.
423  Binary |= getAddrModeSBit(MI, TID);
424
425  // Encode Rd.
426  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
427
428  // Encode Rn which is PC.
429  Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
430
431  // Encode the displacement.
432  // Set bit I(25) to identify this is the immediate form of <shifter_op>.
433  Binary |= 1 << ARMII::I_BitShift;
434  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
435
436  emitWordLE(Binary);
437}
438
439void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
440  DOUT << "  ** LPC" << LabelID << " @ "
441       << (void*)MCE.getCurrentPCValue() << '\n';
442  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
443}
444
445void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
446  unsigned Opcode = MI.getDesc().Opcode;
447  switch (Opcode) {
448  default:
449    abort(); // FIXME:
450  case ARM::CONSTPOOL_ENTRY:
451    emitConstPoolInstruction(MI);
452    break;
453  case ARM::PICADD: {
454    // Remember of the address of the PC label for relocation later.
455    addPCLabel(MI.getOperand(2).getImm());
456    // PICADD is just an add instruction that implicitly read pc.
457    emitDataProcessingInstruction(MI, 0, ARM::PC);
458    break;
459  }
460  case ARM::PICLDR:
461  case ARM::PICLDRB:
462  case ARM::PICSTR:
463  case ARM::PICSTRB: {
464    // Remember of the address of the PC label for relocation later.
465    addPCLabel(MI.getOperand(2).getImm());
466    // These are just load / store instructions that implicitly read pc.
467    emitLoadStoreInstruction(MI, 0, ARM::PC);
468    break;
469  }
470  case ARM::PICLDRH:
471  case ARM::PICLDRSH:
472  case ARM::PICLDRSB:
473  case ARM::PICSTRH: {
474    // Remember of the address of the PC label for relocation later.
475    addPCLabel(MI.getOperand(2).getImm());
476    // These are just load / store instructions that implicitly read pc.
477    emitMiscLoadStoreInstruction(MI, ARM::PC);
478    break;
479  }
480  case ARM::MOVi2pieces:
481    // Two instructions to materialize a constant.
482    emitMOVi2piecesInstruction(MI);
483    break;
484  case ARM::LEApcrelJT:
485    // Materialize jumptable address.
486    emitLEApcrelJTInstruction(MI);
487    break;
488  }
489}
490
491
492unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
493                                                const TargetInstrDesc &TID,
494                                                const MachineOperand &MO,
495                                                unsigned OpIdx) {
496  unsigned Binary = getMachineOpValue(MI, MO);
497
498  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
499  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
500  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
501
502  // Encode the shift opcode.
503  unsigned SBits = 0;
504  unsigned Rs = MO1.getReg();
505  if (Rs) {
506    // Set shift operand (bit[7:4]).
507    // LSL - 0001
508    // LSR - 0011
509    // ASR - 0101
510    // ROR - 0111
511    // RRX - 0110 and bit[11:8] clear.
512    switch (SOpc) {
513    default: assert(0 && "Unknown shift opc!");
514    case ARM_AM::lsl: SBits = 0x1; break;
515    case ARM_AM::lsr: SBits = 0x3; break;
516    case ARM_AM::asr: SBits = 0x5; break;
517    case ARM_AM::ror: SBits = 0x7; break;
518    case ARM_AM::rrx: SBits = 0x6; break;
519    }
520  } else {
521    // Set shift operand (bit[6:4]).
522    // LSL - 000
523    // LSR - 010
524    // ASR - 100
525    // ROR - 110
526    switch (SOpc) {
527    default: assert(0 && "Unknown shift opc!");
528    case ARM_AM::lsl: SBits = 0x0; break;
529    case ARM_AM::lsr: SBits = 0x2; break;
530    case ARM_AM::asr: SBits = 0x4; break;
531    case ARM_AM::ror: SBits = 0x6; break;
532    }
533  }
534  Binary |= SBits << 4;
535  if (SOpc == ARM_AM::rrx)
536    return Binary;
537
538  // Encode the shift operation Rs or shift_imm (except rrx).
539  if (Rs) {
540    // Encode Rs bit[11:8].
541    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
542    return Binary |
543      (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
544  }
545
546  // Encode shift_imm bit[11:7].
547  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
548}
549
550unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
551  // Encode rotate_imm.
552  unsigned Binary = (ARM_AM::getSOImmValRot(SoImm) >> 1)
553    << ARMII::SoRotImmShift;
554
555  // Encode immed_8.
556  Binary |= ARM_AM::getSOImmValImm(SoImm);
557  return Binary;
558}
559
560unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
561                                         const TargetInstrDesc &TID) const {
562  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
563    const MachineOperand &MO = MI.getOperand(i-1);
564    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
565      return 1 << ARMII::S_BitShift;
566  }
567  return 0;
568}
569
570void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
571                                                   unsigned ImplicitRd,
572                                                   unsigned ImplicitRn) {
573  const TargetInstrDesc &TID = MI.getDesc();
574
575  // Part of binary is determined by TableGn.
576  unsigned Binary = getBinaryCodeForInstr(MI);
577
578  // Set the conditional execution predicate
579  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
580
581  // Encode S bit if MI modifies CPSR.
582  Binary |= getAddrModeSBit(MI, TID);
583
584  // Encode register def if there is one.
585  unsigned NumDefs = TID.getNumDefs();
586  unsigned OpIdx = 0;
587  if (NumDefs)
588    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
589  else if (ImplicitRd)
590    // Special handling for implicit use (e.g. PC).
591    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
592               << ARMII::RegRdShift);
593
594  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
595  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
596    ++OpIdx;
597
598  // Encode first non-shifter register operand if there is one.
599  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
600  if (!isUnary) {
601    if (ImplicitRn)
602      // Special handling for implicit use (e.g. PC).
603      Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
604                 << ARMII::RegRnShift);
605    else {
606      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
607      ++OpIdx;
608    }
609  }
610
611  // Encode shifter operand.
612  const MachineOperand &MO = MI.getOperand(OpIdx);
613  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
614    // Encode SoReg.
615    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
616    return;
617  }
618
619  if (MO.isReg()) {
620    // Encode register Rm.
621    emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
622    return;
623  }
624
625  // Encode so_imm.
626  // Set bit I(25) to identify this is the immediate form of <shifter_op>.
627  Binary |= 1 << ARMII::I_BitShift;
628  Binary |= getMachineSoImmOpValue(MO.getImm());
629
630  emitWordLE(Binary);
631}
632
633void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
634                                              unsigned ImplicitRd,
635                                              unsigned ImplicitRn) {
636  const TargetInstrDesc &TID = MI.getDesc();
637
638  // Part of binary is determined by TableGn.
639  unsigned Binary = getBinaryCodeForInstr(MI);
640
641  // Set the conditional execution predicate
642  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
643
644  // Set first operand
645  unsigned OpIdx = 0;
646  if (ImplicitRd)
647    // Special handling for implicit use (e.g. PC).
648    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
649               << ARMII::RegRdShift);
650  else
651    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
652
653  // Set second operand
654  if (ImplicitRn)
655    // Special handling for implicit use (e.g. PC).
656    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
657               << ARMII::RegRnShift);
658  else
659    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
660
661  // If this is a two-address operand, skip it. e.g. LDR_PRE.
662  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
663    ++OpIdx;
664
665  const MachineOperand &MO2 = MI.getOperand(OpIdx);
666  unsigned AM2Opc = (ImplicitRn == ARM::PC)
667    ? 0 : MI.getOperand(OpIdx+1).getImm();
668
669  // Set bit U(23) according to sign of immed value (positive or negative).
670  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
671             ARMII::U_BitShift);
672  if (!MO2.getReg()) { // is immediate
673    if (ARM_AM::getAM2Offset(AM2Opc))
674      // Set the value of offset_12 field
675      Binary |= ARM_AM::getAM2Offset(AM2Opc);
676    emitWordLE(Binary);
677    return;
678  }
679
680  // Set bit I(25), because this is not in immediate enconding.
681  Binary |= 1 << ARMII::I_BitShift;
682  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
683  // Set bit[3:0] to the corresponding Rm register
684  Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
685
686  // if this instr is in scaled register offset/index instruction, set
687  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
688  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
689    Binary |= getShiftOp(AM2Opc) << 5;  // shift
690    Binary |= ShImm              << 7;  // shift_immed
691  }
692
693  emitWordLE(Binary);
694}
695
696void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
697                                                  unsigned ImplicitRn) {
698  const TargetInstrDesc &TID = MI.getDesc();
699
700  // Part of binary is determined by TableGn.
701  unsigned Binary = getBinaryCodeForInstr(MI);
702
703  // Set the conditional execution predicate
704  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
705
706  // Set first operand
707  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
708
709  // Set second operand
710  unsigned OpIdx = 1;
711  if (ImplicitRn)
712    // Special handling for implicit use (e.g. PC).
713    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
714               << ARMII::RegRnShift);
715  else
716    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
717
718  // If this is a two-address operand, skip it. e.g. LDRH_POST.
719  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
720    ++OpIdx;
721
722  const MachineOperand &MO2 = MI.getOperand(OpIdx);
723  unsigned AM3Opc = (ImplicitRn == ARM::PC)
724    ? 0 : MI.getOperand(OpIdx+1).getImm();
725
726  // Set bit U(23) according to sign of immed value (positive or negative)
727  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
728             ARMII::U_BitShift);
729
730  // If this instr is in register offset/index encoding, set bit[3:0]
731  // to the corresponding Rm register.
732  if (MO2.getReg()) {
733    Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
734    emitWordLE(Binary);
735    return;
736  }
737
738  // This instr is in immediate offset/index encoding, set bit 22 to 1.
739  Binary |= 1 << ARMII::AM3_I_BitShift;
740  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
741    // Set operands
742    Binary |= (ImmOffs >> 4) << 8;  // immedH
743    Binary |= (ImmOffs & ~0xF);     // immedL
744  }
745
746  emitWordLE(Binary);
747}
748
749void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
750  // Part of binary is determined by TableGn.
751  unsigned Binary = getBinaryCodeForInstr(MI);
752
753  // Set the conditional execution predicate
754  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
755
756  // Set first operand
757  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
758
759  // Set addressing mode by modifying bits U(23) and P(24)
760  // IA - Increment after  - bit U = 1 and bit P = 0
761  // IB - Increment before - bit U = 1 and bit P = 1
762  // DA - Decrement after  - bit U = 0 and bit P = 0
763  // DB - Decrement before - bit U = 0 and bit P = 1
764  const MachineOperand &MO = MI.getOperand(1);
765  ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO.getImm());
766  switch (Mode) {
767  default: assert(0 && "Unknown addressing sub-mode!");
768  case ARM_AM::da:                      break;
769  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
770  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
771  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
772  }
773
774  // Set bit W(21)
775  if (ARM_AM::getAM4WBFlag(MO.getImm()))
776    Binary |= 0x1 << ARMII::W_BitShift;
777
778  // Set registers
779  for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) {
780    const MachineOperand &MO = MI.getOperand(i);
781    if (MO.isReg() && MO.isImplicit())
782      continue;
783    unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
784    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
785           RegNum < 16);
786    Binary |= 0x1 << RegNum;
787  }
788
789  emitWordLE(Binary);
790}
791
792void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
793  const TargetInstrDesc &TID = MI.getDesc();
794
795  // Part of binary is determined by TableGn.
796  unsigned Binary = getBinaryCodeForInstr(MI);
797
798  // Set the conditional execution predicate
799  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
800
801  // Encode S bit if MI modifies CPSR.
802  Binary |= getAddrModeSBit(MI, TID);
803
804  // 32x32->64bit operations have two destination registers. The number
805  // of register definitions will tell us if that's what we're dealing with.
806  unsigned OpIdx = 0;
807  if (TID.getNumDefs() == 2)
808    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
809
810  // Encode Rd
811  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
812
813  // Encode Rm
814  Binary |= getMachineOpValue(MI, OpIdx++);
815
816  // Encode Rs
817  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
818
819  // Many multiple instructions (e.g. MLA) have three src operands. Encode
820  // it as Rn (for multiply, that's in the same offset as RdLo.
821  if (TID.getNumOperands() > OpIdx &&
822      !TID.OpInfo[OpIdx].isPredicate() &&
823      !TID.OpInfo[OpIdx].isOptionalDef())
824    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
825
826  emitWordLE(Binary);
827}
828
829void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
830  const TargetInstrDesc &TID = MI.getDesc();
831
832  // Part of binary is determined by TableGn.
833  unsigned Binary = getBinaryCodeForInstr(MI);
834
835  // Set the conditional execution predicate
836  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
837
838  unsigned OpIdx = 0;
839
840  // Encode Rd
841  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
842
843  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
844  const MachineOperand &MO2 = MI.getOperand(OpIdx);
845  if (MO2.isReg()) {
846    // Two register operand form.
847    // Encode Rn.
848    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
849
850    // Encode Rm.
851    Binary |= getMachineOpValue(MI, MO2);
852    ++OpIdx;
853  } else {
854    Binary |= getMachineOpValue(MI, MO1);
855  }
856
857  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
858  if (MI.getOperand(OpIdx).isImm() &&
859      !TID.OpInfo[OpIdx].isPredicate() &&
860      !TID.OpInfo[OpIdx].isOptionalDef())
861    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
862
863  emitWordLE(Binary);
864}
865
866void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
867  const TargetInstrDesc &TID = MI.getDesc();
868
869  // Part of binary is determined by TableGn.
870  unsigned Binary = getBinaryCodeForInstr(MI);
871
872  // Set the conditional execution predicate
873  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
874
875  unsigned OpIdx = 0;
876
877  // Encode Rd
878  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
879
880  const MachineOperand &MO = MI.getOperand(OpIdx++);
881  if (OpIdx == TID.getNumOperands() ||
882      TID.OpInfo[OpIdx].isPredicate() ||
883      TID.OpInfo[OpIdx].isOptionalDef()) {
884    // Encode Rm and it's done.
885    Binary |= getMachineOpValue(MI, MO);
886    emitWordLE(Binary);
887    return;
888  }
889
890  // Encode Rn.
891  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
892
893  // Encode Rm.
894  Binary |= getMachineOpValue(MI, OpIdx++);
895
896  // Encode shift_imm.
897  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
898  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
899  Binary |= ShiftAmt << ARMII::ShiftShift;
900
901  emitWordLE(Binary);
902}
903
904void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
905  const TargetInstrDesc &TID = MI.getDesc();
906
907  if (TID.Opcode == ARM::TPsoft)
908    abort(); // FIXME
909
910  // Part of binary is determined by TableGn.
911  unsigned Binary = getBinaryCodeForInstr(MI);
912
913  // Set the conditional execution predicate
914  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
915
916  // Set signed_immed_24 field
917  Binary |= getMachineOpValue(MI, 0);
918
919  emitWordLE(Binary);
920}
921
922void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
923  // Remember the base address of the inline jump table.
924  intptr_t JTBase = MCE.getCurrentPCValue();
925  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
926  DOUT << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase << '\n';
927
928  // Now emit the jump table entries.
929  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
930  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
931    if (IsPIC)
932      // DestBB address - JT base.
933      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
934    else
935      // Absolute DestBB address.
936      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
937    emitWordLE(0);
938  }
939}
940
941void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
942  const TargetInstrDesc &TID = MI.getDesc();
943
944  // Handle jump tables.
945  if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
946    // First emit a ldr pc, [] instruction.
947    emitDataProcessingInstruction(MI, ARM::PC);
948
949    // Then emit the inline jump table.
950    unsigned JTIndex = (TID.Opcode == ARM::BR_JTr)
951      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
952    emitInlineJumpTable(JTIndex);
953    return;
954  } else if (TID.Opcode == ARM::BR_JTm) {
955    // First emit a ldr pc, [] instruction.
956    emitLoadStoreInstruction(MI, ARM::PC);
957
958    // Then emit the inline jump table.
959    emitInlineJumpTable(MI.getOperand(3).getIndex());
960    return;
961  }
962
963  // Part of binary is determined by TableGn.
964  unsigned Binary = getBinaryCodeForInstr(MI);
965
966  // Set the conditional execution predicate
967  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
968
969  if (TID.Opcode == ARM::BX_RET)
970    // The return register is LR.
971    Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
972  else
973    // otherwise, set the return register
974    Binary |= getMachineOpValue(MI, 0);
975
976  emitWordLE(Binary);
977}
978
979#include "ARMGenCodeEmitter.inc"
980