ARMCodeEmitter.cpp revision 2dbf8f4ff196eddb21ebc59095c21547372f759e
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMInstrInfo.h"
20#include "ARMRelocations.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/JITCodeEmitter.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45namespace {
46
47  class ARMCodeEmitter : public MachineFunctionPass {
48    ARMJITInfo                *JTI;
49    const ARMInstrInfo        *II;
50    const TargetData          *TD;
51    const ARMSubtarget        *Subtarget;
52    TargetMachine             &TM;
53    JITCodeEmitter            &MCE;
54    MachineModuleInfo *MMI;
55    const std::vector<MachineConstantPoolEntry> *MCPEs;
56    const std::vector<MachineJumpTableEntry> *MJTEs;
57    bool IsPIC;
58    bool IsThumb;
59
60    void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.addRequired<MachineModuleInfo>();
62      MachineFunctionPass::getAnalysisUsage(AU);
63    }
64
65    static char ID;
66  public:
67    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68      : MachineFunctionPass(ID), JTI(0),
69        II((const ARMInstrInfo *)tm.getInstrInfo()),
70        TD(tm.getTargetData()), TM(tm),
71        MCE(mce), MCPEs(0), MJTEs(0),
72        IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73
74    /// getBinaryCodeForInstr - This function, generated by the
75    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76    /// machine instructions.
77    unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
78
79    bool runOnMachineFunction(MachineFunction &MF);
80
81    virtual const char *getPassName() const {
82      return "ARM Machine Code Emitter";
83    }
84
85    void emitInstruction(const MachineInstr &MI);
86
87  private:
88
89    void emitWordLE(unsigned Binary);
90    void emitDWordLE(uint64_t Binary);
91    void emitConstPoolInstruction(const MachineInstr &MI);
92    void emitMOVi32immInstruction(const MachineInstr &MI);
93    void emitMOVi2piecesInstruction(const MachineInstr &MI);
94    void emitLEApcrelJTInstruction(const MachineInstr &MI);
95    void emitPseudoMoveInstruction(const MachineInstr &MI);
96    void addPCLabel(unsigned LabelID);
97    void emitPseudoInstruction(const MachineInstr &MI);
98    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
99                                    const TargetInstrDesc &TID,
100                                    const MachineOperand &MO,
101                                    unsigned OpIdx);
102
103    unsigned getMachineSoImmOpValue(unsigned SoImm);
104    unsigned getAddrModeSBit(const MachineInstr &MI,
105                             const TargetInstrDesc &TID) const;
106
107    void emitDataProcessingInstruction(const MachineInstr &MI,
108                                       unsigned ImplicitRd = 0,
109                                       unsigned ImplicitRn = 0);
110
111    void emitLoadStoreInstruction(const MachineInstr &MI,
112                                  unsigned ImplicitRd = 0,
113                                  unsigned ImplicitRn = 0);
114
115    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
116                                      unsigned ImplicitRn = 0);
117
118    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
119
120    void emitMulFrmInstruction(const MachineInstr &MI);
121
122    void emitExtendInstruction(const MachineInstr &MI);
123
124    void emitMiscArithInstruction(const MachineInstr &MI);
125
126    void emitSaturateInstruction(const MachineInstr &MI);
127
128    void emitBranchInstruction(const MachineInstr &MI);
129
130    void emitInlineJumpTable(unsigned JTIndex);
131
132    void emitMiscBranchInstruction(const MachineInstr &MI);
133
134    void emitVFPArithInstruction(const MachineInstr &MI);
135
136    void emitVFPConversionInstruction(const MachineInstr &MI);
137
138    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
139
140    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
141
142    void emitNEONLaneInstruction(const MachineInstr &MI);
143    void emitNEONDupInstruction(const MachineInstr &MI);
144    void emitNEON1RegModImmInstruction(const MachineInstr &MI);
145    void emitNEON2RegInstruction(const MachineInstr &MI);
146    void emitNEON3RegInstruction(const MachineInstr &MI);
147
148    /// getMachineOpValue - Return binary encoding of operand. If the machine
149    /// operand requires relocation, record the relocation and return zero.
150    unsigned getMachineOpValue(const MachineInstr &MI,
151                               const MachineOperand &MO) const;
152    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
153      return getMachineOpValue(MI, MI.getOperand(OpIdx));
154    }
155
156    // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
157    //  TableGen'erated getBinaryCodeForInstr() function to encode any
158    //  operand values, instead querying getMachineOpValue() directly for
159    //  each operand it needs to encode. Thus, any of the new encoder
160    //  helper functions can simply return 0 as the values the return
161    //  are already handled elsewhere. They are placeholders to allow this
162    //  encoder to continue to function until the MC encoder is sufficiently
163    //  far along that this one can be eliminated entirely.
164    unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
165      const { return 0; }
166    unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
167      const { return 0; }
168    unsigned getSORegOpValue(const MachineInstr &MI, unsigned Op)
169      const { return 0; }
170    unsigned getRotImmOpValue(const MachineInstr &MI, unsigned Op)
171      const { return 0; }
172    unsigned getImmMinusOneOpValue(const MachineInstr &MI, unsigned Op)
173      const { return 0; }
174    unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
175      const { return 0; }
176    unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
177      const { return 0; }
178    unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
179                                            unsigned Op) const { return 0; }
180    uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
181      const {return 0; }
182    uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
183      const { return 0; }
184
185    unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
186      const {
187      // {17-13} = reg
188      // {12}    = (U)nsigned (add == '1', sub == '0')
189      // {11-0}  = imm12
190      const MachineOperand &MO  = MI.getOperand(Op);
191      const MachineOperand &MO1 = MI.getOperand(Op + 1);
192      if (!MO.isReg()) {
193        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
194        return 0;
195      }
196      unsigned Reg = getARMRegisterNumbering(MO.getReg());
197      int32_t Imm12 = MO1.getImm();
198      uint32_t Binary;
199      Binary = Imm12 & 0xfff;
200      if (Imm12 >= 0)
201        Binary |= (1 << 12);
202      Binary |= (Reg << 13);
203      return Binary;
204    }
205    uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op) const
206      { return 0; }
207    uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
208      // {12-9}  = reg
209      // {8}     = (U)nsigned (add == '1', sub == '0')
210      // {7-0}   = imm12
211      const MachineOperand &MO  = MI.getOperand(Op);
212      const MachineOperand &MO1 = MI.getOperand(Op + 1);
213      if (!MO.isReg()) {
214        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
215        return 0;
216      }
217      unsigned Reg = getARMRegisterNumbering(MO.getReg());
218      int32_t Imm8 = MO1.getImm();
219      uint32_t Binary;
220      Binary = Imm8 & 0xff;
221      if (Imm8 >= 0)
222        Binary |= (1 << 8);
223      Binary |= (Reg << 9);
224      return Binary;
225    }
226    unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
227      const { return 0; }
228
229    unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
230      const { return 0; }
231
232    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
233    /// machine operand requires relocation, record the relocation and return
234    /// zero.
235    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
236                            unsigned Reloc);
237
238    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
239    ///
240    unsigned getShiftOp(unsigned Imm) const ;
241
242    /// Routines that handle operands which add machine relocations which are
243    /// fixed up by the relocation stage.
244    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
245                           bool MayNeedFarStub,  bool Indirect,
246                           intptr_t ACPV = 0) const;
247    void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
248    void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
249    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
250    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
251                               intptr_t JTBase = 0) const;
252  };
253}
254
255char ARMCodeEmitter::ID = 0;
256
257/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
258/// code to the specified MCE object.
259FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
260                                                JITCodeEmitter &JCE) {
261  return new ARMCodeEmitter(TM, JCE);
262}
263
264bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
265  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
266          MF.getTarget().getRelocationModel() != Reloc::Static) &&
267         "JIT relocation model must be set to static or default!");
268  JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
269  II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
270  TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
271  Subtarget = &TM.getSubtarget<ARMSubtarget>();
272  MCPEs = &MF.getConstantPool()->getConstants();
273  MJTEs = 0;
274  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
275  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
276  IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
277  JTI->Initialize(MF, IsPIC);
278  MMI = &getAnalysis<MachineModuleInfo>();
279  MCE.setModuleInfo(MMI);
280
281  do {
282    DEBUG(errs() << "JITTing function '"
283          << MF.getFunction()->getName() << "'\n");
284    MCE.startFunction(MF);
285    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
286         MBB != E; ++MBB) {
287      MCE.StartMachineBasicBlock(MBB);
288      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
289           I != E; ++I)
290        emitInstruction(*I);
291    }
292  } while (MCE.finishFunction(MF));
293
294  return false;
295}
296
297/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
298///
299unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
300  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
301  default: llvm_unreachable("Unknown shift opc!");
302  case ARM_AM::asr: return 2;
303  case ARM_AM::lsl: return 0;
304  case ARM_AM::lsr: return 1;
305  case ARM_AM::ror:
306  case ARM_AM::rrx: return 3;
307  }
308  return 0;
309}
310
311/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
312/// machine operand requires relocation, record the relocation and return zero.
313unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
314                                        const MachineOperand &MO,
315                                        unsigned Reloc) {
316  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
317      && "Relocation to this function should be for movt or movw");
318
319  if (MO.isImm())
320    return static_cast<unsigned>(MO.getImm());
321  else if (MO.isGlobal())
322    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
323  else if (MO.isSymbol())
324    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
325  else if (MO.isMBB())
326    emitMachineBasicBlock(MO.getMBB(), Reloc);
327  else {
328#ifndef NDEBUG
329    errs() << MO;
330#endif
331    llvm_unreachable("Unsupported operand type for movw/movt");
332  }
333  return 0;
334}
335
336/// getMachineOpValue - Return binary encoding of operand. If the machine
337/// operand requires relocation, record the relocation and return zero.
338unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
339                                           const MachineOperand &MO) const {
340  if (MO.isReg())
341    return getARMRegisterNumbering(MO.getReg());
342  else if (MO.isImm())
343    return static_cast<unsigned>(MO.getImm());
344  else if (MO.isGlobal())
345    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
346  else if (MO.isSymbol())
347    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
348  else if (MO.isCPI()) {
349    const TargetInstrDesc &TID = MI.getDesc();
350    // For VFP load, the immediate offset is multiplied by 4.
351    unsigned Reloc =  ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
352      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
353    emitConstPoolAddress(MO.getIndex(), Reloc);
354  } else if (MO.isJTI())
355    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
356  else if (MO.isMBB())
357    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
358  else {
359#ifndef NDEBUG
360    errs() << MO;
361#endif
362    llvm_unreachable(0);
363  }
364  return 0;
365}
366
367/// emitGlobalAddress - Emit the specified address to the code stream.
368///
369void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
370                                       bool MayNeedFarStub, bool Indirect,
371                                       intptr_t ACPV) const {
372  MachineRelocation MR = Indirect
373    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
374                                           const_cast<GlobalValue *>(GV),
375                                           ACPV, MayNeedFarStub)
376    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
377                               const_cast<GlobalValue *>(GV), ACPV,
378                               MayNeedFarStub);
379  MCE.addRelocation(MR);
380}
381
382/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
383/// be emitted to the current location in the function, and allow it to be PC
384/// relative.
385void ARMCodeEmitter::
386emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
387  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
388                                                 Reloc, ES));
389}
390
391/// emitConstPoolAddress - Arrange for the address of an constant pool
392/// to be emitted to the current location in the function, and allow it to be PC
393/// relative.
394void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
395  // Tell JIT emitter we'll resolve the address.
396  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
397                                                    Reloc, CPI, 0, true));
398}
399
400/// emitJumpTableAddress - Arrange for the address of a jump table to
401/// be emitted to the current location in the function, and allow it to be PC
402/// relative.
403void ARMCodeEmitter::
404emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
405  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
406                                                    Reloc, JTIndex, 0, true));
407}
408
409/// emitMachineBasicBlock - Emit the specified address basic block.
410void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
411                                           unsigned Reloc,
412                                           intptr_t JTBase) const {
413  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
414                                             Reloc, BB, JTBase));
415}
416
417void ARMCodeEmitter::emitWordLE(unsigned Binary) {
418  DEBUG(errs() << "  0x";
419        errs().write_hex(Binary) << "\n");
420  MCE.emitWordLE(Binary);
421}
422
423void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
424  DEBUG(errs() << "  0x";
425        errs().write_hex(Binary) << "\n");
426  MCE.emitDWordLE(Binary);
427}
428
429void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
430  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
431
432  MCE.processDebugLoc(MI.getDebugLoc(), true);
433
434  ++NumEmitted;  // Keep track of the # of mi's emitted
435  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
436  default: {
437    llvm_unreachable("Unhandled instruction encoding format!");
438    break;
439  }
440  case ARMII::Pseudo:
441    emitPseudoInstruction(MI);
442    break;
443  case ARMII::DPFrm:
444  case ARMII::DPSoRegFrm:
445    emitDataProcessingInstruction(MI);
446    break;
447  case ARMII::LdFrm:
448  case ARMII::StFrm:
449    emitLoadStoreInstruction(MI);
450    break;
451  case ARMII::LdMiscFrm:
452  case ARMII::StMiscFrm:
453    emitMiscLoadStoreInstruction(MI);
454    break;
455  case ARMII::LdStMulFrm:
456    emitLoadStoreMultipleInstruction(MI);
457    break;
458  case ARMII::MulFrm:
459    emitMulFrmInstruction(MI);
460    break;
461  case ARMII::ExtFrm:
462    emitExtendInstruction(MI);
463    break;
464  case ARMII::ArithMiscFrm:
465    emitMiscArithInstruction(MI);
466    break;
467  case ARMII::SatFrm:
468    emitSaturateInstruction(MI);
469    break;
470  case ARMII::BrFrm:
471    emitBranchInstruction(MI);
472    break;
473  case ARMII::BrMiscFrm:
474    emitMiscBranchInstruction(MI);
475    break;
476  // VFP instructions.
477  case ARMII::VFPUnaryFrm:
478  case ARMII::VFPBinaryFrm:
479    emitVFPArithInstruction(MI);
480    break;
481  case ARMII::VFPConv1Frm:
482  case ARMII::VFPConv2Frm:
483  case ARMII::VFPConv3Frm:
484  case ARMII::VFPConv4Frm:
485  case ARMII::VFPConv5Frm:
486    emitVFPConversionInstruction(MI);
487    break;
488  case ARMII::VFPLdStFrm:
489    emitVFPLoadStoreInstruction(MI);
490    break;
491  case ARMII::VFPLdStMulFrm:
492    emitVFPLoadStoreMultipleInstruction(MI);
493    break;
494
495  // NEON instructions.
496  case ARMII::NGetLnFrm:
497  case ARMII::NSetLnFrm:
498    emitNEONLaneInstruction(MI);
499    break;
500  case ARMII::NDupFrm:
501    emitNEONDupInstruction(MI);
502    break;
503  case ARMII::N1RegModImmFrm:
504    emitNEON1RegModImmInstruction(MI);
505    break;
506  case ARMII::N2RegFrm:
507    emitNEON2RegInstruction(MI);
508    break;
509  case ARMII::N3RegFrm:
510    emitNEON3RegInstruction(MI);
511    break;
512  }
513  MCE.processDebugLoc(MI.getDebugLoc(), false);
514}
515
516void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
517  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
518  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
519  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
520
521  // Remember the CONSTPOOL_ENTRY address for later relocation.
522  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
523
524  // Emit constpool island entry. In most cases, the actual values will be
525  // resolved and relocated after code emission.
526  if (MCPE.isMachineConstantPoolEntry()) {
527    ARMConstantPoolValue *ACPV =
528      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
529
530    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
531          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
532
533    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
534    const GlobalValue *GV = ACPV->getGV();
535    if (GV) {
536      Reloc::Model RelocM = TM.getRelocationModel();
537      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
538                        isa<Function>(GV),
539                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
540                        (intptr_t)ACPV);
541     } else  {
542      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
543    }
544    emitWordLE(0);
545  } else {
546    const Constant *CV = MCPE.Val.ConstVal;
547
548    DEBUG({
549        errs() << "  ** Constant pool #" << CPI << " @ "
550               << (void*)MCE.getCurrentPCValue() << " ";
551        if (const Function *F = dyn_cast<Function>(CV))
552          errs() << F->getName();
553        else
554          errs() << *CV;
555        errs() << '\n';
556      });
557
558    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
559      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
560      emitWordLE(0);
561    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
562      uint32_t Val = uint32_t(*CI->getValue().getRawData());
563      emitWordLE(Val);
564    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
565      if (CFP->getType()->isFloatTy())
566        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
567      else if (CFP->getType()->isDoubleTy())
568        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
569      else {
570        llvm_unreachable("Unable to handle this constantpool entry!");
571      }
572    } else {
573      llvm_unreachable("Unable to handle this constantpool entry!");
574    }
575  }
576}
577
578void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
579  const MachineOperand &MO0 = MI.getOperand(0);
580  const MachineOperand &MO1 = MI.getOperand(1);
581
582  // Emit the 'movw' instruction.
583  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
584
585  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
586
587  // Set the conditional execution predicate.
588  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
589
590  // Encode Rd.
591  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
592
593  // Encode imm16 as imm4:imm12
594  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
595  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
596  emitWordLE(Binary);
597
598  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
599  // Emit the 'movt' instruction.
600  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
601
602  // Set the conditional execution predicate.
603  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
604
605  // Encode Rd.
606  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
607
608  // Encode imm16 as imm4:imm1, same as movw above.
609  Binary |= Hi16 & 0xFFF;
610  Binary |= ((Hi16 >> 12) & 0xF) << 16;
611  emitWordLE(Binary);
612}
613
614void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
615  const MachineOperand &MO0 = MI.getOperand(0);
616  const MachineOperand &MO1 = MI.getOperand(1);
617  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
618                                                  "Not a valid so_imm value!");
619  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
620  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
621
622  // Emit the 'mov' instruction.
623  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
624
625  // Set the conditional execution predicate.
626  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
627
628  // Encode Rd.
629  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
630
631  // Encode so_imm.
632  // Set bit I(25) to identify this is the immediate form of <shifter_op>
633  Binary |= 1 << ARMII::I_BitShift;
634  Binary |= getMachineSoImmOpValue(V1);
635  emitWordLE(Binary);
636
637  // Now the 'orr' instruction.
638  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
639
640  // Set the conditional execution predicate.
641  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
642
643  // Encode Rd.
644  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
645
646  // Encode Rn.
647  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
648
649  // Encode so_imm.
650  // Set bit I(25) to identify this is the immediate form of <shifter_op>
651  Binary |= 1 << ARMII::I_BitShift;
652  Binary |= getMachineSoImmOpValue(V2);
653  emitWordLE(Binary);
654}
655
656void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
657  // It's basically add r, pc, (LJTI - $+8)
658
659  const TargetInstrDesc &TID = MI.getDesc();
660
661  // Emit the 'add' instruction.
662  unsigned Binary = 0x4 << 21;  // add: Insts{24-31} = 0b0100
663
664  // Set the conditional execution predicate
665  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
666
667  // Encode S bit if MI modifies CPSR.
668  Binary |= getAddrModeSBit(MI, TID);
669
670  // Encode Rd.
671  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
672
673  // Encode Rn which is PC.
674  Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
675
676  // Encode the displacement.
677  Binary |= 1 << ARMII::I_BitShift;
678  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
679
680  emitWordLE(Binary);
681}
682
683void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
684  unsigned Opcode = MI.getDesc().Opcode;
685
686  // Part of binary is determined by TableGn.
687  unsigned Binary = getBinaryCodeForInstr(MI);
688
689  // Set the conditional execution predicate
690  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
691
692  // Encode S bit if MI modifies CPSR.
693  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
694    Binary |= 1 << ARMII::S_BitShift;
695
696  // Encode register def if there is one.
697  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
698
699  // Encode the shift operation.
700  switch (Opcode) {
701  default: break;
702  case ARM::RRX:
703    // rrx
704    Binary |= 0x6 << 4;
705    break;
706  case ARM::MOVsrl_flag:
707    // lsr #1
708    Binary |= (0x2 << 4) | (1 << 7);
709    break;
710  case ARM::MOVsra_flag:
711    // asr #1
712    Binary |= (0x4 << 4) | (1 << 7);
713    break;
714  }
715
716  // Encode register Rm.
717  Binary |= getMachineOpValue(MI, 1);
718
719  emitWordLE(Binary);
720}
721
722void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
723  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
724        << (void*)MCE.getCurrentPCValue() << '\n');
725  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
726}
727
728void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
729  unsigned Opcode = MI.getDesc().Opcode;
730  switch (Opcode) {
731  default:
732    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
733  case ARM::BX:
734  case ARM::BMOVPCRX:
735  case ARM::BXr9:
736  case ARM::BMOVPCRXr9: {
737    // First emit mov lr, pc
738    unsigned Binary = 0x01a0e00f;
739    Binary |= II->getPredicate(&MI) << ARMII::CondShift;
740    emitWordLE(Binary);
741
742    // and then emit the branch.
743    emitMiscBranchInstruction(MI);
744    break;
745  }
746  case TargetOpcode::INLINEASM: {
747    // We allow inline assembler nodes with empty bodies - they can
748    // implicitly define registers, which is ok for JIT.
749    if (MI.getOperand(0).getSymbolName()[0]) {
750      report_fatal_error("JIT does not support inline asm!");
751    }
752    break;
753  }
754  case TargetOpcode::PROLOG_LABEL:
755  case TargetOpcode::EH_LABEL:
756    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
757    break;
758  case TargetOpcode::IMPLICIT_DEF:
759  case TargetOpcode::KILL:
760    // Do nothing.
761    break;
762  case ARM::CONSTPOOL_ENTRY:
763    emitConstPoolInstruction(MI);
764    break;
765  case ARM::PICADD: {
766    // Remember of the address of the PC label for relocation later.
767    addPCLabel(MI.getOperand(2).getImm());
768    // PICADD is just an add instruction that implicitly read pc.
769    emitDataProcessingInstruction(MI, 0, ARM::PC);
770    break;
771  }
772  case ARM::PICLDR:
773  case ARM::PICLDRB:
774  case ARM::PICSTR:
775  case ARM::PICSTRB: {
776    // Remember of the address of the PC label for relocation later.
777    addPCLabel(MI.getOperand(2).getImm());
778    // These are just load / store instructions that implicitly read pc.
779    emitLoadStoreInstruction(MI, 0, ARM::PC);
780    break;
781  }
782  case ARM::PICLDRH:
783  case ARM::PICLDRSH:
784  case ARM::PICLDRSB:
785  case ARM::PICSTRH: {
786    // Remember of the address of the PC label for relocation later.
787    addPCLabel(MI.getOperand(2).getImm());
788    // These are just load / store instructions that implicitly read pc.
789    emitMiscLoadStoreInstruction(MI, ARM::PC);
790    break;
791  }
792
793  case ARM::MOVi32imm:
794    emitMOVi32immInstruction(MI);
795    break;
796
797  case ARM::MOVi2pieces:
798    // Two instructions to materialize a constant.
799    emitMOVi2piecesInstruction(MI);
800    break;
801  case ARM::LEApcrelJT:
802    // Materialize jumptable address.
803    emitLEApcrelJTInstruction(MI);
804    break;
805  case ARM::RRX:
806  case ARM::MOVsrl_flag:
807  case ARM::MOVsra_flag:
808    emitPseudoMoveInstruction(MI);
809    break;
810  }
811}
812
813unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
814                                                const TargetInstrDesc &TID,
815                                                const MachineOperand &MO,
816                                                unsigned OpIdx) {
817  unsigned Binary = getMachineOpValue(MI, MO);
818
819  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
820  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
821  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
822
823  // Encode the shift opcode.
824  unsigned SBits = 0;
825  unsigned Rs = MO1.getReg();
826  if (Rs) {
827    // Set shift operand (bit[7:4]).
828    // LSL - 0001
829    // LSR - 0011
830    // ASR - 0101
831    // ROR - 0111
832    // RRX - 0110 and bit[11:8] clear.
833    switch (SOpc) {
834    default: llvm_unreachable("Unknown shift opc!");
835    case ARM_AM::lsl: SBits = 0x1; break;
836    case ARM_AM::lsr: SBits = 0x3; break;
837    case ARM_AM::asr: SBits = 0x5; break;
838    case ARM_AM::ror: SBits = 0x7; break;
839    case ARM_AM::rrx: SBits = 0x6; break;
840    }
841  } else {
842    // Set shift operand (bit[6:4]).
843    // LSL - 000
844    // LSR - 010
845    // ASR - 100
846    // ROR - 110
847    switch (SOpc) {
848    default: llvm_unreachable("Unknown shift opc!");
849    case ARM_AM::lsl: SBits = 0x0; break;
850    case ARM_AM::lsr: SBits = 0x2; break;
851    case ARM_AM::asr: SBits = 0x4; break;
852    case ARM_AM::ror: SBits = 0x6; break;
853    }
854  }
855  Binary |= SBits << 4;
856  if (SOpc == ARM_AM::rrx)
857    return Binary;
858
859  // Encode the shift operation Rs or shift_imm (except rrx).
860  if (Rs) {
861    // Encode Rs bit[11:8].
862    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
863    return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
864  }
865
866  // Encode shift_imm bit[11:7].
867  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
868}
869
870unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
871  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
872  assert(SoImmVal != -1 && "Not a valid so_imm value!");
873
874  // Encode rotate_imm.
875  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
876    << ARMII::SoRotImmShift;
877
878  // Encode immed_8.
879  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
880  return Binary;
881}
882
883unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
884                                         const TargetInstrDesc &TID) const {
885  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
886    const MachineOperand &MO = MI.getOperand(i-1);
887    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
888      return 1 << ARMII::S_BitShift;
889  }
890  return 0;
891}
892
893void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
894                                                   unsigned ImplicitRd,
895                                                   unsigned ImplicitRn) {
896  const TargetInstrDesc &TID = MI.getDesc();
897
898  // Part of binary is determined by TableGn.
899  unsigned Binary = getBinaryCodeForInstr(MI);
900
901  // Set the conditional execution predicate
902  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
903
904  // Encode S bit if MI modifies CPSR.
905  Binary |= getAddrModeSBit(MI, TID);
906
907  // Encode register def if there is one.
908  unsigned NumDefs = TID.getNumDefs();
909  unsigned OpIdx = 0;
910  if (NumDefs)
911    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
912  else if (ImplicitRd)
913    // Special handling for implicit use (e.g. PC).
914    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
915
916  if (TID.Opcode == ARM::MOVi16) {
917      // Get immediate from MI.
918      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
919                      ARM::reloc_arm_movw);
920      // Encode imm which is the same as in emitMOVi32immInstruction().
921      Binary |= Lo16 & 0xFFF;
922      Binary |= ((Lo16 >> 12) & 0xF) << 16;
923      emitWordLE(Binary);
924      return;
925  } else if(TID.Opcode == ARM::MOVTi16) {
926      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
927                       ARM::reloc_arm_movt) >> 16);
928      Binary |= Hi16 & 0xFFF;
929      Binary |= ((Hi16 >> 12) & 0xF) << 16;
930      emitWordLE(Binary);
931      return;
932  } else if ((TID.Opcode == ARM::BFC) || (TID.Opcode == ARM::BFI)) {
933      uint32_t v = ~MI.getOperand(2).getImm();
934      int32_t lsb = CountTrailingZeros_32(v);
935      int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
936      // Instr{20-16} = msb, Instr{11-7} = lsb
937      Binary |= (msb & 0x1F) << 16;
938      Binary |= (lsb & 0x1F) << 7;
939      emitWordLE(Binary);
940      return;
941  } else if ((TID.Opcode == ARM::UBFX) || (TID.Opcode == ARM::SBFX)) {
942      // Encode Rn in Instr{0-3}
943      Binary |= getMachineOpValue(MI, OpIdx++);
944
945      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
946      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
947
948      // Instr{20-16} = widthm1, Instr{11-7} = lsb
949      Binary |= (widthm1 & 0x1F) << 16;
950      Binary |= (lsb & 0x1F) << 7;
951      emitWordLE(Binary);
952      return;
953  }
954
955  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
956  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
957    ++OpIdx;
958
959  // Encode first non-shifter register operand if there is one.
960  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
961  if (!isUnary) {
962    if (ImplicitRn)
963      // Special handling for implicit use (e.g. PC).
964      Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
965    else {
966      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
967      ++OpIdx;
968    }
969  }
970
971  // Encode shifter operand.
972  const MachineOperand &MO = MI.getOperand(OpIdx);
973  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
974    // Encode SoReg.
975    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
976    return;
977  }
978
979  if (MO.isReg()) {
980    // Encode register Rm.
981    emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
982    return;
983  }
984
985  // Encode so_imm.
986  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
987
988  emitWordLE(Binary);
989}
990
991void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
992                                              unsigned ImplicitRd,
993                                              unsigned ImplicitRn) {
994  const TargetInstrDesc &TID = MI.getDesc();
995  unsigned Form = TID.TSFlags & ARMII::FormMask;
996  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
997
998  // Part of binary is determined by TableGn.
999  unsigned Binary = getBinaryCodeForInstr(MI);
1000
1001  // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1002  if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1003      MI.getOpcode() == ARM::STRi12) {
1004    emitWordLE(Binary);
1005    return;
1006  }
1007
1008  // Set the conditional execution predicate
1009  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1010
1011  unsigned OpIdx = 0;
1012
1013  // Operand 0 of a pre- and post-indexed store is the address base
1014  // writeback. Skip it.
1015  bool Skipped = false;
1016  if (IsPrePost && Form == ARMII::StFrm) {
1017    ++OpIdx;
1018    Skipped = true;
1019  }
1020
1021  // Set first operand
1022  if (ImplicitRd)
1023    // Special handling for implicit use (e.g. PC).
1024    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1025  else
1026    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1027
1028  // Set second operand
1029  if (ImplicitRn)
1030    // Special handling for implicit use (e.g. PC).
1031    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1032  else
1033    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1034
1035  // If this is a two-address operand, skip it. e.g. LDR_PRE.
1036  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1037    ++OpIdx;
1038
1039  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1040  unsigned AM2Opc = (ImplicitRn == ARM::PC)
1041    ? 0 : MI.getOperand(OpIdx+1).getImm();
1042
1043  // Set bit U(23) according to sign of immed value (positive or negative).
1044  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1045             ARMII::U_BitShift);
1046  if (!MO2.getReg()) { // is immediate
1047    if (ARM_AM::getAM2Offset(AM2Opc))
1048      // Set the value of offset_12 field
1049      Binary |= ARM_AM::getAM2Offset(AM2Opc);
1050    emitWordLE(Binary);
1051    return;
1052  }
1053
1054  // Set bit I(25), because this is not in immediate encoding.
1055  Binary |= 1 << ARMII::I_BitShift;
1056  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1057  // Set bit[3:0] to the corresponding Rm register
1058  Binary |= getARMRegisterNumbering(MO2.getReg());
1059
1060  // If this instr is in scaled register offset/index instruction, set
1061  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1062  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1063    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
1064    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
1065  }
1066
1067  emitWordLE(Binary);
1068}
1069
1070void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1071                                                  unsigned ImplicitRn) {
1072  const TargetInstrDesc &TID = MI.getDesc();
1073  unsigned Form = TID.TSFlags & ARMII::FormMask;
1074  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1075
1076  // Part of binary is determined by TableGn.
1077  unsigned Binary = getBinaryCodeForInstr(MI);
1078
1079  // Set the conditional execution predicate
1080  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1081
1082  unsigned OpIdx = 0;
1083
1084  // Operand 0 of a pre- and post-indexed store is the address base
1085  // writeback. Skip it.
1086  bool Skipped = false;
1087  if (IsPrePost && Form == ARMII::StMiscFrm) {
1088    ++OpIdx;
1089    Skipped = true;
1090  }
1091
1092  // Set first operand
1093  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1094
1095  // Skip LDRD and STRD's second operand.
1096  if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
1097    ++OpIdx;
1098
1099  // Set second operand
1100  if (ImplicitRn)
1101    // Special handling for implicit use (e.g. PC).
1102    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1103  else
1104    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1105
1106  // If this is a two-address operand, skip it. e.g. LDRH_POST.
1107  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1108    ++OpIdx;
1109
1110  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1111  unsigned AM3Opc = (ImplicitRn == ARM::PC)
1112    ? 0 : MI.getOperand(OpIdx+1).getImm();
1113
1114  // Set bit U(23) according to sign of immed value (positive or negative)
1115  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1116             ARMII::U_BitShift);
1117
1118  // If this instr is in register offset/index encoding, set bit[3:0]
1119  // to the corresponding Rm register.
1120  if (MO2.getReg()) {
1121    Binary |= getARMRegisterNumbering(MO2.getReg());
1122    emitWordLE(Binary);
1123    return;
1124  }
1125
1126  // This instr is in immediate offset/index encoding, set bit 22 to 1.
1127  Binary |= 1 << ARMII::AM3_I_BitShift;
1128  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1129    // Set operands
1130    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1131    Binary |= (ImmOffs & 0xF);                      // immedL
1132  }
1133
1134  emitWordLE(Binary);
1135}
1136
1137static unsigned getAddrModeUPBits(unsigned Mode) {
1138  unsigned Binary = 0;
1139
1140  // Set addressing mode by modifying bits U(23) and P(24)
1141  // IA - Increment after  - bit U = 1 and bit P = 0
1142  // IB - Increment before - bit U = 1 and bit P = 1
1143  // DA - Decrement after  - bit U = 0 and bit P = 0
1144  // DB - Decrement before - bit U = 0 and bit P = 1
1145  switch (Mode) {
1146  default: llvm_unreachable("Unknown addressing sub-mode!");
1147  case ARM_AM::da:                                     break;
1148  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1149  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1150  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1151  }
1152
1153  return Binary;
1154}
1155
1156void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1157  const TargetInstrDesc &TID = MI.getDesc();
1158  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1159
1160  // Part of binary is determined by TableGn.
1161  unsigned Binary = getBinaryCodeForInstr(MI);
1162
1163  // Set the conditional execution predicate
1164  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1165
1166  // Skip operand 0 of an instruction with base register update.
1167  unsigned OpIdx = 0;
1168  if (IsUpdating)
1169    ++OpIdx;
1170
1171  // Set base address operand
1172  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1173
1174  // Set addressing mode by modifying bits U(23) and P(24)
1175  const MachineOperand &MO = MI.getOperand(OpIdx++);
1176  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
1177
1178  // Set bit W(21)
1179  if (IsUpdating)
1180    Binary |= 0x1 << ARMII::W_BitShift;
1181
1182  // Set registers
1183  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1184    const MachineOperand &MO = MI.getOperand(i);
1185    if (!MO.isReg() || MO.isImplicit())
1186      break;
1187    unsigned RegNum = getARMRegisterNumbering(MO.getReg());
1188    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1189           RegNum < 16);
1190    Binary |= 0x1 << RegNum;
1191  }
1192
1193  emitWordLE(Binary);
1194}
1195
1196void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1197  const TargetInstrDesc &TID = MI.getDesc();
1198
1199  // Part of binary is determined by TableGn.
1200  unsigned Binary = getBinaryCodeForInstr(MI);
1201
1202  // Set the conditional execution predicate
1203  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1204
1205  // Encode S bit if MI modifies CPSR.
1206  Binary |= getAddrModeSBit(MI, TID);
1207
1208  // 32x32->64bit operations have two destination registers. The number
1209  // of register definitions will tell us if that's what we're dealing with.
1210  unsigned OpIdx = 0;
1211  if (TID.getNumDefs() == 2)
1212    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1213
1214  // Encode Rd
1215  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1216
1217  // Encode Rm
1218  Binary |= getMachineOpValue(MI, OpIdx++);
1219
1220  // Encode Rs
1221  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1222
1223  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1224  // it as Rn (for multiply, that's in the same offset as RdLo.
1225  if (TID.getNumOperands() > OpIdx &&
1226      !TID.OpInfo[OpIdx].isPredicate() &&
1227      !TID.OpInfo[OpIdx].isOptionalDef())
1228    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1229
1230  emitWordLE(Binary);
1231}
1232
1233void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1234  const TargetInstrDesc &TID = MI.getDesc();
1235
1236  // Part of binary is determined by TableGn.
1237  unsigned Binary = getBinaryCodeForInstr(MI);
1238
1239  // Set the conditional execution predicate
1240  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1241
1242  unsigned OpIdx = 0;
1243
1244  // Encode Rd
1245  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1246
1247  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1248  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1249  if (MO2.isReg()) {
1250    // Two register operand form.
1251    // Encode Rn.
1252    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1253
1254    // Encode Rm.
1255    Binary |= getMachineOpValue(MI, MO2);
1256    ++OpIdx;
1257  } else {
1258    Binary |= getMachineOpValue(MI, MO1);
1259  }
1260
1261  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1262  if (MI.getOperand(OpIdx).isImm() &&
1263      !TID.OpInfo[OpIdx].isPredicate() &&
1264      !TID.OpInfo[OpIdx].isOptionalDef())
1265    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1266
1267  emitWordLE(Binary);
1268}
1269
1270void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1271  const TargetInstrDesc &TID = MI.getDesc();
1272
1273  // Part of binary is determined by TableGn.
1274  unsigned Binary = getBinaryCodeForInstr(MI);
1275
1276  // Set the conditional execution predicate
1277  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1278
1279  unsigned OpIdx = 0;
1280
1281  // Encode Rd
1282  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1283
1284  const MachineOperand &MO = MI.getOperand(OpIdx++);
1285  if (OpIdx == TID.getNumOperands() ||
1286      TID.OpInfo[OpIdx].isPredicate() ||
1287      TID.OpInfo[OpIdx].isOptionalDef()) {
1288    // Encode Rm and it's done.
1289    Binary |= getMachineOpValue(MI, MO);
1290    emitWordLE(Binary);
1291    return;
1292  }
1293
1294  // Encode Rn.
1295  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1296
1297  // Encode Rm.
1298  Binary |= getMachineOpValue(MI, OpIdx++);
1299
1300  // Encode shift_imm.
1301  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1302  if (TID.Opcode == ARM::PKHTB) {
1303    assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1304    if (ShiftAmt == 32)
1305      ShiftAmt = 0;
1306  }
1307  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1308  Binary |= ShiftAmt << ARMII::ShiftShift;
1309
1310  emitWordLE(Binary);
1311}
1312
1313void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1314  const TargetInstrDesc &TID = MI.getDesc();
1315
1316  // Part of binary is determined by TableGen.
1317  unsigned Binary = getBinaryCodeForInstr(MI);
1318
1319  // Set the conditional execution predicate
1320  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1321
1322  // Encode Rd
1323  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1324
1325  // Encode saturate bit position.
1326  unsigned Pos = MI.getOperand(1).getImm();
1327  if (TID.Opcode == ARM::SSAT || TID.Opcode == ARM::SSAT16)
1328    Pos -= 1;
1329  assert((Pos < 16 || (Pos < 32 &&
1330                       TID.Opcode != ARM::SSAT16 &&
1331                       TID.Opcode != ARM::USAT16)) &&
1332         "saturate bit position out of range");
1333  Binary |= Pos << 16;
1334
1335  // Encode Rm
1336  Binary |= getMachineOpValue(MI, 2);
1337
1338  // Encode shift_imm.
1339  if (TID.getNumOperands() == 4) {
1340    unsigned ShiftOp = MI.getOperand(3).getImm();
1341    ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1342    if (Opc == ARM_AM::asr)
1343      Binary |= (1 << 6);
1344    unsigned ShiftAmt = MI.getOperand(3).getImm();
1345    if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1346      ShiftAmt = 0;
1347    assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1348    Binary |= ShiftAmt << ARMII::ShiftShift;
1349  }
1350
1351  emitWordLE(Binary);
1352}
1353
1354void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1355  const TargetInstrDesc &TID = MI.getDesc();
1356
1357  if (TID.Opcode == ARM::TPsoft) {
1358    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1359  }
1360
1361  // Part of binary is determined by TableGn.
1362  unsigned Binary = getBinaryCodeForInstr(MI);
1363
1364  // Set the conditional execution predicate
1365  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1366
1367  // Set signed_immed_24 field
1368  Binary |= getMachineOpValue(MI, 0);
1369
1370  emitWordLE(Binary);
1371}
1372
1373void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1374  // Remember the base address of the inline jump table.
1375  uintptr_t JTBase = MCE.getCurrentPCValue();
1376  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1377  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1378               << '\n');
1379
1380  // Now emit the jump table entries.
1381  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1382  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1383    if (IsPIC)
1384      // DestBB address - JT base.
1385      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1386    else
1387      // Absolute DestBB address.
1388      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1389    emitWordLE(0);
1390  }
1391}
1392
1393void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1394  const TargetInstrDesc &TID = MI.getDesc();
1395
1396  // Handle jump tables.
1397  if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1398    // First emit a ldr pc, [] instruction.
1399    emitDataProcessingInstruction(MI, ARM::PC);
1400
1401    // Then emit the inline jump table.
1402    unsigned JTIndex =
1403      (TID.Opcode == ARM::BR_JTr)
1404      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1405    emitInlineJumpTable(JTIndex);
1406    return;
1407  } else if (TID.Opcode == ARM::BR_JTm) {
1408    // First emit a ldr pc, [] instruction.
1409    emitLoadStoreInstruction(MI, ARM::PC);
1410
1411    // Then emit the inline jump table.
1412    emitInlineJumpTable(MI.getOperand(3).getIndex());
1413    return;
1414  }
1415
1416  // Part of binary is determined by TableGn.
1417  unsigned Binary = getBinaryCodeForInstr(MI);
1418
1419  // Set the conditional execution predicate
1420  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1421
1422  if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR)
1423    // The return register is LR.
1424    Binary |= getARMRegisterNumbering(ARM::LR);
1425  else
1426    // otherwise, set the return register
1427    Binary |= getMachineOpValue(MI, 0);
1428
1429  emitWordLE(Binary);
1430}
1431
1432static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1433  unsigned RegD = MI.getOperand(OpIdx).getReg();
1434  unsigned Binary = 0;
1435  bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
1436  RegD = getARMRegisterNumbering(RegD);
1437  if (!isSPVFP)
1438    Binary |=   RegD               << ARMII::RegRdShift;
1439  else {
1440    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1441    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1442  }
1443  return Binary;
1444}
1445
1446static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1447  unsigned RegN = MI.getOperand(OpIdx).getReg();
1448  unsigned Binary = 0;
1449  bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
1450  RegN = getARMRegisterNumbering(RegN);
1451  if (!isSPVFP)
1452    Binary |=   RegN               << ARMII::RegRnShift;
1453  else {
1454    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1455    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1456  }
1457  return Binary;
1458}
1459
1460static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1461  unsigned RegM = MI.getOperand(OpIdx).getReg();
1462  unsigned Binary = 0;
1463  bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
1464  RegM = getARMRegisterNumbering(RegM);
1465  if (!isSPVFP)
1466    Binary |=   RegM;
1467  else {
1468    Binary |= ((RegM & 0x1E) >> 1);
1469    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1470  }
1471  return Binary;
1472}
1473
1474void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1475  const TargetInstrDesc &TID = MI.getDesc();
1476
1477  // Part of binary is determined by TableGn.
1478  unsigned Binary = getBinaryCodeForInstr(MI);
1479
1480  // Set the conditional execution predicate
1481  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1482
1483  unsigned OpIdx = 0;
1484  assert((Binary & ARMII::D_BitShift) == 0 &&
1485         (Binary & ARMII::N_BitShift) == 0 &&
1486         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1487
1488  // Encode Dd / Sd.
1489  Binary |= encodeVFPRd(MI, OpIdx++);
1490
1491  // If this is a two-address operand, skip it, e.g. FMACD.
1492  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1493    ++OpIdx;
1494
1495  // Encode Dn / Sn.
1496  if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1497    Binary |= encodeVFPRn(MI, OpIdx++);
1498
1499  if (OpIdx == TID.getNumOperands() ||
1500      TID.OpInfo[OpIdx].isPredicate() ||
1501      TID.OpInfo[OpIdx].isOptionalDef()) {
1502    // FCMPEZD etc. has only one operand.
1503    emitWordLE(Binary);
1504    return;
1505  }
1506
1507  // Encode Dm / Sm.
1508  Binary |= encodeVFPRm(MI, OpIdx);
1509
1510  emitWordLE(Binary);
1511}
1512
1513void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1514  const TargetInstrDesc &TID = MI.getDesc();
1515  unsigned Form = TID.TSFlags & ARMII::FormMask;
1516
1517  // Part of binary is determined by TableGn.
1518  unsigned Binary = getBinaryCodeForInstr(MI);
1519
1520  // Set the conditional execution predicate
1521  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1522
1523  switch (Form) {
1524  default: break;
1525  case ARMII::VFPConv1Frm:
1526  case ARMII::VFPConv2Frm:
1527  case ARMII::VFPConv3Frm:
1528    // Encode Dd / Sd.
1529    Binary |= encodeVFPRd(MI, 0);
1530    break;
1531  case ARMII::VFPConv4Frm:
1532    // Encode Dn / Sn.
1533    Binary |= encodeVFPRn(MI, 0);
1534    break;
1535  case ARMII::VFPConv5Frm:
1536    // Encode Dm / Sm.
1537    Binary |= encodeVFPRm(MI, 0);
1538    break;
1539  }
1540
1541  switch (Form) {
1542  default: break;
1543  case ARMII::VFPConv1Frm:
1544    // Encode Dm / Sm.
1545    Binary |= encodeVFPRm(MI, 1);
1546    break;
1547  case ARMII::VFPConv2Frm:
1548  case ARMII::VFPConv3Frm:
1549    // Encode Dn / Sn.
1550    Binary |= encodeVFPRn(MI, 1);
1551    break;
1552  case ARMII::VFPConv4Frm:
1553  case ARMII::VFPConv5Frm:
1554    // Encode Dd / Sd.
1555    Binary |= encodeVFPRd(MI, 1);
1556    break;
1557  }
1558
1559  if (Form == ARMII::VFPConv5Frm)
1560    // Encode Dn / Sn.
1561    Binary |= encodeVFPRn(MI, 2);
1562  else if (Form == ARMII::VFPConv3Frm)
1563    // Encode Dm / Sm.
1564    Binary |= encodeVFPRm(MI, 2);
1565
1566  emitWordLE(Binary);
1567}
1568
1569void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1570  // Part of binary is determined by TableGn.
1571  unsigned Binary = getBinaryCodeForInstr(MI);
1572
1573  // Set the conditional execution predicate
1574  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1575
1576  unsigned OpIdx = 0;
1577
1578  // Encode Dd / Sd.
1579  Binary |= encodeVFPRd(MI, OpIdx++);
1580
1581  // Encode address base.
1582  const MachineOperand &Base = MI.getOperand(OpIdx++);
1583  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1584
1585  // If there is a non-zero immediate offset, encode it.
1586  if (Base.isReg()) {
1587    const MachineOperand &Offset = MI.getOperand(OpIdx);
1588    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1589      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1590        Binary |= 1 << ARMII::U_BitShift;
1591      Binary |= ImmOffs;
1592      emitWordLE(Binary);
1593      return;
1594    }
1595  }
1596
1597  // If immediate offset is omitted, default to +0.
1598  Binary |= 1 << ARMII::U_BitShift;
1599
1600  emitWordLE(Binary);
1601}
1602
1603void
1604ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1605  const TargetInstrDesc &TID = MI.getDesc();
1606  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1607
1608  // Part of binary is determined by TableGn.
1609  unsigned Binary = getBinaryCodeForInstr(MI);
1610
1611  // Set the conditional execution predicate
1612  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1613
1614  // Skip operand 0 of an instruction with base register update.
1615  unsigned OpIdx = 0;
1616  if (IsUpdating)
1617    ++OpIdx;
1618
1619  // Set base address operand
1620  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1621
1622  // Set addressing mode by modifying bits U(23) and P(24)
1623  const MachineOperand &MO = MI.getOperand(OpIdx++);
1624  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
1625
1626  // Set bit W(21)
1627  if (IsUpdating)
1628    Binary |= 0x1 << ARMII::W_BitShift;
1629
1630  // First register is encoded in Dd.
1631  Binary |= encodeVFPRd(MI, OpIdx+2);
1632
1633  // Count the number of registers.
1634  unsigned NumRegs = 1;
1635  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1636    const MachineOperand &MO = MI.getOperand(i);
1637    if (!MO.isReg() || MO.isImplicit())
1638      break;
1639    ++NumRegs;
1640  }
1641  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1642  // Otherwise, it will be 0, in the case of 32-bit registers.
1643  if(Binary & 0x100)
1644    Binary |= NumRegs * 2;
1645  else
1646    Binary |= NumRegs;
1647
1648  emitWordLE(Binary);
1649}
1650
1651static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
1652  unsigned RegD = MI.getOperand(OpIdx).getReg();
1653  unsigned Binary = 0;
1654  RegD = getARMRegisterNumbering(RegD);
1655  Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1656  Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1657  return Binary;
1658}
1659
1660static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
1661  unsigned RegN = MI.getOperand(OpIdx).getReg();
1662  unsigned Binary = 0;
1663  RegN = getARMRegisterNumbering(RegN);
1664  Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1665  Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1666  return Binary;
1667}
1668
1669static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
1670  unsigned RegM = MI.getOperand(OpIdx).getReg();
1671  unsigned Binary = 0;
1672  RegM = getARMRegisterNumbering(RegM);
1673  Binary |= (RegM & 0xf);
1674  Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1675  return Binary;
1676}
1677
1678/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1679/// data-processing instruction to the corresponding Thumb encoding.
1680static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1681  assert((Binary & 0xfe000000) == 0xf2000000 &&
1682         "not an ARM NEON data-processing instruction");
1683  unsigned UBit = (Binary >> 24) & 1;
1684  return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1685}
1686
1687void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1688  unsigned Binary = getBinaryCodeForInstr(MI);
1689
1690  unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1691  const TargetInstrDesc &TID = MI.getDesc();
1692  if ((TID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1693    RegTOpIdx = 0;
1694    RegNOpIdx = 1;
1695    LnOpIdx = 2;
1696  } else { // ARMII::NSetLnFrm
1697    RegTOpIdx = 2;
1698    RegNOpIdx = 0;
1699    LnOpIdx = 3;
1700  }
1701
1702  // Set the conditional execution predicate
1703  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1704
1705  unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1706  RegT = getARMRegisterNumbering(RegT);
1707  Binary |= (RegT << ARMII::RegRdShift);
1708  Binary |= encodeNEONRn(MI, RegNOpIdx);
1709
1710  unsigned LaneShift;
1711  if ((Binary & (1 << 22)) != 0)
1712    LaneShift = 0; // 8-bit elements
1713  else if ((Binary & (1 << 5)) != 0)
1714    LaneShift = 1; // 16-bit elements
1715  else
1716    LaneShift = 2; // 32-bit elements
1717
1718  unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1719  unsigned Opc1 = Lane >> 2;
1720  unsigned Opc2 = Lane & 3;
1721  assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1722  Binary |= (Opc1 << 21);
1723  Binary |= (Opc2 << 5);
1724
1725  emitWordLE(Binary);
1726}
1727
1728void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1729  unsigned Binary = getBinaryCodeForInstr(MI);
1730
1731  // Set the conditional execution predicate
1732  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1733
1734  unsigned RegT = MI.getOperand(1).getReg();
1735  RegT = getARMRegisterNumbering(RegT);
1736  Binary |= (RegT << ARMII::RegRdShift);
1737  Binary |= encodeNEONRn(MI, 0);
1738  emitWordLE(Binary);
1739}
1740
1741void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1742  unsigned Binary = getBinaryCodeForInstr(MI);
1743  // Destination register is encoded in Dd.
1744  Binary |= encodeNEONRd(MI, 0);
1745  // Immediate fields: Op, Cmode, I, Imm3, Imm4
1746  unsigned Imm = MI.getOperand(1).getImm();
1747  unsigned Op = (Imm >> 12) & 1;
1748  unsigned Cmode = (Imm >> 8) & 0xf;
1749  unsigned I = (Imm >> 7) & 1;
1750  unsigned Imm3 = (Imm >> 4) & 0x7;
1751  unsigned Imm4 = Imm & 0xf;
1752  Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1753  if (IsThumb)
1754    Binary = convertNEONDataProcToThumb(Binary);
1755  emitWordLE(Binary);
1756}
1757
1758void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1759  const TargetInstrDesc &TID = MI.getDesc();
1760  unsigned Binary = getBinaryCodeForInstr(MI);
1761  // Destination register is encoded in Dd; source register in Dm.
1762  unsigned OpIdx = 0;
1763  Binary |= encodeNEONRd(MI, OpIdx++);
1764  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1765    ++OpIdx;
1766  Binary |= encodeNEONRm(MI, OpIdx);
1767  if (IsThumb)
1768    Binary = convertNEONDataProcToThumb(Binary);
1769  // FIXME: This does not handle VDUPfdf or VDUPfqf.
1770  emitWordLE(Binary);
1771}
1772
1773void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
1774  const TargetInstrDesc &TID = MI.getDesc();
1775  unsigned Binary = getBinaryCodeForInstr(MI);
1776  // Destination register is encoded in Dd; source registers in Dn and Dm.
1777  unsigned OpIdx = 0;
1778  Binary |= encodeNEONRd(MI, OpIdx++);
1779  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1780    ++OpIdx;
1781  Binary |= encodeNEONRn(MI, OpIdx++);
1782  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1783    ++OpIdx;
1784  Binary |= encodeNEONRm(MI, OpIdx);
1785  if (IsThumb)
1786    Binary = convertNEONDataProcToThumb(Binary);
1787  // FIXME: This does not handle VMOVDneon or VMOVQ.
1788  emitWordLE(Binary);
1789}
1790
1791#include "ARMGenCodeEmitter.inc"
1792