ARMCodeEmitter.cpp revision 4d03e416be8cf1f0f502118826b7cbaeec0b79b2
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMInstrInfo.h"
20#include "ARMRelocations.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/JITCodeEmitter.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45namespace {
46
47  class ARMCodeEmitter : public MachineFunctionPass {
48    ARMJITInfo                *JTI;
49    const ARMInstrInfo        *II;
50    const TargetData          *TD;
51    const ARMSubtarget        *Subtarget;
52    TargetMachine             &TM;
53    JITCodeEmitter            &MCE;
54    MachineModuleInfo *MMI;
55    const std::vector<MachineConstantPoolEntry> *MCPEs;
56    const std::vector<MachineJumpTableEntry> *MJTEs;
57    bool IsPIC;
58    bool IsThumb;
59
60    void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.addRequired<MachineModuleInfo>();
62      MachineFunctionPass::getAnalysisUsage(AU);
63    }
64
65    static char ID;
66  public:
67    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68      : MachineFunctionPass(ID), JTI(0),
69        II((const ARMInstrInfo *)tm.getInstrInfo()),
70        TD(tm.getTargetData()), TM(tm),
71        MCE(mce), MCPEs(0), MJTEs(0),
72        IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73
74    /// getBinaryCodeForInstr - This function, generated by the
75    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76    /// machine instructions.
77    unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
78
79    bool runOnMachineFunction(MachineFunction &MF);
80
81    virtual const char *getPassName() const {
82      return "ARM Machine Code Emitter";
83    }
84
85    void emitInstruction(const MachineInstr &MI);
86
87  private:
88
89    void emitWordLE(unsigned Binary);
90    void emitDWordLE(uint64_t Binary);
91    void emitConstantToMemory(unsigned CPI, const Constant *CV);
92    void emitConstPoolInstruction(const MachineInstr &MI);
93    void emitMOVi32immInstruction(const MachineInstr &MI);
94    void emitMOVi2piecesInstruction(const MachineInstr &MI);
95    void emitLEApcrelInstruction(const MachineInstr &MI);
96    void emitLEApcrelJTInstruction(const MachineInstr &MI);
97    void emitPseudoMoveInstruction(const MachineInstr &MI);
98    void addPCLabel(unsigned LabelID);
99    void emitPseudoInstruction(const MachineInstr &MI);
100    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
101                                    const TargetInstrDesc &TID,
102                                    const MachineOperand &MO,
103                                    unsigned OpIdx);
104
105    unsigned getMachineSoImmOpValue(unsigned SoImm);
106    unsigned getAddrModeSBit(const MachineInstr &MI,
107                             const TargetInstrDesc &TID) const;
108
109    void emitDataProcessingInstruction(const MachineInstr &MI,
110                                       unsigned ImplicitRd = 0,
111                                       unsigned ImplicitRn = 0);
112
113    void emitLoadStoreInstruction(const MachineInstr &MI,
114                                  unsigned ImplicitRd = 0,
115                                  unsigned ImplicitRn = 0);
116
117    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
118                                      unsigned ImplicitRn = 0);
119
120    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
121
122    void emitMulFrmInstruction(const MachineInstr &MI);
123
124    void emitExtendInstruction(const MachineInstr &MI);
125
126    void emitMiscArithInstruction(const MachineInstr &MI);
127
128    void emitSaturateInstruction(const MachineInstr &MI);
129
130    void emitBranchInstruction(const MachineInstr &MI);
131
132    void emitInlineJumpTable(unsigned JTIndex);
133
134    void emitMiscBranchInstruction(const MachineInstr &MI);
135
136    void emitVFPArithInstruction(const MachineInstr &MI);
137
138    void emitVFPConversionInstruction(const MachineInstr &MI);
139
140    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
141
142    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
143
144    void emitNEONLaneInstruction(const MachineInstr &MI);
145    void emitNEONDupInstruction(const MachineInstr &MI);
146    void emitNEON1RegModImmInstruction(const MachineInstr &MI);
147    void emitNEON2RegInstruction(const MachineInstr &MI);
148    void emitNEON3RegInstruction(const MachineInstr &MI);
149
150    /// getMachineOpValue - Return binary encoding of operand. If the machine
151    /// operand requires relocation, record the relocation and return zero.
152    unsigned getMachineOpValue(const MachineInstr &MI,
153                               const MachineOperand &MO) const;
154    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
155      return getMachineOpValue(MI, MI.getOperand(OpIdx));
156    }
157
158    // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
159    //  TableGen'erated getBinaryCodeForInstr() function to encode any
160    //  operand values, instead querying getMachineOpValue() directly for
161    //  each operand it needs to encode. Thus, any of the new encoder
162    //  helper functions can simply return 0 as the values the return
163    //  are already handled elsewhere. They are placeholders to allow this
164    //  encoder to continue to function until the MC encoder is sufficiently
165    //  far along that this one can be eliminated entirely.
166    unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
167      const { return 0; }
168    unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
169      const { return 0; }
170    unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
171      const { return 0; }
172    unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
173      const { return 0; }
174    unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
175      const { return 0; }
176    unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
177      const { return 0; }
178    unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
179      const { return 0; }
180    unsigned getSORegOpValue(const MachineInstr &MI, unsigned Op)
181      const { return 0; }
182    unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
183      const { return 0; }
184    unsigned getRotImmOpValue(const MachineInstr &MI, unsigned Op)
185      const { return 0; }
186    unsigned getImmMinusOneOpValue(const MachineInstr &MI, unsigned Op)
187      const { return 0; }
188    unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
189      const { return 0; }
190    unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
191      const { return 0; }
192    unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
193                                            unsigned Op) const { return 0; }
194    uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
195      const {return 0; }
196    uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
197      const { return 0; }
198
199    unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
200      const {
201      // {17-13} = reg
202      // {12}    = (U)nsigned (add == '1', sub == '0')
203      // {11-0}  = imm12
204      const MachineOperand &MO  = MI.getOperand(Op);
205      const MachineOperand &MO1 = MI.getOperand(Op + 1);
206      if (!MO.isReg()) {
207        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
208        return 0;
209      }
210      unsigned Reg = getARMRegisterNumbering(MO.getReg());
211      int32_t Imm12 = MO1.getImm();
212      uint32_t Binary;
213      Binary = Imm12 & 0xfff;
214      if (Imm12 >= 0)
215        Binary |= (1 << 12);
216      Binary |= (Reg << 13);
217      return Binary;
218    }
219    uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
220      const { return 0;}
221    uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
222      const { return 0;}
223    uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
224      const { return 0;}
225    uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op) const
226      { return 0; }
227    uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
228      // {12-9}  = reg
229      // {8}     = (U)nsigned (add == '1', sub == '0')
230      // {7-0}   = imm12
231      const MachineOperand &MO  = MI.getOperand(Op);
232      const MachineOperand &MO1 = MI.getOperand(Op + 1);
233      if (!MO.isReg()) {
234        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
235        return 0;
236      }
237      unsigned Reg = getARMRegisterNumbering(MO.getReg());
238      int32_t Imm8 = MO1.getImm();
239      uint32_t Binary;
240      Binary = Imm8 & 0xff;
241      if (Imm8 >= 0)
242        Binary |= (1 << 8);
243      Binary |= (Reg << 9);
244      return Binary;
245    }
246    unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
247      const { return 0; }
248
249    unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
250      const { return 0; }
251
252    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
253    /// machine operand requires relocation, record the relocation and return
254    /// zero.
255    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
256                            unsigned Reloc);
257
258    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
259    ///
260    unsigned getShiftOp(unsigned Imm) const ;
261
262    /// Routines that handle operands which add machine relocations which are
263    /// fixed up by the relocation stage.
264    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
265                           bool MayNeedFarStub,  bool Indirect,
266                           intptr_t ACPV = 0) const;
267    void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
268    void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
269    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
270    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
271                               intptr_t JTBase = 0) const;
272  };
273}
274
275char ARMCodeEmitter::ID = 0;
276
277/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
278/// code to the specified MCE object.
279FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
280                                                JITCodeEmitter &JCE) {
281  return new ARMCodeEmitter(TM, JCE);
282}
283
284bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
285  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
286          MF.getTarget().getRelocationModel() != Reloc::Static) &&
287         "JIT relocation model must be set to static or default!");
288  JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
289  II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
290  TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
291  Subtarget = &TM.getSubtarget<ARMSubtarget>();
292  MCPEs = &MF.getConstantPool()->getConstants();
293  MJTEs = 0;
294  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
295  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
296  IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
297  JTI->Initialize(MF, IsPIC);
298  MMI = &getAnalysis<MachineModuleInfo>();
299  MCE.setModuleInfo(MMI);
300
301  do {
302    DEBUG(errs() << "JITTing function '"
303          << MF.getFunction()->getName() << "'\n");
304    MCE.startFunction(MF);
305    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
306         MBB != E; ++MBB) {
307      MCE.StartMachineBasicBlock(MBB);
308      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
309           I != E; ++I)
310        emitInstruction(*I);
311    }
312  } while (MCE.finishFunction(MF));
313
314  return false;
315}
316
317/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
318///
319unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
320  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
321  default: llvm_unreachable("Unknown shift opc!");
322  case ARM_AM::asr: return 2;
323  case ARM_AM::lsl: return 0;
324  case ARM_AM::lsr: return 1;
325  case ARM_AM::ror:
326  case ARM_AM::rrx: return 3;
327  }
328  return 0;
329}
330
331/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
332/// machine operand requires relocation, record the relocation and return zero.
333unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
334                                        const MachineOperand &MO,
335                                        unsigned Reloc) {
336  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
337      && "Relocation to this function should be for movt or movw");
338
339  if (MO.isImm())
340    return static_cast<unsigned>(MO.getImm());
341  else if (MO.isGlobal())
342    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
343  else if (MO.isSymbol())
344    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
345  else if (MO.isMBB())
346    emitMachineBasicBlock(MO.getMBB(), Reloc);
347  else {
348#ifndef NDEBUG
349    errs() << MO;
350#endif
351    llvm_unreachable("Unsupported operand type for movw/movt");
352  }
353  return 0;
354}
355
356/// getMachineOpValue - Return binary encoding of operand. If the machine
357/// operand requires relocation, record the relocation and return zero.
358unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
359                                           const MachineOperand &MO) const {
360  if (MO.isReg())
361    return getARMRegisterNumbering(MO.getReg());
362  else if (MO.isImm())
363    return static_cast<unsigned>(MO.getImm());
364  else if (MO.isGlobal())
365    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
366  else if (MO.isSymbol())
367    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
368  else if (MO.isCPI()) {
369    const TargetInstrDesc &TID = MI.getDesc();
370    // For VFP load, the immediate offset is multiplied by 4.
371    unsigned Reloc =  ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
372      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
373    emitConstPoolAddress(MO.getIndex(), Reloc);
374  } else if (MO.isJTI())
375    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
376  else if (MO.isMBB())
377    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
378  else {
379#ifndef NDEBUG
380    errs() << MO;
381#endif
382    llvm_unreachable(0);
383  }
384  return 0;
385}
386
387/// emitGlobalAddress - Emit the specified address to the code stream.
388///
389void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
390                                       bool MayNeedFarStub, bool Indirect,
391                                       intptr_t ACPV) const {
392  MachineRelocation MR = Indirect
393    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
394                                           const_cast<GlobalValue *>(GV),
395                                           ACPV, MayNeedFarStub)
396    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
397                               const_cast<GlobalValue *>(GV), ACPV,
398                               MayNeedFarStub);
399  MCE.addRelocation(MR);
400}
401
402/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
403/// be emitted to the current location in the function, and allow it to be PC
404/// relative.
405void ARMCodeEmitter::
406emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
407  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
408                                                 Reloc, ES));
409}
410
411/// emitConstPoolAddress - Arrange for the address of an constant pool
412/// to be emitted to the current location in the function, and allow it to be PC
413/// relative.
414void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
415  // Tell JIT emitter we'll resolve the address.
416  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
417                                                    Reloc, CPI, 0, true));
418}
419
420/// emitJumpTableAddress - Arrange for the address of a jump table to
421/// be emitted to the current location in the function, and allow it to be PC
422/// relative.
423void ARMCodeEmitter::
424emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
425  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
426                                                    Reloc, JTIndex, 0, true));
427}
428
429/// emitMachineBasicBlock - Emit the specified address basic block.
430void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
431                                           unsigned Reloc,
432                                           intptr_t JTBase) const {
433  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
434                                             Reloc, BB, JTBase));
435}
436
437void ARMCodeEmitter::emitWordLE(unsigned Binary) {
438  DEBUG(errs() << "  0x";
439        errs().write_hex(Binary) << "\n");
440  MCE.emitWordLE(Binary);
441}
442
443void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
444  DEBUG(errs() << "  0x";
445        errs().write_hex(Binary) << "\n");
446  MCE.emitDWordLE(Binary);
447}
448
449void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
450  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
451
452  MCE.processDebugLoc(MI.getDebugLoc(), true);
453
454  ++NumEmitted;  // Keep track of the # of mi's emitted
455  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
456  default: {
457    llvm_unreachable("Unhandled instruction encoding format!");
458    break;
459  }
460  case ARMII::Pseudo:
461    emitPseudoInstruction(MI);
462    break;
463  case ARMII::DPFrm:
464  case ARMII::DPSoRegFrm:
465    emitDataProcessingInstruction(MI);
466    break;
467  case ARMII::LdFrm:
468  case ARMII::StFrm:
469    emitLoadStoreInstruction(MI);
470    break;
471  case ARMII::LdMiscFrm:
472  case ARMII::StMiscFrm:
473    emitMiscLoadStoreInstruction(MI);
474    break;
475  case ARMII::LdStMulFrm:
476    emitLoadStoreMultipleInstruction(MI);
477    break;
478  case ARMII::MulFrm:
479    emitMulFrmInstruction(MI);
480    break;
481  case ARMII::ExtFrm:
482    emitExtendInstruction(MI);
483    break;
484  case ARMII::ArithMiscFrm:
485    emitMiscArithInstruction(MI);
486    break;
487  case ARMII::SatFrm:
488    emitSaturateInstruction(MI);
489    break;
490  case ARMII::BrFrm:
491    emitBranchInstruction(MI);
492    break;
493  case ARMII::BrMiscFrm:
494    emitMiscBranchInstruction(MI);
495    break;
496  // VFP instructions.
497  case ARMII::VFPUnaryFrm:
498  case ARMII::VFPBinaryFrm:
499    emitVFPArithInstruction(MI);
500    break;
501  case ARMII::VFPConv1Frm:
502  case ARMII::VFPConv2Frm:
503  case ARMII::VFPConv3Frm:
504  case ARMII::VFPConv4Frm:
505  case ARMII::VFPConv5Frm:
506    emitVFPConversionInstruction(MI);
507    break;
508  case ARMII::VFPLdStFrm:
509    emitVFPLoadStoreInstruction(MI);
510    break;
511  case ARMII::VFPLdStMulFrm:
512    emitVFPLoadStoreMultipleInstruction(MI);
513    break;
514
515  // NEON instructions.
516  case ARMII::NGetLnFrm:
517  case ARMII::NSetLnFrm:
518    emitNEONLaneInstruction(MI);
519    break;
520  case ARMII::NDupFrm:
521    emitNEONDupInstruction(MI);
522    break;
523  case ARMII::N1RegModImmFrm:
524    emitNEON1RegModImmInstruction(MI);
525    break;
526  case ARMII::N2RegFrm:
527    emitNEON2RegInstruction(MI);
528    break;
529  case ARMII::N3RegFrm:
530    emitNEON3RegInstruction(MI);
531    break;
532  }
533  MCE.processDebugLoc(MI.getDebugLoc(), false);
534}
535
536void ARMCodeEmitter::emitConstantToMemory(unsigned CPI, const Constant *C) {
537  DEBUG({
538      errs() << "  ** Constant pool #" << CPI << " @ "
539             << (void*)MCE.getCurrentPCValue() << " ";
540      if (const Function *F = dyn_cast<Function>(C))
541        errs() << F->getName();
542      else
543        errs() << *C;
544      errs() << '\n';
545    });
546
547  switch (C->getValueID()) {
548  default: {
549    llvm_unreachable("Unable to handle this constantpool entry!");
550    break;
551  }
552  case Value::GlobalVariableVal: {
553    emitGlobalAddress(static_cast<const GlobalValue*>(C),
554                      ARM::reloc_arm_absolute, isa<Function>(C), false);
555    emitWordLE(0);
556    break;
557  }
558  case Value::ConstantIntVal: {
559    const ConstantInt *CI = static_cast<const ConstantInt*>(C);
560    uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
561    emitWordLE(Val);
562    break;
563  }
564  case Value::ConstantFPVal: {
565    const ConstantFP *CFP = static_cast<const ConstantFP*>(C);
566    if (CFP->getType()->isFloatTy())
567      emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
568    else if (CFP->getType()->isDoubleTy())
569      emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
570    else {
571      llvm_unreachable("Unable to handle this constantpool entry!");
572    }
573    break;
574  }
575  case Value::ConstantArrayVal: {
576    const ConstantArray *CA = static_cast<const ConstantArray*>(C);
577    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
578      emitConstantToMemory(CPI, CA->getOperand(i));
579    break;
580  }
581  }
582
583  return;
584}
585
586void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
587  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
588  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
589  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
590
591  // Remember the CONSTPOOL_ENTRY address for later relocation.
592  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
593
594  // Emit constpool island entry. In most cases, the actual values will be
595  // resolved and relocated after code emission.
596  if (MCPE.isMachineConstantPoolEntry()) {
597    ARMConstantPoolValue *ACPV =
598      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
599
600    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
601          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
602
603    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
604    const GlobalValue *GV = ACPV->getGV();
605    if (GV) {
606      Reloc::Model RelocM = TM.getRelocationModel();
607      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
608                        isa<Function>(GV),
609                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
610                        (intptr_t)ACPV);
611     } else  {
612      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
613    }
614    emitWordLE(0);
615  } else {
616    emitConstantToMemory(CPI, MCPE.Val.ConstVal);
617  }
618}
619
620void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
621  const MachineOperand &MO0 = MI.getOperand(0);
622  const MachineOperand &MO1 = MI.getOperand(1);
623
624  // Emit the 'movw' instruction.
625  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
626
627  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
628
629  // Set the conditional execution predicate.
630  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
631
632  // Encode Rd.
633  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
634
635  // Encode imm16 as imm4:imm12
636  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
637  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
638  emitWordLE(Binary);
639
640  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
641  // Emit the 'movt' instruction.
642  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
643
644  // Set the conditional execution predicate.
645  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
646
647  // Encode Rd.
648  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
649
650  // Encode imm16 as imm4:imm1, same as movw above.
651  Binary |= Hi16 & 0xFFF;
652  Binary |= ((Hi16 >> 12) & 0xF) << 16;
653  emitWordLE(Binary);
654}
655
656void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
657  const MachineOperand &MO0 = MI.getOperand(0);
658  const MachineOperand &MO1 = MI.getOperand(1);
659  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
660                                                  "Not a valid so_imm value!");
661  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
662  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
663
664  // Emit the 'mov' instruction.
665  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
666
667  // Set the conditional execution predicate.
668  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
669
670  // Encode Rd.
671  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
672
673  // Encode so_imm.
674  // Set bit I(25) to identify this is the immediate form of <shifter_op>
675  Binary |= 1 << ARMII::I_BitShift;
676  Binary |= getMachineSoImmOpValue(V1);
677  emitWordLE(Binary);
678
679  // Now the 'orr' instruction.
680  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
681
682  // Set the conditional execution predicate.
683  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
684
685  // Encode Rd.
686  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
687
688  // Encode Rn.
689  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
690
691  // Encode so_imm.
692  // Set bit I(25) to identify this is the immediate form of <shifter_op>
693  Binary |= 1 << ARMII::I_BitShift;
694  Binary |= getMachineSoImmOpValue(V2);
695  emitWordLE(Binary);
696}
697
698void ARMCodeEmitter::emitLEApcrelInstruction(const MachineInstr &MI) {
699  // It's basically add r, pc, (LCPI - $+8)
700  const TargetInstrDesc &TID = MI.getDesc();
701
702  unsigned Binary = 0;
703
704  // Set the conditional execution predicate
705  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
706
707  // Encode S bit if MI modifies CPSR.
708  Binary |= getAddrModeSBit(MI, TID);
709
710  // Encode Rd.
711  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
712
713  // Encode Rn which is PC.
714  Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
715
716  // Encode the displacement which is a so_imm.
717  // Set bit I(25) to identify this is the immediate form of <shifter_op>
718  Binary |= 1 << ARMII::I_BitShift;
719  emitConstPoolAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_so_imm_cp_entry);
720
721  emitWordLE(Binary);
722}
723
724void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
725  // It's basically add r, pc, (LJTI - $+8)
726
727  const TargetInstrDesc &TID = MI.getDesc();
728
729  // Emit the 'add' instruction.
730  unsigned Binary = 0x4 << 21;  // add: Insts{21-24} = 0b0100
731
732  // Set the conditional execution predicate
733  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
734
735  // Encode S bit if MI modifies CPSR.
736  Binary |= getAddrModeSBit(MI, TID);
737
738  // Encode Rd.
739  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
740
741  // Encode Rn which is PC.
742  Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
743
744  // Encode the displacement.
745  Binary |= 1 << ARMII::I_BitShift;
746  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
747
748  emitWordLE(Binary);
749}
750
751void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
752  unsigned Opcode = MI.getDesc().Opcode;
753
754  // Part of binary is determined by TableGn.
755  unsigned Binary = getBinaryCodeForInstr(MI);
756
757  // Set the conditional execution predicate
758  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
759
760  // Encode S bit if MI modifies CPSR.
761  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
762    Binary |= 1 << ARMII::S_BitShift;
763
764  // Encode register def if there is one.
765  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
766
767  // Encode the shift operation.
768  switch (Opcode) {
769  default: break;
770  case ARM::RRX:
771    // rrx
772    Binary |= 0x6 << 4;
773    break;
774  case ARM::MOVsrl_flag:
775    // lsr #1
776    Binary |= (0x2 << 4) | (1 << 7);
777    break;
778  case ARM::MOVsra_flag:
779    // asr #1
780    Binary |= (0x4 << 4) | (1 << 7);
781    break;
782  }
783
784  // Encode register Rm.
785  Binary |= getMachineOpValue(MI, 1);
786
787  emitWordLE(Binary);
788}
789
790void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
791  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
792        << (void*)MCE.getCurrentPCValue() << '\n');
793  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
794}
795
796void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
797  unsigned Opcode = MI.getDesc().Opcode;
798  switch (Opcode) {
799  default:
800    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
801  case ARM::BX:
802  case ARM::BMOVPCRX:
803  case ARM::BXr9:
804  case ARM::BMOVPCRXr9: {
805    // First emit mov lr, pc
806    unsigned Binary = 0x01a0e00f;
807    Binary |= II->getPredicate(&MI) << ARMII::CondShift;
808    emitWordLE(Binary);
809
810    // and then emit the branch.
811    emitMiscBranchInstruction(MI);
812    break;
813  }
814  case TargetOpcode::INLINEASM: {
815    // We allow inline assembler nodes with empty bodies - they can
816    // implicitly define registers, which is ok for JIT.
817    if (MI.getOperand(0).getSymbolName()[0]) {
818      report_fatal_error("JIT does not support inline asm!");
819    }
820    break;
821  }
822  case TargetOpcode::PROLOG_LABEL:
823  case TargetOpcode::EH_LABEL:
824    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
825    break;
826  case TargetOpcode::IMPLICIT_DEF:
827  case TargetOpcode::KILL:
828    // Do nothing.
829    break;
830  case ARM::CONSTPOOL_ENTRY:
831    emitConstPoolInstruction(MI);
832    break;
833  case ARM::PICADD: {
834    // Remember of the address of the PC label for relocation later.
835    addPCLabel(MI.getOperand(2).getImm());
836    // PICADD is just an add instruction that implicitly read pc.
837    emitDataProcessingInstruction(MI, 0, ARM::PC);
838    break;
839  }
840  case ARM::PICLDR:
841  case ARM::PICLDRB:
842  case ARM::PICSTR:
843  case ARM::PICSTRB: {
844    // Remember of the address of the PC label for relocation later.
845    addPCLabel(MI.getOperand(2).getImm());
846    // These are just load / store instructions that implicitly read pc.
847    emitLoadStoreInstruction(MI, 0, ARM::PC);
848    break;
849  }
850  case ARM::PICLDRH:
851  case ARM::PICLDRSH:
852  case ARM::PICLDRSB:
853  case ARM::PICSTRH: {
854    // Remember of the address of the PC label for relocation later.
855    addPCLabel(MI.getOperand(2).getImm());
856    // These are just load / store instructions that implicitly read pc.
857    emitMiscLoadStoreInstruction(MI, ARM::PC);
858    break;
859  }
860
861  case ARM::MOVi32imm:
862    // Two instructions to materialize a constant.
863    if (Subtarget->hasV6T2Ops())
864      emitMOVi32immInstruction(MI);
865    else
866      emitMOVi2piecesInstruction(MI);
867    break;
868  case ARM::LEApcrel:
869    // Materialize constantpool index address.
870    emitLEApcrelInstruction(MI);
871    break;
872  case ARM::LEApcrelJT:
873    // Materialize jumptable address.
874    emitLEApcrelJTInstruction(MI);
875    break;
876  case ARM::RRX:
877  case ARM::MOVsrl_flag:
878  case ARM::MOVsra_flag:
879    emitPseudoMoveInstruction(MI);
880    break;
881  }
882}
883
884unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
885                                                const TargetInstrDesc &TID,
886                                                const MachineOperand &MO,
887                                                unsigned OpIdx) {
888  unsigned Binary = getMachineOpValue(MI, MO);
889
890  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
891  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
892  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
893
894  // Encode the shift opcode.
895  unsigned SBits = 0;
896  unsigned Rs = MO1.getReg();
897  if (Rs) {
898    // Set shift operand (bit[7:4]).
899    // LSL - 0001
900    // LSR - 0011
901    // ASR - 0101
902    // ROR - 0111
903    // RRX - 0110 and bit[11:8] clear.
904    switch (SOpc) {
905    default: llvm_unreachable("Unknown shift opc!");
906    case ARM_AM::lsl: SBits = 0x1; break;
907    case ARM_AM::lsr: SBits = 0x3; break;
908    case ARM_AM::asr: SBits = 0x5; break;
909    case ARM_AM::ror: SBits = 0x7; break;
910    case ARM_AM::rrx: SBits = 0x6; break;
911    }
912  } else {
913    // Set shift operand (bit[6:4]).
914    // LSL - 000
915    // LSR - 010
916    // ASR - 100
917    // ROR - 110
918    switch (SOpc) {
919    default: llvm_unreachable("Unknown shift opc!");
920    case ARM_AM::lsl: SBits = 0x0; break;
921    case ARM_AM::lsr: SBits = 0x2; break;
922    case ARM_AM::asr: SBits = 0x4; break;
923    case ARM_AM::ror: SBits = 0x6; break;
924    }
925  }
926  Binary |= SBits << 4;
927  if (SOpc == ARM_AM::rrx)
928    return Binary;
929
930  // Encode the shift operation Rs or shift_imm (except rrx).
931  if (Rs) {
932    // Encode Rs bit[11:8].
933    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
934    return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
935  }
936
937  // Encode shift_imm bit[11:7].
938  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
939}
940
941unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
942  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
943  assert(SoImmVal != -1 && "Not a valid so_imm value!");
944
945  // Encode rotate_imm.
946  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
947    << ARMII::SoRotImmShift;
948
949  // Encode immed_8.
950  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
951  return Binary;
952}
953
954unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
955                                         const TargetInstrDesc &TID) const {
956  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i >= e; --i){
957    const MachineOperand &MO = MI.getOperand(i-1);
958    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
959      return 1 << ARMII::S_BitShift;
960  }
961  return 0;
962}
963
964void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
965                                                   unsigned ImplicitRd,
966                                                   unsigned ImplicitRn) {
967  const TargetInstrDesc &TID = MI.getDesc();
968
969  // Part of binary is determined by TableGn.
970  unsigned Binary = getBinaryCodeForInstr(MI);
971
972  // Set the conditional execution predicate
973  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
974
975  // Encode S bit if MI modifies CPSR.
976  Binary |= getAddrModeSBit(MI, TID);
977
978  // Encode register def if there is one.
979  unsigned NumDefs = TID.getNumDefs();
980  unsigned OpIdx = 0;
981  if (NumDefs)
982    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
983  else if (ImplicitRd)
984    // Special handling for implicit use (e.g. PC).
985    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
986
987  if (TID.Opcode == ARM::MOVi16) {
988      // Get immediate from MI.
989      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
990                      ARM::reloc_arm_movw);
991      // Encode imm which is the same as in emitMOVi32immInstruction().
992      Binary |= Lo16 & 0xFFF;
993      Binary |= ((Lo16 >> 12) & 0xF) << 16;
994      emitWordLE(Binary);
995      return;
996  } else if(TID.Opcode == ARM::MOVTi16) {
997      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
998                       ARM::reloc_arm_movt) >> 16);
999      Binary |= Hi16 & 0xFFF;
1000      Binary |= ((Hi16 >> 12) & 0xF) << 16;
1001      emitWordLE(Binary);
1002      return;
1003  } else if ((TID.Opcode == ARM::BFC) || (TID.Opcode == ARM::BFI)) {
1004      uint32_t v = ~MI.getOperand(2).getImm();
1005      int32_t lsb = CountTrailingZeros_32(v);
1006      int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
1007      // Instr{20-16} = msb, Instr{11-7} = lsb
1008      Binary |= (msb & 0x1F) << 16;
1009      Binary |= (lsb & 0x1F) << 7;
1010      emitWordLE(Binary);
1011      return;
1012  } else if ((TID.Opcode == ARM::UBFX) || (TID.Opcode == ARM::SBFX)) {
1013      // Encode Rn in Instr{0-3}
1014      Binary |= getMachineOpValue(MI, OpIdx++);
1015
1016      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
1017      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
1018
1019      // Instr{20-16} = widthm1, Instr{11-7} = lsb
1020      Binary |= (widthm1 & 0x1F) << 16;
1021      Binary |= (lsb & 0x1F) << 7;
1022      emitWordLE(Binary);
1023      return;
1024  }
1025
1026  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1027  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1028    ++OpIdx;
1029
1030  // Encode first non-shifter register operand if there is one.
1031  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
1032  if (!isUnary) {
1033    if (ImplicitRn)
1034      // Special handling for implicit use (e.g. PC).
1035      Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1036    else {
1037      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
1038      ++OpIdx;
1039    }
1040  }
1041
1042  // Encode shifter operand.
1043  const MachineOperand &MO = MI.getOperand(OpIdx);
1044  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
1045    // Encode SoReg.
1046    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
1047    return;
1048  }
1049
1050  if (MO.isReg()) {
1051    // Encode register Rm.
1052    emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
1053    return;
1054  }
1055
1056  // Encode so_imm.
1057  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1058
1059  emitWordLE(Binary);
1060}
1061
1062void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1063                                              unsigned ImplicitRd,
1064                                              unsigned ImplicitRn) {
1065  const TargetInstrDesc &TID = MI.getDesc();
1066  unsigned Form = TID.TSFlags & ARMII::FormMask;
1067  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1068
1069  // Part of binary is determined by TableGn.
1070  unsigned Binary = getBinaryCodeForInstr(MI);
1071
1072  // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1073  if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1074      MI.getOpcode() == ARM::STRi12) {
1075    emitWordLE(Binary);
1076    return;
1077  }
1078
1079  // Set the conditional execution predicate
1080  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1081
1082  unsigned OpIdx = 0;
1083
1084  // Operand 0 of a pre- and post-indexed store is the address base
1085  // writeback. Skip it.
1086  bool Skipped = false;
1087  if (IsPrePost && Form == ARMII::StFrm) {
1088    ++OpIdx;
1089    Skipped = true;
1090  }
1091
1092  // Set first operand
1093  if (ImplicitRd)
1094    // Special handling for implicit use (e.g. PC).
1095    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1096  else
1097    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1098
1099  // Set second operand
1100  if (ImplicitRn)
1101    // Special handling for implicit use (e.g. PC).
1102    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1103  else
1104    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1105
1106  // If this is a two-address operand, skip it. e.g. LDR_PRE.
1107  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1108    ++OpIdx;
1109
1110  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1111  unsigned AM2Opc = (ImplicitRn == ARM::PC)
1112    ? 0 : MI.getOperand(OpIdx+1).getImm();
1113
1114  // Set bit U(23) according to sign of immed value (positive or negative).
1115  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1116             ARMII::U_BitShift);
1117  if (!MO2.getReg()) { // is immediate
1118    if (ARM_AM::getAM2Offset(AM2Opc))
1119      // Set the value of offset_12 field
1120      Binary |= ARM_AM::getAM2Offset(AM2Opc);
1121    emitWordLE(Binary);
1122    return;
1123  }
1124
1125  // Set bit I(25), because this is not in immediate encoding.
1126  Binary |= 1 << ARMII::I_BitShift;
1127  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1128  // Set bit[3:0] to the corresponding Rm register
1129  Binary |= getARMRegisterNumbering(MO2.getReg());
1130
1131  // If this instr is in scaled register offset/index instruction, set
1132  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1133  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1134    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
1135    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
1136  }
1137
1138  emitWordLE(Binary);
1139}
1140
1141void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1142                                                  unsigned ImplicitRn) {
1143  const TargetInstrDesc &TID = MI.getDesc();
1144  unsigned Form = TID.TSFlags & ARMII::FormMask;
1145  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1146
1147  // Part of binary is determined by TableGn.
1148  unsigned Binary = getBinaryCodeForInstr(MI);
1149
1150  // Set the conditional execution predicate
1151  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1152
1153  unsigned OpIdx = 0;
1154
1155  // Operand 0 of a pre- and post-indexed store is the address base
1156  // writeback. Skip it.
1157  bool Skipped = false;
1158  if (IsPrePost && Form == ARMII::StMiscFrm) {
1159    ++OpIdx;
1160    Skipped = true;
1161  }
1162
1163  // Set first operand
1164  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1165
1166  // Skip LDRD and STRD's second operand.
1167  if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
1168    ++OpIdx;
1169
1170  // Set second operand
1171  if (ImplicitRn)
1172    // Special handling for implicit use (e.g. PC).
1173    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1174  else
1175    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1176
1177  // If this is a two-address operand, skip it. e.g. LDRH_POST.
1178  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1179    ++OpIdx;
1180
1181  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1182  unsigned AM3Opc = (ImplicitRn == ARM::PC)
1183    ? 0 : MI.getOperand(OpIdx+1).getImm();
1184
1185  // Set bit U(23) according to sign of immed value (positive or negative)
1186  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1187             ARMII::U_BitShift);
1188
1189  // If this instr is in register offset/index encoding, set bit[3:0]
1190  // to the corresponding Rm register.
1191  if (MO2.getReg()) {
1192    Binary |= getARMRegisterNumbering(MO2.getReg());
1193    emitWordLE(Binary);
1194    return;
1195  }
1196
1197  // This instr is in immediate offset/index encoding, set bit 22 to 1.
1198  Binary |= 1 << ARMII::AM3_I_BitShift;
1199  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1200    // Set operands
1201    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1202    Binary |= (ImmOffs & 0xF);                      // immedL
1203  }
1204
1205  emitWordLE(Binary);
1206}
1207
1208static unsigned getAddrModeUPBits(unsigned Mode) {
1209  unsigned Binary = 0;
1210
1211  // Set addressing mode by modifying bits U(23) and P(24)
1212  // IA - Increment after  - bit U = 1 and bit P = 0
1213  // IB - Increment before - bit U = 1 and bit P = 1
1214  // DA - Decrement after  - bit U = 0 and bit P = 0
1215  // DB - Decrement before - bit U = 0 and bit P = 1
1216  switch (Mode) {
1217  default: llvm_unreachable("Unknown addressing sub-mode!");
1218  case ARM_AM::da:                                     break;
1219  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1220  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1221  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1222  }
1223
1224  return Binary;
1225}
1226
1227void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1228  const TargetInstrDesc &TID = MI.getDesc();
1229  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1230
1231  // Part of binary is determined by TableGn.
1232  unsigned Binary = getBinaryCodeForInstr(MI);
1233
1234  // Set the conditional execution predicate
1235  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1236
1237  // Skip operand 0 of an instruction with base register update.
1238  unsigned OpIdx = 0;
1239  if (IsUpdating)
1240    ++OpIdx;
1241
1242  // Set base address operand
1243  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1244
1245  // Set addressing mode by modifying bits U(23) and P(24)
1246  const MachineOperand &MO = MI.getOperand(OpIdx++);
1247  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
1248
1249  // Set bit W(21)
1250  if (IsUpdating)
1251    Binary |= 0x1 << ARMII::W_BitShift;
1252
1253  // Set registers
1254  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1255    const MachineOperand &MO = MI.getOperand(i);
1256    if (!MO.isReg() || MO.isImplicit())
1257      break;
1258    unsigned RegNum = getARMRegisterNumbering(MO.getReg());
1259    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1260           RegNum < 16);
1261    Binary |= 0x1 << RegNum;
1262  }
1263
1264  emitWordLE(Binary);
1265}
1266
1267void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1268  const TargetInstrDesc &TID = MI.getDesc();
1269
1270  // Part of binary is determined by TableGn.
1271  unsigned Binary = getBinaryCodeForInstr(MI);
1272
1273  // Set the conditional execution predicate
1274  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1275
1276  // Encode S bit if MI modifies CPSR.
1277  Binary |= getAddrModeSBit(MI, TID);
1278
1279  // 32x32->64bit operations have two destination registers. The number
1280  // of register definitions will tell us if that's what we're dealing with.
1281  unsigned OpIdx = 0;
1282  if (TID.getNumDefs() == 2)
1283    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1284
1285  // Encode Rd
1286  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1287
1288  // Encode Rm
1289  Binary |= getMachineOpValue(MI, OpIdx++);
1290
1291  // Encode Rs
1292  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1293
1294  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1295  // it as Rn (for multiply, that's in the same offset as RdLo.
1296  if (TID.getNumOperands() > OpIdx &&
1297      !TID.OpInfo[OpIdx].isPredicate() &&
1298      !TID.OpInfo[OpIdx].isOptionalDef())
1299    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1300
1301  emitWordLE(Binary);
1302}
1303
1304void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1305  const TargetInstrDesc &TID = MI.getDesc();
1306
1307  // Part of binary is determined by TableGn.
1308  unsigned Binary = getBinaryCodeForInstr(MI);
1309
1310  // Set the conditional execution predicate
1311  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1312
1313  unsigned OpIdx = 0;
1314
1315  // Encode Rd
1316  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1317
1318  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1319  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1320  if (MO2.isReg()) {
1321    // Two register operand form.
1322    // Encode Rn.
1323    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1324
1325    // Encode Rm.
1326    Binary |= getMachineOpValue(MI, MO2);
1327    ++OpIdx;
1328  } else {
1329    Binary |= getMachineOpValue(MI, MO1);
1330  }
1331
1332  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1333  if (MI.getOperand(OpIdx).isImm() &&
1334      !TID.OpInfo[OpIdx].isPredicate() &&
1335      !TID.OpInfo[OpIdx].isOptionalDef())
1336    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1337
1338  emitWordLE(Binary);
1339}
1340
1341void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1342  const TargetInstrDesc &TID = MI.getDesc();
1343
1344  // Part of binary is determined by TableGn.
1345  unsigned Binary = getBinaryCodeForInstr(MI);
1346
1347  // Set the conditional execution predicate
1348  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1349
1350  unsigned OpIdx = 0;
1351
1352  // Encode Rd
1353  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1354
1355  const MachineOperand &MO = MI.getOperand(OpIdx++);
1356  if (OpIdx == TID.getNumOperands() ||
1357      TID.OpInfo[OpIdx].isPredicate() ||
1358      TID.OpInfo[OpIdx].isOptionalDef()) {
1359    // Encode Rm and it's done.
1360    Binary |= getMachineOpValue(MI, MO);
1361    emitWordLE(Binary);
1362    return;
1363  }
1364
1365  // Encode Rn.
1366  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1367
1368  // Encode Rm.
1369  Binary |= getMachineOpValue(MI, OpIdx++);
1370
1371  // Encode shift_imm.
1372  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1373  if (TID.Opcode == ARM::PKHTB) {
1374    assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1375    if (ShiftAmt == 32)
1376      ShiftAmt = 0;
1377  }
1378  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1379  Binary |= ShiftAmt << ARMII::ShiftShift;
1380
1381  emitWordLE(Binary);
1382}
1383
1384void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1385  const TargetInstrDesc &TID = MI.getDesc();
1386
1387  // Part of binary is determined by TableGen.
1388  unsigned Binary = getBinaryCodeForInstr(MI);
1389
1390  // Set the conditional execution predicate
1391  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1392
1393  // Encode Rd
1394  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1395
1396  // Encode saturate bit position.
1397  unsigned Pos = MI.getOperand(1).getImm();
1398  if (TID.Opcode == ARM::SSAT || TID.Opcode == ARM::SSAT16)
1399    Pos -= 1;
1400  assert((Pos < 16 || (Pos < 32 &&
1401                       TID.Opcode != ARM::SSAT16 &&
1402                       TID.Opcode != ARM::USAT16)) &&
1403         "saturate bit position out of range");
1404  Binary |= Pos << 16;
1405
1406  // Encode Rm
1407  Binary |= getMachineOpValue(MI, 2);
1408
1409  // Encode shift_imm.
1410  if (TID.getNumOperands() == 4) {
1411    unsigned ShiftOp = MI.getOperand(3).getImm();
1412    ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1413    if (Opc == ARM_AM::asr)
1414      Binary |= (1 << 6);
1415    unsigned ShiftAmt = MI.getOperand(3).getImm();
1416    if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1417      ShiftAmt = 0;
1418    assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1419    Binary |= ShiftAmt << ARMII::ShiftShift;
1420  }
1421
1422  emitWordLE(Binary);
1423}
1424
1425void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1426  const TargetInstrDesc &TID = MI.getDesc();
1427
1428  if (TID.Opcode == ARM::TPsoft) {
1429    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1430  }
1431
1432  // Part of binary is determined by TableGn.
1433  unsigned Binary = getBinaryCodeForInstr(MI);
1434
1435  // Set the conditional execution predicate
1436  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1437
1438  // Set signed_immed_24 field
1439  Binary |= getMachineOpValue(MI, 0);
1440
1441  emitWordLE(Binary);
1442}
1443
1444void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1445  // Remember the base address of the inline jump table.
1446  uintptr_t JTBase = MCE.getCurrentPCValue();
1447  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1448  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1449               << '\n');
1450
1451  // Now emit the jump table entries.
1452  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1453  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1454    if (IsPIC)
1455      // DestBB address - JT base.
1456      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1457    else
1458      // Absolute DestBB address.
1459      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1460    emitWordLE(0);
1461  }
1462}
1463
1464void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1465  const TargetInstrDesc &TID = MI.getDesc();
1466
1467  // Handle jump tables.
1468  if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1469    // First emit a ldr pc, [] instruction.
1470    emitDataProcessingInstruction(MI, ARM::PC);
1471
1472    // Then emit the inline jump table.
1473    unsigned JTIndex =
1474      (TID.Opcode == ARM::BR_JTr)
1475      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1476    emitInlineJumpTable(JTIndex);
1477    return;
1478  } else if (TID.Opcode == ARM::BR_JTm) {
1479    // First emit a ldr pc, [] instruction.
1480    emitLoadStoreInstruction(MI, ARM::PC);
1481
1482    // Then emit the inline jump table.
1483    emitInlineJumpTable(MI.getOperand(3).getIndex());
1484    return;
1485  }
1486
1487  // Part of binary is determined by TableGn.
1488  unsigned Binary = getBinaryCodeForInstr(MI);
1489
1490  // Set the conditional execution predicate
1491  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1492
1493  if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR)
1494    // The return register is LR.
1495    Binary |= getARMRegisterNumbering(ARM::LR);
1496  else
1497    // otherwise, set the return register
1498    Binary |= getMachineOpValue(MI, 0);
1499
1500  emitWordLE(Binary);
1501}
1502
1503static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1504  unsigned RegD = MI.getOperand(OpIdx).getReg();
1505  unsigned Binary = 0;
1506  bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
1507  RegD = getARMRegisterNumbering(RegD);
1508  if (!isSPVFP) {
1509    Binary |=  (RegD & 0x0F)       << ARMII::RegRdShift;
1510    Binary |= ((RegD & 0x10) >> 4) << ARMII::D_BitShift;
1511  } else {
1512    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1513    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1514  }
1515  return Binary;
1516}
1517
1518static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1519  unsigned RegN = MI.getOperand(OpIdx).getReg();
1520  unsigned Binary = 0;
1521  bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
1522  RegN = getARMRegisterNumbering(RegN);
1523  if (!isSPVFP) {
1524    Binary |=  (RegN & 0x0F)       << ARMII::RegRnShift;
1525    Binary |= ((RegN & 0x10) >> 4) << ARMII::N_BitShift;
1526  } else {
1527    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1528    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1529  }
1530  return Binary;
1531}
1532
1533static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1534  unsigned RegM = MI.getOperand(OpIdx).getReg();
1535  unsigned Binary = 0;
1536  bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
1537  RegM = getARMRegisterNumbering(RegM);
1538  if (!isSPVFP) {
1539    Binary |=  (RegM & 0x0F);
1540    Binary |= ((RegM & 0x10) >> 4) << ARMII::M_BitShift;
1541  } else {
1542    Binary |= ((RegM & 0x1E) >> 1);
1543    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1544  }
1545  return Binary;
1546}
1547
1548void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1549  const TargetInstrDesc &TID = MI.getDesc();
1550
1551  // Part of binary is determined by TableGn.
1552  unsigned Binary = getBinaryCodeForInstr(MI);
1553
1554  // Set the conditional execution predicate
1555  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1556
1557  unsigned OpIdx = 0;
1558  assert((Binary & ARMII::D_BitShift) == 0 &&
1559         (Binary & ARMII::N_BitShift) == 0 &&
1560         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1561
1562  // Encode Dd / Sd.
1563  Binary |= encodeVFPRd(MI, OpIdx++);
1564
1565  // If this is a two-address operand, skip it, e.g. FMACD.
1566  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1567    ++OpIdx;
1568
1569  // Encode Dn / Sn.
1570  if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1571    Binary |= encodeVFPRn(MI, OpIdx++);
1572
1573  if (OpIdx == TID.getNumOperands() ||
1574      TID.OpInfo[OpIdx].isPredicate() ||
1575      TID.OpInfo[OpIdx].isOptionalDef()) {
1576    // FCMPEZD etc. has only one operand.
1577    emitWordLE(Binary);
1578    return;
1579  }
1580
1581  // Encode Dm / Sm.
1582  Binary |= encodeVFPRm(MI, OpIdx);
1583
1584  emitWordLE(Binary);
1585}
1586
1587void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1588  const TargetInstrDesc &TID = MI.getDesc();
1589  unsigned Form = TID.TSFlags & ARMII::FormMask;
1590
1591  // Part of binary is determined by TableGn.
1592  unsigned Binary = getBinaryCodeForInstr(MI);
1593
1594  // Set the conditional execution predicate
1595  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1596
1597  switch (Form) {
1598  default: break;
1599  case ARMII::VFPConv1Frm:
1600  case ARMII::VFPConv2Frm:
1601  case ARMII::VFPConv3Frm:
1602    // Encode Dd / Sd.
1603    Binary |= encodeVFPRd(MI, 0);
1604    break;
1605  case ARMII::VFPConv4Frm:
1606    // Encode Dn / Sn.
1607    Binary |= encodeVFPRn(MI, 0);
1608    break;
1609  case ARMII::VFPConv5Frm:
1610    // Encode Dm / Sm.
1611    Binary |= encodeVFPRm(MI, 0);
1612    break;
1613  }
1614
1615  switch (Form) {
1616  default: break;
1617  case ARMII::VFPConv1Frm:
1618    // Encode Dm / Sm.
1619    Binary |= encodeVFPRm(MI, 1);
1620    break;
1621  case ARMII::VFPConv2Frm:
1622  case ARMII::VFPConv3Frm:
1623    // Encode Dn / Sn.
1624    Binary |= encodeVFPRn(MI, 1);
1625    break;
1626  case ARMII::VFPConv4Frm:
1627  case ARMII::VFPConv5Frm:
1628    // Encode Dd / Sd.
1629    Binary |= encodeVFPRd(MI, 1);
1630    break;
1631  }
1632
1633  if (Form == ARMII::VFPConv5Frm)
1634    // Encode Dn / Sn.
1635    Binary |= encodeVFPRn(MI, 2);
1636  else if (Form == ARMII::VFPConv3Frm)
1637    // Encode Dm / Sm.
1638    Binary |= encodeVFPRm(MI, 2);
1639
1640  emitWordLE(Binary);
1641}
1642
1643void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1644  // Part of binary is determined by TableGn.
1645  unsigned Binary = getBinaryCodeForInstr(MI);
1646
1647  // Set the conditional execution predicate
1648  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1649
1650  unsigned OpIdx = 0;
1651
1652  // Encode Dd / Sd.
1653  Binary |= encodeVFPRd(MI, OpIdx++);
1654
1655  // Encode address base.
1656  const MachineOperand &Base = MI.getOperand(OpIdx++);
1657  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1658
1659  // If there is a non-zero immediate offset, encode it.
1660  if (Base.isReg()) {
1661    const MachineOperand &Offset = MI.getOperand(OpIdx);
1662    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1663      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1664        Binary |= 1 << ARMII::U_BitShift;
1665      Binary |= ImmOffs;
1666      emitWordLE(Binary);
1667      return;
1668    }
1669  }
1670
1671  // If immediate offset is omitted, default to +0.
1672  Binary |= 1 << ARMII::U_BitShift;
1673
1674  emitWordLE(Binary);
1675}
1676
1677void
1678ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1679  const TargetInstrDesc &TID = MI.getDesc();
1680  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1681
1682  // Part of binary is determined by TableGn.
1683  unsigned Binary = getBinaryCodeForInstr(MI);
1684
1685  // Set the conditional execution predicate
1686  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1687
1688  // Skip operand 0 of an instruction with base register update.
1689  unsigned OpIdx = 0;
1690  if (IsUpdating)
1691    ++OpIdx;
1692
1693  // Set base address operand
1694  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1695
1696  // Set addressing mode by modifying bits U(23) and P(24)
1697  const MachineOperand &MO = MI.getOperand(OpIdx++);
1698  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
1699
1700  // Set bit W(21)
1701  if (IsUpdating)
1702    Binary |= 0x1 << ARMII::W_BitShift;
1703
1704  // First register is encoded in Dd.
1705  Binary |= encodeVFPRd(MI, OpIdx+2);
1706
1707  // Count the number of registers.
1708  unsigned NumRegs = 1;
1709  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1710    const MachineOperand &MO = MI.getOperand(i);
1711    if (!MO.isReg() || MO.isImplicit())
1712      break;
1713    ++NumRegs;
1714  }
1715  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1716  // Otherwise, it will be 0, in the case of 32-bit registers.
1717  if(Binary & 0x100)
1718    Binary |= NumRegs * 2;
1719  else
1720    Binary |= NumRegs;
1721
1722  emitWordLE(Binary);
1723}
1724
1725static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
1726  unsigned RegD = MI.getOperand(OpIdx).getReg();
1727  unsigned Binary = 0;
1728  RegD = getARMRegisterNumbering(RegD);
1729  Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1730  Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1731  return Binary;
1732}
1733
1734static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
1735  unsigned RegN = MI.getOperand(OpIdx).getReg();
1736  unsigned Binary = 0;
1737  RegN = getARMRegisterNumbering(RegN);
1738  Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1739  Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1740  return Binary;
1741}
1742
1743static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
1744  unsigned RegM = MI.getOperand(OpIdx).getReg();
1745  unsigned Binary = 0;
1746  RegM = getARMRegisterNumbering(RegM);
1747  Binary |= (RegM & 0xf);
1748  Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1749  return Binary;
1750}
1751
1752/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1753/// data-processing instruction to the corresponding Thumb encoding.
1754static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1755  assert((Binary & 0xfe000000) == 0xf2000000 &&
1756         "not an ARM NEON data-processing instruction");
1757  unsigned UBit = (Binary >> 24) & 1;
1758  return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1759}
1760
1761void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1762  unsigned Binary = getBinaryCodeForInstr(MI);
1763
1764  unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1765  const TargetInstrDesc &TID = MI.getDesc();
1766  if ((TID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1767    RegTOpIdx = 0;
1768    RegNOpIdx = 1;
1769    LnOpIdx = 2;
1770  } else { // ARMII::NSetLnFrm
1771    RegTOpIdx = 2;
1772    RegNOpIdx = 0;
1773    LnOpIdx = 3;
1774  }
1775
1776  // Set the conditional execution predicate
1777  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1778
1779  unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1780  RegT = getARMRegisterNumbering(RegT);
1781  Binary |= (RegT << ARMII::RegRdShift);
1782  Binary |= encodeNEONRn(MI, RegNOpIdx);
1783
1784  unsigned LaneShift;
1785  if ((Binary & (1 << 22)) != 0)
1786    LaneShift = 0; // 8-bit elements
1787  else if ((Binary & (1 << 5)) != 0)
1788    LaneShift = 1; // 16-bit elements
1789  else
1790    LaneShift = 2; // 32-bit elements
1791
1792  unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1793  unsigned Opc1 = Lane >> 2;
1794  unsigned Opc2 = Lane & 3;
1795  assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1796  Binary |= (Opc1 << 21);
1797  Binary |= (Opc2 << 5);
1798
1799  emitWordLE(Binary);
1800}
1801
1802void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1803  unsigned Binary = getBinaryCodeForInstr(MI);
1804
1805  // Set the conditional execution predicate
1806  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1807
1808  unsigned RegT = MI.getOperand(1).getReg();
1809  RegT = getARMRegisterNumbering(RegT);
1810  Binary |= (RegT << ARMII::RegRdShift);
1811  Binary |= encodeNEONRn(MI, 0);
1812  emitWordLE(Binary);
1813}
1814
1815void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1816  unsigned Binary = getBinaryCodeForInstr(MI);
1817  // Destination register is encoded in Dd.
1818  Binary |= encodeNEONRd(MI, 0);
1819  // Immediate fields: Op, Cmode, I, Imm3, Imm4
1820  unsigned Imm = MI.getOperand(1).getImm();
1821  unsigned Op = (Imm >> 12) & 1;
1822  unsigned Cmode = (Imm >> 8) & 0xf;
1823  unsigned I = (Imm >> 7) & 1;
1824  unsigned Imm3 = (Imm >> 4) & 0x7;
1825  unsigned Imm4 = Imm & 0xf;
1826  Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1827  if (IsThumb)
1828    Binary = convertNEONDataProcToThumb(Binary);
1829  emitWordLE(Binary);
1830}
1831
1832void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1833  const TargetInstrDesc &TID = MI.getDesc();
1834  unsigned Binary = getBinaryCodeForInstr(MI);
1835  // Destination register is encoded in Dd; source register in Dm.
1836  unsigned OpIdx = 0;
1837  Binary |= encodeNEONRd(MI, OpIdx++);
1838  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1839    ++OpIdx;
1840  Binary |= encodeNEONRm(MI, OpIdx);
1841  if (IsThumb)
1842    Binary = convertNEONDataProcToThumb(Binary);
1843  // FIXME: This does not handle VDUPfdf or VDUPfqf.
1844  emitWordLE(Binary);
1845}
1846
1847void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
1848  const TargetInstrDesc &TID = MI.getDesc();
1849  unsigned Binary = getBinaryCodeForInstr(MI);
1850  // Destination register is encoded in Dd; source registers in Dn and Dm.
1851  unsigned OpIdx = 0;
1852  Binary |= encodeNEONRd(MI, OpIdx++);
1853  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1854    ++OpIdx;
1855  Binary |= encodeNEONRn(MI, OpIdx++);
1856  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1857    ++OpIdx;
1858  Binary |= encodeNEONRm(MI, OpIdx);
1859  if (IsThumb)
1860    Binary = convertNEONDataProcToThumb(Binary);
1861  // FIXME: This does not handle VMOVDneon or VMOVQ.
1862  emitWordLE(Binary);
1863}
1864
1865#include "ARMGenCodeEmitter.inc"
1866